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A concrete model for hierarchically constrained dynamics 
in the sense proposed by Palmer et al. (Phys. Rev. Lett. 
53, 958 (1984)) is presented. The model is a kinetic Ising 
chain with an asymmetric kinetic constraint, allowing a 
spin to flip only if its neighbour to the right is in the up 
spin state. The spin autocorrelation function is obtained 
by numerically exact calculation for finite chain length 
up to L -- 9 and by Monte Carlo simulation for effectively 
infinite chain length. The Kohlrausch-Williams-Watts 
formula is found to fit the results only with limited ac- 
curacy, and within limited time intervals. We also per- 
formed an analytical calculation using an effective-me- 
dium approximation. The approximation leads to a spu- 
rious blocking transition at a critical up spin concentra- 
tion c = 0.5. 

1. Introduction 

It has been suggested that the stretched exponential time 
dependence of relaxation in supercooled liquids near the 
glass transition points to a characteristic kinetic pattern. 
Adam and Gibbs [1] described this pattern in terms of 
"cooperatively rearranging regions". According to Palmer 
et at. [2] (see also [3,4]), relaxation proceeds in a se- 
quence of  relaxation steps successively coupled by a ki- 
netic constraint. These authors argued that such a "hi- 
erarchy of constraints" leads to a distribution of  relax- 
ation times from which the Kohlrausch-Williams-Watts 
(KWW) formula of stretched exponential relaxation re- 
sults. In this paper we propose a concrete one-dimen- 
sional kinetic Ising model with a kinetic constraint, which 
is perhaps the simplest model with "hierarchically con- 
strained dynamics" in the sense postulated by Palmer et 
al. We calculate the spin autocorrelation function for this 
model and compare it with the KWW-formula.  

The paper is organized as follows. The model is de- 
fined in Sect. 2. In Sect. 3 the equations of  motion gov- 
erning the time dependence of the autocorrelation func- 

tion are derived, both for the infinite and finite chain. 
An argument for the absence of a blocking transition is 
given m Sect. 4. The results of numerically exact calcu- 
lations of  the autocorrelation function for chains of finite 
length and of a Monte Carlo simulation for long chains 
are presented in Sects. 5 and 6. They are compared with 
the KWW-formula in Sect. 7. Finally, an analytical cal- 
culation in the framework of  the effective-medium ap- 
proximation is reported in Sect. 8. 

2. The model 

We consider a one-dimensional kinetic Ising model with 
non-interacting spins in a magnetic field subject to the 
following kinetic constraint: spin number i can flip only 
if spin number i + 1 to the right of  it is in the "up" state. 
Otherwise spin i is blocked in its present state. By this 
constraint each spin is successively coupled to all spins 
to the right of it, and independent of all spins to the left. 
The model is translationally invariant, i.e. every spin re- 
laxes identically on the average in the infinite chain. To- 
calculate the relaxation function, which is the normalized 
spin autocorrelation function, for spin i = 0, say, we need 
to treat only the semi-infinite chain with i_> 0. 

The model can be interpreted in terms of molecular 
relaxation in supercooled liquids in the following way. 
Suppose that the flip of spin i = 0 corresponds to a step 
of orientational or translational motion of a given mol- 
ecule, by which relaxation occurs. Then the kinetic con- 
straint that spin i = 1 must be in the up state expresses a 
(geometric or energetic) condition to be met in the shell 
of nearest neighbours around the given molecule, for the 
relaxation step considered to be possible. A flip of spin 
i = 1 into or out of  the up state corresponds to transitions 
within the shell of  first neighbours into or out of config- 
urations in which this condition is fulfilled. The kinetic 
constraint requiring spin i = 2 to be in the up state, in 
turn, derives from a condition on the shell of  second- 
nearest neighbours for the transitions within the first shell 
to be allowed. And so on. 
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Our model can be regarded as an asymmetric version 
of  the one-spin facilitated kinetic Ising model in one di- 
mension. In the usual symmetric n-spin facilitated kinetic 
Ising models [5-9] a spin is allowed to flip i f  a n y  n nearest- 
neighbour spins are up spins. In this case, for n = 1, an 
up spin state can move around freely [8]. As a conse- 
quence, at low up spin concentration relaxation is of  the 
defect-diffusion type [10]. In our asymmetric model,on 
the other hand, an up spin state can propagate freely only 
to the left. Motion to the right, however, requires the 
presence of additional up spins. The asymmetry of  the 
kinetic constraint makes our model "cooperative". It has 
been shown recently [11, 12] that asymmetry of interac- 
tion rather than of  kinetic constraint may also cause 
stretched exponential relaxation in a one-demensional ki- 
netic Ising model. 

There is a certain similarity between our model and a 
more general model proposed by Palmer et al. [2]. These 
authors considered a semi-infinite chain with a number 
Nn of Ising spins on site n (n = 0, 1, 2 .... ). A spin on site 
n + 1 can flip only if a certain number/in < N~ of  the spins 
on site n are all in one particular state. Contrary to our 
model, this kinetic constraint couples a spin to its le f t  
neighbours. Since the chain is bounded to the left, i.e. in 
the direction of decreasing n, the relaxation behaviour at 
different sites is different even in the semi-infinite chain. 
The spin autocorrelation function for this i n h o m o g e n e o u s  
chain is defined as the spatial average over all sites. In 
the special case N , = / ~ , =  1 for all n, which would cor- 
respond to our model, their result (7) for the spin auto- 
correlation function, derived in a heuristic manner, reads 

q ( t ) =  1 Z e x p ( - t / 2 n z o ) ) ,  (1) 
/'/=1 

where N is the total number of  sites. In the limit N--, oe 
of a semi-infinite chain q (t) tends to unity for any t > 0. 
It is clear then that both the model and the heuristic 
treatment of  [2] is very different from ours. 

Finally we add a remark concerning the origin of non- 
exponential relaxation in our model. To elucidate the 
nature of  the model it is worth discussing an erroneous 
argument that would predict exponential relaxation. Cal- 
culating the relaxation function for spin i =  0 we assume 
spin i =  0 to be in the "up" state at time t = 0, while all 
other spins i > 0 are in equilibrium (see Sect. 3). Since 
the spins to the right of  spin i = 0 are independent of  the 
spin at the origin, they remain in equilibrium at later 
times. One might - erroneously - think that this implies 
that the conditional probability p (o" 1 = 1" ] o-0) for finding 
spin i--  1 in the up state if spin i = 0 is in the up or down 
state is given by the constant equilibrium value c, inde- 
pendent of the value o-0 of  spin i = 0. If  this were case, a 
simple relaxation equation for the up spin probability of  
spin i =  0, leading to exponential relaxation, would be 
obtained. However, the kinetic constraint coupling a spin 
i to its right-hand neighbour i § 1 causes a time-depend- 
ent correlation between the directions of  spin i = 1 and 
the spin i = 0 at the origin. By symmetry, not only does 
the conditional probability P(o-olo-0 depend on O'l, but 
also p (o-1 ] o-0) depends on o-0. As shown in the next sec- 

tion, the kinetic constraint leads to an infinite hierarchy 
of  equations of  motion for the joint probabilities of larger 
and larger clusters of  spins. As a result, the relaxation of  
spin i = 0 is non-exponential. 

3. Basic equations 

So far we have introduced our model as an Ising spin 
model, where a spin i may have values a,.= + 1. As will 
become clear presently, it is convenient to use the occu- 
pation numbers 

n,=�89 1), (2) 

equal to 0 or 1 with n~ = ni, of  the equivalent lattice gas 

model instead of  the spin variables. If site i is in the state 
with occupation number n~, let 

ft i = 1 - n i (3) 

denote the occupation number of  the alternative state. 
We need to consider only the semi-infinite chain with 
i_>0. 

For  Glauberian dynamics with rates w e ({n}) of single- 
site transitions ni~r~ i the Master equation for the 
time-dependent probability P ( { n } ; t )  of  configuration 
{n} = (no, n l , . . . )  reads 

O,e({n},t)= F, { - - w , ( n o , . . . , n , , . . . ) e ( n o  . . . .  n ,  . . . .  ;t) 
i=0  

+ w , ( n o  . . . .  , n ,  . . . .  ) 1 ' ( n o  . . . .  n ,  . . . .  ;t)}. (4) 

Instead of using the probabilities of pure configurations 
of the entire chain, one may work with the time-depend- 
ent expectation values of products of  occupation numbers 
nio, ni~,.., n~-r, which are the joint probabilities for the se- 
lection of  sites i0, i 1 .... i r to be occupied: 

(n,on,,...<r),=Z n,on,,...n; P({n}; t) 

= P (nio = nil =.. .n,~ = 1). (5) 

The equations of  motion for these expectation values are 
obtained from the Master equation in the same manner 
as in [13] as 

Ot(nionil'"nir)t = 2 (nio'"n&-i (1 - - 2 n & )  
k = O  

• ({,}) (6) 

The transition rate of our model is given by 

Wi ({n}) =/-'[C § (1 - - 2 c ) n i ] n i +  1 . (7) 

Choosing the inverse of  the attempt frequency F as the 
unit of time, we can drop the factor F in (7) further on. 
c is the concentration, equal to the average occupation 
( n i ) e q  of  any site in equilibrium. The first factor in the 
expression (7) for the transition rate is required by the 
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condition of detailed balance. The second factor in (7) 
derives from the kinetic constraint characteristic of  our 
model. The fact that the constraint is expressed simply 
by a factor ni+ 1 is the reason for choosing the lattice gas 
rather than the Ising spin formulation of the model. 

The kinetic constraint expressed by the transition rate 
(7) has the following obvious consequence. Suppose that 
in the initial configuration all sites to the right of a certain 
occupied site i = l are vacant. Then the occupied site fur- 
thest to the right will always be number /. Therefore, 
configurations corresponding to different values of I are 
not dynamically accessible one from the other. The con- 
figuration space of the semi-infinite chain decomposes 
into irreducible sets of 21 configurations with the same 
maximum site number l of  the occupied sites. 

Our objective is to calculate the equilibrium autocor- 
relation function (A n o (t) A n o (0))~q of the time-depend- 
ent occupation number fluctuation A n o = n o - e  at site 
i = 0 .  The normalized autocorrelation function defines 
the relaxation function 

(o ( t )  = ( A n ~  ( t )  An  o (O))eq (8) 
C(1 --C) 

with q5 (t = 0 ) =  1. According to linear response theory, 
~b (t) determines the expectation value (Ano) t in non- 
equilibirum, which obtains for a special initial condition 
at time t = 0. The initial condition prescribes a deviation 
(A n0)t= 0 of  the average occupation of site i = 0 from the 
equilibrium value c, while leaving the rest of the chain in 
equilibrium. The relation of  linear response theory is 

(Ano)t  
(9 ( t ) -  (Ano)t=o. (9) 

Due to the lack of interaction between different sites, the 
occupation of site i = 0 and of sites i > 0 is uncorrelated 
both in equilibrium and at time t -- 0. For  this reason the 
relation between the deviation (Ano) , at time t > 0 and 
the initial deviation (A n0)~= 0 is linear for arbitrary values 
of the latter. Therefore (9) holds without restriction on 
the magnitude of the initial deviation. In the rest of this 
section we shall apply the initial condition (n0)~=0= 1. 
To calculate q~ (t) by Monte Carlo simulation, however, 
we employ relation (9) both for ( n 0 ) t = o = l  and 
(no)  ~= o = 0. As mentioned already, the occupation of the 
sites i > 1 to the right of site i = 0 remains in equilibrium 
at later times if it is in equilibrium initially at t = 0. This 
is guaranteed by the condition of detailed balance. There- 
fore expectation values ( n i l n i 2 . . . n G }  t n o t  involving the 
occupation of site i =  0 (i.e. for i~, i2,.., i~=r 0) at all times 
are given by their equilibrium values: 

(ni~ni;...ni~)t=c ~. (10) 

We now write down the equations of motion for the 
hierarchy of  expectation values (nonr (with 
0 < i~ < i 2 < ... < i~), which derive from the initial value 
problem for the time-dependent average occupation (no)  ~ 
with given initial condition (no) ,=  o. The first two equa- 
tions read 

a t ( n o ) , = - - ( n o n l ) t q - c  2 (11) 

~3 t <nonl> t-= _ (< nonl> t + <non1 n2>,) 

+ C<non2)t + c 2. (12) 

The general equation of motion can be written as 

Ot(noni~...ni~)t 

= __ (non 1 n i l . . . n i~ ) t -~ -  e r" 

with 

+ 2 (--(noni,'"ni~nik+~'"nir)t 
k = l  

@ C ( n o n i l . . . ~ n & w 1 . . . n i ~ )  t) (13) 

r '  = r + 1 + fii,,l- (14) 

The constant inhomogeneous term c r" obtains from the 
term 

c(nlni~...ni~ ) (15) 

using Eq. (10). Consider the set of the 2 l -  l different ex- 
pectation values (nonil...nir)t with 0 < i 1 < ... < i r for 
fixed i r = l. Since for each of these expectation values the 
equation of motion (13) contains a term proportional to 
(noni,. . .nlnt+l) , and to (nonil . . .~nl+l) t ,  in all the 2 t-1 
equations of motion all 2 t different expectation values 
(n  o ,n~,...n~,r) t with fixed i" - - l +  1 occur. For  l =  1 (12) 
couples (n0n l )  t to (non2) , and (nonln2) t. This proves 
that the quantity of  interest (no) t  couples to the complete 
hierarchy of expectation values (noni,,..nir)t. 

Chains o f  finite length 

Until now we dealt with the semi-infinite chain. It is of 
interest also to treat chains of finite length L with sites 
i = 0, 1 .... L. In Sect. 5 we present exact calculations for 
chain lengths up to L =  9. Monte Carlo calculations 
(Sect. 6) naturally are done for finite chains. We distin- 
guish two different boundary conditions for finite chains: 

i) Blocking boundary condition, by which the occupa- 
tion of the last site to the right is blocked and remains 
in the initial state. This corresponds to chopping off the 
rest of  the chain, so that the last site is permanently 
blocked by the kinetic constraint. 
if) Free boundary conditions, by which the kinetic con- 
straint on the last site i = L is lifted. 

Either of the two types of boundary condition may be 
obtained by keeping a fictive site i = L + 1 permanently 
empty or occupied. 

All 2 L+l configurations of a chain of length L with 
free boundary condition are kinetically accessible one 
from the other and correspond to the irreducible partition 
of the configurations of the infinite chain in which the 
occupied site furthest to the right is site number L + 1. 
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A finite chain of  length L > 0 with free boundary con- 
dition is ergodic. To indicate the chain length L and the 
type of  boundary condition chosen, we shall use a su- 
perscript (L, b) or (L, f ) ,  respectively. 

A useful relation exists between the solutions (no)  ' 
for finite chains with different boundary conditions. It 
derives from the following consideration. In a chain of 
length L with blocking boundary condition the last site 
i = L is permanently occupied with probability c and per- 
manently vacant with probability 1 - c. If  it is occupied, 
the rest of  chain behaves like a chain of  length L - 1 with 
free boundary condition. If it is vacant, the neighbouring 
site i = L -  1 is also permanently blocked, so that the rest 
of the chain of length L - 1  has a blocking boundary 
condition. In terms of  the solution (no> , this is expressed 
by the relation 

<Ho>Lt 'b ~ -  C<t lo>Lt  - l ' f  AI- (1 - c) <no>f-  1,a, (16) 

valid for any L >  1. Solving for the solution with free 
boundary condition we find 

< n o > U = _ 1  <no>  1 (17) 
C C 

Iteration of relation (16) yields the solution with blocking 
boundary condition in terms of  solutions with free 
boundary condition for different lengths: 

<no>t r'b = (1 - c) L 

C L ~ I  

L ' = O  

( l - c )  L L'<no>~"f. (18) 

An identical relation holds for the corresponding relax- 
ation functions q5 (t), related to (no> ~ by (see (9)) 

(no>~-  c (19) 
( t ) - -  1 - c 

Formula (18) reflects the decomposition of  the configu- 
ration space of a chain of  length L with blocking bound- 
ary condition into the irreducible partitions. Since the 
relaxation functions for the chains with free boundary 
condition decay to zero for t--*oo (Sect. 4), the limiting 
value for blocking boundary condition is given by 

lira ~b L,b (t) = (1 -- C) r . (20) 
t~OO 

This is just the probability of  the configuration with all 
sites 1 _< i<_L vacant. This last formula enables us to 
estimate how long a chain must be if the decay of the 
relaxation function for the infinite chain q~(~o) from 1 to 
a given value e is to be calculated. Equating (1 - c) r with 
e yields the condition 

In e 
L > (21) 

In (1 -- c )  

For  c = 0 . 5  and e = 10 -2, e.g., L must be at least 7. The 
r,h.s, of  (21) estimates the maximum distance over which 

neighbouring sites influence the decay of the perturbation 
(Ano> from its initial value (Ano>,= o to e(Ano>~= o . 

The dynamical matrix 

To write the system of differential equations (13) in vector 
form, we need to number the expectation values 
(n0 hi,.., nit) as the components of a vector x. We number 
such an expectation value by the binary number 
j (il, i2... it) which is defined by the site numbers i s , i2 .... ir 
with 0 < i  1< i2 . . .  < i  r. The i~-th binary digit (for 
k = 1, 2 .... r) of  this number is one, the other digits are 
zero. The value of  the binary number is given by 

J(ie, iz '" ir)= 2 21k-1 (22) 
k = l  

For r = 0  we have j ( 0 ) = 0 .  We note that for fixed max- 
imum site number ir=I>__l the binary mtmbers 
j ( i l , i  2 .... i,.) range from 2/-1 to 2 z -  1. All expectation 
values occurring in a finite portion of  the chain from site 
0 to site l are contained in the first 2 z components of  the 
vector x. The first components of x read 

/ <non1> 

x =   <non, (23) 

\ (n~ 

We get rid of the constant inhomogeneous terms in the 
differential equations (13) by introducing the deviations 
from equilibrium 

A xj = xj - xj,~q. (24) 

For  j = O : A x o = { A n o > .  The equilibrium value of  xj is 
given by 

xj,~q = c ~+ 1, (25) 

where r + 1 is the number of factors in the equation value. 
The initial value of  Axj is 

Axj ( t  = 0) = (1 - c) c r . (26) 

The system of  homogeneous differential equations can 
then be written as 

(~tfizj, + M j y ) A x y  = 0  ( j = 0 ,  1 ,2, . . . ) .  (27) 

We turn to the block structure of  the dynamical matrix 
M. In the system of differential equations (13) an expec- 
tation value with maximum site number l is only coupled 
to expectation values with maximum site number equal 
to I or l +  1. Therefore, for l>= 1 and j ranging from 2 l -  
to 2 z -  1, non-zero matrix elements M~j, exist only in the 
range 2 t -  ~ =<j, =< 2 t+ 1 _ 1. The matrix M is composed of 
rectangular 2 l -~•  (3-2 z- 2) matrices for l =  1, 2 . . . . .  The 
first row M contains only one single non-zero matrix 
element: 
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/~ -cE i ! ,  E(') -cE (21 E(t) 

N 
0 \ 

\ 

Fig. 1. The block matrix form of the dynamical matrix M. Sub- 
matrices are explained in the text 

M o , j ,  = ~ j , , 1  . ( 2 8 )  

The matrix M is built by adding the rectangular 
2 ~ 1 •  blocks underneath the first row for 
1= 1, 2,... successively. The blocks are shifted horizon- 
tally in such a way that their left-hand quadratic 
2~-1• 2 l-  ~ parts are along the diagonal of M. The struc- 
ture of the matrix obtained is that of Fig. 1 (see below). 
Apparently, the block structure of M is self-similar. 

Let us denote the rectangular 2 t •  ~+~ matrix (I>= 1) 
formed by the non-zero matrix elements in the first 2 ~ 
rows of M by M (~ The left-hand quadratic 2Zx 2 t part 
of M (~ is the dynamical matrix M i'b for the finite chain 
of length I with blocking boundary condition. Let us de- 
note the dynamical matrix for a chain of length l with 
free boundary condition by M ~'f. We give without proof 
the rules for building M (~ M l'f and M l+i'b from M z'b, 
The rules are explained in terms of the block structures 
of the different matrices as follows: 

M (l) = M l, b 

(29) 

MI, j = Ml, b + 

0 

_ c E ( t - ~ )  E(/- l) 

Mt+l .b= 

M(o 

0 M ;'f 

(30) 

(31) 

Here E (l) denotes the 2l• 2t unit matrix. Using these rules, 
the matrices M (/), M l'f, M z+l'b for /=1 ,2 , . . .  can be 
written down successively starting from 

1 

Combining (29) and (31) and iterating, one can express 
M by the sequence of matrices M l"f for l =  > 1, together 
with M l'b and the unit matrices E (~ This is shown in 
Fig. 1. The matrices M l'f for l > 1 are the block diagonal 
parts of M. 

We now take the Laplace transform with respect to 
the time of the vector equation of motion (27), which 
yields for j = 0, 1,2 .... 

(saj, f + M~j,) Axj, (s)=Axj(t=O) (33) 

with 

co 

A x j ( s ) =  [~ d t e - ' t A x j ( t )  (34) 
0 

and the initial values Ax: (t = 0) given by (26). According 
to Kramer's rule, the solution for the component Axo 
can be written as 

~-~ detB (35) 
A x o ( S ) = d e t ~ ,  

where 

Au=sOj, y + M  w, (j , j '>=O), (36) 

and B is the matrix obtained from A by substituting the 
vector of initial values Ax j ( t=O)  for the zeroth column 
of A. The zeros of the denominator of expression (35) 
determine the relaxation rates occurring in the time-de- 
pendent solution A x  o (t). It follows from the block struc- 
ture of the matrix M (Fig. 1) that only the block diagonal 
part of matrix A contributes to its determinant. The result 
for the denominator in (35) therefore has the form of an 
infinite product: 

det A = s (s + 1) f l  det (sE (~ + M1'r 
l = 1  

(37) 

For a finite chain of length L with blocking boundary 
the product extends only to a maximum value/max = L -- 1. 
By comparison, for a chain of length L with free bound- 
ary, the denominator of (35) is given by 

det (sE (L) + ML' f ) .  (38) 

The factorization (37) of the denominator of (35) for the 
semi-infinite chain or for a finite chain with blocking 
boundary is due to the fact that each irreducible partition 
of 2 z+ 1 configurations independently determines 2 ~ relax- 
ation frequencies. These are also the relaxation frequen- 
cies occurring in the finite chain of length 1 with free 
boundary. 
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For  illustration of  these general formulae, we give the 
results for A~'~ "b for L =  1 and L = 2 :  

A"~ ~,b (s) - (1 - c) 2 + c (1 - c) 
s s +  1 ' (39) 

Ax 02,b (s) - (1 - c) 3 + c ( 1 - c) 2 
s s + l  

+ c ( 1 - c )  1 ! ] / / 1 - c  

 TC;-c (40) 

Using relation (17) the solution A'~o~'ffor L =  1 and free 
boundary is obtained from these results as 

A ~ l , f =  1- -c  1 _ + ] / 1 - c  
2 ~ s ~ - ~ + ~ l = ~ c  " (41) 

The relaxation frequencies 

s~,2 = - 1 + 1/1 - c (42) 

arise from the irreducible partition of  the four configu- 
rations 

0,0, 1,0 .... 0, 1,1,0 .... 1 ,0 ,1 ,0  .... 1, 1, 1,0,.. .  

corresponding to the free chain of  length L = 1. 

c) The third statement concerns the ergodicity of  a finite 
chain with free boundary, which implies that 

lim (oL'f(t) = 0 (45) 
t ----~ 00 

holds. Using relation (18), we then obtain 

lira (oL, b (t) = (1 -- C) L . (46) 
t ~ c ~  

The relaxation function (o(~) of the semi-infinite chain is 
given by the limits 

(o(~176 lim (or'b(t)= lim (oL'f(t). 
L ~ a o  L ~ c o  

(47) 

Note that the desired results 

lira (o(oo)(t) = 0 (48) 
t ~ c l 3  

does not follow from (45) or (46) alone, since the limits 
with respect to L and t may not be interchangeable. How- 
ever, iterating (43) and (44) we deduce that for any L > 0 
and t > 0 the relaxation function (oL, b (t) and (oL'f(t) rep- 
resent an upper and lower bound to (o(~)(t): 

(or'f (t) <= (o(~) (t) <= (o L.b (t).  (49) 

Taking the limit t--* oc and letting L go to infinity we 
arrive at the result (48). 

4. Absence of a blocking transition 

The first question to be asked regarding the relaxation 
behaviour of our model is whether the semi-infinite chain 
with relaxation function (o(~)(t) relaxes to equilibrium 
at all concentrations c > 0, in which case (o(~)(t) decays 
to zero asymptotically for long times. In the opposite case 
a blocking transition would exist at some critical con- 
centrati.on c* > 0, below which (o(oo) (t) would tend to a 
finite limit for t ~  oo. We give an argument for the absence 
of  such a transition. The argument combines three state- 
ments which seem evident, although we so far have no 
mathematical proofs for them. The statements, which are 
also confirmed by the numerical results presented below, 
are: 

a) Since shifting the blocking boundary of  a finite chain 
from L to L + 1 facilitates the relaxation at site i-- 0, the 
inequality 

(O L+ l,b (t) =< (OL, b (t) (43) 

holds for the L-dependence of (OL, b at any t. 

b) Similarly, the reverse inequality 

(o r+ ~,f (t) >= (oL'f (t) (44) 

holds for (oL,f as a function of L, since shifting the free 
boundary of  a finite chain to the right has the opposite 
effect of  slowing down the relaxation at the origin. 

5. Numerical solution for finite chains 

Using the formulas developed in the last section, we cal- 
culate the relaxation function numerically for chains of  
finite size with either blocking or free boundary condi- 
tion. 

The elements of  the matrix M L'b or ML'fare  obtained 
recursively with the use of  rules (29-31), starting from 
M l'b. The equation 

( M +  sE) Ax  = A x ( t = O )  (50) 

for the 2L-component vector A~'~ is solved for A'~o by 
standard numerical methods. The result is transformed 
back into the time domain numerically using the Stehfest 
algorithm [14] for inverse Laplace transformation. This 
algorithm works with good accuracy for monotonic and 
continuous functions like our relaxation function. It has 
the advantage of  performing the Laplace-inversion on the 
real s-axis. 

Since the dimension of  the vector Ax  increases with 
L as 2 L, the storage capacity of  the computer limits the 
numerically manageable chain length to L~<10. In Eq. 
(21) we have given a condition for the relaxation function 
of a finite chain to be a good approximation to the re- 
laxation function (O(~) of the infinite chain. It follows 
from this condition that, for L < 10, the decay of (O (o~)(t) 
from 1 to a chosen value e = 10 -2 can be obtained with 
good accuracy only for concentrations c~0.5.  
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Fig. 2. Semi-log plot of relaxation functions for chains of length L 
with blocking (upper curve) and free boundary (lower curve) for 
c=0.5 
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Fig. 3. Semi-log plot of relaxation functions for t = 9 with blocking 
and free boundary conditions, and Monte Carlo data for semi- 
infinite chain. Concentration is c=0.3. Upper curve: result of 
effective-medium approximation (Sect. 8) 

The results of the numerical calculation of the relax- 
ation function for c =  0.5 and chain lengths L from 1 to 
9 are shown in Fig. 2. For  each value of L, the upper 
curve represents the relaxation function q~ r.b for blocking 
boundary condition, the lower curve describes the relax- 
ation function ~b L'f for free boundary condition. Asymp- 
totically for long times, (b L'b approaches the constant 
value (1 - c) L, while ~b L's decays exponentially. The ine- 
qualities (43) and (44) and equations (45) and (46) are 
fulfilled. For  L = 9 the two curves for ~b r'b (t) and 4)r'f(t) 
start to deviate from one another at q5 ~ 10 -2. Therefore 
they both are good approximations to q~(~176 for <b- 
values larger than this, in agreement with our criterion. 

6. Monte Carlo simulation 

In the preceding section qS(~)(t) could be obtained by 
calculations for finite chains of  length L <  10, provided 
that the concentration was not lower than c ~ 0.5. Using 
Monte Carlo simulation, which can be performed for 
much longer chains, we can extend this range of concen- 
tration. The main limitation of the Monte Carlo simu- 
lations is due to the enormous slowing down of relaxa- 
tion, which occurs at low concentrations. Using an ele- 
mentary algorithm, we followed the Monte Carlo process 
for times t < 5 5 0  in chains of length L<25 .  This is suf- 

(m) ficient to calculate the decay of ~b (t) from 1 to e = 10-2 
for concentrations c>0.3 .  Results obtained with a re- 
fined Monte Carlo program, designed to eliminate some 
of the effects of the slowing down at low concentrations, 
will be reported in a subsequent publication. 

We estimate the number of runs required for obtaining 
the relaxation function ~b (t) with a certain relative ac- 
curacy. If  of  ~b (t) is the average of no(t ) over N inde- 
pendent runs, the relative error is given by 

(A~ (t))N 
r (t) 

l i N e ( t )  ~ , \ 1 - c l ,  

_ 1  1 V ( c  / 
] ~  ~b (t) ~Z~_c+~b (t) ( 1 - r  (t)) (51) 

The last result is obtained using no 2 = n o and the definition 

of ~b (t). To follow the decay of q~ (t) down to a value of 
e = 10 -2 with an accuracy of 1 percent, the minimum 
number of runs required is 

c + 1 0 - 2 ) .  (52) Nmi.=108 1 - e  

For  c=0 .5  a hundred million runs are needed. For  
c ~  1 Nmi n diverges due to the normalization factor 1 - c 
in the definition of q~. 

We note that the simulation of a finite chain of  length 
L includes the simulation of all shorter lengths L '  < L 
There are two reasons for that. First, the relaxation at a 
site i depends only on the part of  the chain to the right 
of this site. The occupation of site number i of  a chain 
of length L on the average relaxes like the occupation at 
the origin of a chain of length L - i. Secondly, the relax- 
ation function can be obtained by sampling both the in- 
itially occupied and empty sites, using formula (9) with 
the respective initial value (n0)t= 0 = 0 or 1. The method 
of using all the data of a Monte Carlo run with a long 
chain is particularly suitable for calculating ~b (~ (t). Let 
us denote the r.h.s, of  condition (21) by Lmi~(e, c). For 
chains with length L > 2Lmi n (g, c), say, the condition for 
obtaining qS(~176 (t) in the range s <qS(~176 1 is safely met. 
Performing a single Monte Carlo run for a very long 
chain of length L >> Lmi n yields a contribution to ~b (~) from 
every site i with 0 < i_< L - 2Lmi n. The L -- 2Lmi n contri- 
butions obtained from a single run are, of  course, not 
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statistically independent. One may expect that the con- 
tributions of  sites separated by a distance of  at least Lmi n 
are statistically independent. This expectation is con- 
firmed by the simulation. In Fig. 3 the Monte Carlo result 
for r176 for a concentration c = 0 . 3  is shown. The 
curve is obtained by averaging over four independent 
runs for chains of  length L = 1.5- 10 6. From the roughness 
of the curve a relative accuracy AO/(o = 5.4 percent is- 
deduced for t = 500, where q~(~o)(t)= 0.014. These values 
of c and q5 (~) correspond to a value Zmi n = 12. With an 
effective number of  statistically independent runs calcu- 
lated as 

L -  2/ml n 
N~ff = 4 (53) 

train 

formula (51) yields Aq5/q~ = 6.6 percent, in reasonable 
agreement withthe result deduced from the Monte Carlo 
curve. 

7. Comparison 
with the Kohlrausch-Williams-Watts formula 

It is clear form the concave shape of the curves in Figs. 2 
and 3 that qS(~176 is of  stretched exponential form, in 
the sense that the effective relaxation rate given by 

-- d (ln q~ (t))/dt (54) 

is a monotonically decreasing function of  the time. The 
assumption [15] that the effective relaxation rate (54) 
decreases with increasing time according to a power law, 
viz. 

- d (lnq5 ( t ) ) / d t =  A t -~ (55) 

with positive constants A and ~, leads to the Kohlrausch- 
Williams-Watts (KWW)-formula 

q~ (t) = exp ( - [ t / r ]  ~) (56) 

with positive constants r and B = 1 - e .  Here the initial 
condition q5 (t = 0) = 1 is used. If(55) does not  apply from 

1.0 ~ ~ .  

t 

time 
Fig. 4. Linear plot of ~b (~) (t) on logarithmic time scale for c = 0.3 
(full line). Dashed and dotted line: best fits with formula (55) and 
(56), respectively (see text) 

the beginning at t = 0, but only in a limited time interval 
at later times, the constant of integration is no longer 
determined by the initial condition at t = 0. In this case 
formula (56) may be multiplied by a constant factor C 
as a free parameter. We examine now how accurately 
~(~176 is described by (56) or (55). 

In Fig. 4, for concentration c=0.3 ,  the decay of 
~b (~) (t) from a value of  0.97 to a value of 0.01, which 
occurs in the time range 0.1 _< t _< 500, is shown on a log- 
arithmic time scale (full line). We note that for times 
t < 100 there is no difference between the Monte Carlo 
data for long chains and the exact numerical calculation 
for chain length L = 9 with free boundary. The dashed 
line in the figure represents a fit of  the KWW-formula 
with parameters r = 19,/g = 0.403 and amplitude C =  1.1. 
The maximum deviation of  the fit is 0.01. There is a very 
slight identation in the ~(oo) (t)-curve around t = 2, which 
is not reproduced by the fit. With the KWW-formula (56) 
with fixed amplitude factor C = 1 the fit is less satisfactory 
(dotted line). Here a best fit with maximum deviation 
0.035 is obtained for r = 26 and/~ = 0.50. It appears that 
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Fig. 5. Test of KWW-formula (56) for q5 (~~ (t) at various concen- 
trations 
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Fig.  6. Tes t  o f  v a l i d i t y  o f  f o r m u l a  (55)  f o r  q5 (~) ( t )  a t  v a r i o u s  con-  
centrations 
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the relaxation function q~c~o)(t) of our model is less welt 
fitted by either (56) or (55) than the function derived 
heuristically by Palmer et al. (see the figure in [4]). 

A more sensitive test of the validity of the formulae 
(56) and (55) is shown in Figs. 5 and 6. In Fig. 5 
[ - lnq5 (~)] as function of t is plotted in doubly logarith- 
mic form. In such a plot formula (56) yields a straight 
line with a slope given by the exponent ft. For concen- 
trations c>0.5~b(~~ was obtained from calculations 
for finite chains of sufficient length (Sect. 5). Similarly, 
in Fig. 6 the effective relaxation rate (54) as function of 
time is plotted on a doubly logarithmic scale. A straight 
line here indicates that Eq. (55) is valid. It is obvious from 
these figures that formulae (56) and (55) only hold ap- 
proximately within limited time intervals. For short times 
the decay of  the relaxation function is exponential, cor- 
responding to an exponent fl = 1. This is consistent with 
the equation of motion (11), from which we derive 

~b (t) ,,, exp ( - ct) (57) 

for t--*0. For long times, the bending of the curves shown 
in Figs. 5 and 6 indicates that there also q~(~)(t) follows 
(56) or (55) only approximately. E.g. for concentration 
c = 0.3, in the time range 5 _< t __< 500 q5 (~~ (t) is approxi- 
mated by the KWW-formula (56) with r=34 .5  and 
fl = 0.54 with a relative error of at most 17%. It remains 
open whether the asymptotic time dependence of q5 (~) (t) 
for t--*oo is of exponential ( f l = l )  or of KWW-form 
( f l <  1). 

(s + 2~-  i),~ (~)+ ( t -  ~)~(8 (s)7= 1. (60) 

This equation is the Laplace transform of the integro- 
differential equation 

4; (t) + cr (t) 
t 

+ (1 - c) j" ~ (t-- t ')4; ( t ' )  d t ' =  0 (61) 
0 

for the time-dependent relaxation function q~ (t). Apart 
from a missing acceleration term prop. ~ (t), Eq. (61) is 
identical to the equation proposed by Jacobs to describe 
the slowing down of relaxation in glass-forming liquids. 
Jacobs arrived at his equation by intuitive physical rea- 
soning. His equation is also a limiting case of an equation 
put forward by G6tze and Sj6gren [17] in the framework 
of mode-coupling theory. According to Jacobs, the ac- 
celeration term missing in our Eq. (61) is not relevant for 
the case of slow relaxation. Therefore we may regard our 
result as essentially equivalent to Jacobs' equation. As 
shown by Jacobs, there is a critical point which marks a 
blocking transition. In our notation, the critical point is 
at c =  1/2. The relaxation function ~b (t) decays to zero 
only for c > 1/2, while for c < 1/2 the decay is incom- 
plete: 

I 0 for c >  1/2 
q ~ ( t ~ o o ) =  1 - 2 c  

1 - c  for c <  1/2.  
(62) 

8. Effective-medium approximation 

As a first attempt towards an analytical treatment of the 
semi-infinite chain, we present an effective-medium ap- 
proximation. The approximation leads to an integro-dif- 
ferential equation first proposed by Jacobs [16] to de- 
scribe the slow relaxation in supercooled liquids near the 
glass transition. The kinetic constraint on the transitions 
at site 1, described by the occupation number of site 2 in 
the expression (7) for the transition rate wl, is replaced 
by coupling site 1 to an effective medium, giving rise to 
a frequency-dependent attempt frequency F~ (s). The 
function F 1 (s) is determined by the requirement that for 
the two-site cluster coupled to the effective medium the 
same relaxation function is obtained for site 0 and site 1. 

Calculating the relaxation functions q~0 and qS~ from 
the averages (ni )  t with initial value (hi) t= 0 = 1 for site 
i = 0 and site i =  1, respectively, we find 

~}0(s)- s+l+rl(S)-C (58) 
s(s+ 1 +G (s)) + cG (s) 

and 

1 .7. (s) (59) 9, --s + r ,  (s~ 

Equating both expressions and substituting (~)  - ~ - s for 
F l yields the following equation for ~ (s) 

This follows from the behaviour of F l (s) for s ~ 0  which 
is given by 

F l ( s ) = I  2 ; - 1  +0(s )  

t. ~ s + 0 (s 2) 

for c > 1/2 

for c < 1/2. 
(63) 

For c =  1/2 one obtains F 1 (S)"~(S/2) 1/2, leading to an 
asymptotic decay q~ (t) ,-~ t -  ~/2. For completeness, we give 
the result for F~ (s) which reads 

F l ( s )=  - � 8 9  1 - 2 c )  

+_�89 ]/s2+2s+(1 - 2 c )  2 . (64) 

The upper ( + )  sign has to be taken for the initial con- 
dition q5 (t = 0) = 1 to hold. F~ (s) has a branch cut on the 
negative real s-axis in the interval 

- 1 - -  2 ]/c(1--c) G s ~  - l + 2 ~ .  (65) 

It follows from our results in Sects. 5 and 6 that for 
our model the appearance of a blocking transition at 
c =  1/2 is an artefact of the effective-medium approxi- 
mation. As regards the behaviour of real glass-forming 
liquids, we refer to the discussion given in [18]. 
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