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O. Introduction 

Several authors have been interested in the Hilbert scheme SPq:=Hilb"(S) 
parametrizing finite subschemes of length n on a smooth projective surface S. In 
EF 1] and I-F 2] Fogarty shows that S tnj is smooth and there exists a natural 
birational morphism co n: St"J~S("). Here S (n) is the n th symmetric power of S. So S t"j 
is a natural desingularisation of S (n). He then computes the Picard group of S tnl. In 
I-I 1] the highest dimensional fiber Hilb"(spec(k[I-x, y]])) of co n is studied, and in 
I-I 2] it is shown, that the expectional locus of con is an irreducible divisor. Fujiki has 
shown in I-Fj] that S t2J is a symplectic variety, if S is a K 3 surface, thereby 
disproving a conjecture of Bogomolov. In [B] Beauville generalizes this result to 
arbitrary n. Several authors have worked on the eohomology of St*J: The ease n___ 2 
is trivial by the results of IF  2]. The homology groups of Hilb3(P2) have been 
computed in I-H]. Finally in [E-S] the homology groups of Hilbn(P2), Hilbn(A2), 
Hilb"(spee(k[[x,y]])), and Hilb~(27m) are computed. Here P2 is the projective 
plane, A 2 is the attine plane and Zm is the mth Hirzebruch surface. In this paper we 
will compute the Betti numbers ofS t"j for an arbitrary smooth surface S using the 
Weil conjectures. We want to state our main result: Let F+ be a finite field with q 
elements, l~a its algebraic closure. Let X be a smooth projective variety over C or 
over 1~.. In the first case let b~(X) be the i th Betti number of X. In the second ease let 
b+(X) ~ the rank of the i th l-adic cohomology group Hi(X, Ql) of X. In both eases let 
p(X, z) be the Poinear6 polynomial ~ b+(X)z + of X and e(X): = ~  (-1)/b,~X) the 

i t 
Euler number of X. We put ~X,  z): = p ( X , - z ) .  

Theorem 0.1. Let S be a smooth projective surface over C or over ~r Then: 

P(SP'l'z)t" =exp  1 - -  1--z2"t " ]  (la) 
n=O m 

~o (1 + z 2"-  ltm)~(S)(l + z 2" + I t.)b~(s) (lb) 
~" p(S t"], z)t"-- ~Iffi 1 (1 - z 2'~- 2t'ff'~ - zZ't'+)b:(S)(1 -- Z 2~ + 2tm)bo(b3 ' 

n=O 

e(st'J)e= (2) 
n=O mff i l  
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So the Betti numbers of S t.j depend only on the Betti numbers of S and the Euler 
number ofS t"l depends only on the Euler number of S. According to [-Md] the Betti 
numbers of S ~'~ are given by 

E P(S~")'z)P= (1 (1 + zt)b~s~(1 + zat) b~s~ 
, - t)~o~S)(1 _ z: t)~s)(1 _ z*t)~o~s) ' 

so Theorem 0.1 reflects the close connection of S ~"~ and S t"~. 
Over an algebraically closed field k we have the following situation: The points 

of S ~'~ are the 0-cycles ~ = ~ n~. xl of degree n on S. S ~ is stratified by the partition of 
i 

n given by the n~ (if the xl are distinct). The open stratum contains the 0-cycles 
consisting of n different points. The fibre of the morphism ~o, over a point ~ e S ~') 
depends only on the stratum in which ~ lies. m ~ ( n . x )  is the variety 
V~.t = Hilb'(spec(k[[x, y]])) of subschemes of length n of a surface concentrated at 
a point. If xt, . . . ,x,  are distinct points of S, then 

~o~- ~(n~ .x~ + ... +n~. x~)= E~,~ x ... x E~,~. 

Using this geometric description and keeping track of the action of the Frobenius 
we can count the points of S t"~ over finite fields and so compute the Betti numbers 
via the Well conjectures. 

This paper is a simplified version of parts of my Diplom paper [G6] at Bonn 
University written under the guidance of Andrew Sommese and Friedrich 
Hirzebruch. In the present paper we will use a result of [E-S].  The original proof, 
which is considerably longer, is independent of [E-S]  and uses results of 1-I 1]. 

1. Notation and background material 

Let Z denote the integers, N the positive integers, N O the nonnegative integers, Q 
the rational numbers, C the complex numbers and F~ a finite field with q elements, 
where q is a prime power. IfA is a ring and X~,...,  X,  are indeterminates, we denote 
by A [ X I  . . . . .  X~] and A [ [ X t  . . . . .  X~]] the ring of polynomials and the ring of 
formal power series in Xt . . . . .  X,  with coefficients in A respectively. For  a set M we 
denote its cardinality by ~: M. Let k be a field. We denote by A~ the affine n-space 
over k. We drop the k if it is understood. For  k-schemes S, T we denote 
S(T): = Hom~(T, S) the T-valued points of S. If s is an extension of k, we write S(~ 
for ~spec(s We denote by Gal(s the Galois group of ~ over k, by k- the 
algebraic closure of k and ~: = S  xsp,ock ~ spec(k). We denote by •s the structure 
sheaf of $. If Wis a T-scheme and t e  T, we denote the fiber of W over t by W,. We 
denote by Zr~ the reduced scheme of Z. Ira group G operates on a set X, we denote 
by X 6 the set of G-invariant elements of X. If ~r is a coherent sheaf on a scheme S, 
let Ht($ ,~  r) be the # cohomology group with coefficients in ~r, let 
hi(S, ~r): = rk(Hl(S, ~-)) and Z(.~): = ~ ( -  1)~h~(S, ~r). If S is smooth and projective 
over C, let f~  be the sheaf of holomorphic p-forms on S and h ~'*(S): = h~(S, ~ )  the 
p, qO~ Hedge number, h(S, x,  y) : = X hP,*($)xPy 4 and ~i(S, x, y) : = h(S, - x, - y). 

P,~  

Then the ;G genus is Xy(S): = ~: ( - 1)~hP'~(S)y p, so we have ~(~s) -- ~0(S)~ and zt(S) is 
P,q 

the signature sign(S) of S. 
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We will use the Weil conjectures. Let X be a smooth projective variety of 
dimension d over F~. Let Fq be the geometric Frobenius of X over F~ and 

Zq(X, t) : = exp ~ X(F~  
n 0 

the zeta function of X over Fq. The operat ion of F a on X~r  is inverse to the 
operat ion of the Frobenius of F~, a topological generator of Gal(Pq/Fq), so a point  
x �9 X(I~) is in X(F~) if an.d only i fx  = Fa(x ). We denote the action of Fq on the l-adic 
cohomology groups H'(X, Qt) by F*lx,tx.oo. 

Theorem 1.1. (Well conjectures, [D]). (1) Z~(X, t) is a rational function: 
2 d  

Zq(X, 0 = 1-[ Q,(X, t) ~- lr+' ,  
r = 0  

where Q,(X, t) = det(1 - tF*]nr~x ' Qo)" 
(2) Q~(x, t) ~ zEt]. 
(3) The eigenvalues oti., of  F*In,~ ' Qo have absolute value Ict/,,I = q,/2 with respect 

to any embedding into C. 

(4) Z,(X,  1/qat) = +_ q~'~:)t '~Zq(X, t). 

(5) I f  X is a good reduction of  a smooth projective variety Y ooer C, then hi(Y) 
= b,O()=deg(Qi) for i = 0  . . . . .  2d. 

As a consequence of 1.1 (1), (3), and (5) we get: 

Remark 1.2. Let F(t, Sl . . . . .  sin) �9 Q[t,  s 1 . . . . .  s~]. Let X and S be smooth projective 
varieties over Fq, such that  for all n �9 N we have 

~: X(Fq~) = F(q', ~: S(Fq~), .... ~ S(F, , , )) .  

Then 
if(X, z) = F(z 2, if(g, z) . . . . .  ~(S, z '))  . 

If both X and S are good reductions of smooth projective varieties ~ and J over C, 
then 

~ , ~ ) = r ( ~ , ~ g ,  ~) ..... ~ , z ' ) ) .  

Let X be a smooth projective variety over a field k. The symmetric group G(n) in n 
letters operates on X" by permuting the factors. The n th symmetric power X t") of X 
is the geometric quotient X"/C,(n). We can identify Xt"~(k ") with the set of effective 
0-cycles )~ n i �9 x~ of degree n on X'. 

t 

If k is a finite field F,, then the Frobenius  Fq acts on X~"~(I~,) by F ,  (~. n,- x,~ 

= ~ n~. Fq(xt) and X~*)(Fq) is the set of effective 0-cycles of degree n fLxed under the 
i 

r - 1  

action of F, .  A 0-cycle ~ =  F. F~(x)with x e X ( F ~ ) \ (  U X(F,,)~ will be called a 
i = O  / 

primitive O-cycle of degree r over F~ on X. We denote the set of these primitive 
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0-cycles by P,(X,F~). Any (eXtn)(Fq) can be written in a unique way as a positive 
linear combination of distinct primitive 0-cycles. It is also clear from the 
definitions, that we have 

X(F~,) = ~, ~ P,(X, Fq,)- r.  
tin 

If we combine these facts, we can see that 

z,(x, t)= , x n'OF)t 
n = 0  

i.e. the zeta function is the counting function for effective 0-cycles on X over Fr 
Let X again be defined over an arbitrary field k. We want to use a natural 

stratification of X (~). Let ~:X~--*X ~n) be the quotient morphism. For  m e N  let 
A , C X "  be the diagonal. Let v =(n~ . . . .  , n,) be a partition of n. If v is strictly finer 
than a partition # of n, we will write v < g. Then we put 

and X~): = ~dn~ x . . .  • An,) 

x;., 

This gives a stratification of X (~) into locally dosed subschemes. We have 

X~)(k ") = {nl- xl  + . . .  + n,- x, Ix1 . . . . .  x, are distinct elements of x(k-)}. 

We write ~(" = dS- tt ~((n)l - - v "  - -  ~ - - v  p"  

From now on let S be a smooth projective surface over k. Let S[']: = Hilb'(S) 
denote the component of the Hilbert scheme of S parametrising subschemes of 
length n of S. Let Z~(S) C S • S tn] be the universal subscheme. Then we have for any 
locally noetherian k-scheme T: 

St~I(T)= { Z C S  x T dosed subscheme, fiat of degree n over T}, 

Z~(S) (T) = { (Z, tr) [ Z e St~](T); tr: T-* Z section of p 2 [z}. 

According to I F  1] we have: 

Theorem 1.3. (a} There is a canonical morphism O2n:stn]~S t"), which as a map of  
points is 

Z ~-* ~ length (d)z,x)" x.  
x e S  

(b) S tnl is smooth, 
(c) ton is btrational. 

From the definitions and (b) it is dear  that the following holds. If S over Fq is a 
good reduction of a smooth projective surface g over C, then S t'l is a good 
reduction of ~,1. Using o), we get a natural stratification of St'l: We put 
$t~]: =t~-l{St~r), Z~(S}: =p~ l(St~]). (See for instance IF  2].) 

Let m be the maximal ideal in kl '[x,y]] and 

V~,h: = Hilb'(spec(k[[x, y]]/mn)). 

~.k represents a funetor as spee(k[[x, y]]/mn)= spec(k[x, y]/m ~) is projective. 
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Definition 1.4 (See [Fu, Example 1.9.1]). Let X be a scheme over a field k. A cell 
decomposition of X is a filtration 

X =  X~DXn-l  D... 3 X o D X - 1  = 0  

by closed subschemes, with each X~\X~-i a disjoint union of schemes Ui,j 
isomorphic to affine spaces A *',j. We call the U~,j the n~.f-cells of the 
decomposition. 

We will use the following two facts: 
(1) If f :  Z ~  T is a separated morphism of schemes, then any section s: T ~ Z  of 

f is a closed immersion. 
(2) Let X o be a scheme, X 1 CX o a closed subscheme defined by a nilpotent 

ideal sheaf and q: Y ~ X  o be an &ale Xo-scheme. Then for every section 
s~:Xt - - ,YXxoX ~ of P2 there is a unique section so:Xo-~Y of q, such that 
S o •  

(1) is trivial and (2) follows for instance from [M, Theorem 1.3.23]. 

2. Proof of the main theorem 

In this section we shall only consider the Zariski topology. Let k be a field, S a 
smooth projective surface over k. There is an open affine cover (Ui)i of S and &ale 
morphisms f~ : U: - rA 2. (See for instance [M, Proposition 1.3.24]; [SGA 1, II].) Let 
UCS be open and affine and f :  U - A  2 an &ale morphism. 

The reader will notice that our argument below could be simplified, if one could 
see easily that taking the scheme theoretic direct image defines a morphism 
utnl. . . .}i  A 2~In] 

(n) ~ )(n)" 

Lemma 2.1. There is a canonical morphism 

~1 : Z~n~(A2) • a2 U--}Zn(U),  

which induces a bijection 

~1(k3 :(Z~)(A 2) • a2 U) (k)-~ z M u )  (k3 . 

Proof We construct lp 1 as a morphism of functors. Let T be a noetherian k-scheme. 
Let 

(Z, cr, 6) e (Z~,}(A 2) x a~ U) (T). 

Then (Z,~r)eZ*(A2)(T). Let i :Z - -*A2xT  be the inclusion. Then we have 
O n o i ff (Az)~nI(T) and t?: T ~  U x T is a section of P2, such that i o tr = ( f  x 1 r) ~ 6. As 
P2Jz is separated, cr is a closed immersion and induces an isomorphism 
T-~- ,,~ : =tr(T)CZ. 

We show next, that 2~ C Z is defined by a nilpotent ideal. For  each t e T we have 

~ '(Zt)  = x ~{A~ r), length(riTz" ~)" x .  

As ~ is compatible with base change, we have 

T~ i{n) ( ~ o . ( Z ) ) , = o . ( Z , ) s ( ( A  ~ x , , , ~ .  
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So the support supp(Zt) of Zt consists of a single point x t~Zt  and supp(Z) 
= {x~ I t r T}. As ct is a section of Z - ,  T, we have supp(Z) = supp(Z), and so Z C Z is 
defined by a nilpotent ideal. We consider the following cartesian diagram. 

/* or* 
U x T< Z o ~ . Z t 

A 2 X T~ Z ~ T.  

Let s 2 : = (a, 8): T - , Z  o, sl : (s2,1 r): T--,Zt and let So: Z - , Z  o be the unique lift of s 1. 
As f is separated, so is f0, and so its section s o is a closed immersion. So i* o So is a 
closed immersion and hence induces an isomorphism s: Z-~Zv,  T: = (i* o So) (Z). 
Let av. r :  = s o ~. Then ao, y is a section ofp2lz . . . .  and au. T(T) C Zv, r is defined by a 
nilpotent ideal. 

We define ~ l(Z, a, 0): = (Zu, T, ~v, r) ~ Zn(U) (T). Using the uniqueness of the lift 
s o ofst ,  it is trivial to verify that this definition is compatible with base change and 
so defines a morphism ~ 1 : Z~n)(A2) x A~ U--' Z'(U). 

We want to prove that ~Pl induces a bijection 

~(~ :(~.~{A~) • ,~ u) (~ - ,  Z M u )  (~ . 

Let (Z, p, u) ~ (Z~a)(A 2) x ,2 U) (~'), then f(u) = p. We specialize the above diagram to 
T=spec(k-) and define s 2, st, and s o as above. Then ~vt(Z,p,u)--(W,u ) with 
W: =so(Z). W is a subscheme of length n i n / . 7 : =  U x spec(k-), such that uC W is 
defined by a nilpotent ideal. So ~on(W) is the 0-cycle n.  u. Thus we have W6 Ul~{(k- ) 
and (W,u)~Z~,L(U)(k-). Now w e  want to define the inverse of ~pt(k). Let 
(W,u)~Z~,o(U)(k), let iw: W-.,U the inclusion and p: =f(u).  " 

Claim. f o iw : W-+ A~ is a closed immersion. 
Let 0 be the completion of [.7'at u. Let . ~  the completion of A~ at p. Let 

f :  0 --~-, ~, 2 be the induced morphism and l~f~ the completion of W at u. Then we 
have W , , = W x t O .  As the support of W is u, it follows that pt:l?f,,--*W is an 
isomorphism. Let r be its inverse. Then we have the following diagram: 

A 2, / 0 ,  "~ 1,'~ 

' ~ W 

f :  = f o  j~ o r : W - - , ~  2 is a closed immersion, i 2  is isomorphic to spec(~Ex, y]]), 
and each ideal in k-[Ix, y]]  of colcngth n contains m" (see for instance [II ,  
Lcmma 1A]) So f factorizes as: 

w-% ~..~'~, si~c(~[x,y]]lm")-,~, 
and i" w is a closed immersion. So f o iw factorizes as 

in 2 w 7w., spec(k-[[x,y]]/m') ,A~, 
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where i, is the closed immersion of k-[Ix, y]]/m" in A~, which is induced by the 
canonical projection k-[x,y]--*k-[[x,y]]/m". So f o  i, ,  is a dosed  immersion. 

We define 

r (k3--,(z~.)(A ~) • u)(k-) 

by (W,u)F--. (f(W),f(u), u). By the claim we have 

(f(140, f(u), u) ~ (Z~'n)(A 2) x ,,: U) (k-). 

It is easy to verify that ~1(k3=Ip1(k-) -I. [] 

Lemma 2.2. There is a natural morphism 

~2 " Vn.k X A2--*(A2) [M, 

which induces a bijection of geometric points 

lpz(k-): (~,k • A 2) (k-)-*(A2~."l(k-). 

Proof. We construct 1/: z as a morphism of functors. Let T be a noetherian k-scheme. 
Let (Z, a) e (V., k • A z) (T). Let again i.:  spcc(k[[x, yll/m")--*A z be the closed 
immersion induced by the canonical map  k[x, yl-*k[[x,y]]/m". Let 
V: =( i .  • 1T){Z ). Let plus: AZx  A2--*A z be the morphism 

((xl,Yl),(Xz, y2)) ~ (Xl +X2, Yl +Y2) 

and minus: A 2 • A 2 ~ A  2; ( (x ,  Yl), (x:, Y2)) ~ (xl - x2, Yl - Y2)- Let 

plusr =(plus  ~ x (Pl ~ tr ~ 2 x T--.A z • T, 

minus , :  =(minus  o (Pl x (Pt ~ tro P2)), P2): A2 x T ~ A  2 x T 

be the morphisms which add and subtract the section a. Obviously both are 
isomorphisms and (pluso)- 1 =minus , .  Let ip2(Z, ~r) : = pluso(V). Then tp2(Z , tr) is 
T-isomorphic to Z. I t  is easy to check that (Z, tr) ~ ~ 2(Z, tr) is compatible with base 
change and so gives a morphism ~P2. 

We still have to prove the second statement. That ~p2(k-) actually maps into 
(A2)[~J(k ") is again dear .  We will give the inverse map  ~P2 :(k-): Let We (A2)[nJ(k-), 
P:=(W~=d) and V=minusp(W). Then supp(V) is the origin (0,0) of A 2. The 
completion i~ of V at (0, 0) is isomorphic to V, so it is a subscheme of length n of 
spee(k-'[[x, y]])  defined by an ideal I ofcolength n in k-[Ix, y]].  Then I/m" defines a 
closed subscheme ~2(k')(W) of length n in spec(k[[x, y]]/m"). I t  is easy to see that  
,~(~ = ~p~ ~(k-). [] 

Corollary 2.3. There is a canonical bijection 

w(~ :(v.,~ • u)(k3-. V[:~) 

commuting with the action of Gal(~?/k). 

Proof. This follows from Lemma 2.1 and l_emma 2.2, as Pa2 : Z~n)(A2)--*(A2)[~ I and 
p~:Z~)(U)--* U[~,t both induce bijections of geometric points. [ ]  
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Lemma 2.4. There is a (noncanonical) bijection 

commuting with the Oal(~/k)-action. 

Proof. Let (U-,)~ be a finite covering o rS  by open affine subschemes, such that  there 
exist 6tale morphisms f~: U , ~ A  ~. Let u k x Ui)(k)~(U,)l~l(k-) be the cor- 
responding bijections according to Corol lary  2.3. Let W 1 : = U 1 and 
Wj: =U;\(~U U~) for j >  1. If ZeS[:](k-), then there is a unique i(Z), such that  

/ 

Z,e d e W~(z). We set ~0(.)(Z): = (v2i(z)(k))- t(Z). AU the W~ are defined over k, so for all 
a ~ Gal(k-/k) we have tr(Z)red = tr(Zr.d) E Wqz ) and thus ~p(.)(k?) (a(Z)) = a(~o(.)(E) (Z)). 
Fur thermore  for Z ~ Sl~k] we have Z ~  d e Wi if and only if ~0t(k-) (Z) e (V,,k X W~) (k-). 
As all the lp~(k-) are bijective, so is ~pt.~(E). [ ]  

Let v=(n I . . . .  ,nr) be a part i t ion of n. Then the quotient morphism 
A.,(S) x ... x A~(S)~  St, "~ factorizes as 

A , ~ ( S )  x . . .  ~ A ~ _ ~ . , ~  ~ .~  ~ ^ ~n~y  ~(,t~) X X ~ S~ n) . . . .  (n~) 

Let S~ ~ : = S/I(S~r ~) and 

~,~ '~- llg.(n)'~ f ~[n~] X ... x, ~.[n~] 

Then we have 

Stg~k) = {(Z~ . . . . .  Z,)e$[~{ x ... x ~ ; ]  I (Zt),,d . . . . .  (Z~)~,o are distinct}. 

The symmetric group G(n) operates on ~,~. ,_0~,,)x . . . .  x c..) by permuting the 
factors with the same n~. 

Lemma 2.5. There is a natural morphism ~p,:S~g~St"~, which induces a bijection 

~ : ~:,~(~/Gtn)-~ st"~(tO 

commuting with the Gal(l~/k)-action. 

Proof  Let T be a noe thedan  scheme, let (Z~ . . . . .  Z,) e S~I(T). We set 

~p,(Z~ . . . . .  Zr): = Z , w . . . ~ Z , ~ - Z ~ O . . . O Z , .  

This is flat of degree n over T. u is obviously compatible with base change and so 
defines a morphism. If (Zt . . . . .  Z~)~ S~(k-), then 

o~, o ~ , ( ~ ) ( z ~  . . . . .  z , ) =  o ~ , ( z ~ , . . . ~ z , )  = o~ , , ( z0  + . . .  + O~.,(Zr). 

So ~p ,(k') (Za . . . . .  Z,) e ~"~(k'). ~ ,  is obviously well defined by 
[ (Zt  . . . . .  Z,)] ~-~ Z t w . . . w Z , ,  where [ ] denotes the class modulo  G(n). I f Z  e S~"~(k-), 
then it has a decomposi t ion Z = Z t w . . . w Z ,  into connected components  and 
( ~ , ) - ' ( z ) =  [ ( z ,  . . . . .  z , ) ] .  [ ]  

F o r  the next two lemmas we introduce some notation.  If ~is  an extension of k 

0 we write V(~ for V,,~(k~ If x ~  V,,~(k'} we ~ t  len(x)=r .  If  ( M , f )  is a pa i r  
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consisting of a finite set McS(k ')  and a map f : M ~ V ( ~ ) ,  we set len(f )  
= E len(f(m)). Gal(~/k) acts on these pairs by a(M, f )=(cr (M) ,a fa  -~) for 

m~M 

a ~ Gal  (~/k). 

Lemma 2.6. There is a bijection 

~): St~l(k -) ~ {(M, f )  l M C s(k) finite, f :  M ~ v(k-) with l e a ( f ) =  n} 

commuting with the Gal(l~/k)-action. 

Proof. Let v=(n  1 .. . . .  n,) be a part i t ion of n and [(Z~ . . . . .  Zr)] e S ~  ]. We put  

~b(l-(Z, . . . . .  Z~)] : = ({(Z 1)~d . . . . .  (Zr),,d}, f ) ,  

where f :  {(Zl)~o a . . . . .  (Z,)~d} --. v(k-) is defined by 

f ((Zf)~,t) = P t ~ ~(,0(~) (Zi) 

(see Lemma 2.4). The result now follows from Lemma 2.4, Lemma 2.5 and the 
stratification of S ["]. [] 

F r o m  now on let k =F~ and S be a smooth projective surface over F~. Let Q be 
some power of q. Let F~ be the geometric Frobenius over F~. We put  
P(S, Fo) : = U P,(S, F~). I fL  C P(S, Fa) is a finite set and g : L ~  V(l~), we say that  g is 

~'>0 

admissible if g(/)~ V(F~,) whenever 1 ~ L~P,(S,  Fa), and we put  

len(g): = ~ deg(/) len(g(/)). 
t e L  

Lemma 2.7. 

Proof. (i) We set 

M I,, : = { ( M, f )  I M C S(~)  finite, f :  M ~ V(~),  l e a ( f  )=n ,  F~(M, f ) = ( M ,  f ) }  , 

M2,, :  = {(L, g) I L C P(S, FQ) finite, g: L ~  v(l~q) admissible, lea(g) = n}. 

We first want to show that  there exists a b i j~ t ion  e : M I . , o M 2 . , .  We choose an 
ordering ~ on S~q). Let ( M , f ) ~ M 1 .  ,. Then 

s : =  E len(f(m)) 'mr 
m e M  

has a unique representation s = ~ a~l  as positive linear combinat ion of distinct 
t = 1  

primitive O-cycles over F~. Let (bt) i l~. such, that  ~ ~ Pb,(S, FQ) for all i. Then we have 
b~- 1 

for appropriate U , We  hoose the that 
bt xi~_ F~xi )  for all j e Z. Then they are uniquely defined. Then we have F~(f(xi)) 

= f(F~(xi)) = f(xi),  so we have f (x i)  r V(F~) .  We put  o(M, f ) :  = ({~ . . . . .  ~,}, g), 
where g :  ( ~ ,  ..., ~,} ~ v( l t , ) i s  defined by g(~,): = f(x,). 
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The inverse mapping O- 1 is given as follows: Let ({41 ..... ~r}, g) ff M2.n. Then 
there are (b~)i, such that ~ieP~,(S, FQ) for all i. For  all i there is a unique 

h i - -  1 

x, e S(F~,)\(.t.) S(Fe~)~, such that ~i = Y~ F~(x3 and x, < FSQ(x,) for all j e Z. We 
put ~\~ < b~ } i= o 

M =  0 {x,, FQ(X,) ..... F b,Q - a,,,t~vs.,t 
i = l  

Then 0-1({ ~1 ..... ~,}, g))= (M, f) ,  where f : M - ~  V(~q) is defined by 

f (F~(xD) : = F~(g(x0). 
(ii) For  i,j e N we put 

N(I,j): = 4~ {(M, m) M C P,(S, Ft~), f :  M-~ V(FQ,), ~ M  len (f(m)) =j}.  

We observe that 

(0,)  4~ M2..  = ~. N(s, n~) . 
Ptl + 2 N 2 +  3n3  ... = n  

On the other hand we have 

(.~=o \.P,~S,.Q, 
V,.r,OFQ')t") = i ~  o N(r,J) t'j. 

So the lemma follows. [ ]  

For  n, d ~ N we set P(n, d) : = 4# {partitions of n into parts =< d} as in [E-S].  We 
set p(n, d): = ~# {partitions of n into d parts}. Then we have 

p(n, d) = # {partitions of n into parts the largest of which is d} 

= 4t= {partitions of n -  d into parts _~ d} 

= V ( n - d ,  d) . 

We use the following result of [E-S].  

Proposition 2.8 ['E-S, Proposition 4.2]. Let k be an algebraically closed field. Then 
V,.~ has a cell decomposition, and for all d ~ N  o the number of d-cells in the 
decomposition is P(d, n -  d). 

Ellingsrud and Stromme carry out their arguments only for k = C but state that 
they also hoM over any algebraically closed field. 

it 
We denote by -- the congruence modulo t I in Q[ [ t ] ]  or Q[l'z, t]]. 

L imma 2.9. For all n ~ N there is an m o e N, such that for all M E N, which are 
divisible by too, and Q: ---q~ we have for all smooth projective surfaces S over F~: 

a | �9 �9 / | t m #S(FQ.,!'~ .:Xo +too) , ' -  =ri x, 
Proof. Obviously we have 

i n = O  t = 0  
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So we can reformulate Proposi t ion 2.8 as follows: 

1 
~ # {m-dim. cells of V~,k}t~z~'=~=t 1--Z'-it'" 

n m O  m m O  

Let l ~ N. Then there exists an me ~ N such that  for all n_-< I the cell decomposit ion of 
V~,t~ is already defined over Fqmo. Let M be a multiple of m o and r~N.  We get: 

rn  r!  oo 

K ,o(FQ.)t -=,~1 1 
.=o ' "= l-Q*(i-nt ri" 

So by Lemma 2.7 we have: 

( 1 ~ �9 ,.,s.,Q) 

n = 0  r = l  i = 1  

= exp @ P,(S, FQ)Q "ai- nth't/h 
i r = l  h = l  

| \ . t m~x, = e x p  ,~=, m=, ~ (,~ r. e# P,(S, Fa) ) QmO-1)_~) 

The formula including the zeta function ZQ(S,t) follows by an easy 
calculation. [ ]  

Proof of Theorem 0.1. Let n e N. Let S be defined over 1~. Then there is a ~ = q~ and 
a smooth projective surface So over F~, such that  S=So xF~l~. There exists a 
Q=O~,  such that  for all h e N  the number ~st~J(Fe~) is the coefficient of t * in 

( ~ t m *Sa(Foh.)" ~ 
exp . 2  m 

(la) follows by Remark 1.2. (1 b) follows by a trivial calculation and (2) by setting 
z: = - I. If S is defined over C, we consider a good reduction of S modulo  q for an 
appropriate  prime power q. [ ]  

Corollary 2.10. (a) I f  e(S)= O, then for all n ~ N we have e(S tnl) = O. 
(b) I f  S is a K3 surface, then 

q 
e(St~])q" = A(O ' 

n m l  

where q : = e  ~[' ,  z s H =  {z~C IIm(z)>0} and A is the cusp form of weight 12 for 
s l~ ( z ) .  

If S is an abelian variety then (a) is already known (see for instance [B, footnote 
on p. 769]). 
Corollary 2.11. Let S be a smooth irreducible surface over C. Then 

((1 + z ~ ' -  ~) (1 + z 2" + ~))b,~S) 
p(SN, z) *~ I l i t  (1--Z2'n)b2+l(1 --Z 2"+2) 

m =  
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So the Betti numbers b~S t"J) become stable for n ~ i. 

Proof. We set 

co (I "~-z2m-ltm)bl{S)(1 q-Z2m+ ltm) bl(s) 
G(z, [): = (1 -- t) m[]__l (1 -- 2: T M -  2tin) (1 -- g2mtm)b2(8)(l -- z2m + 2 tin)" 

Then we have to show that P(St"l,z)~'G(z, 1). For feQ[[z,t]] we denote by 
a,. ~f) the coefficient of z't tin f If v > l, then a,. ~G(z, t)) = 0. Let v < n. Then we have 
by Theorem 0.1 (lb): 

bv(Stn]'=av.n(C~=ot')G(z,O) 

= E a,AG(z,O) 

= ~ a,.t(G(z, t)) 
l=O 

=a,.o(G(z, 1)). [] 

3. The Hodge numbers of Hilb'(S) 

Let S be a smooth projective surface over C. We conclude by giving a conjecture 
about the Hodge numbers of S t"] and proving a small part of it. 

Conjecture 3.1. 

| ~ / +~o (l"t'XP+k-lY~+k-'tk)~"tS> 1 
V h(S ["1 x "~t"- r-I | v q dd 

. % "  ' ' - ~  17 (1-x'+~-~:+~-':)~"'~s~] ' 
= = \p  + qeven 

(1) 

.=o \.=1 n l--(xyt)" ] 

( ~  : z_:(s)) 
~" X - Y ( S [ n ] ) ~ n = e x p  =~ffl n l - - ( y t ) " ] '  (2) 

?t=0 n 

c~ [ t  -~ r I) k+ I slwI(S)]2 
.~o sign(St"])t" = kOx ~ ' - ~ )  (1--t=') -•s)/2 (3) 

(2) and (3) follow from (1) by a trivial computation as sign(S)=xl(S) and e(S) 
=)f_ l(S). By the results of [E-S] the conjecture is true for the projective plane P2 
and the Hirzebruch surfaces 2:,. (1) is obtained from Lemma 1.9 by replacing Q by 
xy and 4~S(Fr by Fi(S, xi, y~). Thus the conjecture is also true for all smooth 
surfaces S over C, for which there exists a good reduction ~ of S modulo q, such that 
for all n e N the Newton polygon of ~*l coincides with the Hodge polygon of S t"] 
(see [Ma, (1.9}] for the definitions). 

We will now compute the Hodge numbers h p, o and so prove a small part of the 
conjexture. We consider the complex topology. 
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S (~) is a V-manifold of dimension 2n. We denote by e the partition (1 . . . .  ,1). Then 
S~ ~ is the smooth locus of S ~. Let j : S ~ ) ~ S  ~ be the inclusion. Following [S] we 
define t~c ,~ :=ja t2~.  As to~:St*l~S ~ is a resolution of S t~, we have by [S, 
Lemma 1.11 ]: f2~., = (o)~).I2sPt.~. 

Lemma 3.2. For p = 0,..., 2n we have 

H~ t"l, 12~t,l) = Ho( s *, I2~O ~ )  . 

Proof. By the above H~ t~l, t2~t.~) - H~ "~, 12~p~). Let s e H~ *, I2~.) ~(~. Let (V/) t be 
an open cover of S~ "~, such that for all i we have �9 - ~( ~ = Ui. ~ ~ . . .  w U~. ~, where the 
(Ut.~)~ are disjoint and ~]v,,~:Ui,~V~ is an isomorphism. Then for some 
j~{1 ..... n} we let 

s~ : = (( e l y , ,  ) - t ) , ( s l ~ , , , )  e n~ ~, a ~ , ) .  

st is independent of the choice of j, so for all i and k we have that st and Sk agree on 
V:aV k. So the s~ define a global section g(s)~n~ This defines a 
homomorphism 

g : n ~  ~ , f2~)G~'~--*n~ *), O~)).  

We shall now define the inverse homomorphism. Let g ~ H~ ~), f2~p)). Then we 
have ~*(s')~H~ f2~e) ~) .  As S~\S~ has codimension 2 in S *, we have by the 
theorem of Hartogs, that there is a unique f(s')e H~ ", I2~.), such that f(s')lse 
= ~*(s'). By its uniqueness it satisfies f(s'3e H~ ~, 12~,) ~(~). Obviously we have 
f = g - ~ .  [ ]  

Proposition 3.3. 

(a) ~ hP'~ ~= ( l+z t )  h~'~ 
= o ~ ~ o (1 - t) (1 - z2t) h~'~ 

(b) Z((?st,~)= (Z(Os)+ n - 1 )  . 

Proof. Let pi:$~-~S be the i th projection. Then we have 

H~ ", I2~.) = p*(H~ t2~))| ... | p*(H~ [2~)) . 

Let co t . . . . .  to,~ be a homogeneous basis for Ho(S, t2~'); i.e. there are 
dt ..... dme {0, 1,2}, such that toi ~ H~ s, ~s~) �9 Then a basis of H~ ~, t2~.) is given by 

{p*(to,1) ^ ... ^p*(coJ  j~l d, j=p} .  

09 ~ H~ ~, I2~.} is G(n)-invariant if and only if to = ~ a*0/) for an appropriate 
r162 

~l e H~ ", [2~.). For (i 1 ..... i,) ~ {0 ..... m}" we set 

< i l  . . . . .  i , > :  = E ~r*(toi, ^ . . .  ^ c % ) ~ H ~  G~"~. 
aea(n) 

Then H~ ~, I2~) is generated by the set 

~ d  {(i~ ..... i .) (i t ..... i .)e{0 ..... m}~, ~ t ,=p} .  
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The form <i t . . . . .  i , )  is independent up to sign of the ordering of il . . . .  , in and so is 
determined up to sign by the multiplicity nk with which the k e  {1 . . . . .  m} appear in 
it . . . . .  in. If n k > l  for a k with dk=l, then we have ( i l  . . . . .  i~ )=0 ,  as the wedge 
product of 1-forms is anticommutative. Apart  from these relations the ( i t , . . . ,  in) 
are linearly independent. So we get: 

ha(St'), f2gt.j'= # {(nl ..... nm)eN[ ~ni=n, ~nidf=p, hi<=1 if di=l } 

and 

h ,o(s'n',z)tn= 
n = O  p=O nO,...,nm 

nc,<_l tfdi= t 

(1 + zt) ~''~ 
= (1 - t) (1 - z2t) *~'~ 

T h i s  p r o v e s  (a).  (b)  f o l l o w s  b y  s e t t i n g  z : = - 1. [ ]  
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