The Betti numbers of the Hilbert scheme of points on a smooth projective surface

Lothar Göttsche

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

Dedicated to Hans Grauert

0. Introduction

Several authors have been interested in the Hilbert scheme $S^{(n)} := Hilb^n(S)$ parametrizing finite subschemes of length n on a smooth projective surface S. In [F1] and [F2] Fogarty shows that $S^{[n]}$ is smooth and there exists a natural birational morphism $\omega_n: S^{(n)} \to S^{(n)}$. Here $S^{(n)}$ is the nth symmetric power of S. So $S^{(n)}$ is a natural desingularisation of $S^{(n)}$. He then computes the Picard group of $S^{[n]}$. In [11] the highest dimensional fiber Hilbⁿ(spec(k[[x, y]])) of ω_n is studied, and in [12] it is shown, that the expectional locus of ω_n is an irreducible divisor. Fujiki has shown in [Fj] that S^[2] is a symplectic variety, if S is a K 3 surface, thereby disproving a conjecture of Bogomolov. In [B] Beauville generalizes this result to arbitrary n. Several authors have worked on the cohomology of $S^{[n]}$: The case $n \leq 2$ is trivial by the results of [F 2]. The homology groups of Hilb³(P_2) have been computed in [H]. Finally in [E-S] the homology groups of Hilb"(P2), Hilb"(A2), Hilbⁿ(spec(k[[x, y]])), and Hilbⁿ(Σ_m) are computed. Here \mathbf{P}_2 is the projective plane, \mathbf{A}^2 is the affine plane and Σ_m is the mth Hirzebruch surface. In this paper we will compute the Betti numbers of $S^{[n]}$ for an arbitrary smooth surface S using the Weil conjectures. We want to state our main result: Let F_q be a finite field with q elements, \mathbf{F}_q its algebraic closure. Let X be a smooth projective variety over C or over \mathbf{F}_q . In the first case let $b_i(X)$ be the *i*th Betti number of X. In the second case let $b_i(X)$ be the rank of the *i*th *l*-adic cohomology group $H^i(X, \mathbf{Q}_i)$ of X. In both cases let p(X, z) be the Poincaré polynomial $\sum_i b_i(X)z^i$ of X and $e(X) := \sum_i (-1)^i b_i(X)$ the Euler number of X. We put $\tilde{p}(X, z) := p(X, -z)$.

Theorem 0.1. Let S be a smooth projective surface over C or over $\mathbf{F}_{a'}$. Then:

ŋ

$$\sum_{n=0}^{\infty} \tilde{p}(S^{[n]}, z)t^{n} = \exp\left(\sum_{m=1}^{\infty} \frac{t^{m}}{m} \frac{\tilde{p}(S, z^{m})}{1 - z^{2m}t^{m}}\right),$$
 (1a)

$$\sum_{n=0}^{\infty} p(S^{(n)}, z)t^n = \prod_{m=1}^{\infty} \frac{(1+z^{2m-1}t^m)^{b_1(S)}(1+z^{2m+1}t^m)^{b_1(S)}}{(1-z^{2m-2}t^m)^{b_0(S)}(1-z^{2m}t^m)^{b_2(S)}(1-z^{2m+2}t^m)^{b_0(S)}}, \quad (1b)$$

$$\sum_{n=0}^{\infty} e(S^{(n)})t^n = \prod_{m=1}^{\infty} (1-t^m)^{-e(S)}.$$
 (2)

So the Betti numbers of $S^{[n]}$ depend only on the Betti numbers of S and the Euler number of $S^{[n]}$ depends only on the Euler number of S. According to [Md] the Betti numbers of $S^{(n)}$ are given by

$$\sum_{n} P(S^{(n)}, z)t^{n} = \frac{(1+zt)^{b_{1}(S)}(1+z^{3}t)^{b_{1}(S)}}{(1-t)^{b_{0}(S)}(1-z^{2}t)^{b_{2}(S)}(1-z^{4}t)^{b_{0}(S)}},$$

so Theorem 0.1 reflects the close connection of $S^{[n]}$ and $S^{(n)}$.

Over an algebraically closed field k we have the following situation: The points of $S^{(n)}$ are the 0-cycles $\xi = \sum_{i} n_i \cdot x_i$ of degree n on S. $S^{(n)}$ is stratified by the partition of n given by the n_i (if the x_i are distinct). The open stratum contains the 0-cycles consisting of n different points. The fibre of the morphism ω_n over a point $\xi \in S^{(n)}$ depends only on the stratum in which ξ lies. $\omega_n^{-1}(n \cdot x)$ is the variety $V_{n,k} = \text{Hilb}^n(\text{spec}(k[[x, y]]))$ of subschemes of length n of a surface concentrated at a point. If $x_1, ..., x_r$ are distinct points of S, then

$$\omega_n^{-1}(n_1 \cdot x_1 + \ldots + n_r \cdot x_r) = V_{n_1,k} \times \ldots \times V_{n_r,k}.$$

Using this geometric description and keeping track of the action of the Frobenius we can count the points of $S^{[n]}$ over finite fields and so compute the Betti numbers via the Weil conjectures.

This paper is a simplified version of parts of my Diplom paper $[G\ddot{o}]$ at Bonn University written under the guidance of Andrew Sommese and Friedrich Hirzebruch. In the present paper we will use a result of [E-S]. The original proof, which is considerably longer, is independent of [E-S] and uses results of [I 1].

1. Notation and background material

Let Z denote the integers, N the positive integers, N_0 the nonnegative integers, Q the rational numbers, C the complex numbers and F_q a finite field with q elements, where q is a prime power. If A is a ring and X_1, \ldots, X_n are indeterminates, we denote by $A[X_1, ..., X_n]$ and $A[[X_1, ..., X_n]]$ the ring of polynomials and the ring of formal power series in X_1, \ldots, X_n with coefficients in A respectively. For a set M we denote its cardinality by # M. Let k be a field. We denote by A_k^n the affine n-space over k. We drop the k if it is understood. For k-schemes S, T we denote $S(T) := \text{Hom}_{k}(T, S)$ the T-valued points of S. If \tilde{k} is an extension of k, we write $S(\tilde{k})$ for $S(\operatorname{spec}(k))$. We denote by $\operatorname{Gal}(k/k)$ the Galois group of k over k, by k the algebraic closure of k and $\overline{S} := S \times_{\text{spec}(k)} \text{spec}(\overline{k})$. We denote by \mathcal{O}_S the structure sheaf of S. If W is a T-scheme and $t \in T$, we denote the fiber of W over t by W. We denote by Z_{red} the reduced scheme of Z. If a group G operates on a set X, we denote by X^G the set of G-invariant elements of X. If \mathcal{F} is a coherent sheaf on a scheme S, let $H^{i}(S, \mathscr{F})$ be the *i*th cohomology group with coefficients in \mathscr{F} , let $h^{i}(S, \mathscr{F}) := rk(H^{i}(S, \mathscr{F}))$ and $\chi(\mathscr{F}) := \sum (-1)^{i} h^{i}(S, \mathscr{F})$. If S is smooth and projective over C, let Ω_{S}^{p} be the sheaf of holomorphic p-forms on S and $h^{p,q}(S) := h^{q}(S, \Omega_{S}^{p})$ the p, q^{th} Hodge number, $h(S, x, y) := \sum_{p,q} h^{p,q}(S) x^p y^q$ and $\tilde{h}(S, x, y) := h(S, -x, -y)$.

Then the χ_{y} genus is $\chi_{y}(S) := \sum_{p,q} (-1)^{q} h^{p,q}(S) y^{p}$, so we have $\chi(\mathcal{O}_{S}) = \chi_{0}(S)$, and $\chi_{1}(S)$ is the signature sign(S) of S.

We will use the Weil conjectures. Let X be a smooth projective variety of dimension d over \mathbf{F}_q . Let F_q be the geometric Frobenius of \bar{X} over \mathbf{F}_q and

$$Z_q(X,t) := \exp\left(\sum_{n>0} \# X(\mathbf{F}_{q^n}) \frac{t^n}{n}\right)$$

the zeta function of X over \mathbf{F}_q . The operation of F_q on $X(\mathbf{F}_q)$ is inverse to the operation of the Frobenius of \mathbf{F}_q , a topological generator of $\operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_q)$, so a point $x \in X(\mathbf{F}_q)$ is in $X(\mathbf{F}_q)$ if and only if $x = F_q(x)$. We denote the action of F_q on the *l*-adic cohomology groups $H^i(X, \mathbf{Q}_l)$ by $F^*_q|_{H^i(X, \mathbf{Q}_l)}$.

Theorem 1.1. (Weil conjectures, [D]). (1) $Z_{a}(X, t)$ is a rational function:

$$Z_q(X,t) = \prod_{r=0}^{2d} Q_r(X,t)^{(-1)^{r+1}},$$

where $Q_r(X, t) = \det(1 - tF_q^*|_{H^r(\bar{X}, Q_l)})$.

(2) $Q_r(X,t) \in \mathbb{Z}[t]$.

(3) The eigenvalues $\alpha_{i,r}$ of $F_q^*|_{H^r(\hat{X}, Q_i)}$ have absolute value $|\alpha_{i,r}| = q^{r/2}$ with respect to any embedding into C.

(4)
$$Z_q(X, 1/q^d t) = \pm q^{\frac{1}{2}e(\bar{X})} t^{e(\bar{X})} Z_q(X, t).$$

(5) If X is a good reduction of a smooth projective variety Y over C, then $b_i(Y) = b_i(\overline{X}) = \deg(Q_i)$ for i = 0, ..., 2d.

As a consequence of 1.1(1), (3), and (5) we get:

Remark 1.2. Let $F(t, s_1, ..., s_m) \in \mathbb{Q}[t, s_1, ..., s_m]$. Let X and S be smooth projective varieties over \mathbf{F}_{a_1} such that for all $n \in \mathbb{N}$ we have

$$\# X(\mathbf{F}_{q^n}) = F(q^n, \# S(\mathbf{F}_{q^n}), ..., \# S(\mathbf{F}_{q^{nm}})).$$

Then

$$\tilde{p}(\bar{X},z) = F(z^2, \tilde{p}(\bar{S},z), \dots, \tilde{p}(\bar{S},z^m))$$

If both X and S are good reductions of smooth projective varieties \tilde{X} and \tilde{S} over C, then

$$\tilde{p}(\tilde{X}, z) = F(z^2, \tilde{p}(\tilde{S}, z), \dots, \tilde{p}(\tilde{S}, z^m)).$$

Let X be a smooth projective variety over a field k. The symmetric group G(n) in n letters operates on X^n by permuting the factors. The n^{th} symmetric power $X^{(n)}$ of X is the geometric quotient $X^n/G(n)$. We can identify $X^{(n)}(\overline{k})$ with the set of effective 0-cycles $\sum n_i \cdot x_i$ of degree n on \overline{X} .

If k is a finite field \mathbf{F}_q , then the Frobenius F_q acts on $X^{(n)}(\mathbf{F}_q)$ by $F_q(\sum_i n_i \cdot x_i)$ = $\sum_i n_i \cdot F_q(x_i)$ and $X^{(n)}(\mathbf{F}_q)$ is the set of effective 0-cycles of degree n fixed under the action of F_q . A 0-cycle $\zeta = \sum_{i=0}^{r-1} F_q^i(x)$ with $x \in X(\mathbf{F}_{q^r}) \setminus (\bigcup_{i < r} X(\mathbf{F}_{q^i}))$ will be called a primitive 0-cycle of degree r over \mathbf{F}_q on X. We denote the set of these primitive 0-cycles by $P_{r}(X, \mathbf{F}_{q})$. Any $\zeta \in X^{(n)}(\mathbf{F}_{q})$ can be written in a unique way as a positive linear combination of distinct primitive 0-cycles. It is also clear from the definitions, that we have

$$\# X(\mathbf{F}_{q^n}) = \sum_{r|n} \# P_r(X, \mathbf{F}_{q^r}) \cdot r.$$

If we combine these facts, we can see that

$$Z_q(X,t) = \sum_{n=0}^{\infty} \# X^{(n)}(\mathbf{F}_q)t^n$$

i.e. the zeta function is the counting function for effective 0-cycles on X over \mathbf{F}_{a} .

Let X again be defined over an arbitrary field k. We want to use a natural stratification of $X^{(n)}$. Let $\Phi: X^n \to X^{(n)}$ be the quotient morphism. For $m \in \mathbb{N}$ let $\Delta_m \subset X^m$ be the diagonal. Let $\nu = (n_1, ..., n_r)$ be a partition of n. If ν is strictly finer than a partition μ of n, we will write $\nu < \mu$. Then we put

and

$$X_{v}^{(n)} := \Phi(\Delta_{n_{1}} \times \ldots \times \Delta_{n_{r}})$$

- · ·

$$X_{v}^{(n)} := X_{v}^{(n)} \setminus \left(\bigcup_{v < \mu} X_{\overline{\mu}}^{(n)} \right)$$

This gives a stratification of $X^{(n)}$ into locally closed subschemes. We have

--()

 $X_{\nu}^{(n)}(\bar{k}) = \{n_1 \cdot x_1 + \dots + n_r \cdot x_r \mid x_1, \dots, x_r \text{ are distinct elements of } X(\bar{k})\}.$

We write $X_{y}^{n} := \Phi^{-1}(X_{y}^{(n)}).$

From now on let S be a smooth projective surface over k. Let $S^{[n]} := \operatorname{Hilb}^{n}(S)$ denote the component of the Hilbert scheme of S parametrising subschemes of length n of S. Let $Z^{n}(S) \subset S \times S^{[n]}$ be the universal subscheme. Then we have for any locally noetherian k-scheme T:

 $S^{[n]}(T) = \{Z \in S \times T \text{ closed subscheme, flat of degree } n \text{ over } T\},\$

$$Z^{n}(S)(T) = \{(Z, \sigma) \mid Z \in S^{(n)}(T); \sigma \colon T \to Z \text{ section of } p_{2}|_{Z} \}.$$

According to [F1] we have:

Theorem 1.3. (a) There is a canonical morphism $\omega_n: S^{(n)} \to S^{(n)}$, which as a map of points is

$$Z \mapsto \sum_{x \in S} \text{length}(\mathcal{O}_{Z,x}) \cdot x.$$

(b) $S^{[n]}$ is smooth.

(c) ω_n is birational.

From the definitions and (b) it is clear that the following holds. If S over \mathbf{F}_q is a good reduction of a smooth projective surface \tilde{S} over \mathbb{C} , then $S^{(n)}$ is a good reduction of $\tilde{S}^{(n)}$. Using ω_n we get a natural stratification of $S^{(n)}$: We put $S_v^{(n)} := \omega_n^{-1}(S_v^{(n)}), Z_v^n(S) := p_2^{-1}(S_v^{(n)})$. (See for instance [F 2].)

Let **m** be the maximal ideal in k[[x, y]] and

$$V_{n,k} := \operatorname{Hilb}^{n}(\operatorname{spec}(k[[x, y]]/\mathbf{m}^{n})).$$

 $V_{n,k}$ represents a functor as spec $(k[[x, y]]/\mathbf{m}^n) = \operatorname{spec}(k[x, y]/\mathbf{m}^n)$ is projective.

Definition 1.4 (See [Fu, Example 1.9.1]). Let X be a scheme over a field k. A cell decomposition of X is a filtration

$$X = X_n \supset X_{n-1} \supset \dots \supset X_0 \supset X_{-1} = \emptyset$$

by closed subschemes, with each $X_i \setminus X_{i-1}$ a disjoint union of schemes $U_{i,j}$ isomorphic to affine spaces $A^{n_{i,j}}$. We call the $U_{i,j}$ the $n_{i,j}$ -cells of the decomposition.

We will use the following two facts:

(1) If $f: Z \to T$ is a separated morphism of schemes, then any section $s: T \to Z$ of f is a closed immersion.

(2) Let X_0 be a scheme, $X_1 \in X_0$ a closed subscheme defined by a nilpotent ideal sheaf and $q: Y \to X_0$ be an étale X_0 -scheme. Then for every section $s_1: X_1 \to Y \times_{X_0} X_1$ of p_2 there is a unique section $s_0: X_0 \to Y$ of q, such that $s_0 \times 1_{X_1} = s_1$.

(1) is trivial and (2) follows for instance from [M, Theorem I.3.23].

2. Proof of the main theorem

In this section we shall only consider the Zariski topology. Let k be a field, S a smooth projective surface over k. There is an open affine cover $(U_i)_i$ of S and étale morphisms $f_i: U_i \rightarrow A^2$. (See for instance [M, Proposition I.3.24]; [SGA 1, II].) Let $U \subset S$ be open and affine and $f: U \rightarrow A^2$ an étale morphism.

The reader will notice that our argument below could be simplified, if one could see easily that taking the scheme theoretic direct image defines a morphism $U_{(n)}^{(n)} \rightarrow (\mathbf{A}^2)_{(n)}^{(n)}$.

Lemma 2.1. There is a canonical morphism

$$\psi_1: Z^n_{(n)}(\mathbf{A}^2) \times_{A^2} U \to Z^n(U),$$

which induces a bijection

$$\psi_1(\overline{k}): (Z_{(n)}^n(\mathbf{A}^2) \times_{A^2} U)(\overline{k}) \to Z_{(n)}^n(U)(\overline{k}).$$

Proof. We construct ψ_1 as a morphism of functors. Let T be a noetherian k-scheme. Let

$$(Z, \sigma, \tilde{\sigma}) \in (Z_{(n)}^n(\mathbf{A}^2) \times_{A^2} U)(T).$$

Then $(Z, \sigma) \in Z^n(\mathbf{A}^2)(T)$. Let $i: Z \to \mathbf{A}^2 \times T$ be the inclusion. Then we have $\omega_n \circ i \in (\mathbf{A}^2)_{(n)}^{(n)}(T)$ and $\tilde{\sigma}: T \to U \times T$ is a section of p_2 , such that $i \circ \sigma = (f \times 1_T) \circ \tilde{\sigma}$. As $p_2|_Z$ is separated, σ is a closed immersion and induces an isomorphism $T \xrightarrow{\sim} \Sigma := \sigma(T) \subset Z$.

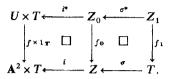
We show next, that $\Sigma \subset Z$ is defined by a nilpotent ideal. For each $t \in T$ we have

$$\omega_n(Z_t) = \sum_{x \in (\mathbf{A}^2 \times T)_t} \operatorname{length}(\mathcal{O}_{Z_t, x}) \cdot x.$$

As ω_n is compatible with base change, we have

$$(\omega_n(Z))_t = \omega_n(Z_t) \in ((\mathbf{A}^2 \times T)_t)_{(n)}^{(n)}.$$

So the support $\operatorname{supp}(Z_t)$ of Z_t consists of a single point $x_t \in Z_t$ and $\operatorname{supp}(Z) = \{x_t \mid t \in T\}$. As σ is a section of $Z \to T$, we have $\operatorname{supp}(Z) = \operatorname{supp}(\Sigma)$, and so $\Sigma \subset Z$ is defined by a nilpotent ideal. We consider the following cartesian diagram.



Let $s_2 := (\sigma, \tilde{\sigma}): T \to Z_0, s_1 : (s_2, 1_T): T \to Z_1$ and let $s_0 : Z \to Z_0$ be the unique lift of s_1 . As f is separated, so is f_0 , and so its section s_0 is a closed immersion. So $i^* \circ s_0$ is a closed immersion and hence induces an isomorphism $s: Z \to Z_{U,T} := (i^* \circ s_0)(Z)$. Let $\sigma_{U,T} := s \circ \sigma$. Then $\sigma_{U,T}$ is a section of $p_2|_{Z_{U,T}}$, and $\sigma_{U,T}(T) \subset Z_{U,T}$ is defined by a nilpotent ideal.

We define $\psi_1(Z, \sigma, \tilde{\sigma}) := (Z_{U,T}, \sigma_{U,T}) \in Z^n(U)(T)$. Using the uniqueness of the lift s_0 of s_1 , it is trivial to verify that this definition is compatible with base change and so defines a morphism $\psi_1 : Z_{n}^n(\mathbf{A}^2) \times_{\mathbf{A}^2} U \to Z^n(U)$.

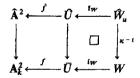
We want to prove that ψ_1 induces a bijection

$$\psi_1(\overline{k}): (Z_{(n)}^n(\mathbf{A}^2) \times_{\mathbf{A}^2} U)(\overline{k}) \to Z_{(n)}^n(U)(\overline{k}).$$

Let $(Z, p, u) \in (Z_{(n)}^n(\mathbf{A}^2) \times_{\mathbf{A}^2} U)(\overline{k})$, then f(u) = p. We specialize the above diagram to $T = \operatorname{spec}(k)$ and define s_2 , s_1 , and s_0 as above. Then $\psi_1(Z, p, u) = (W, u)$ with $W := s_0(Z)$. W is a subscheme of length n in $\overline{U} := U \times \operatorname{spec}(\overline{k})$, such that $u \in W$ is defined by a nilpotent ideal. So $\omega_n(W)$ is the 0-cycle $n \cdot u$. Thus we have $W \in U_{(n)}^{(n)}(\overline{k})$ and $(W, u) \in Z_{(n)}^n(U)(\overline{k})$. Now we want to define the inverse of $\psi_1(\overline{k})$. Let $(W, u) \in Z_{(n)}^n(U)(\overline{k})$, let $i_W : W \to \overline{U}$ the inclusion and p := f(u).

Claim. $f \circ i_W : W \to A_k^2$ is a closed immersion.

Let \hat{U} be the completion of \overline{U} at *u*. Let \hat{A}^2 the completion of A_k^2 at *p*. Let $\hat{f}: \hat{U} \xrightarrow{\simeq} \hat{A}^2$ be the induced morphism and \hat{W}_u the completion of *W* at *u*. Then we have $\hat{W}_u = W \times_{\hat{U}} \hat{U}$. As the support of *W* is *u*, it follows that $p_1: \hat{W}_u \to W$ is an isomorphism. Let κ be its inverse. Then we have the following diagram:



 $\hat{f} := \hat{f} \circ \hat{i}_W \circ \kappa \colon W \to \hat{A}^2$ is a closed immersion. \hat{A}^2 is isomorphic to spec(k[[x, y]]), and each ideal in k[[x, y]] of colength *n* contains \mathbf{m}^n (see for instance [I1, Lemma 1.1]) So \hat{f} factorizes as:

$$W \xrightarrow{\kappa} \widehat{W}_u \xrightarrow{I_{W'}} \operatorname{spec}(k[[x, y]]/m^n) \to \widehat{A}^2,$$

and \overline{i}_W is a closed immersion. So $f \circ i_W$ factorizes as

$$W \xrightarrow{l_{W} \circ \kappa} \operatorname{spec}(k[[x, y]]/\mathbf{m}^{n}) \xrightarrow{l_{n}} \mathbf{A}_{k}^{2},$$

where i_n is the closed immersion of $k[[x, y]]/\mathbf{m}^n$ in \mathbf{A}_k^2 , which is induced by the canonical projection $k[x, y] \rightarrow k[[x, y]]/\mathbf{m}^n$. So $f \circ i_W$ is a closed immersion. We define

we denne

 $\tilde{\psi}_1(\bar{k}): Z^n_{(n)}(U)(\bar{k}) \to (Z^n_{(n)}(\mathbf{A}^2) \times_{\mathbf{A}^2} U)(\bar{k})$

by $(W, u) \mapsto (f(W), f(u), u)$. By the claim we have

$$(f(W), f(u), u) \in (Z_{(n)}^n(\mathbf{A}^2) \times_{\mathbf{A}^2} U)(k).$$

It is easy to verify that $\tilde{\psi}_1(\vec{k}) = \psi_1(\vec{k})^{-1}$.

Lemma 2.2. There is a natural morphism

 $\psi_2: V_{n,k} \times \mathbf{A}^2 \to (\mathbf{A}^2)^{[n]},$

which induces a bijection of geometric points

$$\psi_2(\vec{k}): (V_{n,k} \times \mathbf{A}^2)(\vec{k}) \rightarrow (\mathbf{A}^2)_{(n)}^{[n]}(\vec{k}).$$

Proof. We construct ψ_2 as a morphism of functors. Let T be a noetherian k-scheme. Let $(Z, \sigma) \in (V_{n,k} \times \mathbf{A}^2)(T)$. Let again $i_n : \operatorname{spec}(k[[x, y]]/\mathbf{m}^n) \to \mathbf{A}^2$ be the closed immersion induced by the canonical map $k[x, y] \to k[[x, y]]/\mathbf{m}^n$. Let $V := (i_n \times 1_T)(Z)$. Let plus: $\mathbf{A}^2 \times \mathbf{A}^2 \to \mathbf{A}^2$ be the morphism

$$((x_1, y_1), (x_2, y_2)) \mapsto (x_1 + x_2, y_1 + y_2)$$

and minus: $\mathbf{A}^2 \times \mathbf{A}^2 \to \mathbf{A}^2$; $((x_1, y_1), (x_2, y_2)) \mapsto (x_1 - x_2, y_1 - y_2)$. Let
plus _{σ} : = (plus \circ ($p_1 \times (p_1 \circ \sigma \circ p_2)$), p_2): $\mathbf{A}^2 \times T \to \mathbf{A}^2 \times T$,
minus _{σ} : = (minus \circ ($p_1 \times (p_1 \circ \sigma \circ p_2)$), p_2): $\mathbf{A}^2 \times T \to \mathbf{A}^2 \times T$

be the morphisms which add and subtract the section σ . Obviously both are isomorphisms and $(\text{plus}_{\sigma})^{-1} = \text{minus}_{\sigma}$. Let $\psi_2(Z, \sigma) := \text{plus}_{\sigma}(V)$. Then $\psi_2(Z, \sigma)$ is *T*-isomorphic to *Z*. It is easy to check that $(Z, \sigma) \mapsto \psi_2(Z, \sigma)$ is compatible with base change and so gives a morphism ψ_2 .

We still have to prove the second statement. That $\psi_2(\bar{k})$ actually maps into $(\mathbf{A}^2)_{[n]}^{[n]}(\bar{k})$ is again clear. We will give the inverse map $\psi_2^{-1}(\bar{k})$: Let $W \in (\mathbf{A}^2)_{[n]}^{[n]}(\bar{k})$, $p := (W_{red})$ and $V = \min_p(W)$. Then $\operatorname{supp}(V)$ is the origin (0,0) of \mathbf{A}^2 . The completion \hat{V} of V at (0,0) is isomorphic to V, so it is a subscheme of length n of spec $(\bar{k}[[x, y]])$ defined by an ideal I of colength n in $\bar{k}[[x, y]]$. Then I/\mathbf{m}^n defines a closed subscheme $\tilde{\psi}_2(\bar{k})(W)$ of length n in spec $(k[[x, y]]/\mathbf{m}^n)$. It is easy to see that $\tilde{\psi}_2(\bar{k}) = \psi_2^{-1}(\bar{k})$.

Corollary 2.3. There is a canonical bijection

$$\psi(\overline{k}): (V_{n,k} \times U)(\overline{k}) \to U_{(n)}^{(n)}(\overline{k})$$

commuting with the action of Gal(k/k).

Proof. This follows from Lemma 2.1 and Lemma 2.2, as $p_{A^2}: Z_{(n)}^n(A^2) \to (A^2)_{(n)}^{(n)}$ and $p_U: Z_{(n)}^n(U) \to U_{(n)}^{(n)}$ both induce bijections of geometric points. \Box

Lemma 2.4. There is a (noncanonical) bijection

$$\psi_{(n)}(\vec{k}): S_{(n)}^{[n]}(\vec{k}) \rightarrow (V_{n,k} \times S)(\vec{k})$$

commuting with the Gal(k/k)-action.

Proof. Let $(U_i)_i$ be a finite covering of S by open affine subschemes, such that there exist étale morphisms $f_i: U_i \to A^2$. Let $\psi_i(\overline{k}): (V_{n,k} \times U_i)(\overline{k}) \to (U_i)_{(m)}^{(n)}(\overline{k})$ be the corresponding bijections according to Corollary 2.3. Let $W_1:=U_1$ and $W_j:=U_j\setminus (\bigcup_{i< j} U_i)$ for j>1. If $Z \in S_{(m)}^{(n)}(\overline{k})$, then there is a unique i(Z), such that $Z_{\text{red}} \in W_{i(Z)}$. We set $\psi_{(m)}(Z):=(\psi_{i(Z)}(\overline{k}))^{-1}(Z)$. All the W_i are defined over k, so for all $\sigma \in \text{Gal}(\overline{k/k})$ we have $\sigma(Z)_{\text{red}}=\sigma(Z_{\text{red}}) \in W_{i(Z)}$ and thus $\psi_{(m)}(\overline{k})(\sigma(Z))=\sigma(\psi_{(m)}(\overline{k})(Z))$. Furthermore for $Z \in S_{(m)}^{(m)}(\overline{k})$ we have $Z_{\text{red}} \in W_i$ if and only if $\psi_i(\overline{k})(Z) \in (V_{n,k} \times W_i)(\overline{k})$. As all the $\psi_i(\overline{k})$ are bijective, so is $\psi_{(m)}(\overline{k})$.

Let $v = (n_1, ..., n_r)$ be a partition of *n*. Then the quotient morphism $\Delta_{n_1}(S) \times ... \times \Delta_{n_r}(S) \to S_v^{(n)}$ factorizes as

$$\Delta_{n_1}(S) \times \ldots \times \Delta_{n_r}(S) \to S_{(n_1)}^{(n_1)} \times \ldots \times S_{(n_r)}^{(n_r)} \xrightarrow{s_v} S_v^{(n)}.$$

Let $S_{v^*}^{(n)} := s_v^{-1}(S_v^{(n)})$ and

$$S_{v^*}^{[n]} := (\omega_{n_1} \times \ldots \times \omega_{n_r})^{-1} (S_{v^*}^{(n)}) \in S_{(n_1)}^{[n_1]} \times \ldots \times S_{(n_r)}^{[n_r]}.$$

Then we have

$$S_{v*}^{[n]}(\vec{k}) = \{ (Z_1, ..., Z_r) \in S_{(n_1)}^{[n_1]} \times ... \times S_{(n_r)}^{[n_r]} | (Z_1)_{red}, ..., (Z_r)_{red} \text{ are distinct} \}$$

The symmetric group G(n) operates on $S_{v*}^{[n]} \subset S_{(n_1)}^{[n_1]} \times \ldots \times S_{(n_r)}^{[n_r]}$ by permuting the factors with the same n_i .

Lemma 2.5. There is a natural morphism $\psi_{v}: S_{v*}^{(n)} \to S^{(n)}$, which induces a bijection

 $\tilde{\psi}_{\nu}: S_{\nu^*}^{[n]}(\vec{k})/G(n) \rightarrow S_{\nu}^{[n]}(\vec{k})$

commuting with the $Gal(\overline{k}/k)$ -action.

Proof. Let T be a noetherian scheme, let $(Z_1, ..., Z_r) \in S_{r^*}^{(n)}(T)$. We set

$$\psi_{\mathbf{y}}(Z_1,\ldots,Z_r):=Z_1\cup\ldots\cup Z_r\simeq Z_1\cup\ldots\cup Z_r.$$

This is flat of degree *n* over *T*. ψ_v is obviously compatible with base change and so defines a morphism. If $(Z_1, ..., Z_r) \in S_v^{(n)}(k)$, then

$$\omega_n \circ \psi_n(\overline{k})(Z_1, \ldots, Z_r) = \omega_n(Z_1 \cup \ldots \cup Z_r) = \omega_{n_1}(Z_1) + \ldots + \omega_{n_r}(Z_r).$$

So $\psi_{\mathbf{v}}(\overline{k})(Z_1,...,Z_r) \in S_{\mathbf{v}}^{[n]}(\overline{k})$. $\tilde{\psi}_{\mathbf{v}}$ is obviously well defined by $[(Z_1,...,Z_n)] \mapsto Z_1 \cup ... \cup Z_n$, where [] denotes the class modulo G(n). If $Z \in S_{\mathbf{v}}^{[n]}(\overline{k})$, then it has a decomposition $Z = Z_1 \cup ... \cup Z_r$, into connected components and $(\tilde{\psi}_{\mathbf{v}})^{-1}(Z) = [(Z_1,...,Z_r)]$. \Box

For the next two lemmas we introduce some notation. If \tilde{k} is an extension of k we write $V(\tilde{k})$ for $\bigcup_{r=1}^{\infty} V_{r,k}(\tilde{k})$. If $x \in V_{r,k}(\tilde{k})$ we set $\operatorname{len}(x) = r$. If (M, f) is a pair

200

consisting of a finite set $M \subset S(\tilde{k})$ and a map $f: M \to V(\tilde{k})$, we set $len(f) = \sum_{\substack{m \in M \\ \sigma \in \text{Gal}(\tilde{k}/k)}} len(f(m))$. Gal (\tilde{k}/k) acts on these pairs by $\sigma(M, f) = (\sigma(M), \sigma f \sigma^{-1})$ for $\sigma \in \text{Gal}(\tilde{k}/k)$.

Lemma 2.6. There is a bijection

$$\phi: S^{[n]}(\bar{k}) \to \{(M, f) \mid M \in S(\bar{k}) \text{ finite, } f: M \to V(\bar{k}) \text{ with } \operatorname{len}(f) = n\}$$

commuting with the Gal(\overline{k}/k)-action.

Proof. Let $v = (n_1, ..., n_r)$ be a partition of n and $[(Z_1, ..., Z_r)] \in S_{v^*}^{[n]}$. We put

$$\phi([(Z_1,...,Z_r)]) := (\{(Z_1)_{red},...,(Z_r)_{red}\},f),$$

where $f: \{(Z_1)_{red}, ..., (Z_r)_{red}\} \rightarrow V(\overline{k})$ is defined by

$$f((\boldsymbol{Z}_i)_{\text{red}}) = p_1 \circ \psi_{(n_i)}(\boldsymbol{k})(\boldsymbol{Z}_i)$$

(see Lemma 2.4). The result now follows from Lemma 2.4, Lemma 2.5 and the stratification of $S^{[n]}$.

From now on let $k = \mathbf{F}_q$ and S be a smooth projective surface over \mathbf{F}_q . Let Q be some power of q. Let F_Q be the geometric Frobenius over \mathbf{F}_Q . We put $P(S, \mathbf{F}_Q) := \bigcup_{r>0} P_r(S, \mathbf{F}_Q)$. If $L \subset P(S, \mathbf{F}_Q)$ is a finite set and $g : L \to V(\mathbf{F}_q)$, we say that g is admissible if $g(l) \in V(\mathbf{F}_{Q^r})$ whenever $l \in L \cap P_r(S, \mathbf{F}_Q)$, and we put

$$\operatorname{len}(g) := \sum_{l \in L} \operatorname{deg}(l) \operatorname{len}(g(l)).$$

Lemma 2.7.

$$\sum_{n=0}^{\infty} \# S^{[n]}(\mathbf{F}_{\mathcal{Q}}) = \prod_{r=1}^{\infty} \left(\sum_{n=0}^{\infty} V_{n,\mathbf{F}_{\mathcal{Q}}}(\mathbf{F}_{\mathcal{Q}^{r}}) t^{rn} \right)^{\# P_{r}(S,\mathbf{F}_{\mathcal{Q}})}$$

Proof. (i) We set

$$\begin{split} M_{1,n} &:= \{ (M,f) \mid M \in S(\mathbf{F}_q) \text{ finite, } f \colon M \to V(\mathbf{F}_q), \text{ len}(f) = n, \ F_Q(M,f) = (M,f) \} , \\ M_{2,n} &:= \{ (L,g) \mid L \in P(S,\mathbf{F}_Q) \text{ finite, } g \colon L \to V(\mathbf{F}_q) \text{ admissible, } \text{len}(g) = n \} . \end{split}$$

We first want to show that there exists a bijection $\varrho: M_{1,n} \to M_{2,n}$. We choose an ordering \leq on $S(\mathbf{F}_q)$. Let $(M, f) \in M_{1,n}$. Then

$$s := \sum_{m \in M} \operatorname{len}(f(m)) \cdot m \in S^{(n)}(\mathbf{F}_Q)$$

has a unique representation $s = \sum_{i=1}^{r} a_i \xi_i$ as positive linear combination of distinct primitive 0-cycles over \mathbf{F}_Q . Let $(b_i)_i$ be such, that $\xi_i \in P_{b_i}(S, \mathbf{F}_Q)$ for all *i*. Then we have $\xi_i = \sum_{j=0}^{b_i-1} F_Q^j(x_i)$ for appropriate $x_i \in S(\mathbf{F}_{Q^{b_i}}) \setminus (\bigcup_{j < b_i} S(\mathbf{F}_{Q^j}))$. We choose the x_i so that $x_i \leq F_Q^j(x_i)$ for all $j \in \mathbb{Z}$. Then they are uniquely defined. Then we have $F_Q^{b_i}(f(x_i)) = f(F_Q^{b_i}(x_i)) = f(x_i)$, so we have $f(x_i) \in V(\mathbf{F}_{Q^{b_i}})$. We put $\varrho(M, f) := (\{\xi_1, \dots, \xi_r\}, g)$, where $g: \{\xi_1, \dots, \xi_r\} \to V(\mathbf{F}_q)$ is defined by $g(\xi_i) := f(x_i)$.

The inverse mapping ϱ^{-1} is given as follows: Let $(\{\xi_1, \ldots, \xi_r\}, g) \in M_{2,n}$. Then there are $(b_i)_i$, such that $\xi_i \in P_{b_i}(S, \mathbf{F}_Q)$ for all *i*. For all *i* there is a unique $x_i \in S(\mathbf{F}_{Q^{b_i}}) \setminus (\bigcup_{j < b_i} S(\mathbf{F}_{Q^j}))$, such that $\xi_i = \sum_{j=0}^{b_i-1} F_Q^j(x_i)$ and $x_i \leq F_Q^j(x_i)$ for all $j \in \mathbb{Z}$. We put

$$M = \bigcup_{i=1}^{n} \{x_i, F_Q(x_i), ..., F_Q^{b_i - 1}(x_i)\}.$$

Then $\varrho^{-1}(\{\xi_1, \dots, \xi_r\}, g) = (M, f)$, where $f: M \to V(\mathbf{\bar{F}}_q)$ is defined by

$$f(F_Q^j(x_i)) := F_Q^j(g(x_i)).$$

(ii) For $i, j \in \mathbb{N}$ we put

$$N(i,j) := \# \left\{ (M,m) \middle| M \in P_i(S, \mathbb{F}_Q), f : M \to V(\mathbb{F}_{Q^i}), \sum_{m \in M} \operatorname{len}(f(m)) = j \right\}.$$

We observe that

$$\# M_{2,n} = \sum_{n_1+2n_2+3n_3...=n} \left(\prod_{s=1}^{\infty} N(s, n_s) \right).$$

On the other hand we have

$$\left(\sum_{n=0}^{\infty} V_{n,\mathbf{F}_q}(\mathbf{F}_{Q^r})t^{rn}\right)^{\#P_r(S,\mathbf{F}_Q)} = \sum_{j=0}^{\infty} N(r,j)t^{rj}.$$

So the lemma follows. \square

For $n, d \in \mathbb{N}$ we set $P(n, d) := \# \{ \text{partitions of } n \text{ into parts } \leq d \}$ as in [E-S]. We set p(n, d): = # {partitions of n into d parts}. Then we have

$$p(n,d) = \# \{ \text{partitions of } n \text{ into parts the largest of which is } d \}$$
$$= \# \{ \text{partitions of } n-d \text{ into parts } \leq d \}$$
$$= P(n-d,d).$$

We use the following result of [E-S].

Proposition 2.8 [E-S, Proposition 4.2]. Let k be an algebraically closed field. Then $V_{n,k}$ has a cell decomposition, and for all $d \in \mathbb{N}_0$ the number of d-cells in the decomposition is P(d, n-d).

Ellingsrud and Strømme carry out their arguments only for k = C but state that they also hold over any algebraically closed field. We denote by $\stackrel{\text{ff}}{=}$ the congruence modulo t^{l} in Q[[t]] or Q[[z, t]].

Lemma 2.9. For all $n \in \mathbb{N}$ there is an $m_0 \in \mathbb{N}$, such that for all $M \in \mathbb{N}$, which are divisible by m_0 , and $Q:=q^M$ we have for all smooth projective surfaces S over F_Q :

$$\sum_{n=0}^{\infty} \# S^{[n]}(\mathbf{F}_{\mathcal{Q}})t^n \stackrel{t^{\prime}}{=} \prod_{i=1}^{\infty} Z_{\mathcal{Q}}(S, \mathcal{Q}^{i-1}t^i) = \exp\left(\sum_{m=1}^{\infty} \frac{t^m}{m} \frac{\# S(\mathbf{F}_{\mathcal{Q}^m})}{1-\mathcal{Q}^m t^m}\right).$$

Proof. Obviously we have

$$\prod_{i=1}^{\infty}\left(\frac{1}{1-z^{i-1}t^i}\right)=\sum_{n=0}^{\infty}\sum_{i=0}^{\infty}p(n,n-i)t^nz^i.$$

So we can reformulate Proposition 2.8 as follows:

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \# \{ m \text{-dim. cells of } V_{n,k} \} t^n z^m = \prod_{i=1}^{\infty} \frac{1}{1 - z^{i-1} t^i}.$$

Let $l \in \mathbb{N}$. Then there exists an $m_0 \in \mathbb{N}$ such that for all $n \leq l$ the cell decomposition of V_{n,\mathbf{F}_n} is already defined over \mathbf{F}_{amo} . Let M be a multiple of m_0 and $r \in \mathbf{N}$. We get:

$$\sum_{n=0}^{\infty} \# V_{n, \mathbf{F}_{q}}(\mathbf{F}_{Q^{r}}) t^{rn} \stackrel{t'}{=} \prod_{i=1}^{\infty} \frac{1}{1 - Q^{r(i-1)} t^{ri}}.$$

So by Lemma 2.7 we have:

$$\sum_{n=0}^{\infty} \# S^{[n]}(\mathbf{F}_{Q})t^{n} \stackrel{\text{rest}}{=} \prod_{r=1}^{\infty} \prod_{i=1}^{\infty} \left(\frac{1}{1-Q^{r(i-1)}t^{ri}}\right)^{\#P_{r}(S,\mathbf{F}_{Q})}$$
$$= \exp\left(\sum_{i=1}^{\infty} \sum_{r=1}^{\infty} \sum_{h=1}^{\infty} \# P_{r}(S,\mathbf{F}_{Q})Q^{hr(i-1)}t^{hri}/h\right)$$
$$= \exp\left(\sum_{i=1}^{\infty} \sum_{m=1}^{\infty} \left(\sum_{r|m} r \cdot \# P_{r}(S,\mathbf{F}_{Q})\right)Q^{m(i-1)}\frac{t^{mi}}{m}\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} \frac{t^{m}}{m} \frac{\# S(\mathbf{F}_{Q})}{1-Q^{m}t^{m}}\right).$$

The formula including the zeta function $Z_{O}(S,t)$ follows by an easy calculation. \Box

Proof of Theorem 0.1. Let $n \in \mathbb{N}$. Let S be defined over \mathbf{F}_{q} . Then there is a $\tilde{q} = q^{l}$ and a smooth projective surface S_0 over \mathbf{F}_q , such that $S = S_0 \times_{\mathbf{F}_q} \mathbf{F}_q$. There exists a $Q = \tilde{q}^{M}$, such that for all $h \in \mathbb{N}$ the number $\# S^{[n]}(\mathbf{F}_{O^{h}})$ is the coefficient of t^{n} in

$$\exp\left(\sum_{m=1}^{\infty}\frac{t^m}{m}\frac{\#S_0(\mathbf{F}_{Q^{hm}})}{(1-Q^{hm}t^m)}\right).$$

(1a) follows by Remark 1.2. (1b) follows by a trivial calculation and (2) by setting z := -1. If S is defined over C, we consider a good reduction of S modulo q for an appropriate prime power q. \Box

Corollary 2.10. (a) If e(S) = 0, then for all $n \in \mathbb{N}$ we have $e(S^{[n]}) = 0$.

(b) If S is a K3 surface, then

$$\sum_{n=1}^{\infty} e(S^{[n]})q^n = \frac{q}{\Delta(\tau)},$$

where $q := e^{2\pi i t}$, $\tau \in \mathbf{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ and Δ is the cusp form of weight 12 for SL(Z).

If S is an abelian variety then (a) is already known (see for instance [B, footnote on p. 769]).

Corollary 2.11. Let S be a smooth irreducible surface over C. Then

$$P(S^{[n]},z) \stackrel{z^{n+1}}{\equiv} \prod_{m=1}^{\infty} \frac{((1+z^{2m-1})(1+z^{2m+1}))^{b_1(S)}}{(1-z^{2m})^{b_2+1}(1-z^{2m+2})}.$$

-

So the Betti numbers $b_i(S^{[n]})$ become stable for $n \ge i$.

Proof. We set

$$G(z,t) := (1-t) \prod_{m=1}^{\infty} \frac{(1+z^{2m-1}t^m)^{b_1(S)}(1+z^{2m+1}t^m)^{b_1(S)}}{(1-z^{2m-2}t^m)(1-z^{2m}t^m)^{b_2(S)}(1-z^{2m+2}t^m)}$$

Then we have to show that $P(S^{[n]}, z) \stackrel{z^{n+1}}{\equiv} G(z, 1)$. For $f \in \mathbb{Q}[[z, t]]$ we denote by $a_{v, t}(f)$ the coefficient of $z^{v}t^{t}$ in f. If v > l, then $a_{v, t}(G(z, t)) = 0$. Let $v \le n$. Then we have by Theorem 0.1 (1b):

$$b_{\nu}(S^{[n]}) = a_{\nu,n} \left(\left(\sum_{l=0}^{\infty} t^{l} \right) G(z,t) \right)$$
$$= \sum_{l=0}^{n} a_{\nu,l}(G(z,t))$$
$$= \sum_{l=0}^{\infty} a_{\nu,l}(G(z,t))$$
$$= a_{\nu,0}(G(z,1)). \quad \Box$$

3. The Hodge numbers of Hilb^{*}(S)

Let S be a smooth projective surface over C. We conclude by giving a conjecture about the Hodge numbers of $S^{[n]}$ and proving a small part of it.

Conjecture 3.1.

$$\sum_{n=0}^{\infty} h(S^{[n]}, x, y)t^{n} = \prod_{k=1}^{\infty} \left(\frac{\prod_{p+q \text{ odd}} (1 + x^{p+k-1}y^{q+k-1}t^{k})^{\overline{h^{p,q}(S)}}}{\prod_{p+q \text{ even}} (1 - x^{p+k-1}y^{q+k-1}t^{k})^{\overline{h^{p,q}(S)}}} \right),$$
(1)

$$\sum_{n=0}^{\infty} \tilde{h}(S^{[n]}, x, y) t^{n} = \exp\left(\sum_{n=1}^{\infty} \frac{t^{n}}{n} \frac{h(S, x^{n}, y^{n})}{1 - (xyt)^{n}}\right),$$
$$\sum_{n=0}^{\infty} \chi_{-y}(S^{[n]}) t^{n} = \exp\left(\sum_{n=1}^{\infty} \frac{t^{n}}{n} \frac{\chi_{-y^{n}}(S)}{1 - (yt)^{n}}\right),$$
(2)

١

$$\sum_{n=0}^{\infty} \operatorname{sign}(S^{[n]}) t^n = \prod_{k=1}^{\infty} \left(\frac{1+t^k}{1-t^k} \right)^{(-1)^{k+1} \operatorname{sign}(S)/2} (1-t^{2k})^{-e(S)/2}$$
(3)

(2) and (3) follow from (1) by a trivial computation as $\operatorname{sign}(S) = \chi_1(S)$ and $e(S) = \chi_{-1}(S)$. By the results of [E–S] the conjecture is true for the projective plane P_2 and the Hirzebruch surfaces Σ_n . (1) is obtained from Lemma 1.9 by replacing Q by xy and $\# S(F_{Q^1})$ by $\tilde{h}(S, x^i, y^i)$. Thus the conjecture is also true for all smooth surfaces S over C, for which there exists a good reduction \tilde{S} of S modulo q, such that for all $n \in \mathbb{N}$ the Newton polygon of $\tilde{S}^{[n]}$ coincides with the Hodge polygon of $S^{[n]}$ (see [Ma, (1.9)] for the definitions).

We will now compute the Hodge numbers $h^{p,0}$ and so prove a small part of the conjecture. We consider the complex topology.

204

 $S^{(n)}$ is a V-manifold of dimension 2n. We denote by ε the partition (1, ..., 1). Then $S^{(n)}_{\varepsilon}$ is the smooth locus of $S^{(n)}$. Let $j: S^{(n)}_{\varepsilon} \to S^{(n)}$ be the inclusion. Following [S] we define $\widetilde{\Omega}^{\mathbf{p}}_{S^{(n)}}:=j_{\mathbf{x}}\Omega^{p}_{S^{(n)}_{\varepsilon}}$. As $\omega_{n}: S^{(n)} \to S^{(n)}$ is a resolution of $S^{(n)}$, we have by [S, Lemma 1.11]: $\widetilde{\Omega}^{\mathbf{p}}_{S^{(n)}}=(\omega_{n})_{\mathbf{x}}\Omega^{p}_{S^{(n)}}$.

Lemma 3.2. For p = 0, ..., 2n we have

$$H^0(S^{[n]}, \Omega^p_{S^{[n]}}) \simeq H^0(S^n, \Omega^p_{S^n})^{G^{(n)}}$$

Proof. By the above $H^0(S^{[n]}, \Omega^p_{S^{[n]}}) \simeq H^0(S^{(n)}, \Omega^p_{S^{(n)}})$. Let $s \in H^0(S^n, \Omega^p_{S^n})^{G(n)}$. Let $(V_i)_i$ be an open cover of $S^{(n)}_{\varepsilon}$, such that for all *i* we have $\Phi^{-1}(V_i) = U_{i,1} \cup \ldots \cup U_{i,n}$, where the $(U_{i,j})_j$ are disjoint and $\Phi|_{U_{i,j}}: U_{i,j} \to V_i$ is an isomorphism. Then for some $j \in \{1, \ldots, n\}$ we let

$$s_i := ((\Phi|_{U_{i,j}})^{-1})^* (s|_{U_{i,j}}) \in H^0(V_i, \Omega_{V_i}^p).$$

 s_i is independent of the choice of j, so for all i and k we have that s_i and s_k agree on $V_i \cap V_k$. So the s_i define a global section $g(s) \in H^0(S_{\varepsilon}^{(n)}, \Omega_{\varepsilon}^{p})$. This defines a homomorphism

$$g: H^0(S^n, \Omega^p_{S^n})^{G(n)} \rightarrow H^0(S^{(n)}_{\varepsilon}, \Omega^p_{S^{(n)}})$$

We shall now define the inverse homomorphism. Let $\tilde{s} \in H^0(S_{\varepsilon}^{(n)}, \Omega_{S_{\varepsilon}^{(n)}}^p)$. Then we have $\Phi^*(\tilde{s}) \in H^0(S_{\varepsilon}^n, \Omega_{S_{\varepsilon}^p}^p)^{G(n)}$. As $S^n \setminus S_{\varepsilon}^n$ has codimension 2 in S^n , we have by the theorem of Hartogs, that there is a unique $f(\tilde{s}) \in H^0(S^n, \Omega_{S^n}^p)$, such that $f(\tilde{s})|_{S_{\varepsilon}^n} = \Phi^*(\tilde{s})$. By its uniqueness it satisfies $f(\tilde{s}) \in H^0(S^n, \Omega_{S^n}^p)^{G(n)}$. Obviously we have $f = g^{-1}$. \Box

Proposition 3.3.

(a)
$$\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} h^{p,0}(S^{[n]},z)t^n = \frac{(1+zt)^{h^{1,0}(S)}}{(1-t)(1-z^2t)^{h^{2,0}(S)}},$$

(b)
$$\chi(\mathcal{O}_{S^{(n)}}) = \binom{\chi(\mathcal{O}_S) + n - 1}{n}.$$

Proof. Let $p_i: S^n \to S$ be the *i*th projection. Then we have

$$H^{\mathbf{0}}(S^{n}, \Omega_{S^{n}}^{*}) = p_{1}^{*}(H^{\mathbf{0}}(S, \Omega_{S}^{*})) \otimes \ldots \otimes p_{n}^{*}(H^{\mathbf{0}}(S, \Omega_{S}^{*}))$$

Let $\omega_1, \ldots, \omega_m$ be a homogeneous basis for $H^0(S, \Omega_S^*)$; i.e. there are $d_1, \ldots, d_m \in \{0, 1, 2\}$, such that $\omega_i \in H^0(S, \Omega_S^{d_i})$. Then a basis of $H^0(S^n, \Omega_{S^n}^n)$ is given by

$$\left\{p_1^*(\omega_{i_1}) \wedge \ldots \wedge p_n^*(\omega_{i_n}) \middle| \sum_{j=1}^n d_{i_j} = p\right\}.$$

 $\omega \in H^0(S^n, \Omega_{S^n}^p)$ is G(n)-invariant if and only if $\omega = \sum_{\sigma \in G(n)} \sigma^*(\eta)$ for an appropriate $\eta \in H^0(S^n, \Omega_{S^n}^p)$. For $(i_1, \dots, i_n) \in \{0, \dots, m\}^n$ we set

$$\langle i_1, \ldots, i_n \rangle := \sum_{\sigma \in G(n)} \sigma^*(\omega_{i_1} \wedge \ldots \wedge \omega_{i_n}) \in H^0(S^n, \Omega_{S^n}^p)^{G(n)}.$$

Then $H^0(S^n, \Omega^p_{S^n})$ is generated by the set

$$\left\{ \left\langle i_1, \ldots, i_n \right\rangle \, \middle| \, (i_1, \ldots, i_n) \in \{0, \ldots, m\}^n, \sum_{j=1}^n d_{i_j} = p \right\}.$$

The form $\langle i_1, ..., i_n \rangle$ is independent up to sign of the ordering of $i_1, ..., i_n$ and so is determined up to sign by the multiplicity n_k with which the $k \in \{1, ..., m\}$ appear in $i_1, ..., i_n$. If $n_k > 1$ for a k with $d_k = 1$, then we have $\langle i_1, ..., i_n \rangle = 0$, as the wedge product of 1-forms is anticommutative. Apart from these relations the $\langle i_1, ..., i_n \rangle$ are linearly independent. So we get:

$$h^{\mathbf{0}}(S^{[n]}, \Omega^{p}_{S^{[n]}}) = \# \left\{ (n_{1}, \dots, n_{m}) \in \mathbb{N}^{n}_{\mathbf{0}} \middle| \sum_{i} n_{i} = n, \sum_{i} n_{i} d_{i} = p, n_{i} \leq 1 \text{ if } d_{i} = 1 \right\}$$

and

$$\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} h^{p,0}(S^{[n]},z)t^n = \sum_{\substack{n_0,\ldots,n_m\\n_i \leq 1 \text{ if } d_i = 1}} t^{n_0+\ldots+n_m z^{n_0 d_0}+\ldots+n_m d_m}$$
$$= \frac{(1+zt)^{h^{1,0}(S)}}{(1-t)(1-z^2t)^{h^{2,0}(S)}}.$$

This proves (a). (b) follows by setting z := -1.

References

- [B] Beauville, A.: Variétés kählériennes dont la première classe de Chern est nulle. J. Diff. Geom. 18, 755-782 (1983)
- [BB1] Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98, 480-497 (1973)
- [BB2] Białynick-Birula, A.: Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Pol. Sér. Sci. Math. astron. Phys. 24, 667-674 (1976)
- [Br] Briançon, J.: Description de HilbⁿC $\{x, y\}$. Invent. Math. 41, 45-89 (1977)
- [D] Deligne, P.: La conjecture de Weil. I. Inst. Hautes Etudes Sci. Publ. Math. 43, 273–307 (1974)
- [E-S] Ellingsrud, G., Strømme, S.A.: On the homology of the Hilbert scheme of points in the plane. Invent. Math. 87, 343-352 (1987)
- [F1] Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 10, 511-521 (1968)
- [F2] Fogarty, J.: Algebraic families on an algebraic surface. II. Picard scheme of the punctual Hilbert scheme. Am. J. Math. 96, 660–687 (1974)
- [Fu] Fulton, W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin Heidelberg New York: Springer 1984
- [Fj] Fujiki, A.: On primitive symplectic compact Kähler V-manifolds of dimension four. Classification of algebraic and analytic manifolds (Katata 1981). Prog. Math. 59. Boston: Birkhäuser 1983
- [Gö] Göttsche, L.: Die Betti-Zahlen des Hilbert-Schemas für Unterschemata der Länge *n* einer glatten Fläche. Diplomarbeit, Bonn, Juli 1988
- [Gr] Grothendieck, A.: Techniques de construction et théorèmes d'existence en géometrie algébrique. IV. Les schémas de Hilbert. Sém. Bourbaki 221 (1960/61)
- [H] Hirschowitz, A.: Le groupe de Chow équivariant. C.R. Acad. Sci. Paris Sér. 1 298, 87–89 (1984)
- [11] Iarrobino, A.: Punctual Hilbert schemes. Mem. Am. Math. Soc. 188 (1977)
- [12] Iarrobino, A.: Punctual Hilbert schemes. Bull. Am. Math. Soc. 78, 819-823 (1972)
- [13] Iarrobino, A.: Hilbert scheme of points: overview of last ten years. Proc. of Symp. in Pure Math., Vol. 46, Part 2, Algebraic Geometry, Bowdoin 297-320 (1987)
- [Md] Macdonald, I.G.: The Poincaré polynomial of a symmetric product. Proc. Camb. Phil. Soc. 58, 563-568 (1962)

- [Ma] Mazur, B.: Eigenvalues of Frobenius acting on algebraic varieties over finite fields. Proc. of Symp. in Pure Math., Vol. 29, Algebraic Geometry, Arcata 231–261 (1974)
- [M] Milne, J.S.: Étale Cohomology. Princeton Math. Series 33. Princeton: Princeton University Press 1980
- [SGA 1] Grothendieck, A. et al.: Séminaire de Géometrie Algébrique 1: Revêtements étales et groupe fondamental (1960-61). (Lecture Notes in Math. 224). Berlin Heidelberg New York: Springer 1971
- [S] Steenbrink, J.H.M.: Mixed Hodge structures on the vanishing cohomology. Nordic Summer School, Symposium in Mathematics, Oslo 1970, 525-563. Alphen an den Rijn: Sijthoff and Noordhoff 1977

Received November 30, 1988; in revised form July 17, 1989