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0. Introduction

Several authors have been interested in the Hilbert scheme SI:=Hilb"(S)
parametrizing finite subschemes of length n on a smooth projective surface S. In
[F1] and [F 2] Fogarty shows that S™ is smooth and there exists a natural
birational morphism @, : $™—S®. Here S™ is the n'™ symmetric power of S. So S¥!
is a natural desingularisation of $®. He then computes the Picard group of S™. In
[11] the highest dimensional fiber Hilb*(spec(k[[x, y11)) of ®, is studied, and in
[12]itis shown, that the expectional locus of w,, is an irreducible divisor. Fujiki has
shown in [Fj] that $1* is a symplectic variety, if S is a K3 surface, thereby
disproving a conjecture of Bogomolov. In [B] Beauville generalizes this result to
arbitrary n. Several authors have worked on the cohomology of §*: The case n <2
is trivial by the results of [F 2]. The homology groups of Hilb3(P,) have been
computed in [H]. Finally in [E-S] the homology groups of Hilb"(P,), Hilb*(A2),
Hilb*(spec(k{[x, y1])), and Hilb"(X,) are computed. Here P, is the projective
plane, A? is the affine plane and Z,, is the m™ Hirzebruch surface. In this paper we
will compute the Betti numbers of S¥! for an arbitrary smooth surface S using the
Weil conjectures. We want to state our main result: Let F, be a finite field with ¢
elements, F its algebraic closure. Let X be a smooth pro_|ect1ve variety over C or
overF,. In the first case let b{X) be the i'* Betti number of X. In the second case let
b{X) be the rank of the i* [-adic cohomology group H(X, Q;) of X. In both cases let
(X, z) be the Poincaré polynomial Zb(X)z of X and e(X): —Z( 1)'b{X) the

Euler number of X. We put (X, z): =p(X, —2z).
Theorem 0.1. Let S be a smooth projective surface over C or over Fq. Then:
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So the Betti numbers of S depend only on the Betti numbers of § and the Euler
number of § depends only on the Euler number of S. According to [Md] the Betti
numbers of S™ are given by

(1 + 2651 + 217
(= P01 — 2271 — 0P
so Theorem 0.1 reflects the close connection of S and S®.

Over an algebraically closed field k we have the following situation: The points
of S™ are the O-cycles £ =Y n; - x; of degree n.on S. S™ is stratified by the partition of

S P(S™, z)" =

n given by the n, (if the x; are distinct). The open stratum contains the O-cycles
consisting of n different points. The fibre of the morphism w, over a point & S®
depends only on the stratum in which ¢ lies. w; !(n-x) is the variety
¥,..=Hilb"(spec(k[[x, y]11)) of subschemes of length n of a surface concentrated at
a point. If x,, ..., x, are distinct points of S, then

-1 —
@, ‘(X F XY=V, X XV, .

Using this geometric description and keeping track of the action of the Frobenius
we can count the points of 5™ over finite fields and so compute the Betti numbers
via the Weil conjectures.

This paper is a simplified version of parts of my Diplom paper [G] at Bonn
University written under the guidance of Andrew Sommese and Friedrich
Hirzebruch. In the present paper we will use a result of [E-S]. The original proof,
which is considerably longer, is independent of [E-S] and uses results of [T1].

1. Notation and background material

Let Z denote the integers, N the positive integers, N, the nonnegative integers, Q
the rational numbers, C the complex numbers and F, a finite field with ¢ elements,
where gis a prime power. If Aisaringand X ,, ..., X, are indeterminates, we denote
by A[X,....X,] and A[[X,,...,X,]] the ring of polynomials and the ring of
formal power series in Xy, ..., X, with coefficients in A respectively. For a set M we
denote its cardinality by # M. Let k be a field. We denote by Af the affine n-space
over k. We drop the k if it is understood. For k-schemes S, T we denote
S(T): =Hom,(T; S) the T-valued points of S. If E is an extension of k, we write S(k)
for S(spec(k)). We denote by Gal(k/k) the Galois group of k over k, by k the
algebraic closure of k and §:=S$ X, spec(k). We denote by O the structure
sheaf of 8. If W is a T-scheme and t € T, we denote the fiber of W over ¢t by W,. We
denote by Z, .4 the reduced scheme of Z. If a group G operates on a set X, we denote
by X the set of G-invariant elements of X. If & is a coherent sheaf on a scheme S,
let HYS,%) be the i cohomology group with coefficients in #, let
B(S, F): =rk(H(S, F)) and x(F): =Y (— 1)'h(S, #). i § is smooth and projective
over C, let ©£ be the sheaf of holomorphic p-forms on § and h*¥(S): = h%(§, Q%) the
p.q™ Hodge number, A(S,x,y):=73 h*%S)x*y? and K(S,x,y):=HhS, —x, —).
P9

Then the y, genus s x,(S): = 3, (— 1) 4S)y?, so we have (Og) = x,(S), and x(S) is
p.a
the signature sign(S) of S.
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We will use the Weil conjectures. Let X be a smooth projective variety of
dimension d over F,. Let F, be the geometric Frobenius of X over F, and

Z(X,t):=exp ("Z]O #X(F,n) g)

the zeta function of X over F,. The operation of F, on X(F,) is inverse to the
operation of the Frobenius of F, a topological generator of Gal(F/F,), so a point
xeX (Fq) isin X(F,) if and only if x = F (x). We denote the action of F, on the I-adic
cohomology groups H{(X, Q) by F}la:x.ay

Theorem 1.1. (Weil conjectures, [D]). (1) Z(X,t) is a rational function:
24
zx,0=[1 @, 0",
r=Q

where Q(X, t)=det(1 —tF}ly.z o)
(2) QX r)e Z[1].

(3) The eigenvalues «; , of F*|grz,q, have absolute value |a; | = q''* with respect
to any embedding into C.

@ Z{X,1/g")= £ g** P DZ(X,1).

{(5) If X is a good reduction of a smooth projective variety Y over C, then b(Y)
=h(X)=deg(Q)) for i=0,...,2d.

As a consequence of 1.1(1), (3), and (5) we get:

Remark 1.2. Let F(t,5,,...,5,) €Q[t, 5y, -..,5,]. Let X and S be smooth projective
varieties over F,, such that for all ne N we have

# X(F ) =F(q", #SEF ), ..., #5F m)) .
Then
X, z)=F(@* (S, 2), ..., (S, 2").

Hboth X and S are good reductions of smooth projective varieties X and § over C,
then

#X, 2=F(@z% 58, 2), ... 58, 2").

Let X be a smooth projective variety over a field k. The symmetric group G(n) in n
letters operates on X" by permuting the factors. The n'® symmetric power X™ of X
is the geometric quotient X"/G(n). We can identify X™(k) with the set of effective

O-cycles Y n;- x, of degree n on X.
.
If k is a finite field F,, then the Frobenius F, acts on X™(F) by F, (Z n;- x,)

=)i:ni - F(x) and X"™(F) is the set of effective 0-cycles of degree n fixed under the

r—1
action of F,. A O-cycle {= ¥ Fi(x) with xeX (F,,)\(JU X(Fq,)) will be called a
i=0 j<r

primitive O-cycle of degree r over F, on X. We denote the set of these primitive
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0O-cycles by P,(X,F,). Any { € X*F ) can be written in a unique way as a positive
linear combination of distinct primitive O-cycles. It is also clear from the
definitions, that we have

#X(Fq..)=$ #P(X,F,.)-r.
If we combine these facts, we can see that
Z(X, 0= Zo # X(F )"

i.e. the zeta function is the counting function for effective O-cycles on X over F,.

Let X again be defined over an arbitrary field k. We want to use a natural
stratification of X®. Let @: X" X® be the quotient morphism. For meN let
A,,CX™ be the diagonal. Let v=(n,, ..., n,) be a partition of n. If v is strictly finer
than a partition u of n, we will write v<yu. Then we put

and XM =4, x...x4,)

X0:= X0\ Y XP)

v<p
This gives a stratification of X® into locally closed subschemes. We have
XOEy={n,-x, +...+n,-x,|x,,...,x, are distinct elements of X(k)}.

We write X7: =@~ 1{(X").

From now on let § be a smooth projective surface over k. Let $™: =Hilb"(§)
denote the component of the Hilbert scheme of § parametrising subschemes of
length n of S. Let Z%(S)C S x 8! be the universal subscheme. Then we have for any
locally noetherian k-scheme T

S"(Ty={Z CS x T closed subscheme, flat of degree n over T},
Z"(S)(T)={(Z,0)| Ze S™(T); o: T—Z section of p,|,}.
According to [F 1] we have:

Theorem 1.3. (a) There is a canonical morphism w,: St —S®, which as a map of
points is
Z Y length(0z,,) x.
LT

(b) st is smooth.
(¢) o, is birational.

From the definitions and (b) it is clear that the following bolds. If S over F,isa
good reduction of a smooth projective surface § over C, then $™ is a good
reduction of §¥. Using w, we get a natural stratification of S™: We put
891 =w, (S, ZYS): =p; '(STY). (See for instance [F2])

Let m be the maximal ideal in k[[x, y]] and

V,.1: = Hilb"(spec(k[[x, y]}/m").
V, . represents a functor as spec(k[[x, y]1/m")=spec(k[x, y]/m") is projective.
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Definition 1.4 (See [Fu, Example 1.9.17). Let X be a scheme over a field k. A cell
decomposition of X is a filtration

X=X>X,.,2..0X,DX_,=0

by closed subschemes, with each X\X;_; a disjoint union of schemes U, ;
isomorphic to affine spaces A" We call the U, ; the n;ycells of the
decomposition.

We will use the following two facts:

(1) Iff: Z— T is a separated morphism of schemes, then any section s: T—Z of
f is a closed immersion.

(2) Let X, be a scheme, X, C X, a closed subscheme defined by a nilpotent
ideal sheaf and q:Y—X, be an étale X -scheme. Then for every section
s;:X;—=Yxy X, of p, there is a unique section s55:X,—Y of ¢, such that
5o % 1y, =5;.

(1) is trivial and (2) follows for instance from [M, Theorem 1.3.23].

2. Proof of the main theorem

In this section we shall only consider the Zariski topology. Let k be a field, S a
smooth projective surface over k. There is an open affine cover (U)); of S and étale
morphisms f;: U;—A?, (See for instance [M, Proposition 1.3.24]; [SGA 1,11].) Let
UCS be open and affine and f: U—A? an étale morphism.

The reader will notice that our argument below could be simplified, if one could
see easily that taking the scheme theoretic direct image defines a morphism
Uil—(A%.

Lemma 2.1. There is a canonical morphism
¥1: Z{y(A%) x cU>Z"(U),
which induces a bijection

¥1(R): (Zin(A?) x 2 U) (R) - Z5,(U) (K).

Proof. We construct y, as a morphism of functors. Let T be a noetherian k-scheme,
Let

(Z7 o, &) € (Z?n)(Az) X 42 U) (’T) .

Then (Z,5)e ZA%)(T). Let i:Z—>A%x T be the inclusion. Then we have
®,°ic(A%XT)and §: T—U x Tis a section of p,, such that ic6=(f x 1,)° 4. As
P»lz is separated, ¢ is a closed immersion and induces an isomorphism
T=4X:=a(T)CZ.

We show next, that ¥ C Z is defined by a nilpotent ideal. For each te T we have

wfZ)= xe(};x n length(0y, ,)- x.

As w, is compatible with base change, we have
(@Z).=0(Z)e(A* x T))).
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So the support supp(Z,) of Z, consists of a single point x,€Z, and supp(Z)
={x,|te T}. As o is a section of Z— T, we have supp(Z)=supp(Z), and so £C Z is
defined by a nilpotent ideal. We consider the following cartesian diagram.

* o*

UxT Zye—Z,
lfxlr O fo O lf.
AxTe—t 7 T

Lets,:=(0,6): T>Z,, 5, :(s5,17): T->Z, and let so: Z— Z, be the unique lift of 5,.
As f is separated, so is fj, and so its section 5, is a closed immersion, So i*osyisa
closed immersion and hence induces an isomorphism s: Z—Zy :=(i* 0 50)(Z).
Letoy, ;1 =s5°0.Then ¢y, yis asection of p, |, ., and oy (T)CZy, ris defined by a
nilpotent ideal.

We define yp(Z, 0,6): =(Zy, 1, 0y, 1) € Z"(U)(T). Using the uniqueness of the lift
sq of 54, it is trivial to verify that this definition is compatible with base change and
so defines a morphism v, : Z7,(A%) x,. U—Z(U).

We want to prove that i, induces a bijection

v1(B): (Z)(A%) x 2 U) (B> Z3,(U) (R) -

Let(Z, p, )€ (Z7,(A%) x .. U)(K), then f(u)=p. We specialize the above diagram to
T=spec(k) and define s,, s,, and s, as above. Then y(Z,p,u)=(W,u) with
W:=s4(Z). W is a subscheme of length n in U: = U x spec(k), such that uc W is
defined by a nilpotent ideal. So w,(W) is the 0-cycle - u. Thus we have We UG)(k)
and (Wu)eZy,(U)(k). Now we want to define the inverse of (k). Let
(W, u)e Z7,(U) k), let iy : W—U the inclusion and p:=f(u).

Claim. foiy: W—A? is a closed immersion.

Let U be the completion of U at «. Let A? the completion of A7 at p. Let

F: U=, A2 be the induced morphism and W, the completion of W at u. Then we

have W,=Wx;0. As the support of W is u, it follows that p,: W,—W is an
isomorphism. Let « be its inverse. Then we have the following diagram:

fCPEEANY, P

u

|, lor

— i
Al T

J:=foiyox: W—AZis a closed immersion. A? is isomorphic to spec(k[[x, y11),
and each ideal in k[[x,y]] of colength n contains m" (see for instance [Ii,
Lemma 1.1]) So J factorizes as:

x 1 "
W W, — spec(k[[x, y])/m")~ A%,
and 7 is a closed immersion. So foiy factorizes as

W—""sspec(RlLx, yTl/m")—= AZ,
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where i, is the closed immersion of k[[x,y]]/m" in A{, which is induced by the
canonical projection E[x, y]—k[[x,y]J]/m" So foiy is a closed immersion.
We define

$1(K): Zy(U) () ~(Z7,,(A%) x5 U) (k)
by (W, u) — (f(W), f(u),u). By the claim we have

(fW), 1), W) (Zin(A) X V) (B).
It is easy to verify that §,(K)=y,(k)~1. O
Lemma 2.2. There is a natural morphism

W3 Vo X A2 (A,
which induces a bijection of geometric points
w2 (k): (V1 x A%) (B~ (A%)E)R) .

Proof. We construct y, as a morphism of functors. Let T be a noetherian k-scheme.
Let (Z,0)e(V, ,xA*)(T). Let again i,:spec(k[[x,y]]/m")—A? be the closed
immersion induced by the canonical map k[x,y]—k[[x,y]]/m". Let
V:=(i, x 17){Z). Let plus: A®> x A2—+A? be the morphism

(1 1) (X2, 2)) > (1 + X2, 1 + )

and minus: A% x A2 =A%} (g, yy), (x5, o)) > (x4 — X3, Y1—Y,). Let

plus,: =(plusc(p, X (p; 00 p,)),ps): A* x T>A2x T,

minus, : =(minuso (p; X (p; o6 °p,)), p): A2 x T-A*x T

be the morphisms which add and subtract the section ¢. Obviously both are
isomorphisms and (plus,) ™! =minus,. Let p,(Z,0): =plus,(V). Then y,(Z,c) is
T-isomorphic to Z. Itiseasy to check that(Z, 6) — y,(Z, o) is compatible with base
change and so gives a morphism y,.

We still have to prove the second statement. That y,(k) actually maps into
(A*)ZKK) is again clear. We will give the inverse map 3 '(k): Let We (A2,
p:=(W,) and V=minus,(W). Then supp(V) is the origin (0,0) of A% The
completion ¥ of ¥ at (0,0) is isomorphic to ¥, so it is a subscheme of length n of

spec(k[[x, yI]) defined by an ideal I of colength n in kK[[x, y]]. Then I/m" defines a
closed subscheme (k) (W) of length n in spec(k[[x, y]]/m". It is easy to see that

PR)=vp7 k). O
Corollary 2.3. There is a canonical bijection

(k) (V. x U) (k) UkK)
commuting with the action of Gal{k/k).

Proof. This follows from Lemma 2.1 and Lemma 2.2, as p,.: Z7,(A%)—(A?){] and
Py:Z3,(U)—UY) both induce bijections of geometric points. []
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Lemma 2.4. There is a (noncanonical ) bijection
Yk} : SENR) - (V) 1 x S) (k)
commuting with the Gal(k/k)-action.

Proof. Let (U)); be a finite covering of S by open affine subschemes, such that there

exist étale morphisms f;: U;—~A? Let yyk):(V, . x U)(k)—(U (k) be the cor-

responding bijections according to Corollary23. Let W,:=U, and

w;: =Uj\(i{<j_Ui) for j>1. If ZeSE)K), then there is a unique i(Z), such that
J

Z,os € Wyz). We set v (Z): =(y;(K) ~'(Z). All the W, are defined over k, so for all
o eGal(é/k) we have 0(Z);eq=0(Z c5) € Wyz) and thus (k) (a(Z)) = o(pw(k) (Z)).
Furthermore for Z e S(k) we have Z, € W; if and only if w(k)(Z) e(V, , x W) (k).
As all the (k) are bijective, so is k). [J

Let v=(n,,...,n,) be a partition of n. Then the quotient morphism
4,(S)% ... x 4, (S)—SP factorizes as

A0 (S) X ... X 4, (S)=SE X ... x St —s S,

Let S%: =35, (S™) and
St =(w,, X ... x0,) " (SW)cShIx ... x Sl
Then we have
SRY={(Z,,....Z,)eSEIx ... x SEIZ )reas -+ (Z,);eq are distinct} .
The symmetric group G(n) operates on SWc S x ... x S by permuting the
factors with the same n,.
Lemma 2.5, There is a natural morphism ., : S — S, which induces a bijection
Py SEUE)/ G(m) - ST(k)
commuting with the Gal(k/k)-action.
Proof. Let T be a noetherian scheme, let (Z,,...,Z,)e SYX(T). We set
YAZyy )i =2 V.. . VZ,~Z 0. UZ,.

This is flat of degree n over T. v, is obviously compatible with base change and so
defines a morphism. If (Z,, ..., Z,) € S%(k), then
Opo 9 R)(Zy, s Z)=0(Z10.. . UZ)= w0, (Z )+ ... + 0, (Z,).

So p,R(Z,,...Z)eSP(K). P, is obviously well defined by
(Z,,... Z)]— Z,u...uZ,, where [ ] denotes the class modulo G(n). If Z e S™(k),
then it has a decomposition Z=Z,u...UZ, into connected components and

@) '@)=02Z,,...Z)]. O
For the next two lemmas we introduce some notation. If k is an extension of k
we write V(k) for {J ¥, Jk). H xeV, (k) we set len(x)=r. If (M, f) is a pair
r=1
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consisting of a finite set McS(K) and a map f:M-V(k), we set len(f)

= ¥ len(f(m)). Gal(k/k) acts on these pairs by o(M,f)=(c(M),afs™!) for
meM

o € Gal(k/k).

Lemma 2.6. There is a bijection
& :SPRY)— {(M, )| M CS(K) finite, - M—V(k) with len(f)=n}
commuting with the Gal(k/k)-action.
Proof. Let v=(n,, ...,n,) be a partition of n and [(Z,, ..., Z,)] € S%. We put
HMZ 15 Z)): =({(Z reas -+ (Z)eea}s [
where 12 {(Z )reas - -+ (Z)rea) = V(K) is defined by
J(ZDed)=D1° W(n{)(k) (Z)

(see Lemma 2.4). The result now follows from Lemma 2.4, Lemma 2.5 and the
stratification of ™.

From now on let k=F, and S be a smooth projective surface over F,. Let Q be
some power of g. Let F, be the geometric Frobenius over Fy. We put

P(S,Fp):= |J P(S,Fp). IfLCP(S,Fp)isafinitesetand g: L— V(F,), we say that g is
r>0
admissible if g(l)e V(F ) whenever e LnP,(S,Fy), and we put
len(g): = z deg(D)len(g(]).

Lemma 2.7.

® © @ #P.(5,Fg)
Z i S["](FQ) = l'I Z V;-, F,,(FQ')tm .
n=0 r=1\n=0

Proof. (i) We set
M, i ={(M, )| MCS(F) finite, f: M—>V(F), len(f)=n, Fo(M, f)=(M, f)},
M, ,:={(L,g)| LCP(S,F,) finite, g: L~ V(F,) admissible, len(g)=n}.

We first want to show that there exists a bijection ¢: M, ,—M, ,. We choose an
ordering < on S(F,). Let (M, f)e M, ,. Then

§i= mgu len(f(m))- me S™(Fy)

has a unique representation s= ¥ a,¢; as positive linear combination of distinct
i=1
primitive O-cycles over F . Let (b)), be such, that &; e P, (S, F ) for all i. Then we have
h-1 )
$i= ¥ F(x,) for appropriate xieS(FQh)\( U S(FQ,)). We choose the x; so that
i=0 : J<b;

X; SFh(x,) for all je Z. Then they are uniquely defined. Then we have F(f(x))
= f(Fg(x))=f(x;), so we have f(x)€ V(Fg). We put o(M, f):=({¢,,....¢.} 8)
where g:{¢,, ..., &} > V(F,) is defined by g(£):= f(x).
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The inverse mapping ¢~ is given as follows: Let ({{,,...,¢,},g)€ M, . Then
there are (b)), such that &,eP,(S,Fy) for all i. For all i there is a unique

bi-1 . .

x;€S(Fgs,) (U S(Fq,)), such that &= ¥ Fj(x)) and x,< Fj(x,) for all je Z. We

put J<bi =0
M= .91 {x Fglx), ... F§ ™1 (x)} .

Then ¢~ '({¢,, ..., ¢}, 8))=(M, f), where f: M—V(F,) is defined by

SFyx)): = Fiy(g(x).
(i) For i,jeN we put

NGj):= #{(M, m)}MCPi(S,FQ),f:MeV(FQ.»), mezulen(f(m)) =j}.

We observe that
#Ml.n Z ( H N(S, s))
ny+2Znz+3n3...=n \s=1

On the other hand we have
® *Pr(s»FQ)
( ';20 Vew (Forlt” ")

So the lemma follows. []

For n,d e N we set P(n,d): = 4 {partitions of n into parts <d} as in [E-S]. We
set p(n,d): = # {partitions of n into d parts}. Then we have

N (r.)t.

IIMS

p(n,d)= 3 {partitions of n into parts the largest of which is d}
= 4 {partitions of n—d into parts <d}
=P(n—d,d).
We use the following result of [E-S].

Proposition 2.8 [E-S, Proposition 4.2]. Let k be an algebraically closed field. Then
V,..i has a cell decomposition, and for all deNy the number of d-cells in the
decomposition is P(d,n—d).

Ellingsrud and Stremme carry out their arguments only for k= C but state that
they also hold over any algebraically closed field.
We denote by £ the congruence modulo ¢ in Q[[£]] or Q[[z, 1}

Lemma 2.9. For all neN there is an mgeN, such that for all M eN, which are
divisible by mo, and Q: =q™ we have for all smooth projective surfaces S over Fy:

- » £ o i1y _ g #._____S(FQ"'))
'§0 #S[ ](Fg)tn_il;ll ZQ(S’Q t)-—-CXp (m;l m 1_thm -

Proof. Obviously we have

ﬁ (T:;m?) a”ﬁ: E pln, n—ie"2 .

= 0i{=0
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So we can reformulate Proposition 2.8 as follows:

Z Z # {m-dim. cells of V, ;}¢"z™ = ﬁ ﬁ
Wiz

n=0 m=0

Let!eN. Then there exists an m, € N such that for all n < [ the cell decomposition of
Va.p, 18 already defined over F,.,. Let M be a multiple of m, and reN. We get:

ks 1
n'; *V, Fq(FQ')tm_ I | =g

So by Lemma 2.7 we have:

@ - " ®w @ 1 ¥P.(S5.FQ)
&, #5002 fi 1 (=g

....

ll

< 5 © Z #P,(s FQ)Q)"(; ”t"'i/h)
r= l

ips

2z 1 I' #P,S, FQ))Qm(x 1) )

Y #sww)

a=1M I_thm

The formula including the zeta function Zy(S,r) follows by an easy
calculation. [

Proof of Theorem 0.1.Let neN. Let S be defined over F . Then thereisa §=¢' and
a smooth projective surface S, over F,, such that S=§, ij There exists a
Q=g", such that for all heN the number 4 S"{(F,) is the coefficient of ¢" in

© " 4 So(Fgun)
°"p<m m{ OQ"'"t’"))

(1a) follows by Remark 1.2. (1b) follows by a trivial calculation and (2) by setting

z;=—1.1If S is defined over C, we consider a good reduction of § modulo g for an
appropriate prime power q. []

Corollary 2.10. (2) If e(S)=0, then for all neN we have e(S!™)=0.
(b) If S is a K3 surface, then

e 4
nz e(S™g" 7 (T) ;
where q: =e*™, teH={zeC|Im(z)>0} and 4 is the cusp form of weight 12 for
Sy(Z).
If S is an abelian variety then (a) is already known (see for instance [B, footnote

on p. 7697).
Corollary 2.11. Let S be a smooth irreducible surface over C. Then

1 14 2m—1 14+ 2m+ 100i(S)
P(S[n] ) ml:[l(((ljz2m)bz-(+l(12_22ml)2)
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So the Betti numbers b/(S"}) become stable for n2i.
Progf. We set

(1 + ZZm— 1t'”)"“s)(1 + 22m+ ltm)bl(S)
t):=(1—t .
G(z, ) ( )mI;ll (1 __22m— 2tm) (1 . z2mtm)bz(S)(1 _22m+2tm)

Then we have to show that P(S™",z)"= 'G(z,1). For feQ[[zt1] we denote by
a, (f) the coefficient of 2’¢'in f. X v>1, then a, {G(z,£))=0. Let v <n. Then we have

by Theorem 0.1 (1b):
by(S")=a, ., (( 5 t') Gz, t))
=0

av.l(G(z’ t))
[i}

b8 Ipva

a,,(G(z,1)

[}

=a,, O(G(Za 1)) O

fl

3. The Hodge numbers of Hilb*(S)

Let S be a smooth projective surface over C. We conclude by giving a conjecture
about the Hodge numbers of S™ and proving a small part of it.

Conjecture 3.1.
H (1 +xp+k— lyq+k— ltk))iP»‘!(S)

ngoh(Sl..l,x,y)tEkg‘ p+ﬁvdd AP T aF g |-

ptgeven
1)
® . _ @ " E(S; X", yn)
3z h(S™, x, y)t"=exp (ﬂ; oy _1‘—"(}3:5”) ’
o A < En_ X—y"(s)
ngo x-y(S[ )" =exp (n= 1n i —-(yt)") ’ ?
..SO sign(S")" = ,‘li (;—Eit:_)( e (1~ 272 )

{2) and (3) follow from (1) by a trivial computation as sign(S)=yx,(S) and ¢(S)
=y ..4(S). By the results of [E-S] the conjecture is true for the projective plane P,
and the Hirzebruch surfaces Z,. (1) is obtained from Lemma 1.9 by replacing Q by
xy and #S(Fg) by h(S,x’, y). Thus the conjecture is also true for all smooth
surfaces § over C, for which there exists a good reduction § of § modulo g, such that
for all neN the Newton polygon of 8™ coincides with the Hodge polygon of S™
(see [Ma, (1.9)] for the definitions).

We will now compute the Hodge numbers /7 °® and so prove a small part of the
conjecture. We consider the complex topology.
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S® is a V-manifold of dimension 2n. We denote by ¢ the partition (1, ..., 1). Then
St is the smooth locus of ™. Let j: S™— S™ be the inclusion. F ollowmg [S] we
define DB =], 0. As @, :SM 8™ js a resolution of S™, we have by [S,
Lemma 1117 Dmes (69,), 2hons

Lemma 3.2. For p=0,...,2n we have
HO(S™, QF.) ~ HO(S", QB.)6™

Proof. By the above HO(S"™, Q%) HO(S™, QF). Let s€ HO(S", 28.)°. Let (V) be
an open cover of S, such that for all i we have &~ (V) =U, ,u...uU, ,, where the
(U ;); are disjoint and @y, U, ;—V; is an 1somorph1sm Then for some
je{l,...,n} welet

51 =((®ly, )")*6lo, ) HOV, 25,
s;is independent of the choice of j, so for all i and k we have that s; and s, agree on

VinW. So the s5; define a global section g(s)e H(S{", ). This defines a
homomorphism
g: H%(S", Q5,)°" > H(SP, Q).

We shall now define the inverse homomorphism. Let seHO(S‘"’ 25m). Then we
have &*(3)e HO(ST, Q2,)9. As S™\8; has codimension 2 in 5", we have by the
theorem of Hartogs ‘that there is a unique f(3)e H(S", Q8.), such that f(3)sn
=@*(3). By its uniqueness it satisfies f(5)e H°(S", Q5.)°™. Obviously we have
f=g7. O

Proposition 3.3.
® 14zt ht.0(5)
(a) n; ; he-O(S™ 2)t" = (——(WZ)-W:—G@T’
®) HOgm)= (st’:"“ 1).

Proof. Let p;: S"—S§ be the i projection. Then we have
HO(S", Q%)= p}(H(S, 2D ... ®pH(H(S, 28)).

Let ®,,...,m, be a homogencous basis for HOYS,Q¥); ie. there are
dy,....d,€{0,1,2}, such that w; e H%S, Q%). Then a basis of H(S", Q%.) is given by

,Z di,=P}-

j=1

we HY(S", Q8,) is G(n)-invariant if and only if o= Y a*(y) for an appropriate
aeGin)

ne HYS", Q5.). For (iy, ...,i,) € {0, ...,m}" we set
Cipseonfdi= F 0%y A A0y € HUS", OB,

oeG(n)

{pf(wn) A ApH(w;)

Then H(S", 08.) is generated by the set

{(il,...,i,,) (s min)€{0, .., m}", Jé:ldij=p}.
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The form (iy, ..., i, is independent up to sign of the ordering of iy, ...,i, and so is
determined up to sign by the multiplicity », with which the ke {1, ...,m} appear in
i1y esiye Hm>1 for a k with d,=1, then we have <iy,...,i,)=0, as the wedge
product of 1-forms is anticommutative. Apart from these relations the {i,...,i,»
are linearly independent. So we get:

and

hO(S™, Qi) = {(nl, e M) ENG| T me=n, ¥ nd;=p, n, <1 if d;= 1}

E § hp’o(S["],Z)t"= Z tno+...+n,,.znodo+...+n,,.dm
n=0 p=0 NG,y iy B
ms1ifdi=1

(4™
T T Gl

This proves (a). (b) follows by setting z: =—~1. [
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