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Small-angle X-ray study of air-dried elastoidin using three - and one - 
dimensional correlation functions obtained from slit - smeared intensity 
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Abstract: In the present paper an isotropic sample of air-dried elastoidin has been studied 
considering it to be a non-ideal two-phase densely packed system after the theories by 
Vonk [1]. The relevant important physical parameters obtained for the sample are E, the 
width of the transition layer, D, the average periodicity transverse to the layers, S/V, the 
specific inner surface ~bl and ~2, the volume fraction of two phases, i. e. matter and void,/1 
and 12 the transversal lengths, Jr, the range of inhomogeneity, It, the length of coherence 
and 2 E/D, the volume fraction of the transition layer. The values of E obtained by two 
approches as given by Vonk [1] and Ruland [2] show but a small difference indicating the 
correctness of the analysis. 

Key words: small-angle X-ray scattering (SAXS), elastoidin, correlation functions, width 
of transition layer. 

Introduction 
An isotropic sample of air-dried elastoidin was sup- 

plied by Ramchandran [3, 4] for small-angle X-ray 
scattering (SAXS) study, k is an insoluble fibrous pro- 
tein found in the inner fleshy portion of the fin rays 
from the shark carcarinus melanopterus (Ramachand- 
ran [5], page 62) and resembles collagen in many 
respects [3, 4]. Yet it is distinguished from collagen by 
its high content of tyrosine, the presence of low but sig- 
nificant amount of cystine and methiorLine and tow 
content of hydroxyproline. It is prepared 2ifter the 
method due to Damodaran et al. [6]. 

Elastoidin like collagen is found in the form of long 
chains containing several amino acids connected by 
peptide bonds. Three such chains also called strands 
are folded in left handed helices and are super-coiled in 
right handed direction to form rod shaped molecules 
of molecular weight - 300,000. These rods aggregate 
in transverse direction resulting in a cylindrical layer 
structure of diameter varying from 50 A to 2,000/~ 
(Ramachandran [5], page 185). It is worth while men- 
tioning here that, as in fibrous protein the scattering 
particles of elastoidin are taken as arranged in layers. 

As the important extra-cellular component of the 
mesodermal tissues, collagen occupies a pivotal posi- 
tion in the molecular architecture of higher animals 
which enables it to be the main agent contfo!ling the 
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distribution of both externally and internally applied 
forces within the organism. As elastoidin is similar to 
collagen and comes under macromolecular systems, 
small-angle X-ray scattering (SAXS) study has been 
undertaken to throw some light on its macromolecular 
structure.  

In general an ideal two-phase system is defined as 
one in which the electron density difference between 
the two phases changes over a sharp boundary. For 
SAXS studies of such densely packed systems equa- 
tions derived by Porod [7, 8] (known as the Porod's 
laws) and Debye, Anderson and Brumberger [9] are 
commonly used. In reality, between the crystalline 
and void phases, there exists a region known as transi- 
tion layer of width E over which the electron density 
changes continuously (Vonk [1] and Ruland [2]). Such 
a system is characterised as a non-ideal two-phase sys- 
tem. The ideal two-phase system may be considered as 
a hard core model and the non-ideal two-phase system 
as one in which the hard core is coated with a soft 
sheath with continuously varying electron density. 

Experimental 
The slit-smeared SAXS data of air-dried etastoidin in arbitrary 

units have been taken from the Ph. D- dissertation of one the co- 
authors Misra [10] and they have been shown in figure 1 with extra- 
polated points marked as V and the background intensities as fb~- 
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P, x in cms. Fig. 1. Smearedout scattering curve 

A line focus Matchlett A-2 X-ray diffraction tube with a Cu tar- 
get was run at 30 KV and 20 mA constant power level with the line 
voltage stabilised by a servo electric stabiliser. The SAXS camera 
after Kratky [11], capable of recording the scattering down to an 
angle of 1.3 x 10 - 4  radian corresponding to a Bragg value of 12,000 
a ,  was used. The collimating system was a slit of width 120 bt and 
was free from parasitic scattering. The sample was taken in a Mark 
capillary tube of diameter 0.2 cm with negligible scattering. To 
avoid air scattering, the space in between the film and the sample 
was evacuated to 5 x 10 -3 Tor. The selection of CuKa radiation 
(wave length 2 = 1.54 A) was done by a bent crystal monochromat- 
er after Johansson [12] and Guinier [13]. For recording the SAXS 
pattern due to the sample, the photographic method was employed 
following the technique of Kratky and Sekora [14]. Assuming the 
intensity to be proportional to the time of exposures, a single curve 
of scattered intensities was drawn on microphotometering each 
partial scattering patch and bringing all the intensity values to the 
same relative time scale. The transformation ratio of the micropho- 
tometer 'p" was 100 and the film-sample distance 'a '  was kept at 
23.4 cms. 

The theory 
In the following theory's' is the co-ordinate in re- 

ciprocal or Fourier space given by the relation s = 2 O/ 
;t, 2 0 being the scattering angle and x, the microphoto- 
metered film co-ordinate, is given by the relation 
x = 2 apO. So s can be written as s = x/,~ap. The centre 
of the primary beam is taken as origin. 

For the general two-phase systems having isotropic 
structures, as shown by Vonk [1], the following rela- 
tion holds good: 

161r3JS4Ia (S) d s  = J l  grad//[2dvr. (1) 

H e r e  I a (s) is t he  d e s m e a r e d  i n t e n s i t y  in  a b s o l u t e  u n i t s  
and r/is the deviation of electron density of the sample 
at any point from the mean value. 

The above equation can be regarded as parallel to 
the well known relation 

4 ~rjs 2 Ia (s) ds =Irl 2 dvr. (2) 

If the absolute intensifies are not available the ratio 
of (1) and (2) can be used and denoted as R which is a 
very important parameter, characteristic of the struc- 
ture. So R is given by 

R=  (I gradr/125 . 2Js4I(s)ds 
(, 25 j s 2 i ( s ) c l s  = 

fs3 [ (s) cls 
= t , n  j s  [ ( s )  as  �9 (3) 

Here I (s) and [(s) aredesmeared and smeared-out 
intensities respectively in arbitrary units. In an ideal 
two-phase structure the gradient at the phase bound- 
ary is infinty and consequently R goes to infinity. On 
the otherhand if R is finite the electron density changes 
from phase I to phase II continuously over a transition 
layer of width E. The above equation when expressed 
in terms of x gives 

3 (~p  )2Jx3 [ (x) dx /jx f (x) dx (4) R=~-  

The value of E can be obtained from C (r), the three- 
dimensional correlation function of the sample nor- 
malised to unity at the origin in real space. The relation 
given by Vonk [1] is 

= -4(d c (,')/d,')r= (5) E 
i x  
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Therefore it is necessary to evaluate the values of C (r) 
at various values of r in real space. The expression for 
C (r) from the smeared-out intensities is given, after 
Meting and Tchoubar [15] by the relation 

c (r) = j s [(s) lo (2 = rs) d#f~ [(s) ds 

Here lo is the Bessel function of zero order of the first 
kinc t. In the above expression the three-dimensional 
correlation function, C (r) is determined from the 
smeared-out intensity'/(s) where the slk correction 
for infinite height given by the relation 

[= o( I (l/-d + t~) dt 

is incorporated [16] and is contained in the Bessel func- 
tionJo. Here 't' is an arbitrary variable representing the 
slit height. In terms of the variable x, C (r) can be writ- 
ten as 

C(r) =jx[ (x) lo(2zrx[2ap)dx f lx[ (x )dx .  (6) 

For a layer structure, Kortleve and Vonk [17] have 
shown the use of one-dimensional correlation func- 
tion Ca (.v). The expression for C1 (y) is given by 
Meting and Tchoubar [15] as 

C1 (y) = jS [ (S) [1o (Z) - -  Z l l  (Z)] as 
Js[(s) ds 

Here z = 2 zsy and J1 is the Bessel function of first 
order of the first kind. When transformed to x variable 
the above relation becomes 

c, (y) = Ix i ( x )  [1o (z) - z l ,  (z)] d ,  
~x i(x) dx (7) 

where z = 2 zxy/2ap. 
According to Vonk [1] the position of the first sub- 

sidiary maximum in the one-dimensional correlation 
function gives the value of the average periodicity D 
transverse to the layers. 

Using the following relation 

[ d C ,  ( y ) / d y ] ~ > ~  = - ~-a,i~1<,i=5 (8) 

given by Vonk [1] the value ofAr/2/(r/25 can be com- 
puted, where At/is the electron density difference be- 

tween the two phases. Here the slope is taken at a point 
y greater than E. 

The specific inner surface, S/V, defined as the phase 
boundary per unit volume of the dispersed phase, is 
given for a layer structure, by Vonk [1] as 

S / V = 2 / D .  (9) 

For non-ideal two-phase structures the following 
relation holds good (Vonk [1]) 

4 ) (10) 

where ~01 and @2 are the volume fraction of the two 
phases, matter and void respectively. For this purpose 
the phase boundary is chosen at the middle of the tran- 
sition layer. Taking the sum of the volume fractions of 
two phases to be unity, the above relation can be uti- 
lised to get the values of ~1 and r 

In an irregular two-phase system if arrows are shot 
in all possible directions the average intersection 
lengths of the arrows in the two phases are called the 
transversal lengths and are denoted by [1 and [2- They 
are given by the relation (Mittelbach and Porod [18]) 

[1 = 4 (/)1V/S and 12 = 4 ~2 V/S . (11) 

The range of inhomogeneity/r is given by Mittelbach 
and Porod [18] as 

1 1 1 
77 = l~ + 12 (12) 

and is similar to the concept of reduced mass in 
mechanics. 

The length of coherence for a specimen is given by 
the relation (Mittelbach and Porod [18]) 

Ic = 2JC (r) dr. (13) 

A second method for the estimation of the value of 
E is given by Ruland [2]. The functional relation of 
[ (s) with s at the tail end of the SAXS pattern for non- 
ideal two-phase system is given by 

[ (s --* oo) = ~ -  (1/s 3 - 2 z 2 E2/3 s) 

where c is a proportionality constant and when E = 0 
for an ideal two-phase structure the above relation 
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reduces to the Porod's law. On changing to x variable 
the above equation can be put in the form 

Jzc (2ap)3 . x _ 2 _  n3c (~ap)E 2 . (14) [ (x--, oo).x=-g -3-- 

The value of E can be calculated from the plot of 
I" (x -~ oo). x versus x- ~ known as the Ruland plot. 

Background correction 

In every SAXS experiment it is observed that 
always a continuous background scattering is super- 
imposed over the SAXS pattern of the sample. Both 
the methods of estimation of the width of transiton lay- 
er yield results that are sensitive to the systematic 
errors in the tail region of the SAXS curve. The corre- 
lation function at the origin are also sensitive to the 
errors in the tail region of the SAXS curve (Vonk [1]). 
Therefore special attention must be given to separate 
the SAXS intensities [ (s) from the continuous back- 
ground scattering [bg (s) (Vonk [1]). As reported by 
Kortleve et al. [19] the continuous background in some 
pattern shows an upward trend at large values of s after 
a minimum is attained in the observed SAXS curve 
and in such cases the experimentally observed data at 
the tail end can be fitted to an equation of the type 

[bg (s) = a + bs" (15) 

where a and b are constants and n is an even integer. 
However it was shown by Konrad and Zachmann 
[20] that [bg (s) remains constant in the region where 
I (s) contributes appreciably. For both the assump- 
tions corresponding to the background intensity the 
value of E when calculated following the method of 
Ruland [2] shows but relatively small difference. So 
one is justified in deducting a constant background 
intensity corresponding to the minimum in the SAXS 
pattern. This background corrected SAXS intensities 
should be used in subsequent analysis. 

Calculation and results 

Prior to proceeding further, five initial intensity 
values were fitted to the Gauss curve (Vonk [21]) 

[ (x --, 0) = p. exp ( -  qx 2) 

by least square technique and the values of constants p 
and q were obtained as equal to 24.8 and 0.1 respec- 
tively. Taking these values of p and q, the scattering 

curve was extrapolated to x = 0. It may be mentioned 
here that the method of extrapolation has little effect 
on the relevant part of the correlation function, neither 
the position nor the height of the first maximum of the 
one-dimensional correlation function is much affect- 
ed. 

The two integrals in equation (4) were determined 
by numerical integration employing the technique of 
Simpson's one third rule and the value of R was found 
out to be 7.9 x 10 -5 A -2. This shows that the gradient 
of electron density at the phase boundary is finite sug- 
gesting the sample to be a non-ideal two-phase system. 

Using the relation (6) the three-dimensional corre- 
lation function, C (r), was computed for various values 
of r and is shown in figure 2 in a magnified form 
beyond r = 800 A. The slopes of C (r) at different 
points were computed by numerical differentiation 
with constant difference of I A interval taking five con- 
secutive points including the point at r where the slope 
is found out by central difference method. The values 

4 aC(r) 
of R d ~  versus r have beenplottedin figure 3. In 

this figure, a straight line equidistant from both the axes 
has been drawn and the point of intersection of this line 
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Fig. 2. The curve showing the values of three-dimensional correla- 
tion function C (r) against 'r '  values 
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with the curve gives the value of E referred to as E 1fOl- 
lowing the relation (5) and it comes out to be 146 A. 

Following the relation (7) the one-dimensional cor- 
relation function Cl(y) was calculated for various 
values of y and is plotted in figure 4 against various 
values ofy. Beyond y = 1100 A both the axes have been 
shown in magnified scale. The values olD,  the average 
distance of periodicity was found out to be 1192 A 
given by the position of the first subsidiary maximum 
of the same curve. 

The value of $ /V  was obtained as equal to 1.68 x 
10 -3 A -1 utilising equation (9). 

1.0( 

0.5 
Ct(y) 

f 

0.0 

~ -- Air dried Elastoidin 

/ 0.03 / �9 

o.o~ 

,92 ~, o.oi-_ _ _  

~ ~ ~ r  1140 1180 1220 1260 

-0.4 ---,,-y in .~ 

Fig. 4. The curve showing the values of one-dimensional correla- 
tion function C1 (y) against 'y' values 

The values of dCl(y) 
- -  were calculated at various 

dy 
points. It was seen that the slopes came out to be con- 
stant equal to 6.96 x 10 -3 for various values of y > E. 
Using the above constant the value of Arl2/(rl 2) was 
found to be 8.3 from relation (8). 

The value of (~1 r was found to be 0.13 after rela- 
tion (10). Taking ~1 -{- ~2 = 1 we got the values of ~1 
and r as equal to 0.85 and 0.15 respectively. 

Following the relation (11), the transversal lengths 
were determined as 

11 = 2027 A and [2 = 357 A.  

According to the relation (12) the range of inhomo- 
geneity was found to be 

[r = 304 A.  

The length of coherence was found from relation 
(13) to be 

Ic = 527 ~ .  

2 E  
The value of--D-, the volume fraction of the transi- 

tion layer, was computed to be 24.5 %. 
The Ruland plot of I (x--, oo). x versus x-  2, shown 

in figure 5, gives a straight line at the tail end of the scat- 
tering curve. The slope and intercept of this line came 
out to be equal to 881 a n d -  9 respectively giving the 
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value of the thickness of the transition layer, E2, by 
Ruland [2] method as equal to 142 A. The standard 
deviation of intensities o (I) at the tail end of the SAXS 
pattern was calculated to be equal to 0.12. 

Conclusion and discussion 

It is evident from equation (14) that for an ideal two- 
phase system the intercept of the Ruland plot vanishes 
leading to the application of Porod's law. 

When this intercept becomes negative the system 
belongs to a non-ideal two-phase systems and its mag- 
nitude provides a measure of deviation from the 
Porod's law. Whenever it becomes positive two possi- 
bilities may arise, i.e., either the system does not 
belong to a two-phase system or the dimensions of the 
scattering particles are too small to be studied by SAXS 
method. 

In this study, the finite negative intercept of the 
Ruland plot in figure 5 and the finite value of R suggest 
that the sample of air-dried elastoidin belongs to a non- 
ideal two-phase structure. The small difference in the 
values of E1 = 146 A and E2 = 142 A as determined by 
the two methods shows the correctness of the analysis. 

The values of D, the periodicity transverse to the 
layers, is 1192 A and is well within the range of 50 - 
2000 A as mentioned in the introduction section for 
collagen. 

The values of S/V= 1.68 x 10 -3 •-1, ~1 = 0.85, 
~2 ~-0.15,  T 1 = 2027 A, [2 = 357 A, lr = 304 a ,  lr = 

527 A and - ~ - =  24.5 0/0 throw some light on the 

structural aspect of elastoidin, a sample similar to colla- 
gen. 

The values of C (r) initially remains positive and it 
goes to zero for a dilute system at large value of r while 
in a densely packed system it becomes negative at large 
values of r (Guinier and Fournet [22]). But in this case 
of non-ideal two-phase system the C (r) function is 
seen to oscillate (fig. 2) at large values of r. 
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