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Introduction 

It is a commonplace in classical harmonic analysis on a locally compact group G 
that a function f belongs to a normed vector space V of functions on G if and only if 
certain weighted averages of f form a bounded subset of V [6, 15]. Such weighted 
averages are usually convolutions of f with the members of an approximate 
identity. This well-established principle has been exploited in the context of spaces 
of analytic functions on the open unit disc U, as well. In particular, it has been 
utilized in [8] to yield criteria for membership of the Hardy spaces H p, 1 < p < 0% 
of functions f analytic on U for which 

![ f (re '~  : 0 < r  < oo, 

with the usual convention applying when p = oo. 
It is this principle which forms the central theme of this paper, which is made up 

of three separate, but interconnected parts. 
In the first part, we apply the above principle to the class ~ of Bloch functions 

on U and derive criteria in terms of the Cesfiro means. In the second part, we turn 
our attention to the subspace of ~ composed of functions with bounded mean 
oscillation, and give a characterization of the subspace in the same spirit. The third 
part is devoted to a discussion of bounded Hankel operators on H 2, and continues 
the work begun by Bonsall in [3] and continued in [4, 7, 14]. (Indeed, it was our 
investigations into Hankel operators that first suggested the possibility that 
Theorems 2 and 3, in.particular, might be true.) 

Part I 

The Space of Bloch Functions 

We recall some facts about ~ .  
First, 9~ consists of functions f that are analytic on U whose derivatives f '  are 

subject to the growth restriction 

sup {(1 -Izl2)lf'(z)l: z e U} < ~ . 
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Equipped with the norm 

Ilf[l~ = If(0)l + sup {(1 -Izl2)lf '(z)l:z ~ U}, 

is a Banach space. It properly contains H ~ and the inclusion H ~ C ~  is 
continuous, as the easily derived inequality 

[Ifll~<2LIfllo~ ( f ~ n  ~ 
shows; it is invariant under the family M of disc automorphisms given by 

M={#~:~e U}, 
where, for each ~ e U, 

#r = (z + 0/(1 + "(z) (z ~ U), 

and it is the dual space of the space J of functions g that are analytic on U and such 
that the norm 

1 2r~ 
II g II ~, = Ig(0)l + 1/n ~ y [reiOg'(re i~ q- g(re i~ -g(O)ldr dO 

O 0  

is finite. 
These and other basic properties o f ~  were discovered, recorded and developed 

by Anderson et al. [1], which was the first systematic study of the space. (For 
another, more recent, account see 1-5].) For ease of reference, we state the form of 
the above mentioned duality that we use in this paper; we refer to [1] for a full 
discussion. 

Given a pair of functions f ( z )= Z a,z" and g(z)= ~ b,z", analytic on U, we 
write f*g  for their Hadamard product: 

f*g(z) = ~, a.b.z" (z E U). 

(Here, and hereafter, sums written without limits are over the non-negative 
integers.) 

In this notation, an examination of the proofs of Theorems 2.3 and 2.4 in [1] - 
with due regard paid to the different norms on J - reveals that we now have 

Theorem A. (a) Let f ~ ~ and g E J .  Then f *  g is continuous on the closure of U and 

II f ' o i l  ~ < Ilf [l~lloll~, �9 

(b) I f  ~p is a continuous linear functional on J ,  then there is a unique function f 6  
such that 

~p(g) = lim f*g(o) (g ~ J )  

and 

1/51fflla~ IPwll ~ Ilfll~. 

Criteria for Membership of 

In preparation for our discussion, we introduce some standard notation that we 
will use throughout the paper. 
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Given 

we write 

and 

f ( z )  = ~. a,z" (z e U) 

s . ( f )  (z) = ~ ak zR , n = O, 1,2 . . . . .  
k = 0  

a . ( f ) ( z ) =  ~ Sk(f)(z) / (n+ 1), n=0 ,  1,2, ... 
k = O  

= ~ (1--k / (n+l))akz  k, n = 0 , 1 , 2 , . . . ,  
k = 0  

for the partial sums and the Cesfiro means of the power series for f. 
With 

k(z) = 1/(1 -z)=Y~z" (z e g ) ,  

we see that ~ . ( f )  = ~.(k)*f  Also, if n > 0 and z e U, then 
2n  

a . ( f / z )  = 1/2re I K.(r  
0 

where 

K . ( r  (1 -[k[/(n + 1))e 'k* 
--n 

1 - cos(n + 1)# 
(n+ 1)(1 - cos~b) ' 

is Fejrr's kernel. ( F o r  later reference, we note that K,  > 0 and that 

/ 

) I K,(~b)dr (n=0,  1,2 . . . .  ) . 
0 

Our first result is probably known to most workers in the field, and the 
equivalence of (i) and (iii) is explicitly recorded in [-2] and [13]. We include it for 
completeness and give what seems to be a new derivation of this equivalence. 

Theorem 1. The following statements are equivalent. 

(i) 

(ii) 

(iii) 

Proof. (i) 

f ~ ;  

I[~r.(f)[l~ = 0(1) (n- - .oo) ;  

II~r'.(f)Llo~=O(n) (n-.--,oo). 

=~ (ii). For, if g e J ,  then 

2n  

a . ( f )*e(z)  = I/2~ ~ K.(~)f*g(ze-i*)d~ 
0 

(z ~ U) . 
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2 ~  

la.(f)*o(z)l < 1/2re J" K.(cb)][f*oll ~od~b 
0 

= iff*011o  

=< IIf]l ~ 11911s, 

by part  (a) of Theorem A. Applying part  (b), we deduce that  

] la ,(f) l]~< 5]lf]]~, 

whence (ii) holds. 
(ii) ~ (iii). To see this, let p. = a~,(f) and z = r~, where r = Izl < 1. Then 

Ip. (O-p,(r( ) l  = ! p'.(t()(dt 

1 =<!  ,axlp:(w)ldt 
< ( 1 - - r )  Ilp;,ll~ 

<n(1 - r ) l }p ,H~ ,  

by Bernstein's theorem on polynomials 1-15, p. 118, Vol. I]. Hence 

IP.(01 < Ip.(z)l + n(1 - r)lip. II o0. 

Choose r = 1 - 1/2n. Then 

IP.(OI < 2 n  sup {(1 -IzlZ)lp.(z)l:z ~ U} + 1/2]]p.II oo, 

whence it follows that  

IIp, l[oo < 4nllo' . ( / ) l l~  = O(n) ( n ~  0o) 

and (iii) holds. 
(iii) =:, (i). For, if f ( z ) =  Z a,z", and z = r~ as before, then 

zf'(z) = ~ kakz k = (1 --r) 2 ~ (n + 1)~a;(f) (Or" 

after two summations by parts. It follows that  

rlf'(z)l < (1 - r )  2 E (n + 1)II o-;(f)[I ~or" 

= O(1)r/(1 - r ) ,  

as r ~ l -  and so f e ~ .  
This completes the proof. 

Theorem 2. The followin9 statements are equivalent. 

(i) f ~ , '  

(ii) I ] (n+m+ 1 ) a . + , . ( f ) - ( n  + 1 ) a . ( f ) - ( m +  1){rm(f)[I oo 

(iii) I[a2,(f ) -  a.(f)[[ ~ = 0(1) ( n ~  o0). 
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Proof (i) 

where 

Now 

Hence 

(ii). Not ing  that  a . ( f ) =  a.(k)*f, we see that  

(n + m + 1)a. + , . ( f )  - (n + 1 )a . ( f )  - (m + 1)a , . ( f )  -- g. , , .*f ,  

g.,,. = g,.,. = (n + m + 1)a. + re(k) - (n + 1)a.(k) - (m + 1)a.,(k). 

" 1 a . ( k ) ( z )=~ , (  - k / ( n +  1))z k n = 0 ,  1,2, . . . ,  
0 

- z ( 1  - z  "+1) 1 

= ( n +  1 ) ( l - z )  2 + 1 - ~ "  

z(1 -z"+  1 ) ( 1 - z  re+l) 
g.,m(Z) = (1 - - 0  2 

To establish the assertion, it suffices, in view of part  (a) of Theorem A, to show that  

1 2~r 
Ir H g.,,. [[ J = ~ ~ [rei~ g'., m(rei~ + g.,,.(rei~ dr dO = 0(  ( ] /~ )  

0 0 

as n, m ~  oo. With  this in mind we observe that, if n, m =  1,2 . . . . .  then 

Zgtn - , , m -  1(z) "Jc-gn- 1 , m -  1(z) 

d 
= dzz zgn_ 1, =- 1(z) 

2z(1 - z " )  (1 - z  =) nz"+ 1(1 - z  =) m z m + l ( 1 - z  ") 
(1 - - Z )  3 (1 - -  Z) 2 (1 - - Z )  2 

Hence, appealing to the Cauchy-Schwarz  inequality, it is enough to show that  the 
following estimates hold: 

1 27t 
I 1 (n, m) = n S S [(1 - z=)/(1 -- z) 2 [r" + X dr dO = 0 ( 1 / ~ )  

0 0 

and 
1 2~ 

I2(n ) = ~ ~ 1(1 - z")/(1 - z ) 3 / 2 1 2 r  d r  d O  = O(n). 
0 0 

To deal with Ii(n,  m), another  appl icat ion of the Cauchy-Schwarz  inequality 
shows that  

1 1 1 2 n  2r~ "x, 

I'(n'm)<=n['r"+'VIo ! [ (1-z") / (1-z)[2dO ~'o 1/(1-z)12dO) dr 

1 

< 2nn[/-m ~ r "+ 1(1 - r 2 )  - i/2clr 
0 

= nnl /~F(1  + n/2)F(1/2)/F((n + 3)/2) 

= o( (l/(~) 

aS I'l~ m..-~ cO.  
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To handle I2(n), let 

(1 - z )  3/2 - E ( -  1) kzk 

~- ~ ,  Ck Zk , 

so that, defining c~ = 0 if s < O, we have 

(1 - z " )  
(1 - -  Z) 3/2 ~- Z (CIr - -  Ck -n )  Zk" 

Hence 

1 
I2(n ) = 2re S E ]ck-- ck- ~[2r2k + 1dr 

0 

---r~Z [Ck--Ck-.12/(k + 1) 
n - 1  

=n Z. Ickl2/(k + 1)+roY: Iq_.-c~12/(k + 1) 
0 n 

- = Z + Z -  
1 2 

Now 

where, for t-> O, 

Ck = 7(k), k = O, 1,2 . . . . .  

r(t  + 3/2) 
~ , ( t )  - 

r(3/2)r(t  + 1 )  

Standard properties of the gamma function [12, p. 149] show that 

~F'(t+3/2) F'(t+ 1)~ 
Y " ( t ) = 7 ( t ) ( T ( i  + ~  F( i  q- D J 

=y(t)~t (n+t) 1/2 (n + t + 1/2) 

< y ( t ) ~ ( n + t  - 1/2 _ 
1/2) (n + t + 1/2) 

= y(t)/(1 + 20.  

It follows that y(t)/(V~-+ 1) is decreasing on [0, oe), and hence that the following 
inequalities are true: for t > 0  

y ( t ) < ] / ( l + 2 0  and 7 ' ( t ) < l / V ~ + 2 t ) .  

In particular, then, Ck < [/~1 + k), and hence ~2 = O(n) (n--* oe). 
1 
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To  deal with Y., we note that  if k > n, then 
2 

k 
0 _ ~  C k - -  C k _ n  = ~ y'(t)dt 

k - n  

k dt <I 
- k - .  ]//O + 2t) 

= ~ - - ] / (1  + 2 k -  2n) 

z2n/(/g72k). 
It follows at once that  

Y, <4nn2 k (k+ 1 ) - 2 = O ( n )  
2 k = n  

Collecting our  results we see that  (ii) holds. 

(n---+ o o ) .  

(ii) ~ (iii). Taking  m = 1 in (ii) to start with, we easily obtain  the rough  estimate 
t l~ . ( f ) l l  ~ = O(n) as n - ,  c~. Using this and applying (ii) with m = n, we deduce (iii). 

(iii) ~ (i). Suppose (iii) obtains. Since a a , ( f )  - G(f) is a polynomial  of  degree 
at most  2n, another  applicat ion of Bernstein's theorem on polynomials  shows that  

[la'z.(f)-a'.(f)}l~o=O(n) (n~oe). 
Taking n = 2 J here and summing on j from j = 0 to j = m, we infer that  

Let 

Then 

Hence 

Ilai=(f)ll oo = 0 (2" )  (m--+ oo). 

V., = (2 + 2 - " ) a 2=  + l(k) - (1 + 2 -")a2. .(k ) . 

V,,*f= (2 + 2-")~rzm + l ( f )  - (1 + 2 - = ) % , , ( f ) .  

{l(v,.*f)'lloo=O(2 m) (rn-+oo). 

Noting that  ~o is the identity function on U, it is easy to verify that  

a.(~Uof) = #o~ , ( f )  �9 

Also ,  it is classical that  Ila.(h)[I | _-< llhll ~, whenever h E H ~~ 
Furthermore ,  the first 2 m Taylor  coefficients of  f and V,.*f are equal. 
We put these three facts together  to prove that  [I ~,(f)II 0o = O(n) as n--+ oo. So, 

let n > 1 and choose m so that  2 " -  ~ < n < 2 =. Then  

[I #oa'.(f)l[ oo = l[ a.(#of')I[ oo = l[ a.(#o(Vm*f))[1 

= < II(V.,*f)'l[ 

= 0 (2  ~) 

= O(n)  

as  tl-.-,, o o .  
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A direct appeal  to T h e o r e m  1 now completes  the p roo f  of the impl icat ion 
(iii) ~ (i). 

Corollary 1. I f  f e ~ ,  then 

[]a.(f)l[oo=O(logn) (n--*oo). 

The converse is false. 

Proof. By par t  (iii) of T h e o r e m  2, I[~rz.(f)-~r.(f)[[oo = 0(1),  whence 

][o2,,(f)[l~o=O(m) (m-ooo), 

and so 

II V ,* f  II ~ = O(m). 

If  now 2 " -  x < n < 2", then, as above,  

II G . ( T ) i l  ~ = li a.(v"*f)[I 
--< II V"*f II 

= O(m) 

= O(logn) 

as n-~ oo. 
One  way to see tha t  the converse is false is to use the example  

f (z) = Z a,z" = Z 2kZ"<k~, 

where n(k)= 22k, k = 0, 1,2 . . . . .  It  is clear tha t  

oo n 1 I[s.(f)l[ = ~ 2 a , , = O ( o g n )  (n-- .oo),  
1 

and so too tha t  

[[a.(f)l[oo=a.(f)(1)=O(logn) (n-*oo). 

But f does not  belong to ~ .  This  can be deduced directly as follows. 
I f  0 < r < 1, then 

rf '(r) = Y, ma,,r" 

> S',~k)(f) (r) 
k 

> r"< k) y~ 2in(j) 
0 

> r"~k)2kn(k) 

for any  k. I t  results f rom this tha t  (1 - r ) f ' ( r ) - - .  oo if r ~ 1 - on the sequence r = r(k) 
= 1-1/n(k)  and k--.oo. In other  words,  f is not  a Bloch function. 

Corollary 2. Let f (z) = Z a,z" (z e U). I f  

][sz . ( f ) -s . ( f )[ l~=O(1 ) (n--* ~ ) ,  

then f e ~ .  The converse is true if a,>=O, for n=O,  1 . . . .  �9 but false in 9eneral. 
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Proof. Arguments similar to those used in the proof of the implication (iii) =~ (i) 
show that [[s',(f)II ~ = O ( n ) ,  whence the conclusion of the first part follows readily. 

If, on the other hand, f e  ~ and its Taylor coefficients are non-negative, then 

Ekakr~=rf ' (r )=O(l / ( l - -r ) )  (r--* 1) 

and so, in a standard manner, 
2n 2n 

O<Szn( f ) - -s , ( f )= • ak <(1/(n+ 1))~kak=O(1) (n~oo) .  
. + 1  0 

We defer the construction of an appropriate example showing that the full 
converse is false to Part II. 

Corollary 3. Let N, denote the collection of analytic polynomials p of degree at most 
2n whose first n + 1 Taylor coefficients vanish. Let N = w {~. : n > 1 }. Then the Bloch 
norm and the H a norm are equivalent on N. 

Proof. Since N C H  ~176 [Ipll~<2llpl[oo whenever p e N .  On the other hand, if p e N . ,  
for some n, then 

np = (3n + 1) a3,(p ) - (2n + 1)o2.(p) - (n + 1)a.(p) 

= g . ,  2 . * P ,  

in the notation used above in the proof of Theorem 2. Hence 

nllplloo < Ilg,,2,H~,llpll~ 

<gnllPll~ 

for some absolute constant K. Thus }lp}l ~ <K[IpI[~, and we are finished. 

Theorem 3. f e ~ if and only if 

sup {1/(-i - l u l 2 ) l / O  - I v l Z ) l ( f ( u ) - f ( v ) ) / ( u -  v)l: u, v e u}  < o o .  

Proof. If u, v e U, the difference quotient ( f ( u ) - f ( v ) ) / ( u -  v) is seen to be the 
Hadamard product of f and 9u,~ evaluated at 1, where 

k (uz ) - k ( v z )  
o . ,~ ( z )  = , ( z e U )  

U - - V  
Z 

(1 - uz) (1 - vz) 

]~he stated result follows therefore from Theorem A if it can be shown that 

sup { ~ 1 / O  -Ivl  2) Ilgu, vll~, : u, v e U} < ~ .  

But 

d 
zo'.,.(z) + o., v(z) = ~ zg., v(z) 

2z 

(1 - uz) (1 - vz) 

Z 

UZ 2 UZ 2 

+ ( l -  uz )2 (1-vz)  + ( l - u z )  ( 1 - v z )  ~ 

Z 
+ 

= ( 1 - u z ) 2 ( 1 - v z )  (1 - uz) (1 - vz) 2 
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and an application of the Cauchy-Schwarz inequality shows that 

1 2x 

I I I1/(1-uzl2(1-vz)lrdrd0 
0 0 

1 
= 27r ~ ~(~,  (n + 1)2lul2"r2"/(1 -Iv[2r2))rdr 

0 

< 2] /~/ ] / (1  -lul 2) (1 -Ivl2). 

Putting these estimates together, we see that 

sup {]/(1 -[u[Z! (1 -Ivl z) Ilgu,vll ~, :u,  v e u }  < 41/2, 

and the conclusion of the theorem follows. 

Part II 

The Space of Functions of Bounded Mean Oscillation 

The space of analytic functions on U of bounded mean oscillation, denoted by 
BMOA, consists of functions f in H 2 for which 

sup {[If~lb2 :~ ~ U} < oo, 

where, for each ( ~ U, 

f~ =fo # r  #;~M. 

BMOA is a Banach space under the norm given by 

IIf I1. = If(0)l + sup {llf;ll2 :(  ~ U}. 

Since 

f~(z) = f (# r  (z e U) 

= (1 -]([2)f ' (0z + ..., 

B M O A c ~ ;  and the inclusion is strict. 
An alternate characterization of BMOA can be given in terms of the Poisson 

kernel. Indeed, noting by a change of variable that 

Ilf~ll~ = I I f(ei t)- f(OI2p(r,e-i t)  , 
0 

where 

1-1wl 2 
P(w)= I I -wl  2 (we U) 
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is Poisson's kernel, we see that an analytic function f belongs to BMOA if and only 
if it belongs to H E and 

s u p { !  '~ , f (eU)-f(~)lZP(~e-i t)dt:~eU} <oo. 

(Other descriptions of BMOA are given in [11].) 
We proceed to give a characterization of BMOA in the spirit of the principle 

enunciated in our opening remarks. 

Theorem 4. f s  BMOA if and only if 

sup {[[a.(f)L[. : n = 1,2 . . . .  } < ~ .  

Proof. Suppose f e B M O A .  Let ze  U, t e N .  Then 

a. ( f )  (e") - a . ( f )  (z) = S [ f  (e i~t- 4')) - f  (ze-i*)]K.(~b) 
0 

and hence 

la.(f)  (d t ) -  a . ( f )  (z)l 2 =< I If(e '(t- r . 
0 

It follows from this that 

i,e., 

I la.(f) (e it)- a . ( f )  (z)]2p(ze -it 
0 

z,~ 2~ dt dq~ 
< S K.(ck) ~ [f(ei~t-4~))-f(ze-i*)12p(ze-it)2 ~ 2n'  

0 0 

2~  , 2d ~ 
IIo.(f)zll~< $ K.(~)IlLe , II ~ <sup{llfzll@ze u} .  

0 

Thus 

][a.(f)l[. < HfLI., for 

and the necessity part of the theorem follows. 
Suppose next that 

n = l , 2  . . . .  , 

M=sup{l[a.(f)[].  " n= 1,2 . . . .  } < oo. 

Noting first that a.(f)o = a . ( f ) - f ( O )  and that 

I]a.(f)o][2 _- ][a.(f)][._<- M ,  

we see that [[a.(f)H 2 < M, for n = 1,2 . . . . .  Hence f e  H z [8]. 
Noting next that, if z e U and 0 < r < 1, then 

co 

f~(z) - f ( r z )  = (1 -- r) 2 E (n + 1)a.(f) (z)r", 
0 
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we see that fr e BMOA and that 

oo 

5If, H, <(1 - r ) 2  Y',(n + 1)Ilan(f)]l , r" 
0 
oo 

<(1 - r ) 2  Z (n + 1)mr" 
0 

~ m .  

We deduce that 

~ If(re") - f (rz)[ 2 p(ze- ") ~ < ( M -  If ( 0 )l) 2 
0 ATe 

if z ~ U and 0 < r < 1. Since f(re i*)-*f(e i*) a.e. as r--* 1 - ,  we can let r-* 1 - in the last 
displayed inequality and conclude that f ~ B M O A ;  and that Ilflt, < M. This 
finishes the sufficiency part of the theorem, and concludes the proof. 

Remark. A perusal of the proof shows that 

sup{[[a.(f)[], : n = 0 ,  1, 2 . . . .  } = [If}l,. 

Since, as we have already mentioned, BMOA C~, statement (iii) of Theorem 1 
and statements (ii) and (iii) of Theorem 2, in particular, are true for functions f in 
BMOA; and so too is Corollary 1 to Theorem 2. But are these the best we can say 
about functions in BMOA? The example 

oo 

f(z) = log (1/(1 - z)) = Z z"/n, 

which belongs to BMOA and for which 

a , ( f )  ( 1 ) -  1/k-n/ (n+l) ,  
1 

and 

a~(f) (1) = n/2, 

shows that we cannot improve on these estimates within BMOA. 
Next, we show that the converse of Corollary 2 is false for functions in BMOA. 

Fej~r's technique [12] for constructing a continuous function whose Fourier series 
diverges at a point can be adapted for this purpose. With this in mind, let m, n be 
positive integers, and 

r m, z) = z" 
2 n - Z k + l  ~ 2 - ~ 1 -  1~" 

Then r 1)=0,  degr and the first term in the Taylor 
expansion of r m, z) is z m§ 1/(2n-1). Moreover [12, pp. 42, 417] 

sup { lie(n, m,...)11 ~o "m, n = 1,2 . . . .  } < ~ .  

Let now ink, nk be sequences of positive integers chosen so that in the first 
instance mk+ 2nk <mk + 1 + 1 and let 

OD 

f(z) = ~, ~(n k, mk, z)/k 2 (z ~ U). 
1 
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Then f is analytic on U and continuous on the closure of U. Moreover, since the 
polynomials q~(nk, ink, �9 ) have disjoint support, the power series expansion o f f  is 
obtained by opening out the last displayed series and discarding brackets. It 
follows that 

k 

s,,~+E,k(f)(1)=2q~(nj, m ~, 1 )=0 ,  k = l , 2  . . . . .  
1 

k - 1  

Let nk=k k2, k = l , 2  . . . . .  rnl=O, ink=2 Z n j, k = 2 , 3  . . . .  ; so that mk+2nk 
1 

=ink+ 1, and mk/nk~O as k ~ o e .  
k 

Consider the partial sum sN(f), where N = N(k)= Z nj. An easy argument 
1 

establishes that sN(f)(1) is close to s,k(f)(1) which in turn is close to 
~k 

k - 2 ~  1 / (2 j -  1 )~k -22  -1 lognk~ 2 -1 logk 
1 

as k--. oo. 
It follows that 

II s2N(f) - sN(f)It 0o ~ oo 

as k--* oo. Hence the converse of Corollary 2 is false for BMOA functions, and a 
fortiori for Bloch functions. 

Of course, the necessity part of Theorem 3 holds for functions in BMOA. In 
Part III, we present an alternative proof of this and statement (ii) of Theorem 2. 

Part III 

Hankel Operators o n  H 2 

Given f (z)=Y~anzn6H 2, the Hankel matrix [ai+j] determines a linear trans- 
formation A on the subspace of H 2 spanned by {;(, : n = 0, 1, 2 . . . .  }, where 

X,(z) = z", n = 0, 1,2 . . . .  (z e U), 

and 

AZj= ~ ai+jZ i, j = 0 ,  1,2 . . . . .  
i = 0  

IrA admits of a bounded extension to all of H 2, we call the extension a Hankel 
operator - which we continue to denote by A - and denote the class of all Hankel 
operators on H 2 by 5 ~. Necessary and sufficient conditions for A to be a Hankel 
operator were given first by Nehari - see [10] for the basic facts about Hankel 
operators. For  our purposes, it suffices to note that Nehari's condition is 
equivalent to the requirement that the analytic function f generating A belongs to 
BMOA. 

The "symbol function" associated with A is the harmonic function ~b defined by 

O(z): ef(~) (z e u ) .  
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One connection between A and ~b is given by the identity 

Ilhv(z)llZ~ = J I~k(e~')-fb(z)12p(ze -i') (z ~ U), 
0 

which we borrow from Bonsall's treatment (see [3, formula (5)]). Here, for each 
z ~ U, v(z) is the unit vector in the Hilbert space H 2 given by 

v(z) (w)= ]/~l -IzlZ)k(ew) (we U) , 

where k is as before. Taking account of the definition of ~b, we can rewrite the above 
identity in the form 

IlAv(~)lh z=  J I(eit-z)f(eit)+ z(f(ei ')-f(z))lZP(ze -it) , 
0 

and conclude that 

IIAv(z-)llz~V~-IzlZ)llfll2 + llLIIz (z~U) 

~211f[I., 

if f ~  BMOA. 
In much the same way, it can be seen that 

Ilfzllz <llav(~.)l l2+l/~-lzl2)lf(z)l  (ze U) 

<[[ali + llf[lz, 

and so 

Ilf[I. ~311Atl, 

(since If(0)l ~ Ilfllz = IlhZoll2 ~ IIAII) if A ~6 e. 
These inequalities, coupled with Corollary 3 in [3], tell us that there is a 

positive real constant M such that 

1/3llfl[. < IlZ[I <2Ml l f l l .  �9 

We shall refer below to the constant M as Bonsall's constant. 

A Criterion for Membership of 5r 

We consider two sequences, (s.) and (a.), of linear operators from Se to the finite 
rank Hankel operators defined as follows: if A ~ 6  e and is generated by 
f (z) = E a.z", we set 

n - j  

s"(A)z~ = ,~=o'= ai + j Z i ,  0 <j < n ; sn(a)z j = 0 ,  j > n 

and 

" A ,  cr,,(A)=(1/(n+ 1))Y~Sk( ) 
0 
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for n = 0, 1,2 . . . . .  Thus the polynomials s.(f) and ~r,(f) generate s,(A) and ~r.(A), 
respectively, in the same way that f generates A. 

As a final illustration of the central theme of the paper, we record the following 
theorem, which supplements the criteria given by Bonsall [3] and ourselves [7]. 

Theorem 5. A ~ 5P if and only if sup { I[~r,(A)[] : n = 0, 1,2 . . . .  } < oo. 

Proof. Combining Theorem 4 with the remarks just preceding this section, the 
stated result is an immediate consequence of the following chain of equivalences: if 
f generates A, then 

A ~ 5  r .r f ~ B M O A  

r Ila,(f)L[.=-O(1) ( n ~ )  

r Ilcr,(A)[l=O(1) ( n ~ ) .  

Remark. A different proof of the theorem involving a more direct appeal to 
Nehari's theorem shows, in fact, that 

sup{[[a,(A)]] �9 n=0 ,  1, 2 . . . .  }=  IIAll �9 

Some Identities 

In this section, we indicate how we were led to Theorems 2 and 3. 
Let z ,w~ U. Let f ( z )=Za,z"  generate A. Expanding the inner-product 

(Av(f), v(w)>, we see that 

0 0 

:I/77-Izl )  (zi(z)- 

With ~b(~)= zf(z), we deduce that 

z 

We remark in passing that Bonsall drew the second author's attention to the 
boundedness of the quantity on the left side of this inequality for the symbol 
function of the Hankel operator A, and wondered if the converse were true; 
Theorem 3 provides the answer. 

To highlight the source of Theorem 2, we borrow another piece of notation 
from [3], namely, 

u . (~)= l / (~-+I ){Xo+~-Z,+- . .~ -"Z ,} ,  n = 0 , 1 , 2  . . . . .  

For each ~ on the unit circle, u.(~) is a unit vector in H 2. 
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Given A E 5P, with generator f ( z )  -- ~ a.z", an easy piece of algebraic manipu- 
lation shows that, for any pair of integers n, m__> 0, 

a i + f f  +1 
o o 

= ~ Sm+i( f ) (O--  ~., s i ( f ) ( O  
j=o j=0 

= (n + m + 1)a. + re(f) ( 0  - na. -1 ( f )  ( 0  - mare -a ( f )  ( 0 ,  

whence it follows that 

[[ (n + m + 1)a. +,.(f) -- na. - l ( f )  - ma,,_ l(f)11 oo < ( n ] / ~  ( ] / / ~  1) jl AI[. 

We end this section by proving an analogue of Corollary 3 for BMOA 
functions; we retain the same terminology. 

Theorem 6. The BMOA norm and the H ~ norm are equivalent on P.  

Proof. Since 

[Ifd[@ = I If(e")lZP(~e -" )  - I f ( O I  z 
o 

for every f s H  2 and ~ U, we see that Ilfd2 < Ilfll~o, i f f  sH~176 and hence that 

I[pll. <2[Iplloo, 

whenever p e ~ .  
If p e ~.,  then by taking m = 2n + 1 in the above identity involving the Ces/tro 

means, we find that 

(n + 1)p(0 = (3n + 2)0"3. + 1(t7) (~) - -  (2n + 1)o'2n(p ) (~) - -  na._ l(P) ( 0  

= (n + 1)V2(Au.(~ ), u2. +, (0> ,  

whence it results that 

IIPI[ oo < l/~[[al[ < 2]/~Mlip[I., 

where M is Bonsall's constant mentioned at the end of the previous section. 
This completes the proof. 

Some Examples 

Motivated by the results [7, 14], and encouraged by the result just established in 
Theorem 5, we now raise the question: does the boundedness of A follow from the 
uniform boundedness of the sequence of functions { H~,(a)u.(0112}? 

We will answer this question in the negative with the help of the example 
constructed in [7]; and take the opportunity also to show that the apparently 
stronger assumption that { II s,(a)u,,(O II 2} is uniformly bounded does not force A to 
belong to 5" either. (This was inadvertently left out in [7].) 
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We commence by noting that if a, > 0 for all n, then 

Ila.(a)u.(~)ll~ < Ila.(A)u.(1)ll~ 

=(1/(n+ l)) ~=o(~.~=i(1--j/(n+ l))a,) 2 

-- II sn(A)un(1)II ~" 

Define 

For  each m > O, let 

Em={2"+2J-l:O<j<m} and E=OEm. 
0 

1 
if n ~ E,, , 

a , =  (m+ 1 ) l o g ( m + 2 ) '  

= 0 ,  if negE. 

As was observed in [7], the function f(z)=~_,a.z" belongs to ~ ,  but is not in 
BMOA. At the same time, if 0_< l_< 2 p -  1 and p <m,  then 

2 ~ - 1  m - 1  2 k + 1 - 1  m - 1  

E a i< E E aj= E 1/log(k+2)<2(m-p), 
j = 2 P + l  k=p  j = 2  k k = p  

whence, if n = 2 " -  l, then 

(n+ l)lLs.(A)u,(1)l[~= ~ ~, a t 
i=0 j=i 

= a t + j = l  /=1  i a i  

m - 1  2 P - 1 / /  2 m - 1  ~ 2  

z t  ; ) - -  p=O I = 0  j =  +1 a j  

m - 1  

=< E 2" + ~(2(m- p))~ 
p=O 

= 2  m+3 ~ 2-Ss 2 
s = l  

= o ( 2 " t .  

A standard argument finishes the proof that, for this example, 

Ilsn(h)u.(1)llz=O(1) (n~oo), 
and so also 

[la,(a)u.(1)l[z=O(1) ( n - ~ )  ; 

yet A is not a Hankel  operator. 
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It was shown in [14] that Theorem 5 above is false in general if a,(A) is 
replaced by s.(A). We conclude this paper by reproving this fact with the help of an 
explicit construction, which is based on an observation outlined to the second 
author by V. Peller at the recent Lancaster Conference on Operators and Function 
Theory. We note too that Barry Johnson has discovered another approach to the 
problem [9], which he has very kindly communicated to us. 

Theorem 7. 0 < lim sup)IS"l[ < ~ .  
n-,+ logn  

Proof. Here, [[s,[[ is the norm of the operator s, : 5 e ~ 5  p defined in the preamble to 
Part III, i.e., 

IIs.ll =sup{ils.(A)ll'A ~ ~ ,  HAll 5 1}, 

Let 
n 

q.(z) = ~ zk/k, n = 1,2 . . . . .  (z ~ U). 
1 

Note 1-12, p. 42] that 

sup { IlImq, ll + : n =  1,2 . . . .  } = C <  c~, 

where, here and in what follows, C is an absolute constant, but not always the same 
one. 

Define the sequence of analytic polynomials p. by 

p,,(z)=z2"+l{q.(z)--q,,(1/z)}, n = l , 2  . . . . .  (z~U).  

Let A. be the finite rank Hankel operator generated by p.. Then 

IIa, ll <2MIIp.II, ~ 4Mllp, l[o~ = 8Mlllmq, ll + < C. 

Also, since the first n + 1 Taylor coefficients of p. vanish, s2.(p,) ~ ~,,  in the 
notation of the previous theorem, and so, by that theorem, 

Ilsz.(p.)ll o~ < 1/21[sz.(a,) II < Cl[s2,[I �9 

But 

1 q.( )=SZ 1/k~logn ( n ~ ) ,  
1 

and Ils2,(P.)ll + >q.(1). Hence 

0<l im sup [Is.l[/logn. 

We refer to [14] for the relatively easy proof of the finiteness of the lim sup. 
This completes the proof. 
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