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O. Introduction 

Completely integrable Hamiltonian systems, and in particular their interaction 
with algebraic geometry, have been recently studied rather intensively (see [12, 13] 
for a list of examples and references up to '78-'79); however, a systematization 
which would render the subject distinct from the collection of cases already treated 
is not yet complete. (See 1,1, 2, 7, 8] for three important contributions.) 

The question addressed in this paper centers around the relationship between 
the space where the flow actually occurs (i.e., the invariant tori, into which the 
symplectic space decomposes), and the abelian variety, usually a Prym or a 
Jacobian variety, on which the flow is known to linearize. The starting point for 
this work was 1,3] and 1,9], where the specific case of the geodesic flow on SO(4) was 
analyzed, and it was found that the affine variety obtained by fixing the values of 
the integrals of motion is an open subvariety of the abelian variety dual to the 
Prym of the corresponding spectral curve K. In particular this abelian variety is 
the Prym of the curve C, obtained as the intersection of Prym(K) and an 
appropriate translate of the O-divisor in Jac(K). 

In an attempt to explain this result and understand what the correct 
generalization should be for any integrable case of the Euler-Arnold equations we 
were able: 

1) to interpret the relationship between K and C as a singular (or alternatively, 
ramified) instance of the tetragonal construction 1,6]; 

2) to prove an algebrogeometric lemma for ramified double covers of 
hyperelliptic curves (similar in spirit to [6]), which amongst other things implied 
~he duality result for SO(4) and SO(5) (contrast with rl0, p. 278]), and as a bonus 
~uggested that the variety Prym* (K) defined in the proof as an intermediate step, is 
where the invariant tori naturally live; and finally, 

3) to prove this in Sect. 4, by noting that for each X in ~o(n), we can obtain not 
only a line bundle giving the eigenvector embedding of K in pn- 1, but also n 
specified sections, which uniquely characterize X and can be used to construct an 
element of Prym*(K) (as a line bundle in an appropriate singular curve). So in 
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particular we get a simple proof that the flow occurs in an open affine subset of an 
abelian variety (compare to the calculations in [-3] and [-9] or the direct argument 
in [15], in both cases for n=4).  

This is a result that easily translates to Dubrovin's setting [matrices in GL(n) 
with a fixed diagonal], where the flow ends up in a {E.-extension of Jac(K) 
(corresponding to the points "at oo" of K) even though K may be quite non- 
singular itself . . . .  

1 

1.1. The Euler-Arnold Equations 

Let G be a semisimple Lie group, g its Lie algebra [the standard example being 
SO(n)]. Recall the coadjoint representation of G in End(g*) 

Ad* : G ~  End(g*) 
k0 k0 

g , Ad* 

(Adg is the derivative of the group automorphism Rg-,Lg at the identity: an 
endomorphism ofg. The . . . . .  * dual map is Adg, i.e., the map induced on the cotangent 
space by LgRg-,.) The orbits of the coadjoint representation are symplectic 
manifolds with the Kirillov symplectic structure, defined as follows: 

Let x e g*, 6(x) its orbit; u, v e Tx(~(x). The derivatives ofAd, Ad* at the identity 
give 

ad: g ~  End(g) 
t~ W 
a - - - ~  [,a, . ]  

ad* : g--~ End(g*) 
U2 

a , ad* 

so that for all x e g*, b e g x([,a, b]) = ad*x(b). Since ad* is the derivative of Ad* the 
tangent vectors u, v can be represented as ad*(x), ad~(x) for some a, b e g (think of 
u, v as elements of 9*). Then define the Kirillov symplectic form co by 

co(u, v) = x([a, b]) = ad*x(b) = u(b) = - v(a) 

(obviously skew symmetric and non-degenerate), co is well defined, i.e., indepen- 
dent of the choices of a and b, and finally, closed: 

dco(ul, u2, u3) =1 5-, ( _  1)kco([ui, uj], uk) =0  
i<j 

by the Jacobi identity. (For details see [,18, p. 135].) 
By the assumption of semisimplicity the Killing form (-,.) induces an 

isomorphism g* ~ g. 
A left invariant Riemannian metric on G can be thought of as a symmetric 

linear operator 2 : g~g* ,  or equivalently as a linear operator symmetric with 
respect to the Killing form: l: g~g .  Now for a variable X ~ g the Euler-Arnold 
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equations are 
32 = IX, I(X)] ; (1) 

expressing geodesic motion on G with respect to the given metric. This gives a 
Hamiltonian vector field on the orbits, and the corresponding Hamiltonian is 

H = - (X ,  l (X)) .  (2) 
Note that: 

1) l can be changed by adding a polynomial in X without affecting (1). 
2) The complete integrability of the equations depends on the choice of 

metric 1. 
From now on g will be so(n) (over ~) and I will be a diagonal metric, thought of 

as a symmetric matrix (l 0 (s.t. l(X)i~ = lijX~). 

1.2. Completely lntegrable Cases o f  Geodesic Flow on SO(n) 

Manakov in [11] observed that for a metric l with 

a i - aj 

and all ag distinct (essentially the case of a n-dimensional free rigid body), the Euler- 
Arnold equations become 

( X  -(- Ah) = [ X  + Ah, l (X) + Bh] (1) 

a so-called Lax equation with a parameter h, and are completely integrable. 
The additional integrals come from considering the spectral curve K associated 

to (1) given by the characteristic polynomial 

det (Xu  + A h - z I )  = 0, (2) 

where [z : h : u] is thought of as a point in p2. By (1), the curve given by (2) is 
independent of t, i.e., we have an isospectral flow. The adjoint orbit in so(n) 

(~- so(n)*) in which X is moving has dimension ~ in the generic case. 

thus  for n = 2k (n = 2k + 1) we need k 2 [respectively k(k + 1)] integrals, ~ = k of 

them, the traces of the even powers of X, defining the orbit (usually called trivial 
integrals); which is precisely the number of invariants we get from (2): 

N 

d e t ( X u +  A h - z I ) = l - I  ( a i h - z ) + u 2 { Q l ( X ) z " - 2  + ... + Q , _ I ( X ) h " - 2 } +  ... (3) 
i = 1  

by setting (Q ~(X) . . . . .  QN(X)) = (c~ . . . . .  cN) = c (general point in IEN). Note that for 
n = 2k Qk2(X)= (Pf(X)) 2 so if we set 

A c = { X  e ~o(n)/Qi(X) = ci} 

we will get in that case Ac=Ac+uAc-  the union of two disjoint isomorphic 
components (Ck2 4= 0). So the usual thing is to fix Pf(X) = Co and to restrict attention 
to the flow on Ac+ or Ac-. 

The integrals obtained are independent and involutive. They can all be 
expressed as quadrics in terms of Pfaffians of minors of X. 
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For any diagonal matrix B, let %(B) be the elementary symmetric polynomials 
in the entries of B. Let X~ be the minor of X for the ith diagonal entry, x~j the (i,j)th 
entry of X. 

For 
n=2k P~(X)=pf2 (X) ,  Pf2(X)= Y~ Pf2(X,j) .... 

i<j  

n = 2k + 1 ef t  (X) = Z ef2 (X~), ... 
i 

(P~-2(X)=IZ<ix2, pf2(X)=I ) �9 

Set 
trj_o(A)*Pff(X)= Z { Z ai~...a%o}Pf2(Xi .... i). 

i l< . . .< i j  l < k l < . . . < k j - e <  j 

Then (3) can be written as 

det (Xu + A h -  zI) = tr,(Ah- zI) + u2tr,_ 2(Ah - zI) * pf2_ 2(X) + ... (4) 

or compactly as 

det (Xu + Ah - zI) = Z ( - 1)~ ) * p f 2  2j(X)h~zQu2J. (5) 
O+~+ 2j=n 

Note. (1) The main thrust of [10J is to show that Manakov's metrics are the only 
"generic" example of completely integrable geodesic flow on SO(n). A forthcoming 
paper by Adler and Van Moerbeke examines two other special metrics for which 
the S0(4) case is completely integrable. Also several papers from the Soviet Union 
identify other cases for which the Euler-Arnold equations are integrable. 

(2) The n = 3 case is, of course, the contribution of Euler to the Euler-Arnold 
equations, and an early application of elliptic functions [K being an elliptic curve 
for SO(3)]. The complete integrability for S0(4) predates [11], and was 
demonstrated in the early seventies by Dikii and Mischenko. 

(3) Finally, as explained in [2], the geodesic flow on SO(n) forms a special case 
of the so-called spinning-top type equations, another classical example of which is 
the Lagrange top. (Compare with Kowalewskaya's work on the integrable cases of 
the equations of a heavy rigid body.) 

1.3. The Geometry of the Spectral Curve 
Before concerning ourselves with the linearization of the flow on Ac, we will list for 
convenience some of the important elementary properties of K. 

For a general c, K is a smooth plane curve of degree n and thus of genus 
(n-1) (n-2) /2 .  Its n points on the line u = 0  are pi=[ai: 1:0], and will be 
considered as points "at oo." Note that they are the same for all choices of c and 
depend solely on the metric l. 

The geometry of K is quite special.l 

i: p2 ~ p2 

[z:h:u]--~ [ z : h : - u ]  

1 K however is quite general in another respect: any plane curve of degree n passing through 
Pl, ..., P, and symmetric w.r. to the origin can be obtained as a spectral curve for SO(n) for 
appropriate c [see 1.2 (3)] 
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gives an involution on the curve since 

det (Xu + A h  - zI)  = det ((Xu + A h  - zI) r) = det (X( - u) + A h  - zI)  

SO 

[z : h : u] ~ K*-*[z" h" - u ]  e K . 

[As we can also see from the expansion in 1.2 (3), all terms are of even degree in u.] 
Factoring by i, K becomes a ramified double cover of a curve Ko of genus 

( k - l )  2 [respectively k(k-1) ] ,  the ramification points being Pl . . . . .  P2k 

(I91, "" ", Pzk+ 1 together with the "origin" Po = [0 : 0 : 1]). (The fixed points of i being 
the line at oe together with the origin.) Note that the tangents to K at the points at 
oe intersect at the origin, and that for n = 2k + 1 the curve has a flex at the origin. 

Now, the natural projection 

K .K ~ p1 

LO 

[z: h: u]--* [z" h] 

factors through r~K " K--~ K o 

K ~ '~Ko ~K~ 

(~r[O" O" 1] = slope of tangent at origin for n odd). 

The map reKo has degree k, so using the traditional terminology, K o is a k-gonal 
curve. The duality result in [9] and the similar result that can be proved for SO(5) 
depend on the fact that k = 2  for those cases and thus we're dealing with a 
hyperelliptic K o (see Sect. 3). 

Finally it's worthwhile to note that the ramification points of rCro correspond to 
the bitangents of K passing through the origin. There are 2 k ( k -  1) [respectively 
2(k 2 -  1)] such points from Riemann-Hurwitz (so the n ( n +  l) tangents to K from 
the origin are the 2k tangents to points at oe and the 2 k ( k -  1) bitangents counted 
twice; [respectively: 2k + 1 tangents, 2(k 2 -  l) bitangents, and the flex tangent at 
the origin with multiplicity 3]). 

2 

2.1. Some Fac t s  F r o m  P r y m  Theory  

Fo any double cover of a curve one can associate its P r y m  variety. However the 
classical definition deals with the unramified case, while n K is ramified. There are 
two ways to go" one, given in [ 14], has the disadvantage of giving a non-principally 
polarized abelian variety (which is thus not a good extension of the Prym map 
from ~g to the boundary); the second, in [5], does give a p.p.a.v. (namely an 
unramified cover of the first version), but is not unique for a given ramified double 
cover (depends on its representation as the normalization of an appropriate 
singular covering) giving distinct - but isogenous - p.p.a.v.s. 
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Thus we will have occasion to employ both: let Pry[Lm~m~(K ) stand for Mumford's 
version (together with a polarization Q: Prymi(K)--+ Prym~ (K) of degree 22g~r~ see 
[14-1). Now Prymi(K)~ Jac(K)= ~ is given by 

{D ~ J / D  = D O - i*D o, for some D O e J }  

where i* is the involution induced by i on Jac(K). By [14, Sect. 3, Lemma], 
/ 

P r y m i ( K ) = { D e J / D + i * D " O )  /in contrast to the unramified case where 
t "  \ 

ker lJac(K) N ,  Jac(Ko)l is Prymi(K)• Z2). Beauville in [5] extended the Prym 
map (into the moduli space dg of principally polarized abelian varieties) to the 
boundary; we shall briefly state his results in our case. 

Let M be a curve with only ordinary double points such that 

t l : K ~ M  

is its normalization (e.g. M can be obtained from K by identifying the ramification 
points of n K in pairs). M can be reducible but: 1) the nodes where the two branches 
are not exchanged by i are precisely the fixed points of the involution; and 2) the 
number of nodes exchanged by i equals the number of components exchanged (and 
both are equal to zero in the cases we will have use for). 

Then i gives a well-defined involution on M whose only fixed points are the 
double points (k for n=2k,  k+ 1 for n--2k+ 1). The quotient M o =M/i ,  has only 
ordinary double points also, and its normalization is Ko: 

r /  

K ,M 

l TM 

Ko ~ Mo 

Then Beauville defines the Prym : ~ (K)  to be the abelian variety we obtain as we 
degenerate an unramified double cover of a non-singular curve to the double cover 
nM of M. 

1. Definition. ~ ( K )  [or ~ ( M )  since it depends on the choice of M] is the variety of 
line bundles in 

ker{PicM Nm PicMo} 

of the form LP | a- 1 with deg cp = 0. [Nm is induced by the direct image map on 
the groups of Cartier divisors (riM). : DivM~DivMo.]  

Let now T be the group of divisors of degree 0 with singular support on M, Tz 
the 2-torsion. Then the two Pryms are related by an exact sequence 

0--> TE ~ '~ (K)  x ZE~Prymg(K)~0 (1) 

which gives an isogeny g: ~i(K) ~ Prym i (K). ( T -  II~,, T2 ~ Z~ whe re 2r = number 
of ramification pts - for  K, M irreducible.) ~i(K) is p.p.: In the generalized Jac (M) 
we define a theta-divisor @~ for any line bundle of degree g ( M ) -  1 on M: 

2. Definition. 

O.~ = {&~0 e Jac(M)/h~174 > 0} 
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O~ is algebraically equivalent to (~*)-1(O): 

t/* : J a c ( M ) ~  Jac(K) 

O. 

Fix a line bundle 5r o of degree 9(Mo) - 1 on M o with ~ -~ eOMo (e)Mo is the sheaf of 
forms on Ko regular with simple poles at the branch points, and equal and opposite 
residues at the points identified). Then we get 

3. Theorem. O,h.~ole,tK ) is algebraically equivalent to twice an ample divisor ~ with 
h ~ (N(E))= 1 (i.e. (~i(K), Z) is a p.p.a.v.). In fact, we can choose Leo such that 
OI~,~K) = 2E. 

(The results in Sect. 2.1 hold for an arbitrary ramified double cover K--*Ko. ) 
We shall call all the coverings M--, M o which give an abelian variety in this fashion, 
Beauville allowable covers. 

2.2. The SO(4) and SO(5) Cases: Definition of C 

Before restricting attention to the cases of SO(4) and SO(5) for most of the rest of 
Sect. 2, we should point out that the counts in Sect. 1.2 and 1.3 agree for all n, i.e., 
dim Prym=9(K)-O(Ko)=dimA~.  In fact, as it was shown in [2] the flow on A~ 
linearizes on Prymi(K). (See Sect. 4 for details and a refinement.) 

Now let 2(q~ + q}); 1 < j  _< 4 and b ~ = i(b), Vb ~ K [respectively 2(qj + q)) + Po] 
~ _  _ _  d e f n  

be the divisors corresponding to the bitangents for n = 4 In = 5]. 
Let O, = Im ~b (z) where ~b ~) : S zK--* Jac (K) 

Then define 

x, + x2-+[(x, +x2)--(ql  +q~)] 

C = Prymi(K)c~ O . (1) 

We then have C={b~ +b2-(q~ +qi~)/b~ +b2+b~ +b~=H;b,  e K }  

[respectively C = {b 1 + b 2 - (q~ + q~)/b a + b 2 + b~ + b~ = H -  PoT bi e K}] 

C is a curve of genus 3 [respectively 6] with properties similar to K : 

a) There is a natural tetragonal map C ~c, p1 sending bl + b 2 - ( q l  +q~) to 
the point [z : hi describing the line through [0 : 0 : 1] on which b~, b2, b~, and b~ lie. 

b) A natural involution (b~+b2)-(ql+q~)-- , (b~+b~)-(ql+q~),  also de- 
noted by i, which is the restriction of i* : J ~ J  on C (the same as the involution 
given by - i  :(q~+q'O-(b~ +b2)~(b~ +b~z)-(q~ +q~)). C/i is then an elliptic 
[respectively hyperelliptic] curve denoted Co. 

c) a c then factors as C ~5~  Co ~Co p1, rc c is ramified at (qj + q}) - (ql + q~) [all 
these are points of order 2 in Prying(K)]. Thus riCo will send the branch locus of re c 
down to the branch locus of nxo in P~, corresponding to the bitangent lines. And 
vice versa: rtCo is ramified over points corresponding to lines touching K at infinity 
(i.e., at the p~). 
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2.3. The Ramified Bigonal Construction: Relation of K and C 

In [6] the tetragonal construction, which takes a tower 

C "~C r  

where n is an unramified double cover, and f a branched cover of degree 4, and 
gives two towers 

Co-~ Co-oP 1 , C I ~ C I - ~ P  1 

of the same type, was introduced because of the 

1. Proposition. Prym(C, C) ~- Prym(C o, Co) --- Prym(C1, C1). 
We define a version of this type of construction where ~z itself is ramified, but f is 

of degree 2. 

2. Construction. Start with K-~K o ~"~ p1 (K ~ some hyperelliptic curve). 
Construct a curve (nKo),(K) whose points correspond to the different ways of 

lifting the pair 7r;o~(t), for t ~ P  1, to a pair in K: i.e., 

(~ZKo),(K) = {t~,a ~ Pic(2)(K)/Nm~ = 7ffco(gvl(1)} 

This is a 4-to-1 branched cover of p1 with an involution 

z : (~tro),(K) ~ (lrKo),(K) 

defined (as in [6]) by sending a lift to its complementary. We then call (TrKo),(K) 
bigonally related to K. 

A little thought convinces us that, up to a translation in Jac(K), the curve 
obtained in this fashion is just C in our case: 

c ~  j ~  Pic(2)(K) 

(TZXo),(K) ~ O, c , Jac(K) 
tl) 

~q~ __, [ .~] -- (q, + q~) 

The image of (nro).(K) in O, is contained in Prymi(K): 

[~t ~ + i * [ ~ ]  = H = [a~c(_gp,(1)] ~ [~o] _ (qx + q/0 + i * [ ~ ]  - i*(q, + q~) ~- 0 

[respectively [.~e] + i*[.~r = H -  Po]. 

Thus it is precisely C = OunPrymi(K ). 
Moreover the involution z is thus identified with the involution on C. 

Note. (1) The relation between K and C is very similar to the one coming from the 
tetragonal construction but Donagi's proposition above does not imply that 
Prymi(K ) and Prymi(C) should be isomorphic. (It does, however, imply isogeny: 
see Sects. 2.4 and 3, where we show that they are dual.) 

(2) A repetition of the construction would yield back a curve isomorphic to K: 
e.g., (bl +b2)+(bl  +b~)mPict2)(C) would correspond to the "common point" 
b l e K .  
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2.4. Doubling the Bigonal Construction 

As it turns out, a simple way to exhibit the connection of K and C via the tetragonal 
/ 

construction with Beauville allowable covers /2.3.1 holds for any allowable 

C ~  C), is to consider reducible curves whose normalizations give two copies of 

/( and C respectively - instead of the singular curve M introduced in Sect. 2.1 to 
define ~i(K) (and its analogue for C). 

As the results in this section and Sect. 3 are purely algebrogeometric we work in 
a more general framework (than 2.2): 

Let K ~ K o ~ P  1 give a ramified double cover of some hyperelliptic curve K o of 
genus 9. Assume 9(K)=-2g+h and let the 2 h + 2  ramification points be 
Pl . . . .  ,P2h+2. Then we can construct the bigonally related cover C ~ C o ~ P  1 
[respectively g(Co)=h, g(C)=2h+g,  ramifications at ql . . . . .  qzg+2] as in 2.3.2. 

1. Construction.Start with two copies of K: K ", K t~ say; touching at the points pj 
( l < j < 2 h + 2 ) .  These form a double cover of two copies of Ko(K~,K~o), 
intersecting transversally. (Thus the fixed points are ordinary double points and 
the branches are not exchanged by the involution as required.) 

A similar (reducible) curve can be built starting with C ", C t~ and identifying the 
points q ~ q ~  (l <_j =< 2g + 2). Denote these curves by K v K, K o v K o ( C v C ,  
C o v Co respectively). 

2. Proposition. The tetragonal construction applied to K v K ~ K o v K o leads to: 
(1) C v C--*C o v Co; and 
(2) an unramified double cover A ~ A  (where A is a curve of genus 2 g + 2 h +  1, 

~_K o x F,Co). 

Proof The tetragonal construction gives the curve of different lifts of the points in a 
fibre of K 0 v K o ~ P  ~ back to K v K. This is just C ' x  p, C~: given two pairs of 
points in a general fibre, the lifts of one of them, coming from K~ say, will give (via 
2.3.2) a copy of C; but with the following singularities introduced over the pj: 

The two curves of the tetragonal construction (i.e., Co and C1 in the notation of 
Proposition 2.3.1) will have four simple ramification points each, over each of the 
pj. These are identified to form double points where the branches, one from each of 
the curves, touch in pairs. 

Inside C" x r ,C ~ we get two irreducible components isomorphic to C: the 
graphs of the identity and the involution of C (i.e., points coming from lifting the 
two pairs of points in a fibre in the same or "opposite" ways - given an 
identification of K ' with KP). These are easily seen to intersect over the qj in the 
same way as K" and K p do over the pj. 

Now, the curve of lifts coming from a tetragonal construction is always 
reducible [6, Sect. 6], and each of the components contains all the lifts in each fibre 
differing from each other by an even number of points. Thus, it follows that those 
two copies of C together form one of these two components. 

One can check, by Riemann-Hurwitz, that the remaining component,  , t  say, is 
of the appropriate genus (4g + 4h + 1), and that the involution sending a lift to its 
complementary has no fixed points on .d. 
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To identify A we can embed/T in K" x p1K r (symmetrically, by starting from 
C v C instead). We thus get a commutative diagram: 

K" > Kg 

f / \  
\ \ /  

C ~ , C~ 

By the universal property of Co x p1Ko, there exists a unique map A ~ C o  • F1Ko 
(making the appropriate diagram commutative) which is evidently (degree 
considerations) an isomorphism. 

Note. The involutions of K and C induce isomorphisms on A generating the 
dihedral group D 8: A is just the quotient by the rotation of order 2. A is the "third" 
quotient of the Z2-action on K x p,C - apart from K x p,Co and K o x F,C. 

The immediate conclusions from 2.2.1 are: 

3. Corollary. ~i(K x/ K) and ~i(C v C) are isomorphic. 

4. Corollary. Prymi(K) and Prymi(C ) are isogenous. 

5. Note. I would like to thank David Mumford for suggesting the following way of 
looking at this situation: 

Passing from curves and double covers to fields and field extensions of degree 2, 
then K and C over p1 have ,,i as their normal (or Galois) closure. The Galois group 
is Ds and its subgroup lattice is of the form 

/i:i/L 
{e} 

where B, C, D, E are the non-normal subgroups and S is the group of rotations 
~" Z 4  . 

This corresponds to the following lattice of curves 
p1 

/ I \  
i ~  ~ /Z 4L, 
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where F is the third quotient of Co x piK 0 ~ A (double cover of p1 ramified at the 
points where either K 0 or Co is ramified). 

This is exactly the same picture we would get examining the splitting field of 
x 4 - 2 over Q say. The Jacobian of .Y, (dim = 4g + 4h + 1) splits up into Prym~(K), 
Prymi (C), Jac (Ko), Jac (Co), and J ( F )  (genus of F = g + h + 1). Finally, note that if 
we define 

Ac = {ordered pairs (p, q)/p, q ~ C; nc(p) = inc(q)} 

and similarly for A r, A ~- A c ~- AK. C x p,K gives then two copies of A. 

3. The Prym Varieties of Bigonally Related Curves are Dual 

Maintaining the same notat ion as in Sect. 2.4 we are going to prove that 

1. Proposition. Prymi(K) and Prymi(C) 'are dual abelian varieties. 

Proof. Let us first construct K v K, K o v Ko etc. as in Sect. 2.4, with the resulting 
isomorphism ~ ( K  v K)~--~ ~ ( C  v C) of 2.4.3 and the square of short exact 
sequences (together with a similar one for C): 

z 2 h + l  ( ) ~]'~2h + 1 ) [ ~ 2 h +  1 

~ ( K  v K) x Z2 c , J ( K  v K) , ~ ( K  o v Ko) 

l 1 l 
{Prymi(K)}2 c , j 2 ( K  ) ) r  

(The last row of vertical maps being induced by normalization - see [5].) Restrict 
attention to the isogeny ~b:~(K v K)-*{Prymi(K)} 2. Its kernel ---Zz zh, can be 
thought of as the group of"twists" at an even number  of the points p 1 . . . . .  P2h + 2 in 
the singular curve K v K. We will refer to its elements as even twists, and denote 2 
them as 

5Z-  lpj 

(j in some appropriate  subset of {1 .. . . .  2h+ 2} with even number  of elements). 
In {Prymi(K)} 2 we have four distinguished abelian subvarieties: 

Prymi(K) • {0}, {0) x Prymi(K);  and, given a specified identification of the two 
copies of K, the "positive" and "negative" diagonals [consisting of elements (u, u), 
respectively (u, - u), Vu ~ Prymi(K)] .  Let ~]~, ~x  ~, A~, A~ ; be their inverse images 
on ~ ( K  v K). Note that changing the given identification by composing with the 
involution of K would interchange A~ and Ai:, as it would the two copies of C 
inside C ~ • plCa. Of course, there are similar subvarieties corresponding to C, but 
they give nothing essentially new: 

2 The same divisor is denoted as Y'. ( -  1,0, 0)p, in [5]; think of a Cartier divisor supported on a 
singular point as an element in C.  x Z x Z alter an appropriate choice of two valuations on the 
ring of rational functions; a simple viewpoint is to think of the possible extensions of a line bundle 
from the normalization to the singular curve as choices of the identifications of the fibres of the 
singular points 
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2. Lemma. ~(~ra;  ~c, ~c a) are connected while A~ (A~ ; A~, Ac) split entirely into 
2 2h (respectively 22g) components (each mapped isomorphicalIy onto its image by ~) 
and under the isomorphism N(K v K)~-~ N(Cv  C) the zero components (A~)o; 
(A~) o [respectively, (A~)o, (Ac )o] are mapped onto ~ ;  ~ (respectively, ~,~).P 

Proof. Recall that if we have a finite abelian cover of an algebraic variety, given say 
by a line bundle Za such that ~e | is the trivial bundle (i.e., k th roots of unity in each 
fibre would form the cover); then the inverse image of a subvariety splits entirely 
into disjoint components if and only if ~ has a trivial restriction on that 
subvariety. 

Now the first assertion follows from the obviously symmetric nature of the 
double points: the even twists are line bundles of order 2 and will induce equal 
bundles on the two copies of Prym~(K), and thus the trivial bundle on the two 
diagonals. 

To prove the second assertion recall, [6], that the tetragonal isomorphism is 
induced by a map io:K v K~Pic~4~(C v C) which we can describe as follows: 

Restrict attention to a (generic) fibre over a point Px. Let y~, Y2, Y~, Yz be the 
points in Ko v Ko (- denoting the given identification of the two copies of the 
curve); let xo; xij be the points in K v K (j = 0, 1 ; i = 1,2, and rt~ a(Yi) = {Xio, xil}). If 

�9 ( 4 )  rr the lift ofy~ ..... Yz to x~j ..... r;'.:~zJ~_q(an element ofP~c ) co esponds to a point in 

the fibre of C v C denoted [ ~  (__z[ the eight possible points are: 
[.J~ J2A 

El I][: ~ ['o ;]['o o] 
in C~= graph of identity in C~= graph of involution 

(compare with Sect. 2.4) 

Now io(Xij ) gives an element in Pic~4)(C v C) by choosing from each column the 
point which has entry j in the i th place. [Respectively for i0(ffij) in the P~ place.] 
Thus io(X 0 and io(2ij) give points in the two different diagonals: xij will give the 
"same" two pairs of points in C" and C a, while ~ j  will give involute (by ic) pairs. 

This gives an isogeny from ~k to ~b(A~) which is of degree 1 and hence an 
isomorphism: 

4 g  + 2/i  ~ r c ~ r  a has cardinality 22h, while A~ c~Ac has cardinality 2 [the points of 
intersection of~b(A~) and ~b(Ac) being in a one-to-one correspondence to the points 
of order 2 in Prymi(C)]. Thus, since there are 22g components, 

# {(a~)oc~(Ac)o} = 2 h. 

Now by proving 

3. I.emma. The isomorphism Prymi(K)-~, (A~)o ~ t ~  carries ker0K, the kernel 
of the polarization map, to the 9roup of even twists: 

ker {~(C v C)--, {Prymi(C)} 2} - Z22g . 
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We will have 

4. Corollary. The maps 

Pryml (C) ~-~ ~[--~ Prym i (K) 

Prym i (K) - ~  ~ - - ~  Prymi (C) 

are the polarization maps, and in particular Prymi(K) and Prymi(C) are dual. 
(completing the proof of Proposition 3.1). 

Proof of Lemma 3.3. As in the concluding argument in Lemma 3.2, it is enough to 
show that (d~)oc~(d~) o consists precisely of the image of kerQr~Prymi(K ) in 

A point of order 2 in kerQr corresponds to a cycle a of the hyperelliptic curve 
K 0 [14]. Then, assuming that the corresponding point of order 2 in Jac(Ko) is 
given by a divisor 

0 1 .  0 
E q J - q J ,  qJ,qJ {q, .. . . .  q2g+2}, 
J 

(where q~ is the ramification point of ~Ko : Ko--*P1 over the same point in p1 as the 
ramification point qj of ~c:C~Co), we can define an even twist h , = Z .  (-lqo) 

J 

+ ( -  lqj) in ~ ( C  v C). If rc[(a) = z + i*z e Hi(K), we claim in fact that 

(io),: v K) " ,  v C) 

will take the cycle ( z -  i'z) + (~ -  i ' f )  - where, as on 3.2, f is the "same" cycle as z in 
the other copy of K and would be interchanged with i*f if we picked the alternative 
identification - to the twist h,. 

To prove the lemma, however, it is enough to check that (io) , carries ( z -  i 'z) 
+ ( f -  i ' f )  to ~ .  [This, by virtue of 3.2, shows that it lies in (A~)o; if we changed the 
identification of K ~ and K p, since the cycle (z- i*z)+(f- i*z-)  is not affected: 
[2(z- i ' z )  = 0], this would also show it lies in ~c ~ '~ (A~)o. ] 

Let (io).(z) = u + v; u a cycle in C ~, v in C ~ (where in fact v = i/for one of the two 
identifications). Then, from the description of i o in Lemma 2, 

(io),(~) = u + i*v 
Hence 

(io),(z- i*z + f -  i'z-) = 2 ( u -  i'u) 

[similarly for the other identification we would get 

(z-- i*z + f- -  i*~)~2(v-- i*v)]. 

5. The Variety Prym*(K) 

The abelian variety variously realized as ~k, ~ ,  (A~)o, (Ac) o will be denoted as 
Prym*(K). It can be defined for any double cover K~Ko,  but of course it will not 
be dual to Prym~(K) if Ko is not hyperelliptic. An element in Prym*(K) can be 
thought of as a line bundle on K, together with an appropriate glueing of the fibres 
over p~ . . . . .  P2h+2 with the corresponding fibres of the trivial line bundle on K. We 
will refer to elements in the kernel of Prym* (K)-~ Prym~(K) as even twists, and 
denote them as we did before in the case of hyperelliptic Ko. 
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4. Ac is an Affine Subvariety of Prym~'(K) 

We now return to the geodesic motion on SO(n), in order to apply the material in 
Sects. 2 and 3. Recall that, in order to unify notation, for n even we take 
Pfaff(X) = Co as one of the invariants in the definition of Ac. 

Soon after Manakov's results in [11], Dubrovin [16] showed a wider class of 
examples a to be integrable, and he linearized the resulting flows on the Jacobian of 
the spectral curve. The kernel of this projection, say Ac~Jac(K) 4, is the group of 
(invertible) diagonal matrices acting by conjugation. Then Adler and Van 
Moerbeke obtained in [2], amongst other results, similar conclusions for the 
"spinning top type equations", but paid special attention to the SO(n) case, where 
because of the skew-symmetry the linearization occurs in Prymi(K). The kernel in 
this case consists of the elements of order 2 of the previously described group. 

Finally in [9] Haine specified that A~ is an affine subvariety of Prymi(C) for the 
S0(4) case. 

The aim of this section is to identify A~ in the general SO(n) case. We have 
attempted to make the proof readable without necessitating continual reference to 
the earlier papers. 

1. Proposition. The Euler-Arnold equations on SO(n) with a Manakov metric are 
completely integrable, and there is an isomorphism of affine varieites: 

~o(n) 

A~ - , Prym*(K)\O* 

carrying the flow on A~ onto a linear flow on Prym*(K) (where O* is a divisor in 
Prym*(K): see Lemma 4.3). 

Proof We examine the affine variety Ac for a fixed but generic c. Let Xu + Ah - z I  
be denoted as M(X, p) for X e Ac, p e p2. M(X, p) is singular iff p �9 K. 

For each X �9 A~ we define a pair of holomorphic embeddings of the spectral 
curve in projective space 

f x , f  x : K--*P"- 1 

called the eigenvector mappings, as follows: 
For the general point of K, kerM(X, p) is one-dimensional, and thus gives a 

well-defined point in P"-  1. Since K is smooth for c generic, the mapping extends to 
the whole of K. A similar mapping f x  can be defined starting with (ImM(X, p))l. 
The skew symmetry is equivalent to 

f x  =fxo i 

( f x  =fxT in the absence of skew symmetry). 

3 Compare with the class of Lax equations for which a geometric linearization condition is 
found in [8] 
4 Where A~ is in the collection of polynomials with matrix coefficients (to be described briefly in 
4.8) 
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[Note, This is just an instance of the following general situation: Think of M(X,.)  
as a bundle map (over p2). Then K is just the degeneracy locus of highest rank. The 
mappings fx and f x  can now be thought of as the kernel and cokernel bundles 
respectively over K (~ a finite number of points.).] 

The general strategy (see for example [8]) is to extract information from fx 
about X: 

Let ~ x  =f*((-gr--,(1)) - the restriction of the hyperplane bundle to fx(K). 

2. Lemma [2]. La x + i*s x = ( n -  1)H (where H is the hyperplane bundle for K in 

p2.) and thus degSe x = n(n-  1) 
2 

Proof. Let A ij(X, p) be the (i,j) th minor of M(X, p), and detA~j(X, p )=  d~j(X, p). 
The equations d~i = 0 define curves of degree n - 1 in p2 which cut out divisors 

Di~(~(n- 1)H) on K. 

dki (fx)i and ~ (fx)i Since d l  q - -  (fx)i - j ,  = ~ are independent of k, we can decompose the 

Dij into D,(X) + Dr(X) 

(where D i is the divisor common to the i th row of minors and D j to the j  th column). 
Now 

Aij(X T, p) = ( A,~(X, p))T = A,~(X, Pg, 
hence 

But 
Dr(X) = Dj(X r) = i*D~(X). 

[D2(X)] = Lax for all j ;  

since the zero divisor of is just DJ(X) and represents the intersection of the 

coordinate hyperplane zj = 0 with fx(K) in p . -1 .  [] 

The immediate corollary of this lemma is that since ~ x  + i*~x is independent 
of 3f we can define a mapping 

2 : Ac---~ Prami(K) 

X--~ ~x- -  ~(~Xo 
for some fixed basepoint Xo in the torus Ac. 
Note that for all X, fx sends the points Pl, ..., P, to n points in general position in 
p,-1,  namely the coordinate points [1 :0 : - - :0 ] ,  - - ,  [0 : - - :0 :1 ] .  Thus in the 
linear system given by L# x there is a unique divisor EJ(X)+pl + ... +p~.+ ... +p, 
=Dr(X), degE 2=9(K), pjCE j (i.e., the hyperplane section through 
p~ . . . . .  pjA, . . . .  p . ) .  

The definition of the map Ac-*Prymi(K) in [2,9] uses the divisor 
El(X) (E ~ + i*E i = ( n -  3)H + 2pj), but we think ~ x  is more natural. 

3. Lemma. Ira(2)= Prymi(K)\O where 69 is the intersection of Prymi(K) with an 
appropriate translate of the O-divisor (dependin9 on the choice of Xo). 
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Proof. In  a curve of genus O S g- ~ x {qx + ... + q,+ ~} _~u Picg ~ > Jac  (where # is the 
Abel map)  gives a t ransla te  of  the O divisor. The  complemen t  can be thought  of  as 
the comple te  l inear systems ~ + ,  which do not  pass th rough  q~ ... . .  qr+ ~ [o r  as all 
the (general) divisors of  tha t  degree not  conta ining q~ + ... + q , +  1]. 

T o  first show tha t  Im(2 )3  P r y m i ( K ) \ O  we check tha t  if s is a line bundle  s.t. 

1) ~ x + i * : ~ x = ( n  - 1)n  
2) h ~  and the cor responding  m a p  into P " - a  sends p~ . . . .  , p ,  into 

general  posi t ion;  then it can be ob ta ined  f rom X ~ Ac. 
This  is done  by s imply picking n linearly independent  sections 

f l ,  ..., f ,  s.t. f ( p 0 =  [1 : ... :0]  . . . . .  f ( p , ) =  [0 : ... : 1 ] .  

N o w  z f j -~ jh f j=  (k~,Xjkfk) u' since any section of  Lie x vanishing at  pj can be 
/ 

wri t ten as a linear combina t ion  of fk, k 4:j. 
Not ice  that  since the f j  are de te rmined  up to a (non-zero) cons tan t  the mat r ix  

(Xjk) is de termined up  to conjuga t ion  by an invertible d iagonal  matr ix .  (For  the 
inverse see the a rgumen t  in [17] as appl ied in [2, p. 340]). [] 

F o r  a given X ~ Ac, let X ~ be v. X �9 v where v = diag(e~) and e i - _  ~ -  + 1. (For  n even, 
we assume IIe~ = 1 to remain  in the same A~.) 

O f  course X ' =  X - ~ ,  so we will often identify v and - v .  
The  p rob l em we face is that  s and ~ x v  are the same (fx and fxv are 

projectively equivalent  embeddings)  and  we have to extract  some more  informa-  
tion. M o r e  precisely, X~u + A h -  zI = (Xu + A h -  zI) v and thus if fx(P) is in the 
original kernel, v "fx(P)=fx~(P) is in the new kernel:  fx  and fx~ differ by a l inear 

m a p  P " -  l "> p , -  I. 

Ins tead  of a line bundle  over  K we wish to obta in  one over  K v K such that  its 
image  under  the normal iza t ion  is the trivial bundle  on the second copy  of K. 

4. Construction. Let  rc : q/-->P"- x be the universal  bundle  : q/c+ C" • P " -  

(s, ,sA Define ss(p)= \ f s  "'" fs., } e r t- lfx(P)" These are sections of the line bundle  

- ~ x :  specifically - (ss) = D J. 

5. Claim.  The mappin9 X--+{si(X) . . . .  , s,(X)} is one to one. 

Proof. We need to c o m p a r e  {ss(X)} and  {sj(X~)}, i.e., to show tha t  they are the 
same iff v = 4- 1. 

Now s, XV, p)= U 8~fn" ~ 

sider the d iag ram 
5 r 1 6 3  

% 
fx(K) > fx (K) 

while sj(X, p) ~ 7t- lfx(p ). Con-  
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We can define a bundle isomorphism over the natural projective isomorphism 
between fx(K) and fxv(K) in two ways: multiplying by v or - v .  
Either way {sj(X)} is different from {sj(XV)} �9 

v ,s( X)  = ( + v) . s (X v) 

(where s(X) is the vector (sl(X) ... . .  s,(X)).> [] 

We are now in a position to finish the proof of 4.1: 
Let us first consider the case n even. 
We can construct a line bundle ~ x  in Jac(K v K) by taking a fixed section 

of the trivial bundle over one of the copies of K, say 1, where lp will denote the 
value at the fibre over p ~ K. Then take ~ x  and identify 

1 
1 :.~ �9 1 < j < n .  
PJ sj(X, pj) ' = =  

From 4.5 it is clear that the map is one to one, so it remains to check that 
2x+i*S~ x is independent of X. [ (~x-~xo)+i*(~x-S:Xo)=O,  and 
X ~ C s  would then give the required mapping into Prym*(K).]  Since 
L#x+i*~x=(n-1)H,  this reduces to checking that the identifications over 
Pl . . . . .  p, are independent of X for each ~ x  + i*L#x. 

Now this is evidently the case if we compare at X and X v. [There 
H~ = H~ xv ) and 

sj(XV, p) | s j ( ( s  ~) T, p) = (~) ~ ss(S ' p) | s~(X r, p). ] 

More generally we can show that st(X, p)| r, p) gives an identification over 
the pj independent of X by using the following linear algebra lemma: 

6. Lemma. ~djs(X,p)=O gives the polar of K with respect to the point 
J 

q o = [ l ' 0 : 0 ] ( = [ z : h : u ] ) ,  i.e. 

Y. dis(X, p) = - ~-~ det M(X, p) 
J U Z  

and in particular is independent of X ~ A c. 

If Ad(X,p)=(dij(X,p)) r is the adjoint of M(X,p) we have Ad(X,p)  
= fx(P).fX(p). 

If we think of the space of matrices equal to Ad(X, p) up to a constant factor as 
n - l ( fx (p ) ) |  this is where the section si(X , p)| T, p) takes values. 
Dually ~. dsj(X, p)= Tr(Ad( X, p))= fX(p) . fx(p). 

J 

Now over the open set U where ~ djj(X, p) 4:0 in pz all the sj can be trivialized 
simultaneously for all X J 

sj(X,p)| p) = dll(X,p)+ ... +d,,(X,p) 
(Note pj ~ U Yj). dij(X' p) 

\ f j  "'" fj/] = ~ . fJ  -- ~ -/I 

where fJ is the jth component of fx .  



314 S. Pantazis 

Now by choosing say djj(X, p j)= 1 Vj, X we can think of d z as a specific 
section o f ( n -  1)H over K, depending on X, but whose values over the pj are fixed. 
Now ~ djj(X, p) is independent of X, so the values of si(X, p) |  T, p) should be 
fixed over the pj and fro x + i*=o~ax is a fixed line bundle. 

For n odd we have the additional problem of identifying over P0. Now for a 
fixed basepoint X o e A c we can identify in an arbitrary fashion over Po. This gives a 
unique way of identifying the fibres over Po for each X s.t. ~ x - ~ X o  lies in 
Prym* (K); (the mapping is then independent of the choice at Xo). [To be precise, 
there are two identifications s.t. n , (Cs  LPXo)= 0 one of which corresponds to an 
even twist: 

kern,  = ~ ( K  v K) • 2~2) 

e.g., for X and X v, ( + (//e~, e~, ..., e~) gives the relation of the identifications giving 
LP x and LPxv; note that it is well defined in Z~ + 1/Z2 since n is odd.] [] 

Now Proposition 4.1, together with the results of Sect. 3 gives us 

7. Corollary. For the cases n=4 ,  5, where Ko is hyperelliptic, Ac is an affine 
subvariety of Prymi(C), dual to Prymi(K) (i.e., the mapping 2 factors through the 
polarization map: 

A~ ~ Prymi(K) 

Prymi(C) ~- Prym* (K).) [] 

8. The general spinning top type equation in the absence of skew symmetry. 
The analogue of Proposition 4.1 becomes simpler to prove when the skew 
symmetry is not present: 

Following [16] we can define in a way similar to Sect. 1 a Lax equation where 
Xu +Ah is replaced by 

XNu N + XN-  lu N- lh + ... + Xluh  N- 1 + Ah N = X(u, h). 

(A as before a fixed diagonal matrix) (X  i n • n matrices, XN with fixed diagonal) 
and the spectral curve K given by d e t ( X ( u , h ) - z I ) = O  has genus 
N ( n -  1)n 

( n -  1), but lives in the rational ruled surface ~t~ (see also [8]). 
2 

As in Lemma 2 we can construct maps fx,  f x  : K ~ P ' -  ~ and thus in particular 
a divisor Aax, finally getting an injection A J n ~ J a c ( K )  where A c is the space of 
X(u, h) with fixed spectrum K and n is the group of (invertible) diagonal matrices 
acting by conjugation. The kernel of the action is given by the multiples of the 
identity; thus an element in n can be thought of as being in IE~/IE,. 

Now we can follow the construction in 4.4 and the proof of 4.5 almost to the 
letter (exchanging 7Z.2's by tE,'s). We get 

9. Corollary. Ar % Jac*(K) where Jac*(K) is the IE",-1 extension, corresponding 
to the n points at oo of  K, of Jac(K) [] 

Acknowledgement. I would like to thank my advisor, R. Donagi, for suggesting the problem dealt 
with here, and continuous valuable discussions during the writing of this paper. 



Prym Varieties and the Geodesic Flow on SO(n) 315 

References 

1. Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and 
curves. Adv. Math. 38, 267-317 (1980) 

2. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and 
representation theory. Adv. Math. 38, 318-379 (1980) 

3. Adler, M., van Moerbeke, P.: The algebraic integrability of geodesic flow on SO(4). Invent. 
Math. 67, 297-331 (1982) 

4. Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: 
Springer 1978 (in Russian: Moscow: Nauka 1974) 

5. Beauville, A.: Prym varieties and the Schottky problem. Invent. Math. 41, 149-196 (1977) 
6. Donagi, R.: The tetragonal construction. Bull. Am. Math. Soc., New Ser. 4, 181-185 (1981) 
7. Dubrovin, B.A.: Theta functions and non-linear equations. Usp. Mat. Nauk 36, 11-80 (1981) 

[Russian Math. Surveys 36, 11-92 (1981)] 
8. Grifflths, P.A.: Linearizing flows and a cohomological interpretation of Lax equations 

(preprint) 
9. Haine, L.: Geodesic flow on S0(4) and Abelian surfaces. Math. Ann. 263, 435-472 (1983) 

10. Haine, L.: The algebraic complete integrability of geodesic flow on SO(N). Commun. Math. 
Phys. 94, 271-287 (1984) 

11. Manakov, S.V.: A remark on the integration of the Euler equations of the dynamics of an 
n-dimensional rigid body. Funkts. Anal. Prilozh. 10, 93-94 (1976) [Funct. Anal. Appl. 10, 
328-329 (1976)] 

12. McKean, H.P.: Integrable systems and algebraic curves; global analysis. Lect. Notes Math. 
755, 83-200. Berlin, Heidelberg, New York: Springer 1979 

13. Moser, J.: Various aspects of integrable Hamiltonian systems. In: C.I.M.E. Lectures: 
Bressanone, Italy, June 1978. Prog. Math. 8, 233-289 (1980) 

14. Mumford, D.: Prym varieties. I. In: Contributions to analysis. New York: Academic Press 
1974 

15. Mumford, D.: Appendix to [3]: Invent. Math. 67, 297-331 (1982) 
16. Dubrovin, B.A.: Completely integrable Hamiltonian systems associated with matrix 

operators and abelian varieties. Funkts. Anal. Prilozh. 11,28-41 (1977) [Funct. Anal. Appl. 11, 
265-277 (1977)] 

!7. van Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. 
Acta Math. 143, 93-154 (1979) 

18. Kirillov, A.A.: The characters of unitary representations of Lie groups. Funkts. Anal. 
Prilozh. 2, 40-55 (1968) [Funct. Anal. Appl. 2, 133-146 (1968)1 

Received January 8, 1985; in revised form August 12, 1985 


