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Abstract. In this paper, we describe a method for finding the pose of an object from a single image. We assume 
that we can detect and match in the image four or more noncoplanar feature points of the object, and that we know 
their relative geometry on the object. The method combines two algorithms; the first algorithm, POS (Pose from 
Orthography and Scaling) approximates the perspective projection with a scaled orthographic projection and finds 
the rotation matrix and the translation vector of the object by solving a linear system; the second algorithm, POSIT 
(POS with ITerations), uses in its iteration loop the approximate pose found by POS in order to compute better 
scaled orthographic projections of the feature points, then applies POS to these projections instead of the original 
image projections. POSIT converges to accurate pose measurements in a few iterations. POSIT can be used with 
many feature points at once for added insensitivity to measurement errors and image noise. Compared to classic 
approaches making use of Newton's method, POSIT does not require starting from an initial guess, and computes 
the pose using an order of magnitude fewer floating point operations; it may therefore be a useful alternative for 
real-time operation. When speed is not an issue, POSIT can be written in 25 lines or less in Mathematica; the code 
is provided in an Appendix. 

1 Introduction 

Computation of the position and orientation of an ob- 
ject (object pose) using images of feature points when 
the geometric configuration of the features on the object 
is known (a model) has important applications, such as 
calibration, cartography, tracking and object recogni- 
tion. Fischler and Bolles (1981) have coined the term 
Perspective-n-Pointproblem (or PnP problem) for this 
type of problem with n feature points. 

Researchers have formulated closed form solutions 
when a few feature points are considered in coplanar 
and noncoplanar configurations (Abidi and Chandra 
1991; DeMenthon and Davis 1992; Egli, Miller and 
Setterholm 1987; Fischler and Bolles 1981; Horaud, 
Conio and Leboulleux 1989; Roberts 1965). However, 
pose computations which make use of numbers of fea- 
ture points larger than can be dealt with in closed form 
solutions may be more robust because the measure- 
ment errors and image noise average out between the 
feature points and because the pose information content 
becomes highly redundant. The most straightforward 
method, first described by Roberts (1965), consists of 
finding the elements of the perspective projection ma- 
trix(Roberts 1965; Sutherland 1974; Faugeras 1 9 9 3 ) -  
which expresses the mapping between the feature 

points on the object and their image projections in ho- 
mogeneous coordinates--as solutions of a linear sys- 
tem. The 11 unknown elements in this matrix can be 
found if at least six matchings between image points 
and object points are known. Also notable among pose 
computations are the methods proposed by Tsai (1987), 
Lowe (1985, 1991), and Yuan (1989) (these papers also 
provide good critical reviews of photogrammetric cali- 
bration techniques). The methods proposed by Tsai are 
especially useful when the focal length of the camera, 
the lens distortion and the image center are not known. 
When these parameters have already been calibrated, 
the techniques proposed by Lowe and by Yuan may 
be sufficient. However, both techniques rely on the 
Newton-Raphson method, which presents two signif- 
icant drawbacks: first, an approximate pose must be 
provided to initiate the iteration process; second, at 
each iteration step, the pseudoinverse matrix of a Ja- 
cobian of dimensions 2N × 6 (Lowe; N is the number 
of feature points) or N x 6 (Yuan) must be found, a 
computationally expensive operation. 

The method described in this paper relies on linear 
algebra techniques and is iterative like the methods of 
Lowe and Yuan, but it does not require an initial pose 
estimate and does not require matrix inversions in its 
iteration loop. At the first iteration step, the method 
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finds an approximate pose by multiplying an object ma- 
trix (which depends only on the distribution of feature 
points on the object and is precomputed) by two vectors 
(which depend only on the coordinates of the images of 
these feature points). The two resulting vectors, once 
normalized, constitute the first two rows of the rota- 
tion matrix, and the norms of these vectors are equal 
to the scaling factor of the projection, which provides 
the translation vector. We show that these operations 
amount to assuming that the involved image points have 
been obtained by a scaled orthographic projection (SOP 
in the following). We refer to this part of the algorithm 
as "POS" (Pose from Orthography and Scaling). The 
works of Tomasi (1991) and Ullman and Basri (1991) 
apply related techniques (see also (Huttenlocher and 
Ullman 1988) for related work with three points). 

The next iterations apply exactly the same calcula- 
tions, but with "corrected" image points. The basic 
idea is that since the POS algorithm requires an SOP 
image instead of a perspective image to produce an 
accurate pose, we have to compute SOP image points, 
using the pose found at the previous iteration. The pro- 
cess consists in shifting the feature points of the object 
in the pose just found, to the lines of sight (where they 
would belong if the pose was correct), and obtain a 
scaled orthographic projection of these shifted points. 
We call this iterative algorithm "POSIT" (POS with IT- 
erations). Four or five iterations are typically required 
to converge to an accurate pose. 

The POSIT algorithm requires an order of mag- 
nitude fewer computations than the techniques men- 
tioned above: For N matchings between object points 
and image points, POSIT requires around 24N arith- 
metic operations and two square root calculations per 
iteration. For 8 feature points and four iteration steps, 
around 800 arithmetic operations and 8 square roots 
are needed. As a comparison, Roberts' method would 
solve a linear system of 2N equations using a pseu- 
doinverse matrix, which requires about 1012N + 2660 
arithmetic operations (adds, multiplies and divides); 
for N = 8, the total count is at least 10 times more 
than for POSIT. With Lowe's method, for each itera- 
tion, around 202N + 550 operations are required; for 
8 feature points and four iteration steps, the total count 
of arithmetic operations is around 10 times more than 
POSIT. Yuan's method seems to be the most expensive, 
with around 12N 3 + 21N z arithmetic operations to set 
up the iteration loop, then 36N 2 -t- 108N + 460 opera- 
tions at each iteration; for eight featta'e points and four 
iteration steps, the total count of operations is around 
25 times more than for POSIT. 

Based on these comparisons, we believe that the pro- 
posed method has definite advantages over previous 
approaches for real-time applications. 

In later sections of this paper, we test the accuracy 
and stability of the method by considering a large set 
of simulated situations with increasing amounts of ran- 
dom image perturbation (Haralick 1992), In all these 
situations, the algorithm appears to remain stable and 
to degrade gracefully as image noise is increased. 

2 N o t a t i o n s  

In Fig. 1, we show the classic pinhole camera model, 
with its center of projection O, its image plane G at a 
distance f (the focal length) from O, its axes Ox and 
Oy pointing along the rows and columns of the camera 
sensor, and its third axis Oz pointing along the optical 
axis. The unit vectors for these three axes are called i, 
j and k (vectors are written in bold characters). 

An object with feature points Mo, M1 . . . . .  Mi, 
. . . .  Mn is positioned in the field of view of the cam- 
era. The coordinate frame of reference for the object 
is centered at M0 and is (Mou, Mov, Mow). We call 
M0 the reference point for the object. Only the object 
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Fig, 1. Perspective projection (rni) and scaled orthographic projec- 
tion (Pi) for an object point Mi and a reference point 340. 
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points Mo and Mi are shown in Fig. 1. The shape of 
the object is assumed to be known; therefore the co- 
ordinates (Ui, Vi, Wi) of the point Mi in the object 
coordinate frame of reference are known. The images 
of the points Mi axe called mi, and their image coordi- 
nates (xi, Yi) are known. The coordinates (Xi, Yi, Zi) 
of the same points Mi in the camera coordinate sys- 
tem are unknown, because the pose of the object in the 
camera coordinate system is unknown. We next show 
how to find the rotation matrix and translation vector 
of the object directly, without solving explicitly for the 
coordinates (Xi, Yi, Zi). 

3 Problem Definition 

Our goal is to compute the rotation matrix and transla- 
tion vector of the object. The rotation matrix R for the 
object is the matrix whose rows are the coordinates 
of the unit vectors i, j, k of the camera coordinate 
system expressed in the object coordinate system 
(Mou, Mov, Mow). Indeed, the purpose of the rota- 
tion matrix is to transform the object coordinates of 
vectors such as MoMi into coordinates defined in the 
camera system; the dot product MoMi • i between the 
first row of the matrix and the vector MoMi correctly 
provides the projection of this vector on the unit vector 
i of the camera coordinate system, i.e. the coordi- 
nate Xi - Xo of MoMi, as long as the coordinates of 
MoMi and of the row vector i are expressed in the same 
coordinate system, here the coordinate system of the 
object. 

The rotation matrix can therefore be written as 

I i u i v i w l  
R =  j u j ~ j ~  

ku kv kw 

where iu, i~., i~ are the coordinates of i in the coordi- 
nate system (Mou, Mov, Mow) of the object. 

To compute the rotation, we only need to compute 
i and j in the object coordinate system. The vector 
k is then obtained by the cross-product i x j. The 
translation vector, T is the vector OMo between the 
center of projection, O, and the reference point Mo, 
the origin of the object coordinate frame of reference. 
Therefore the coordinates of the translation vector are 
Xo, I1o, Zo. If this point Mo has been chosen to be a 
visible feature point for which the image is a point mo, 
this translation vector T is aligned with vector Omo and 

Z,,Omo Therefore to compute the object is equal to "7- " 
translation, we only need to compute its z-coordinate 

Zo. Thus the object pose is fully defined once we find 
i, j and Zo. 

4 Scaled Orthographic Projection and 
Perspective Projection 

4.1 Anatytical Definition 

Scaled orthographic projection (SOP) is an approxima- 
tion to "true" perspective projection. In this approxi- 
mation, for a given object in front of the camera, one 
assumes that the depths Zi of dift?rent points Mi of 
the object with camera coordinates (Xi, Yi, Zi) are not 
very different from one another, and can all be set to the 
depth of one of the points of the object, for example the 
depth Z0 of the reference point M0 of the object (see 
Fig. 1). In SOP, the image of a point Mi of an object is 
a point Pi of the image plane G which has coordinates 

x; = fXi /Zo,  y[ = fYi/Zo, 

while for perspective projection an image point mi 
would be obtained instead of Pi, with coordinates 

Xi ": fX i /Z i ,  Yi : fY i /Z i  

The ratio s = f /Zo  is the scaling factor of the SOR 
The reference point Mo has the same image mo with 
coordinates x0 and Y0 in SOP and perspective projec- 
tion. The image coordinates of the SOP projection Pi 
can also be written as 

x; = fXo/Zo + f (X i  - Xo)/Zo 

= Xo + s ( X i  - Xo)  

Y; = Yo + s(Yi - Yo) 

(1) 

4.2 Geometric Construction of SOP 

The geometric construction for obtaining the perspec- 
tive image point mi of Mi and the SOP image point Pi 
of Mi is shown in Fig. 1. Classically, the perspective 
image point mi is the intersection of the line of sight of 
Mi with the image plane G. In SOP, we draw a plane K 
through Mo parallel to the image plane G. This plane is 
at a distance Zo from the center of projection O. The 
point Mi is projected on K at Pi by an orthographic 
projection. Then Pi is projected on the image plane G 
at Pi by a perspective projection. The vector mopi is 
parallel to MoPi and is scaled down from MoPi by the 
scaling factor s equal to f /Zo. Equation 1 simply ex- 
presses the proportionality between these two vectors. 
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5 Fundamental Equations for Perspective 

We now consider equations that characterize "true" per- 
spective projection and relate the unknown row vectors 
i and j of the rotation matrix and the unknown Zo co- 
ordinate of the translation vector to the known coor- 
dinates of the vectors MoM~ in the object coordinate 
system, and to the known coordinates xi and Yi of the 
image points mo and mi. Solving these equations for 
these unknowns would provide all the information re- 
quired to define the object pose, as we have seen in 
Section 3. These equations are 

MoMi" = xi(1 4- ei) - xo, (2) 

M o M i ' f j  = yi(1 4- ei) - Yo (3) 
z~ 0 

in which the terms ei are defined as 

1 
ei = ~oMOMi • k (4) 

and k is defined as k = i × j 

PROOF. In Fig. 1, consider points M0, Mi of the ob- 
ject, and the plane K parallel to the image plane through 
M0. The line of sight for Mi intersects plane K in Ni, 
and Mi projects onto plane K in P/. The vector MoMi 
is the sum of three vectors 

MoMi = MoNi + NiPi + PiMi (5) 

The vector M o N i  and its image naomi are proportional 
in the ratio Zo/ f .  The two vectors NiPi and Cmi are 
also proportional in the two similar triangles Cmi 0 
and Ni PiMi, in a ratio equal to the ratio of the z coor- 
dinates of the other two corresponding vectors of these 
triangles, PiMi and OC. This ratio is MoMi. k / f .  The 
sum of the three vectors can then be expressed as 

Zo MoMi • k c m  i + PiMi (6) MoMi = 7 m o m i  4- T 

We take the dot product of this expression with the 
unit vector i of the camera coordinate system. The 
dot product PiMi.  i is zero; the dot product momi. i 
is the x-coordinate, xi - xo, of the vector momi; the 
dot product Cmi • i is the coordinate xi of Cmi. With 

1 the definition ei = ~ M o M i .  k, one obtains Eq. 2. 
Similarly, one obtains Eq. 3 by taking the dot product 
of expression 6 with unit vector j. [] 

6 Fundamental Equations and POS 

We now show that in the right hand sides of the funda- 
mental equations, the terms xi(1 4- el) and yi(l 4- Ei) ,  

are in fact the coordinates x[ and y~ of the points Pi, 
which are the scaled orthographic projections of the 
feature points Mi (Fig. 1): 

Consider the points Mo, Mi, the projection Pi of 34/ 
on the plane K, and its image Pi. We call the coordi- 
nates of Pi in the image plane x[ and y:,. The vector 
MoMi is the sum of two vectors MoP/and PiMi. The 
first vector, MOP/, and its image m0Pi are proportional 
in the ratio Zo/ f .  Consequently, 

Z0 
MoMi = 7 m o P i  4- PiMi 

We take the dot product of this vector with unit vec- 
tor i of the camera coordinate system; the dot product 
PiMi. i is zero, and the dot product mop/-i is the x 
coordinate, x~ - xo, of the vector mop i. We obtain 

f i  = x~ - xo (7) MoMi" Zo 

and similarly 

MoMi" f j  = y; - x0, (8) 

Comparing these equations with Eqs. 2 and 3, one 
] 

sees that the coordinates of Pi can be written x i = 
xi(1 + el) and y~ = yi(1 + ei). 

7 POS and POSIT 

The Eqs. 2 and 3 can also be written 

MoMi. I = xi(1 + 8i )  - -  XO, (9) 

MoMi .J = yi(1 + 8 i )  - -  YO, (10) 

with 
i = f i  j =  f -  

Zo' E 
The basic idea behind the proposed method is that 

if values are given to el, Eqs. 9 and 10 provide linear 
systems of equations in which the only unknowns are 
respectively the coordinates of I and J. Once I and J 
have been computed, i and j are found by normalizing 
I and J, and Zo is obtained from the norm of either I 
or J. We call this algorithm, which finds the pose by 
solving linear systems, POS (Pose from Orthography 
and Scaling). Indeed, finding the pose of the object 
by using fixed values of ei in Eqs. 2 and 3 amounts to 
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Fig, 2. The initial loop in POSIT looks for a pose of the object 
such that the points mi are the scaled orthographic projections of the 
points Mi of the object. 

finding the pose for which the points Mi have as scaled 
orthographic projections the image points Pi with co- 
ordinates x i ( l  + el) and Yi(] + ei), as we have seen in 
the previous section. 

The solutions of the POS algorithm are only approxi- 
mations if the values given to ei are not exact. But once 
the unknowns i and j have been computed, more exact 
values can be computed for  the ei, and the equations 
can be solved again with these better values. We call 
this iterative algorithm POSIT  (POS with Iterations). 
This algorithm generally makes the values of i, j and 
Zo converge toward values which correspond to a cor- 
rect pose in a few iterations. 

Initially, we can set ei = 0. Assuming ei null im- 
plies x: = xi , y~ = Yi and amounts to assuming that Pi 
and mi coincide. Figure 2 describes this configuration. 
Note from the definition of the terms ei (Eq. 4) that 
they are the z-coordinates of vectors between two ob- 
ject points, divided by the distance of the object to the 
camera; these ratios are small when the ratio of object 
size to distance is small, so that the pose found at the 
very first iteration may be acceptable in this case. When 
tracking an object, the initial values for the terms ei are 
preferably chosen equal to the values obtained at the 
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last iteration of the pose computation for the previous 
image. 

8 Solving the Systems of Equations (POS 
algorithm) 

Within the iterative algorithm described in the previous 
section, we have to solve Eqs. 9 and 10. We rewrite 
these equations in a somewhat more compact form 

MoMr I = ~i, 

MoMi. J = r/i, 

with 

i =  f i  j = f -  
z---g ' T o  J, = xi (1 + - xo, 

Oi = yi(1 + E i )  - -  Yo, 

and where the terms ei have known values computed 
at the previous iteration steps of the algorithm. We 
express the dot products of these equations in terms 
of vector coordinates in the object coordinate frame of  
reference: 

[Ui Vi Wi][Iu Io [w]T=~i, 
v,. W,.][Ju Jwlr=0 , 

where the T exponent expresses the fact that we con- 
sider a transposed matrix, here a column vector. These 
are linear equations where the unknowns are the coordi- 
nates of vector I and vector J. The other parameters are 
known: xi,  Yl, xo, Yo are the known coordinates of mi 
and m0 (images of Mi and M0) in the camera coordinate 
system, and Ui, Vi, Wi are the known coordinates of the 
p o i n t  Mi in the object coordinate frame of reference. 

Writing Eq. 9 for the n object points M1, M2, 
Mi . . . . .  M ,  and their images, we generate linear sys- 
tems for the coordinates of the unknown vectors I and J: 

A I  = x', A J  = 3 / (11) 

where A is the matrix of the coordinates of the object 
points Mi in the object coordinate frame of reference, 
x' is the vector with i-th coordinate ~i and y' is the 
vector with i-th coordinate T/i. Generally, if we have at 
least three visible points other than Mo, and all these 
points are noncoplanar, matrix A has rank 3, and the 
solutions of the linear systems in the least square sense 
are given by 

I=Bx:, J=By: (12) 

where B is the pseudoinverse of the matrix A. 
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We call B the object matrix. Knowing the geo- 
metric distribution of feature points Mi, we can pre- 
compute this pseudoinverse matrix B, either by the 
operation [A r A] - tA  r ,  or by decomposing matrix A 
by Singular Value Decomposition (SVD) (Press et al. 
t988). One can find in (Press et al. 1988) a discus- 
sion showing that the solutions computed by Eq. 12 
for the systems of Eq. 11 indeed minimize the norms 
of the residual vectors IAI  - x'l and IAJ  - Y'I. The 
Singular Value Decomposition has the advantage of 
giving a clear diagnosis about the rank and condi- 
tion of matrix A; this is useful in photogrammetric 
applications, when one has to make sure that the fea- 
ture points on the terrain can be considered noncopla- 
nar before applying this algorithm (for an extension 
of this algorithm to coplanar points using a matrix 
A of rank 2, see (Oberkampf, DeMenthon and Davis 
1993)). 

Once we have obtained least square solutions for I 
and J, the unit vectors i and j are simply obtained by 
normalizing I and J. As mentioned earlier, the three 
elements of the first row of the rotation matrix of the 
object are then the three coordinates of vector i obtained 
in this fashion. The three elements of the second row of 
the rotation matrix are the three coordinates of vector 
j. The elements of the third row are the coordinates of 
vector k of the z-axis of the camera coordinate system 
and are obtained by taking the cross-product of vectors 
i and j. 

Now the translation vector of the object can be ob- 
tained. It is vector OM0 between the center of projec- 
tion, O, and Mo, the origin of the object coordinate 
system. This vector OMo is aligned with vector Ore0 
and is equal to ZoOmo/ f ,  i.e. Omo/s.  The scal- 
ing factor s is obtained by taking the norm of vector 
I or vector J, as can be seen from the definitions of 
these vectors in terms of i and j provided with Eqs. 9 
and 10. 

If the ei terms used in Eqs. 9 and 10 are accurate, the 
rotation matrix and translation matrix just computed 
can be considered accurate representations of the pose; 
otherwise, they can be used to compute more accurate 
values for ~i, and then the process is repeated, as will 
be explained below in greater details. 

9 Geometric Interpretation for the System 
Solutions 

Geometrically, Eq. 9 states that if the tail of I is taken 
to be at Mo, the head of I projects on MoMi at a point 

Hi defined by the algebraic measure 

M o H i - - - -  
IMoMil 

In other words, the head of I must belong to the plane 
perpendicular to MoMi at Hi. If  we use four feature 
points, M0, M1, M2, M3, and these points are chosen 
to be noncoplanar, then I is completely defined as the 
vector with its tail at Mo and its head at the intersection 
of the three planes perpendicular to MoM1, MoM2 and 
MoM3 at/ /1,  //2 and H3 respectively. Analytically, 
we solve a system of three equations, and the matrix of 
the system has rank 3. We would use as matrix B the 
inverse of matrix A instead of its pseudoinverse. 

If  more than four feature points are used, the corre- 
sponding planes generally do not intersect exactly at a 
single point, but we would like to choose as head of I 
the point which minimizes the sum of the squares of its 
distances to these planes. Analytically, the system of 
equations is overdetermined, the matrix of the system 
of equations is still of rank 3, and the solution in the 
least square sense is obtained by using the pseudoin- 
verse B of the matrix A in Eq. 12. 

10 Pseudocode for the POSIT Algorithm 

We can now summarize the description of the POSIT 
algorithm for N feature points (including the reference 
point M0) with the following pseudocode 

• Step 0 (preliminary step, executed once for a set of 
simultaneously visible feature points): 
Write the matrix A with dimension (N - 1) x 3; 
each row vector is a vector MoMi connecting the 
reference feature point Mo to another feature point 
Mi; compute the 3 x (N - 1) object matrix B as the 
pseudoinverse matrix of A; 

• Step 1: ei(o) = O, (i = 1 . . . N -  1),n = 1; 
• Step 2, beginning of loop: 

Compute i, j, and Z0: 

Compute the image vector x' with N - 1 coor- 
dinates of the form xi(1 -b g i ( n - 1 ) )  - -  X0, and the 
image vector y'  with N - 1 coordinates of the 
form yi(1 + ei(n-1)) - Yo. 

Multiply the 3 x (N - 1) object matrix B and 
the image vectors (N - 1 coordinates) to obtain 
vectors I and J with 3 coordinates: I = B x' and 
J = By ' ;  



m Compute the scale s of the projection as the aver- 
age between the norms of I and J: sl = (I. I) 1/2, 
$2 = ( j .  j ) l / 2 ,  s = ( s  1 .qt_ s2)/2; 

Compute unit vectors i and j: i = I/sl ,  j = J/s2; 

• Step 3: Compute new ei: 

- -  Compute unit vector k as the cross-product of i 
and j; 

- -  Compute the z-coordinate Z0 of the translation 
vector as Zo = f / s  where f is the camera focal 
length; 

- -  Compute ,9i(n) - ~ -  ~ M o M i .  k; 

• Step 4: If lei(n) -- ei(n-a)l >Threshold, n = n + 1; 
Go to Step 2. 

• Step 5: Else output pose using values found at last 
iteration: the full translation vector OMo is OMo = 
Omo/s; the rotation matrix is the matrix with row 
vectors i, j and k; for applications where the rotation 
matrix must be perfectly orthonormal, renormalize 
this matrix: compute k' = k/Ikl, j '  = k' x i, and 
output the matrix with row vectors i, j ', and k 1. 

10.1 Geometric Interpretation of the Algorithm 

The iterative algorithm described analytically in the 
previous section can also be described geometrically 
as follows: 

• Step 0 (preliminary step): compute object matrix B 
as the pseudoinverse matrix of A; 

• Step 1. Assume that the scaled orthographic projec- 
tions pi of M i  a r e  superposed with the image points 
mi ofMi: Pi(o) = mi. 

• Steps 2: Compute an approximate pose assuming 
that the projection model is a scaled orthographic 
projection. 

• Step 3: Shift the object points from their found ap- 
proximate positions to positions at the same depth 
but on their lines of  sight (a deformation of the ob- 
ject). 
Find the images of these shifted points by a scaled 
orthographic projection model. 

• Step 4: If these scaled orthographic image points are 
not the same as those found at previous iteration, go 
back to Step 2 using these image points instead of 
the original image points. 

• Step 5: Else, exact pose = last approximate pose. 

PROOF. Our goal here is to show that the steps of the 
geometric description of the algorithm are equivalent 
to the analytic description provided by the pseudocode. 
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Steps 1 and 2: As we have seen in Section 6, find- 
ing the pose using Eqs. 2 and 3 with calculated values 
for ei (analytical description) amounts to finding the 
pose for which the points Mi project in points Pi with 
coordinates xi( l  +el)  and yi(1 +el)  by a scaled ortho- 
graphic projection (geometric description). At step 1, 
assuming ei to  be zero (analytical description) implies 

! ! 
x i = Xi ,  Yi -= Yi and amounts to assuming that Pi and 
mi coincide (Fig. 2). 

Step 3: Object points Mi are shifted to the lines of 
sight of the original image points mi at constant depth, 
then projected into points Pi by a scaled orthographic 
projection (geometric description). The coordinates of 
pi for these shifted points Mi are xi (1 + el) and yi (1 + 
el), as we have just seen, with ei = ~MoMi .  k (Eq. 4). 
This dot product and the term Z0 are not affected by the 
shift of Mi in a direction pel~endicular to the vector k; 
thus the terms ei can be obtained without accounting Ibr 
this shift, simply by multiplying the MoMi--defined 
once and for all in the object reference frame by the 
vector k defined in the same frame, which is the third 
row of the rotation matrix (analytical description). 

Step 4: Once the ei terms don't change from one iter- 
ation to the next (analytic description), the expressions 
for the coordinates of the points Pl don't change (geo- 
metric description). One or the other test can be used. 
With the geometric description, no artificial threshold 
needs to be introduced for the definition of change; one 
exits the loop once the quantized positions of the points 
Pi (in pixels) stop moving. [] 

11 An Intuitive Interpretation of the POSIT 
Algorithm 

The process by which an object pose is found by the 
POSIT algorithm can be seen from a third, somewhat 
more intuitive, viewpoint: 

• What is known is the distribution ofthe featt~e points 
on the object and the images of these points by per- 
spective projection. 

• If we could build SOP images of the object feature 
points from a perspective image, we could apply the 
POS algorithm to these SOP images and we would 
obtain an exact object pose. 

• Computing exact SOP images requires knowing the 
exact pose of the object. However, we can apply 
POS to the actual image points; we then obtain an 
approximate depth for each feature point, and we 
position the feature points on the lines of sight at 
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these depths. Then we can compute an SOP image. 
At the next step we apply POS to the SOP image to 
find an improved SOP image. Repeating these steps, 
we converge toward an accurate SOP image and an 
accurate pose. 

12 Deformation Measure 

The POS algorithm uses at least one more feature point 
than is strictly necessary to find the object pose. At least 
four noncoplanar points including M0 are required for 
this algorithm, whereas three points are in principle 
enough if the constraints that i and j be of equal length 
and orthogonal are applied (Oberkampf, DeMenthon 
and Davis 1993). Since we do not use these constraints 
in POS, we can verify a posteriori how close the vec- 
tors i and j provided by POS are to being orthogonal 
and of equal length. Alternatively, we can verify these 
properties with the vectors I and J, since they are pro- 
portional to i and j with the same scaling factor s. We 
construct a deformation measure G, for example as 

G = II .JI  + t I . I - J - J I  

The POSIT algorithm finds the translation vector and 
the transformation matrix that transform the object 
onto the camera coordinate system so that its fea- 
ture points fall on the lines of sight of the image 
points. The transformation matrix may not exactly be 
an orthonormal rotation matrix, but may comprise a de- 
formation component which slightly deforms the ob- 
ject to adjust it to the lines of sight. The deformation 
measure G is zero if the transformation matrix is a ro- 
tation matrix. The deformation measure G generally 
becomes large, of course, when the wrong correspon- 
dence has been established between image points and 
object points; therefore we have used this measure to 
solve the correspondence problem when only a small 
number of correspondence ambiguities exist, applying 
the POS algorithm with various correspondence per- 
mutations and choosing the correspondence permuta- 
tion that yields the minimum deformation measure as 
a preliminary step before completing the POSIT algo- 
rithm (see also (Basri and Weinshall 1992) for a sys- 
tematic analysis of this type of approach). 

What are possible causes for finding a nonzero de- 
formation measure when the correct correspondence 
permutation is used? In the ideal case of an object 
at the correct pose and no image noise, Eqs. 2 and 3 
would be exactly verified. Returning to the geometric 

interpretation of Section 9, the planes perpendicular to 
MoMi at points Hxi defined at abscissae (xi(1 + e l ) -  
xo)/lMoMi[ would exactly meet at a single point, the 
head of I corresponding to this correct pose, and the 
planes perpendicular to MoMi at points Hyi defined 
at abscissae (yi(1 + el) - yo)/IMoMil would exactly 
meet at the head of J corresponding to this correct pose. 
For these two vectors the deformation measure would 
be zero. During the iteration process of the POSIT 
algorithm, the terms ei are first set to zero, then com- 
puted until they reach the values corresponding to the 
correct pose. Accordingly, the points Hxi and Hyi are 
initially different from the correct points, and move to- 
ward these points during the iteration. Thus initially 
the planes do not generally cut at single points, and 
there is little chance that the vectors I and J found at 
the minimum added squared distance between these 
planes can be equal and perpendicular, and the result- 
ing deformation measure is not zero. As the points Hxi 
and Hyi move toward their correct positions at succes- 
sive iteration steps, the resulting deformation measure 
tends to zero. 

This scenario assumes perfect image detection and 
camera modelizing. In practice, the coordinates xi and 
Yi are not the coordinates of the ideal geometric per- 
spective projections of the Mi, and the planes obtained 
at convergence generally do not meet at single points. 
Therefore the final deformation measure is generally 
not zero (during the iteration it may even go through a 
value slightly smaller than its final value); accordingly, 
the final resulting matrix is not exactly orthogonal, 
but comprises a deformation component which slightly 
warps the object so that it better fits the noisy image 
and the assumed camera model. For most applications, 
an orthonormal transformation matrix is more useful. 
The output matrix is easily corrected, for instance by 
normalizing the vector k obtained by the cross-product 
of i and j, then replacing j by the cross-product of k 
and i). 

13 Illustration of  the Iteration Process in POSIT 

We can illustrate the iteration process of POSIT with 
an example using synthetic data. The object is a cube 
(cube size 10 cm, image 512 x 512, focal length 760 
pixels, corners of the cubes are at a distance between 
three and four times the cube size from the center of 
projection of the camera). The cube is assumed trans- 
parent, and the feature points are the corners of the 
cube. We use a full cube in this experiment without 
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Fig. 3. Perspective images (upper row) and scaled orthographic projections (lower row) for the poses computed in the first three iterations (left 
to right) of the POSIT algorithm for a cube and its image (left). 

simulating hidden faces, because it is interesting to see 
the converging projections of the parallel edges in the 
perspective image being transformed into parallel pro- 
jections in the SOP image (in fact it is not difficult to do 
actual experiments with eight corners of a cube, using 
light emitting diodes mounted in a cubic arrangement 
on a transparent frame). 

The projection on the left of Fig. 3 is the given per- 
spective image for the cube. The enclosing square is 
the boundary of the 512 x 512 pixel image area. The 
projections of the cube edges which are drawn on the 
figure are not used by the algorithm, but are useful for 
studying the evolution of the scaled orthographic pro- 
jections of the cube. Because the distance-to-size ratio 
for the cube is small, some cube edges show a strong 
convergence in the image. One can get an idea of the 
success of the POSIT algorithm by computing at each 
iteration the perspective image of the cube for the trans- 
formation found at this iteration. The three projections 
at the top of Fig. 3 are such perspective projections 
at three iterations. Note that from left to right, these 
projections are getting closer and closer to the orig- 
inal image. POSIT does not compute these images. 
Instead, POSIT computes SOP images using only the 
actual image corners and the depths it computed for the 
comers. These images are shown on the bottom row of 
Fig. 3. Notice that, from left to right, the images of the 
cube edges become more and more parallel, an indica- 
tion that the algorithm is getting closer to the correct 
scaled orthographic projection of the cube, in which 
parallel lines project onto parallel image lines. 

14 Protocol of Performance Characterization 

In this section, we attempt to follow the recommenda- 
tions of Haralick for performance evaluation in com- 
puter vision (Haralick 1992). We compute the orien- 
tation and position errors of the POS algorithm at the 
first iteration loop (an approximation which assumes 
that the perspective image is a scaled orthographic pro- 
jection), and for the POSIT algorithm once it has con- 
verged. Synthetic images are created for two objects, 
and the poses of the objects computed by POS and 
POSIT from these images are compared with the ac- 
tual poses which were used to produce the images. For 
each of the two objects, we consider ten distances from 
the camera, 40 random orientations for each distance, 
and three levels of image noise for each combination. 

14.1 Objects 

The two objects are 

1. A configuration of four points (tetrahedron), such 
that the three line segments joining the reference 
point to the other three points are equal (10 cm) 
and perpendicular to each other (Fig. 4, left) 

2. The eight corners of a 10 cm cube. One of the 
corners is the reference point (Fig. 4, right). 

14.2 Object Positions 

The reference points of the objects are positioned on the 
optical axis. The distance from the camera center to the 
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Fig. 4. Definition of objects and parameters used for estimating rotation and translation errors of the POSIT algorithm. 

reference point is expressed as a ratio to a characteristic 
dimension of the object (here this dimension is 10 cm 
for both objects). Ten distances are considered, from 
four times to 40 times the object size. These distance- 
to-size ratios are used as the horizontal coordinates on 
all the orientation and position error plots, 

Around each of these reference point positions, the 
objects are rotated at 40 random orientations. The 
rotation matrices defining these 40 orientations are 
computed from three Euler angles chosen by a random 
number generator in the range (0, 270. 

14.3 Image Generation 

We obtain images by perspective projection with a fo- 
cal length of 760 pixels. Here we do not clip the image, 
in order to allow for large offsets of the images. When 
the reference point of  the cube is 40 cm from the image 
plane on the optical axis and when the cube is com- 
pletely on one side of the optical axis, the point at the 
other end of the diagonal of the cube may be 30 cm 
from the image plane and have an image 355 pixels 
from the image center. Only a wide-angle camera with 
a total angular field of more than 50 degrees would be 
able to see the whole cube in this position. 

We specify three levels of random perturbation and 
noise in the image. At noise level 1, the real numbers 
computed for the coordinates of the perspective projec- 
tions are rounded to integer pixel positions. At noise 
level 2, the integer positions of the lowest level are dis- 
turbed by vertical and horizontal perturbations of 4-1 
pixel around the integer positions. These are created 
by a uniform random number generator. At noise level 
3, the amplitude of the perturbations are 4-2 pixels. 

When the objects are at 400 cm from the camera, the 
image may be as small as 20 pixels, and a perturbation 
of two pixels on each side of the image produces a 20% 
perturbation in image size. 

14.4 Orientation and Position Errors 

For each of the synthetic images, the orientation and 
position of the object are computed by the POS algo- 
rithm (at the first iteration loop, with ei = 0), then 
by the POSIT algorithm at the end of five iterations. 
These orientations and positions are compared to the 
actual orientation and position of the object used to ob- 
tain the image. We compute the axis of the rotation 
required to align the coordinate system of the object 
in its actual orientation with the coordinate system of 
the object in its computed orientation. The orientation 
error is defined as the rotation angle in degrees around 
this axis required to achieve this alignment. Details of 
this computation are given in Appendix B. The position 
error is defined as the norm of the translation vector 
required to align the computed reference point position 
with the actual reference point, divided by the distance 
of the actual reference point position from the camera. 
Thus the position error is a relative error, whereas the 
orientation error is a measure in degrees. 

14.5 Combining the Results of Multiple Experiments 

As mentioned above, for each distance-to-size ratio, 
many rotations are considered. We compute the aver- 
age and standard deviation of the orientation and posi- 
tion errors over all these rotations and plot the averages 
with their standard deviation error bars as a function of 
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the distance-to-size ratios. Each plot shows the results 
both for POS, and for POSIT after five iterations. The 
plots for the orientation error are shown in Fig. 5, and 
the plots for the position errors are shown in Fig. 6. In 
each of these two figures, the plots in the left column 
are for the tetrahedron, and the plots in the right col- 
umn are for the cube. The top diagrams are for the 
lowest image noise level, the middle diagrams for the 
medium noise level, and the bottom diagrams for the 
highest noise level. 

15 Analysis of the Pose Error Diagrams 

15.1 Comparison between POS and POSIT 

At short to medium range and low to medium noise, 
POSIT gives poses with less than two degree rotation 
errors and less than 2% position errors. Errors increase 
linearly in proportion to the object range, because of 
the pixel quantization of the camera; indeed, one can 
displace a point twice as much when it is twice as far 
from the camera before its image point jumps to the 
next pixel. The effect of image noise also increases 
with range; when the distance ratio is 40, the image 
points are grouped in a 20 pixel regions, and perturba- 
tions of several pixels significantly modify the relative 
geometry of these image points, and the resulting pose 
computation. The effects described so far are caused 
by the imaging process, and are probably characteristic 
of all the algorithms computing a pose from a single 
image obtained by a CCD camera. 

The iterations of POSIT provide clear improvements 
over the initial estimate provided by POS (si = 0) when 
the objects are very close to the camera; on the other 
hand, they provide almost no improvement when the 
objects are ;far from the camera. When the objects are 
close to the camera, the so-called perspective distor- 
tions are large, and scaled orthographic projection is a 
poor approximation of perspective; therefore the per- 
formance of POS is poor. For the shortest distance-to- 
size ratio (4), errors in orientation evaluation are in the 
10 degree region, and errors in position evaluation are 
in the 10% region. When the objects are very far, there 
is almost no difference between SOP and perspective. 
This can be seen analytically: the terms ei in Eq. 4 are 
negligible when the objects are far, so that the perspec- 
tive equations become identical to the SOP equations. 
Thus POS gives the best possible results, and the itera- 
tions of POSIT cannot improve upon them. POS gives 
its best performance for distances around 30 times the 

object size for low image noise, and around 20 times 
for high image noise--half way between the large er- 
rors of perspective distortion at short distances and the 
large errors of pixel quantization at large distances-- 
with orientation errors in the three degree region and 
position level in the 3% region. 

15.2 Comparison between Cube and Tetrahedron 

The long error bars at short range for POS seem to be 
due to the fact that the apparent image size can be very 
different depending on the orientation. For example, 
the cube looks like an object of size 10 cm when a 
face is parallel to the image plane, but one dimension 
is 70% larger when a cube diagonal is parallel to the 
image plane. In this last configuration, the reference 
point projects at the image center whereas the opposite 
corner is offcentered by more than 323 pixels, with a 
large resulting perspective distortion. The tetrahedron 
does not have as large apparent size changes, which 
may explain the fact that at short viewing distance the 
average error and standard deviation produced by POS 
are smaller for this shape than for the cube. This is 
more an artifact of the problem of defining object size 
with a single number than a specific advantage of the 
tetrahedron over the cube. 

At high noise level and long range, the performance 
with the cube becomes almost twice as good as with 
the tetrahedron for POS and POSIT, probably because 
the least square method averages out the random errors 
on the points, and the averaging improves when more 
points are made available to the method. 

16 Convergence Analysis tbr POSIT 

With the distance-to-size ratios used in the rotation and 
translation error evaluations above, the POSIT algo- 
rithm would converge in four or five iterations. The 
convergence test used here consists of quantizing (in 
pixels) the coordinates of the image points in the SOP 
images obtained at successive steps, and terminating 
when two successive SOP images are identical (see 
Appendix A). 

One can apply POSIT with 1D images of a 21) world, 
and in this case one can analytically show that the 
quantities determining the algorithm's convergence are 
ratios of image coordinates over focal length, i.e. tan- 
gents of the angles between the optical axis and the 
lines of sight. When all the ratios are smaller than 1, 
the algorithm converges. The feature points are then 
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seen with a view angle of less than 45 degrees. There- 
fore with a camera with a 90 degree total field of view, 
the algorithm would converge for all possible image 
points. When all the view angles are more than 45 de- 
grees, the algorithm diverges. Thus with an object with 
all its image points at the periphery of the field of a 110 
degree camera the algorithm would diverge. In mixed 
situations with small and large angles, mixed results are 
obtained; image points close to the image center con- 
tribute to convergence, and balance the negative effect 
of peripheral image points. 

A mathematical analysis of the conditions of con- 
vergence in the more interesting case when POSIT is 
applied to 2D images in a 3D world has eluded us so 
far; however, in simulations, convergence appears to 
be similarly dependent on the angles of the lines of 
sight. A cube is displaced along the camera optical 
axis (Fig. 7). One face is kept parallel to the image 
plane, because at the shorter ranges being considered, 
the cube cannot be rotated much without intersecting 
the image plane. The distance used to calculate the 
distance-to-object size ratio in the plots is the distance 
from the center of projection to the cube. Noise of 4-2 
pixels is added to the perspective projection. For a cube 
of 10 cm, four iterations are required for convergence 
until the cube is 30 cm from the center of projection. 
The number gradually climbs to eight iterations as the 
cube reaches 10 cm from the center of projection, and 
20 iterations for 5 cm. Then the number increases 
sharply to 100 iterations for a distance of 2.8 cm from 
the center of projection. In reference to our prior 1D 
observations, at this position the images of the close 
corners are more than two focal lengths away from the 
image center, but the images of the far corners are only 

half a focal length away from the image center and 
probably contribute to preserving the convergence. 

Up to this point the convergence is monotonic. At 
still closer ranges the mode of convergence changes to 
a nonmonotonic mode, in which SOP images of suc- 
cessive steps seem subjected to somewhat random vari- 
ations from step to step until they hit close to the final 
result and converge rapidly. The number of iterations 
ranges from 20 to 60 in this mode, i.e. less than for the 
worse monotonic case, with very different results for 
small variations of object distance. We label this mode 
"chaotic convergence" in Fig. 7. Finally, when the cube 
gets closer than 1.2 cm away from the center of projec- 
tion, the differences between images increase rapidly 
and the algorithm clearly diverges. Note, however, that 
in order to see the close corners of the cube at this range 
a camera would require a total field of more than 150 
degrees, i.e. a focal length of less than 1.5 mm for a 
10 mm CCD chip, an improbable configuration. This 
preliminary convergence analysis and the simulations 
of the previous section indicate that for ordinary cam- 
eras, the POSIT algorithm seems to converge without 
problems in a few iterations. 

We know, howeveh that some specific configura- 
tions of noncoplanar feature points have been shown 
to produce ambiguous images for some isolated posi- 
tions of the object. Here we call the image ambiguous 
when distinct poses of the object in space can produce 
the same image with the same correspondences. In 
other words, once we have found a rigid transforma- 
tion that positions each of the feature points on a line 
of sight of an image point, a second rigid transforma- 
tion could be found that moves each feature point to 
another position on the same line of sight. Examples 
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Fig. 8. Video-based 3D mouse. The signal from the camera is sent to the black box at the right of the computer. This box detects the images 
of the light sources of the mouse and transmits their coordinates to the computer. The computer runs a driver based on POSIT. 

of such configurations can be found in (Fischler and 
Bolles 1981). The POSIT algorithm for a noncopla- 
nar configuration of points produces a single pose. If  
the feature points on the object happen to be located 
in space in a configuration that produces an ambigu- 
ous image, the POSIT algorithm will compute only 
one of the possible poses, and there are good chances 
that this pose may not be the one occupied by the ob- 
ject. We note in our defense that numerical algorithms 
relying on the Newton-Raphson method (Lowe 1985; 
Lowe 1991; Yuan 1989) do not behave differently in 
this case. On the other hand, Roberts' method finds 
the perspective projection matrix which maps world 
points to image points expressed with homogeneous 
coordinates. For ambiguous images, this mapping is 
not unique, and this fact can be detected by the fact that 
the matrix of the linear system used in this method is 
singular. Therefore, Roberts' method seems preferable 
for applications in which detecting pathological con- 
figurations is important. An analysis of the geometry 
of such configurations can be found in (Faugeras 1993; 
Maybank 1992). For an ambiguous image to occur, 
the object points and the camera's center of projection 
must belong to the same twisted cubic curve in space. 
Such a curve is defined by six points, therefore one can 
make sure that the event will not happen by choosing 
as feature points seven object points that cannot all be- 
long to the same cubic curve. When fewer points are 
considered, ambiguous images can occur but probably 
remain unlikely. When the POSIT algorithm is used 
in tracking a moving object using fewer points, one 
can in principle detect the fact that the algorithm has 

computed the wrong pose from an ambiguous image 
by noticing a discontinuity in the sequence of poses. 

17 Real-Time Experiments  

We originally developed the POSIT algorithm for the 
purpose of providing 60 pose computations per second 
in a video-based 3D mouse system able to run on a per- 
sonal computer (DeMenthon 1993; DeMenthon 1995; 
DeMenthon and Fujii 1994). Figure 8 is a general view 
of a prototype. The 3D mouse comprises several small 
infrared sources. A camera is positioned next to the 
computer display and faces the user. This camera is 
equipped with a filter that blocks the visible light spec- 
trum and transmits wave lengths longer than 1/zm. In 
the images, the light sources appear as bright spots on a 
dark background and are easy to detect. The black box 
along the right side of the computer contains a micro- 
controller that computes the centroids of these bright 
spots for every image field and transmits the centroid 
coordinates to a serial port of the computer. In our 
latest implementation, we have integrated the camera 
and microcontroller functions into a very small "smart" 
camera that can receive image processing code through 
the serial line, and can send simple image processing 
results through the serial line (this camera may be use- 
ful in other applications as well, such as range scanning 
and robot navigation). From the centroid coordinates 
received through its serial port, the computer calcu- 
lates the pose of the 3D mouse 60 times per second~ 
and computes the corresponding perspective image of 
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a 3D cursor, which is displayed on the screen. This 3D 
cursor allows an intuitive interaction with 3D objects 
represented on the screen. 

We find that the pose calculation itself does not create 
any problems, provided the matching between object 
light sources and image spots is correct. We have used 
for the mouse alignments of light sources which can 
be easily detected and matched in the image. Alterna- 
tively, we have used a tetrahedron of four light sources 
arranged so that the line segments between one source 
and the three others are equal and mutually perpendicu- 
lar. This configuration simplifies the pose calculation, 
because the object matrix B is then a 3 x 3 identity ma- 
trix. With this mouse, we choose the matching which 
minimizes a combination of the deformation measure 
of Section 12 and the difference from the previous pose. 
The matching is nontrivial in some conditions. In par- 
ticular, with the tetrahedron configuration, one can of- 
ten find two matchings which would correspond to two 
poses which are symmetric with respect to a plane par- 
aiM to the image plane. When the two poses are close 
together, it is difficult to choose the better pose. If the 
user never attempts to point the mouse toward himself 
(a maneuver which has a good chances of resulting in 
the hand occluding a light source anyway), then one 
pose can be rejected. Also, image spots are very of- 
ten close together, and the matching may be difficult 
in these conditions too. When image spots get closer, 
they may end up merging, and when this occurs a sin- 
gle centroid is detected. We keep track of the assign- 
ments of spots that are close together, so that when 
they merge, we can assign the same image centroid to 
two line sources. With these precautions, we obtain a 
reasonably robust and usable system in which the 3D 
cursor responds smoothly and predictably to the rota- 
tions and translations of the 3D mouse in space. Details 
about this system can be found in (DeMenthon 1993). 

From these experiments, it seems to us that with a last 
algorithm such as POSIT, a video-based approach may 
be an attractive alternative in the growing field of inter- 
active 3D graphics, where both mechanical, magnetic, 
acoustic and optical pose trackers are being developed 
(Meyer, Applewhite and Biocca 1992). 

18 Summary and Discussion 

We have presented an algorithm, POSIT, that can com- 
pute the pose of an object from an image containing 
several noncoplanar feature points of the object. We 
have described in pseudocode form the steps required 

for the computation, explaining the role of each step 
from both analytical and geometrical points of view. 
The algorithm first computes an approximate pose by 
a method (POS) which assumes that the image was ob- 
tained by a scaled orthographic projection. This step 
multiplies a precomputed object matrix and two image 
vectors, normalizes the resulting vectors, then com- 
putes a cross-product to complete the rotation matrix; it 
then multiplies a vector by the norm used in the normal- 
ization just mentioned to obtain the translation vector. 
The next step of the POSIT algorithm computes "cor- 
rected" image points using scaled orthographic projec- 
tions based on the approximate object pose found at 
the previous step. These two steps are repeated until 
no improvement is detected. Simulations show that the 
algorithm converges in a few iterations in the domain 
of useful configurations of a camera and an object. We 
have characterized the performance of the algorithm 
by a number of experiments on synthetic data with in- 
creasing levels of image noise. The POSIT algorithm 
appears to remain stable and to degrade gracefully with 
increasing image noise levels. 

POSIT may be a useful alternative to popular pose 
algorithms because of the following advantages: 

1. It does not require an initial pose estimate; 
2. Its code is easy to implement. In compact languages 

such as Mathematica, only around 25 lines of code 
are necessary (Appendix A); 

3. It can run ten times faster than those algorithms, 
since it typically requires an order of magnitude 
fewer arithmetic operations; 

One of the objections that may be raised is that since 
POSIT does not make full use of the fact that the rota- 
tion matrix is orthonormal, it is bound to be less accu- 
rate than algorithms that account for this fact. This is 
probably the case when the minimum number of fea- 
ture points (4) is considered, but the difference should 
disappear as the number of points is increased and the 
pose information available in the image becomes more 
redundant. Comparative experiments would be useful 
in deciding about this issue. If indeed some algorithms 
are shown to provide an advantage in accuracy, and 
if the considered application requires such additional 
accuracy, the advantages of POSIT mentioned above 
may still make it useful for producing an initial pose 
for these algorithms. 

Before going to such lengths, one has to remem- 
ber that there are intrinsic limitations on pose calcula- 
tion from single images that no algorithm using single 
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images may be able to overcome. For example, ob- 
ject displacements in the direction of the optical axis 
move the feature points more or less along the lines of 
sight (more so as the object size/distance decreases), 
so that rather large object displacements can occur be- 
fore they translate into jumps to neighboring pixels in 
the image. Methods using line features (Dhome et al. 
t 989) would have the same problems in detecting these 
displacements. In some applications, it is possible to 
obtain greater accuracy by combining the information 
obtained from two cameras with optical axes at a large 
angle (ideally 90 degrees), at the expense of added com- 
plexity in calibration and computation. 

In photogrammetric applications, the feature points 
are often coplanar or almost coplanar. In these situa- 
tions, the method described in this paper must be sig- 
nificantly modified, because the matrix A describing 
the positions of the feature points in the scene has rank 
2. This extension of the POSIT algorithm to planar 
scenes is described in (Oberkampf, DeMenthon and 
Davis 1993). 

Finally, assigning the proper correspondence be- 
tween object points and their images is a required pre- 
liminary step for the POSIT algorithm; this problem 
has been addressed only briefly. In Section 12, we 
suggest that the algorithm be run for different point 
correspondences, and that the correct correspondence 
corresponds to the minimal deformation factor. In our 
3D mouse experiments (Section 17), we have combined 
this technique with comparisons between successive 
pose solutions to produce robust correspondence as- 
signments; this is a feasible technique only if a few cor- 
respondence permutations have to be examined. Meth- 
ods which do not depend exponentially on the number 
of points and combine the search for the correct pose 
and the search for the correct correspondence have been 
proposed (Breuel 1992; DeMenthon 1993); we find 
that the search is painfully slow because it takes place 
in a high-dimensional transformation space. For these 
methods to become attractive, novel criteria for further 
pruning "the search tree will have to be discovered. 
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Appendix A: A Mathematica Program 
Implementing POS and POSIT 

Compute the pose of an object given a list of 2D image 
points, a list of corresponding 3D object points, and 
the object matrix (the pseudoinverse matrix for the list 
of object points). The first point of the image point list 
is taken as a reference point. The outputs are the pose 
computed by POS using the given image points and the 
pose computed by POSIT. 

GetPOSIT[imagePoints_,objectPoints_, 

objectMatrix_, focalLength_]:= Module[ 

{objectVectors, imageVectors, IVect, 

JVect, ISquare, JSquare, IJ, 

imageDifference, rowl, row2, row3, 

scalel, scale2, scale, 

oldSOPImagePoints, 

SOPImagePoints, translation, rotation, 

count = 0, converged : False}, 

objectVectors = (#-objectPoints[[l]])& 

/@ objectPoints; 

oldSOPImagePoints=imagePoints; 

(* loop until difference between 2 SOP 

images is less than one pixel *) 

While[! converged, 

If[count==0, 

(* we get image vectors from image 

of reference point for POS: *) 

imageVectors = Map[(# 

- imagePoints 

[[l]])&, imagePoints], 

(* else count>0, we compute a SOP 

image ~rst for POSIT: *) 

SOPImagePoints = 

imagePoints(l+(objectVectors.row3) 

/translation[j3]]) ; 

imageDifference = Apply[Plus, 

Abs[Round[Flatten 

[SOPImagePoints]]- 

Round[Flatten[oldSOPlmagePoints]]]]; 

oldSOPImagePoints = SOPImagePoints; 

imageVectors = Map[(# 
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- SOPImagePoints[[l]])&, 

SOPImagePoints] 

]; (* end else cou~t>0*) 

{IVect, JVect} 

= Transpose[objectMatrix . 

imageVectors]; 

ISquare = IVect. IVect; JSquare 

= JVect.JVect; IJ = IVect.JVect; 

{scalel, scale2} = Sqrt[{ISquare, 

JSquare} ] ; 

{rowl, row2} = {IVect/scalel, 

JVect/scale2}; 

row3 = RotateLeft[rowl] 

RotateRight[row2] - 

RotateLeft[row2] RotateRight[rowl]; 

(* cross-product *) 

rotation={rowl, row2, row3}; 

scale = (scalel + scale2)/2.0; 

(* scaling factor in SOP *) 

translation 

= Append[imagePoints[[l]], 

focalLength]/scale; 

converged = (count>0) 

&& (imageDifference<l); 

count++ 

]; (* End While *) 

Return[{rotation, translation}]] 

(* Example of input and output: *) 

focLength = 760; 

c u b e  = { { 0 , 0 , 0 } , { 1 0 , 0 , 0 } , { 1 0 , 1 0 , 0 } ,  

{o, lo ,  o}, {o, o, lO}, 
{ 1 0 ,  O, 10} ,  { 1 0 , 1 0 , 1 0 } ,  { 0 , 1 0 , 1 0 } } ;  

cubeMatrix = PseudoInverse[cube]//N; 

cubeImage = {{0,0},{80,-93},{245,-77}, 

{i8s, 32}, {32,135}, 
{99,35},{247, 62},{195, 179}}; 

{POSITRot, POSITTrans} = 

GetPOSIT [cubeImage, cube, cubeMatrix, 

focLength] 

o u t [ l ]  = { { { 0 . 4 9 0 i 0 ,  0.85057, 0.19063}, 
{ - 0 . 5 6 9 4 8 ,  0 . 1 4 6 7 1 ,  0 . 8 0 8 8 0 } ,  

{ 0 . 6 5 9 9 7 ,  - 0 . 5 0 4 9 5 ,  0 . 5 5 6 2 9 } } ,  

{0, o, 40.02637}} 

Appendix B: Angular Error 

In our performance evaluation, the object has a coor- 
dinate system in a known orientation, and the POS and 

POSIT algorithms compute from the image of the ob- 
ject a coordinate system that is in a different orientation. 
We want to compute bow far off the computed orienta- 
tion is from the actual orientation. We find the axis of 
the rotation required to align the coordinate system of 
the object in its actual orientation with the coordinate 
system of the object in its computed orientation. The 
angular error is the rotation angle in degrees around this 
axis required to achieve this alignment. The axis of ro- 
tation and the angle for the alignment can be readily 
found with quaternions, but we propose a more direct 
method here. Given the two unit vectors i and i' of 
the x-axes of [he two coordinate systems, the axis of 
rotation must belong to a plane with respect to which i 
and i' are mirror images of each other. Therefore this 
plane is perpendicular to the vector i' - i. Similarly, the 
axis belongs to the plane perpendicular to j' - j and to 
the plane perpendicular to k' - k. Thus the axis must 
have a direction n perpendicular to both i' - i, j' - j  and 
k' - k. The coordinates of n satisfy the homogeneous 
system composed of the equation 

- I  
(i~x - -  i x ) n x  + (ly --  i y ) n y  -k ( i '  z - -  i z )n z  = 0 

and two similar equations in j' - j  and k' - k. This sys- 
tem is solved by Singular Value Decomposition. Then 
the required angle of the rotation is the angle which 
brings the plane (n, i) to the plane (n, i'), i.e. the angle 
between the cross product n × i and the cross product 
n x i'. The angle between (n, j) and (n, j') and the an- 
gle between (n, k) and (n, k') may be slightly different; 
thus we compute the average of these three angles. 
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