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Abstract. Due to the aperture problem, the only motion measurement in images, whose computation does not 
require any assumptions about the scene in view, is normal flow--the projection of image motion on the gradient 
direction. In this paper we show how a monocular observer can estimate its 3D motion relative to the scene 
by using normal flow measurements in a global and qualitative way. The problem is addressed through a search 
technique. By checking constraints imposed by 3D motion parameters on the normal flow field, the possible space of 
solutions is gradually reduced. In the four modules that comprise the solution, constraints of increasing restriction 
are considered, culminating in testing every single normal flow value for its consistency with a set of motion 
parameters. The fact that motion is rigid defines geometric relations between certain values of the normal flow field. 
The selected values form patterns in the image plane that are dependent on only some of the motion parameters. 
These patterns, which are determined by the signs of the normal flow values, are searched for in order to find the 
axes of translation and rotation. The third rotational component is computed from normal flow vectors that are only 
due to rotational motion. Finally, by looking at the complete data set, all solutions that cannot give rise to the given 
normal flow field are discarded from the solution space. 

1 Introduction 

A system in order to navigate by visual means must 
possess a wide range of perceptual capabilities that can 
be classified hierarchically on the basis of their com- 
plexity. At the bottom of the hierarchy are low level 
tasks, such as obstacle avoidance, and the top is rep- 
resented by high level abilities like homing or target 
pursuit. As a basic capability however, every visual 
navigation system must have an understanding of vi- 
sual motion. It should be able to estimate the three- 
dimensional motions of objects in its environment and 
even more important, it should be able to determine 
its own motion. Usually the term "passive navigation" 
is used to describe the process by which a system can 
estimate its motion with respect to the environment. 
Passive navigation is a prerequisite for any other nav- 
igational ability. A system can be guided only if there 
is a way for it to acquire information about its own 
motion. 

*Research supported in part by NSF (Grant IRI-90-57934), ONR 
(Contract N00014-93-I-0257) and ARPA (Order No. 8459). 

In its original formulation, passive navigation uti- 
lizes estimates of the scene points' projected motions. 
As a result, most algorithms that have appeared in the 
literature address the motion estimation problem in 
two steps. First the image displacements between con- 
secutive image frames are computed; either discrete 
features in successive frames are corresponded or the 
vector field that represents the motion of every image 
point, the optical flow field, is computed (Barnard and 
Thompson 1980; Horn and Schunck 1981; Hildreth 
1983). In general, the estimation of optical flow or of 
feature correspondence are ill-posed problems and ad- 
ditional assumptions must be made in order for a solu- 
tion to be obtained. Therefore, their applicability to the 
problem of passive navigation must be reconsidered. 

In the second step, under the assumption that opti- 
cal flow or correspondence is known, the 3D motion is 
computed from the equations relating it to the 2D image 
velocity. These equations are determined by the specific 
geometric model of image formation which is used. 
Different geometric projection models have been em- 
ployed. Orthographic projection (Ullman 1979) leads 
to linear equations, but in general is not realistic and 
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should only be considered as an approximation in the 
case when lenses of very high focal length are used 
and the field of view is very small. A more adequate 
model is given by perspective projection. The image is 
projected either on a sphere (Nelson and Aloimonos 
1988) or on a plane (Adiv 1985; Bruss and Horn 
1983; Horn 1990; Longuet-Higgins 1981; Longuet- 
Higgins and Prazdny 1980; Waxman 1987; Spetsakis 
and Aloimonos 1988; Tsai and Huang 1984). The re- 
suiting equations relating the 3D motion described by 
three rotational parameters and two parameters for the 
direction of translation to image motion are nonlinear. 
Therefore the surface in view often is modeled as a 
smooth function (usually a polynomial) and nonlinear 
optimization techniques are applied to solve the 3D 
motion parameter estimation problem. Linear algo- 
rithms have also been developed, most of them based 
on a particular linearization technique, the intermedi- 
ate computation of the "E"  matrix (Longuet-Higgins 
1981; Tsai and Huang 1984). But a critical investi- 
gation of the feasibility of addressing the motion es- 
timation problem in this way, conducted by Spetsakis 
and Aloimonos (1988), shows that even the application 
of provably optimal algorithms to this problem cannot 
lead to methods that could be useful for applications in 
realistic domains. 

Since most existence and uniqueness aspects of the 
problem (Tsai and Huang 1984; Horn 1987; Spetsakis 
and Aloimonos 1990; Aloimonos and Shulman 1989; 
Bergholm 1988; Faugeras and Maybank 1990; Liu 
and Huang 1988; Navab, Faugeras and Vieville 1993) 
are now well understood and initial attempts to con- 
struct algorithms that perform well in realistic do- 
mains have failed, motion estimation research has 
shifted its focus on the robustness issue. In order to 
overcome sensitivity, researchers started using redun- 
dant information. For the case of correspondence- 
based methods this meant the use of more features and 
more frames (Spetsakis and Aloimonos 1991). Sev- 
eral multi-frame approaches have been developed. In 
some of these works however an unrealistic assump- 
tion again is made--that of motion continuity over time 
(Chandrashekar and Chell appa 1991). 

If our goal is to develop robust algorithms that 
can perform successfully in general environments, we 
should abandon all computational processes that are 
provably unstable. Any 3D motion estimation tech- 
nique must make use of a representation for the image 
motion. Most existing algorithms rely, at this stage, on 
the computation of optic flow or correspondence, but 
the estimation of retinal correspondence is an ill-posed 

problem. Due to the "aperture problem," the only im- 
age motion that can in general be uniquely defined from 
a sequence of images is the normal f low--  the projec- 
tion of the optic flow on the gradient direction. It can 
be derived from local information assuming the conser- 
vation of some form of image information, such as the 
image intensity, which leads to the motion constraint 
equation and reduces the computation of normal flow 
to the computation of image gradients. The difficulty 
involved is only due to the discrete aspect of digital 
images. Computing normal flow in images is as dif- 
ficult as detecting edges. The input to the 3D motion 
estimation algorithm introduced here is a normal flow 
field, even though it appears to contain less information 
than file optic flow field. Another reason for the sen- 
sitivity of most existing motion estimation techniques 
stems from the instability of the computations relating 
2-D image measurements to 3-D motion and scene pa- 
rameters. Especially, since most methods only employ 
local image information, a confusion between transla- 
tion and rotation occurs. For example, in an area near 
the y-axis of the image plane, 3D rotation around the 
X-axis produces a flow field similar to the one of trans- 
lation along the Y-axis (Adiv 1985). 

Due to the aforementioned sensitivity issues, the fact 
that image measurements (also normal flow measure- 
ments) cannot be perfect and the fact that only the 
global use of data has the potential of leading to stable 
techniques has to be considered in the development of 
a robust algorithm. The problem is to estimate the mo- 
tion parameters that describe the rotation and the direc- 
tion of translation. In the chosen approach, we first em- 
ploy only qualitative information to compute the direc- 
tion of the rotation axis and the direction of translation. 
Motion rigidity introduces a number of constraints on 
the normal flow values. These constraints take the form 
of particular patterns in the image plane. In other 
words, for given positions of the translational and ro- 
tational axes, the normal flow values form certain pat- 
terns. The technique searches for these patterns. It uses 
data from different parts of the image plane and consid- 
ers only the sign of the normal flow. For this reason the 
method for deriving the direction of the translation and 
rotation axes is of a qualitative and global character and 
can handle a considerable amount of error in the input. 
After having found the axis of rotation and the direc- 
tion of translation further constraints are considered, 
and the complete set of motion parameters is obtained. 

Previous qualitative approaches to 3D motion es- 
timation are along the ideas suggested by Prazdny 
(1981), concentrating either on pure translation (Jain 
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1983) or general motion with restricted rotation 
(Burger and Bhanu 1990), where a global decom- 
position into rotation and translation is attempted by 
utilizing various experimentally inspired error norms. 
Another interesting qualitative approach (Verri and 
Poggio 1989; Verri, Straforini and Tone 1992) is mo- 
tivated by a mathematical analysis in which first order 
spatial properties of the optical flow, such as singular 
points, are shown to be features that could be used in 
visual motion analysis. 

Methods of estimating 3D-motion from only the nor- 
mal flow field without going through the intermedi- 
ate stage of computing optical flow have appeared in 
(Aloimonos and Brown 1984; Horn and Wetdon 1987; 
Negahdaripour 1986). In (Aloimonos and Brown 1984) 
the case of purely rotational motion was studied, and 
linear equations relating the rotation parameters to the 
normal flow were derived. A similar result was re- 
ported by Horn and Weldon (1987), who presented 
several methods for the problem of motion and struc- 
ture computation in addition to the purely rotational 
case, for only translation, for known rotation, and for 
known structure. The constraint of positive depth was 
used by Negahdaripour (1986) to estimate the focus of 
expansion for purely translational motion. In (White 
and Weldon 1988) translation and rotation were esti- 
mated for an observer rotating around the direction of 
translation, and in (Fermfiller and Aloimonos 1992) 
the activity of dynamic tracking is used to compute the 
translational direction of a rigidly moving object. 

The organization of this paper is as follows: In 
Section 2 we describe the geometry relating normal 
flow to three-dimensional motion. Then, we explain 
how to exploit these relations to develop a qualitative 
technique that searches for particular pattern s of normal 
flow vectors in the image. The result of this search is a 
set of possible solutions for the direction of translation 
and the axis of rotation. Section 3 is devoted to the 
use of additional constraints to compute the value of 
the rotation and to further narrow down the possible 
space of solutions. If there is only one solution, the 
technique will find it uniquely. Section 4 is devoted 
to experimental results and the paper concludes with a 
discussion and outline of future work. 

2 Geometric Constraints 

To gain an insight into the problem and the difficulties 
involved in it we start with a brief summary of the equa- 
tions relating the 3D-scene to the image measurements. 

Y 

Fig. 1. Imaging geometry and motion representation. 

2.1 Formalization of  the Problem 

The motion equations for a monocular observer mov- 
ing in a static environment are defined by the following 
physical constraints: We assume that the coordinate 
system (X, Y, Z) is fixed to the observer with the ori- 
gin 0 being the nodal point of the camera. If we denote 
by (U, V, W) the translational and by (or, t ,  F) the ro- 
tational motion of the observer relative to the scene, 
then the velocity components of any point P (X, Y, Z) 
in the image will be 

2 = - u - f i z + z Y  
= - V  - y X  + ~ Z  

2 = - w  - , ~ z  + ¢~x (1) 

As image formation model we use perspective pro- 
jection on the plane. The image plane is parallel to the 
XY-plane and the viewing direction is along the posi- 
tive Z axis (see Fig. 1). Under this projection the image 
position p(x, y) of a 3D point P(X,  Y, Z) is defined 
through the relation 

The constant f denotes the focal length of the imag- 
ing system. The equations relating the velocity (u, v) 
of an image point p to the 3D velocity can be derived 
by differentiating (1) and substituting from (2): 

( - -Uf  + xW) (x_; ) 
+ ot f ~  -- fl + f + y y u - -  Z 

( - - V f + y W ) ( Y  2 ) 
v - -  Z +or ---f- + f -- f i T  -- Fx (3) 

The number of motion parameters that a monoc- 
ular observer is able to compute under perspective 
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projection is limited to five: the three rotational pa- 
rameters and the direction of translation. We therefore 
introduce coordinates for the direction of translation 
(xo, Yo) = (Uf/W, Vf/W), and rewrite the righthand 
side of Eq. (3) as sums of translational and rotational 
components. 

U ~ Utrans -I- Urot 

= ( - x 0 + x ) ~ - + c ~  - f i  - 7 + f  + ) / y  

V ~ Vtrans "1- Urot 

= ( - y o + y ) ~ - + o l  --f-+ f - f i T - y x  (4) 

Since we can only compute the normal flow, the pro- 
jection of the optical flow on the gradient direction 
(nx, ny), only one constraint on the actual flow can be 
derived at any given point. The value u~ of the normal 
flow vector along the gradient direction is given by 

Un = Unx if- Pny 
W xy 

. . =  ( -x0+x)7+~--  f- 

- f i ( f  + f ) +  gy)nx 

+ ( -y0  + y )~ -  + o~ + f  

- - ~ f - - y X ) n y  (5)  

This equation demonstrates the difficulties of motion 
computation. A monocular observer unable to measure 
depth is confronted with a motion field of five unknown 
motion parameters and one scaled depth component 
(W/Z) at every point. Since there is only one con- 
straint at each point and since we do not want to make 
assumptions about depth, there is no straightforward 
way to compute the motion parameters analytically. 

2.2 Motion Field Interpretation 

A motion field is composed of a translational and a 
rotational component. Only the first of these is depen- 
dent on the distance from the observer. Therefore it 
seems reasonable to look for a way of determining the 
motion components by disregarding the depth compo- 
nents. The motion under consideration is rigid. Every 
point in 3D moves relative to the observer along a con- 
strained trajectory. The rigidity constraint also imposes 
restrictions on the motion field in the image plane and 

Fig. 2. Translational motion viewed under perspective projection: 
The observer is approaching the scene. 

these restrictions are reflected in the normal field as 
well. This is the motivation for investigating geomet- 
rical properties inherent in the normal flow field. The 
motion estimation problem then amounts to resolving 
the normal flow field into its rotational and its transla- 
tional component. 

If the observer undergoes only translational motion, 
all points in the 3D scene move along parallel lines. 
Translational motion viewed under perspective results 
in a motion field in the image plane, in which every 
point moves along a line that passes through a vanishing 
point. This point is the intersection of the image plane 
with the translational trajectory passing through the 
nodal point. Its image coordinates are x = U f~ W and 
y = V f~ W; the flow there has value zero. If the sensor 
is approaching the scene all the flow vectors emanate 
from the vanishing point, which is then called the Focus 
of Expansion (FOE) (Fig. 2). Otherwise the vectors 
point toward it, in which case we speak of the Focus 
of Contraction (FOC). The direction of every vector is 
determined by the location of the vanishing point; the 
lengths of the vectors depend on the 3D positions of the 
points in the scene. The vanishing point also constrains 
the direction of the normal flow vector at every point; 
it can only be in the half plane containing the optical 
flow vector. 

In the case of purely rotational motion every point in 
3D moves along a circle in a plane perpendicular to the 
axis of rotation. The perspective image of this circular 
path is the intersection of the image plane with the cone 
defined by the circle and the rotation axis (see Fig. 3). 
Depending on the relation between the aperture angle 
of the cone for a given image point and the angle that 
the image plane forms with the rotation axis, different 
second order curves are obtained for the intersection: 
ellipses, hyperbolas, parabolas, and even circles when 
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Fig. 3. The intersection of the image plane with the cone (deter- 
mined by the circular path in 3D and the rotation axis) defines the 
projection of rotational motion on the image plane. 

the rotation axis and the optical axis coincide. The 
specific conic sections due to rotational motion are de- 
fined by the axis of rotation. The rotation axis given 
by the two parameters (z)  and @), defines the family 

M a  t~. (F '  F '  x, y) of conic sections: 

M ( ~ , ~ ; x , y )  

Q Ol2 ~2 
= - - x  2 2xy°Sfl__ + 2 x f  °l V2 -Jr -t- y2~, 2 

7 Y  V g 

+ 2yffl__+y f 2 ) / ( x 2 + y 2  + f2)  

= C with C in  0 . . . . .  ! + ~ - 2 +  (6) 

Specifically, for a rotation around the Z-axis the sec- 
ond order curves are circles with center 0; we call 
them y-circles (Fig. 4a). If  the rotation axis is the 
X- or Y-axis the conic sections are hyperbolas whose 
axes coincide with the coordinate axes of the image 
plane. For the case of rotation around the X-axis the 

hyperbolas' major axis is the x-axis and they are called 
oe-hyperbolas (Fig. 4b). For rotation around the Y-axis 
the major axis is the y-axis and we call the conic sec- 
tions fl-hyperbolas (Fig. 4c), 

2.3 Selection of Values 

A motion vector consists of a rotational component 
which can be parametrized by three unknowns and a 
translational vector which is everywhere directed away 
from (or towards) a point. However, the estimates we 
can compute at every point are only projections of 
the motion vector on the gradient direction.A general 
method of breaking up the normal flow vector at every 
point into its components does not seem to be possi- 
ble, but there is a way of separating the components for 
vectors in certain directions. 

The value of the normal flow at a point is the scalar 
product of the flow vector and the unit vector in the 
gradient direction. The right hand side of Eq. (5) can 
be written as a sum of scalar products by separating 
the translational components from the single rotational 
components around each of the coordinate axes: 

W 
un = --~((-Xo + x), (-Yo + y))(nx, ny) 

-Jr'Ot(7,(Y----~-t- f))(nx,ny) 

q- y(y, --x)(rtx, ny) (7)  

If  two vectors are perpendicular to each other, their 
scalar product is zero. Thus, for normal flow vectors 
in particular directions one or more of the motion com- 
ponents may vanish. In particular, all the normal flow 
vector that form right angles with the y-circles do not 

J 

4a 4b 4c 

Fig. 4. Rotation around the Z-, X- or Y-axis gives rise in the image plane to v-circles (a), a-hyperbolas (b), or fl-hyperbolas (c). 
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contain a component due to rotation around the Z-axis. 
Similarly, there is no motion component due to rotation 
around the X-axis for the normal flow vectors perpen- 
dicular to the a-hyperbolas, and no component due to 
rotation around the Y-axis for vectors perpendicular 
to the t-hyperbolas. The motion estimation problem 
becomes easier when analyzing only the normal flow 
vectors perpendicular to one of these families of conic 
sections. It is reduced by one parameter for these sub- 
sets of the normal flow vectors. 

We call these three subsets of the normal flow vectors 
the a-,/~-, and y-vectors. It is convenient to agree upon 
conventions for the vectors' orientations. A ~,-vector 
at point (x, y) is said to have positive orientation if it 
is pointing in the direction (x, y); otherwise, its ori- 
entation is said to be negative. Similarly, we call an 
a-vector (or a t-vector) originating from a point (x, y) 
positive if it points in the direction ( _ ( f 2  + y2), xy)  
(or (xy, _ ( f 2  + x2))) (see Fig. 5). 

2.4 Properties of  the Subsets 

Let us first concentrate on the ~/-vectors. These vectors 
do not contain a component due to rotation around the 
Z-axis. Along the positive direction, the two remaining 
rotational components contribute 

Vrot (r, qb) = --et(r2/f  + f )  sin ~ + f l ( r2 / f  + f )  cos ~b, 

where r is the distance from the image center and the 
angle ~b is measured from the x-axis. Thus, the ro- 
tational component of the normal flow along a vector 
pointing away from the image center can be described 
by a trigonometric function with amplitude max(a, 13) 
and period 2zr. Along the line which passes through 
the image center and makes an angle ~b = arctan(/3/a) 
with the x-axis the values are zero. This line divides 
the plane into two halves. In one half the vectors point 
in the positive direction, and in the other half they point 

in the negative direction; in the future we simply refer 
to them as positive and negative vectors (Fig. 6a). 

The translational component of the motion field is 
characterized by the location of the FOE or FOC in 
the image plane. In (Fermtiller and Aloimonos 1992) a 
qualitative method is described which can be applied to 
quickly distinguish whether an object is coming closer 
or moving away. This allows us to restrict our de- 
scription to the approaching case; the extension to the 
opposite case is obvious. 

The y-vectors lie on lines passing through the image 
center and the optical flow values due to translation 
lie on lines passing through the FOE. These two lines 
are at right angles for all points on a circle which has 
the FOE and the image center as diametrical opposite 
points. This circle given as 

k(xo, yo; x, y) = x -  + y - - -  

defines the geometric locus of all points on the y-circles 
where the 7/vectors' translational components vanish. 
Thus, the diameter of this circle is the line segment 
connecting the image center and the FOE. At all points 
inside this circle the two lines enclose an angle greater 
than 90 ° and the normal flow along the v-vector there- 
fore has a negative value. The normal flow values out- 
side the circle are positive (Fig. 6b). 

In order to investigate the constraints associated with 
a general motion, the geometrical relations derived 
from rotation and from translation have to be combined. 
A circle separating the plane into positive and negative 
values and a line separating the plane into two half- 
planes of opposite sign always intersect (in two points 
or one point in case the line is tangential to the circle), 
because both the line and the circle pass through the 
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Fig. 6. (a) The y-vectors due to rotation separate th e image plane 
in a halfplane of positive values and a halfplane of negative values. 
(b) The ;e-vectors due to translation are negative, if they lie within 
the circle defined by the FOE and the image center and are positive 
at all other locations. (c) A general rigid motion defines an area of 
positive ?'-vectors and an area of negative ;e-vectors. The rest of the 
image plane is not considered. 

origin. This splits the plane into areas of only positive, 
of only negative y-vectors, and into areas in which the 

rotational and translational flows have opposite signs. 
In the latter areas, unless we make depth assumptions, 
no information is derivable (Fig. 6c). 

We thus obtain the following geometrical result for 
the case of  general motion. Points in the image plane 
at which the gradient direction is perpendicular to cir- 
cles around the image center can be separated into two 
classes. For a given FOE, and for a line through the 
image center which represents the quotient of  two of  
the three rotational parameters, there are two geometri- 
cally defined areas in the plane, one containing positive 
and one containing negative values. We call this struc- 
ture on the )/-values the y-pattern. It depends on the 
three parameters xo, Yo and 

OC ° 

Similar relations can be derived when eliminating 
the motion components due to rotation around the X- 
and Y-axes. 

The or- and t-vectors  due to rotation are also sepa- 
rable into positive and negative vectors. In both cases 
the locus of  zero normal flow which separates the two 
classes is a line. For the a-hyperbolas the line is paral- 
lel to the x-axis and is defined by the equation y = L/i 
(Fig. 7a); for the/f-hyperbolas it is parallel to the y-axis 
and is defined by x = ~f (see Fig. 7b). 

Y 

The translational components of  the ~- and/3-vectors 
are separated by hyperbolas. The ot-vectors, which are 
perpendicular to lines through the FOE, and which 
therefore have zero normal flow lie on a hyperbola of  
the form 

f (xo, Y0; x, y) = xoy  2 - xyyo  - x f  2 + x o f  2 = 0 

When f ( x o ,  yo) > 0, the normal flow values are pos- 
itive; in the other part of  the plane they are negative 
(Fig. 7c). Symmetrical relations hold for the/3-vectors. 
The curve of  zero normal flow is defined by 

g(xo,  Yo; x, y) = x2yo - xoxy  - y f 2  + y o f 2  = 0 

and in areas of positive g(xo, Yo) the/3-vectors are pos- 
itive (see Fig. 7d). 

The superposition of  translational and rotational val- 
ues again defines patterns in the plane each of  which 
consists of  a negative and a positive area. These pat- 
terns, called or- and t-patterns, are uniquely described 
by three parameters: Xo and Yo, the coordinates of  the 
FOE and the quotients ~ (and ~) (Figs. 7e and 7f). 

3 The  M e t h o d  

The estimation of motion for a rigid moving observer 
is performed by four modules. The strategy involves 
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(e) 

Fig. 7. (a) The a-vectors due to rotation are separated into positive and negative values by a straight line parallel to the x-axis. (b) The r-vectors 
due to rotation are separated by a straight line parallel to the y-axis. (c) (d) Hyperbolas separate the a- and/3-vectors due to translation into 
areas of positive and negative values. (e) (f) c~- and r-patterns for general rigid motion. 

checking the constraints that a given solution would im- 
pose on the normal flow field and in this way discarding 
impossible  solutions. From the first to the fourth mod- 
ule the constraints become more restrictive; hence the 
number of  possible solutions computed by each mod- 
ule decreases. In the first module patterns are fitted to 
subsets of  the normal flow field to search for the set 
$1 of  possible solutions for the direction of  translation 

(FOE) and the direction of  the axis of  rotation. The 
number of these candidate solutions is reduced to a set 
$2 in the second module by fitting another pattern to se- 
lected normal flow vectors which are not dependent  on 
rotation. These pattern fitting processes use the input 
in a qualitative way; since only the sign of  the normal 
flow is employed. 1 In the third module the third ro- 
tational parameter is computed from the normal flow 



vectors that do not contain translational components 
and the space of solutions is further narrowed to a set 
$3. Finally, the fourth module eliminates all impos- 
sible solutions by checking the validity of the motion 
parameters at every point and gives as output the set $4. 

3.t Pattern Fitting: Search in 3D Parameter Spaces 

The geometrical constraints developed in Section 3 are 
used in a search process to estimate the directions of the 
translation and the rotational axis. Finding these two 
directions is a four-dimensional problem, but through 
selection of values (the or-, ,8- and v-vectors) and use 
of geometrical constraints the problem is reduced in di- 
mensionality. With each subset of the normal flow vec- 
tors is associated a three-dimensional parameter space 
that spans the possible locations of the FOE and of a line 
defined by the quotient of two of" the three rotational 
parameters. Instead of searching a four-dimensional 
space, three three-dimensional subspaces are searched 
for the solution. 

The search in the three-dimensional subspaces is ac- 
complished by checking the patterns which the sub- 
spaces' parameter triples define on selected values of 
the normal flow field. The ol-patterns are fitted to the 
oe-vectors; this provides possible solutions for the co- 
ordinates of the FOE: x0, Y0, and the quotient £. Simi- F 
larly, the fitting of the ,8- or g-patterns yields solutions 
tbr Xo, Yo and ~ or ~. The objective is to find the four 
parameters defining the directions of the translational 
and rotational axes which give rise to three success- 
fully fitted patterns. Therefore the three subspaces' 
patterns are combined and the parameter quadruples 
which define possible solutions are determined. Since 
only subsets of the normal flow values are considered 
in the fitting process, the fitting does not uniquely de- 
fine the motion, but just constitutes a necessary condi- 
tion. Usually a number of parameter quadruples will 
be {Xo, Yo, or~V, ,8/?,} that are selected as candidate so- 
lutions through pattern fitting. 

In the general case none of the three translational 
and three rotational parameters is equal to zero. Then 
the FOE and the rotation center (the intersection of 
the rotation axis with the image plane) lie in a bounded 
area of the image plane and the three three-dimensional 
subspaces are also bounded. 

The method can also deal with cases of one or more 
parameters of value zero but the search has to be ex- 
tended by using additional patterns. If there is only 
translation then the or-/3- and v-patterns split the im- 
age plane into the insides and outsides of circles or 
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hyperbolas which are of opposite sign. In cases of 
only rotation the pattern consists of an area of negative 
and an area of positive values separated by a line of 
zero rotational normal flow. If one or both of the trans- 
lational parameters U and V are zero, then the FOE 
lies on the x- or y-axis; this case does not have to be 
considered separately. A translational value W of zero 
causes a degeneration of the v-pattern's circle into a 
halfplane and of the or- and ,8-patterns' hyperbolas into 
simpler hyperbolas of the form 

f (oo, oo; x, y) = y2 _ YOxy + f2  = 0 
Xo 

XO f 2  g(oo, c~; x, y) = x 2 - -  - - x y  -Jr = 0 
Yo 

where x_a is the direction of translation in the plane par- 
yo 

allel to the image plane. If one or two of the rotational 
parameters vanish, this will result for the v-pattern ei- 
ther in an nonexistent line of rotation or in a line which 
is parallel to the x- or y-axis. For the el- and ,8-patterns 
the rotation lines pass through the center or lie at infin- 
ity. For example, in case of zero c~- and v-values, the 
v-pattern's rotation line is the y-axis and both the et- 
and/?-patterns' rotation lines are at infinity. 

In order to make the method work for any rigid mo- 
tion, the above described patterns have to be searched 
for in addition to the patterns defined by the three three- 
dimensional subspaces. 

3.2 Partial Derotation 

Suppose, we want to test whether a quadruple (xo, Y0, 
~, }) given by the first module is a correct solution. 

Since we know the direction of the rotation axis (~, ~), 
2 "  

we can compute the field lines of the rotational vector 
field (i.e. the lines which have the property that at each 
point the rotational flow is tangential). As described in 
Section 2.2 the second order curves (7 '  M '~ ¢; x, y) are 
given through Eq. (6). The normal flow vectors perpen- 

a f3 dicular to M(~, ~; x, y) are only due to translation. We 
call these normal flow vectors the "rotation-axis vec- 
tors" and define a vector emanating from a point (x, y) 
to be of positive orientation if it is pointing in the direc- 
tion ( (_~(yZ + f2) q_ £.xy + x  f ) ,  (~xy  - ~(x 2 + f2) 
+y f ) )  (see Fig. 8). The signs of the'rotatio~a-axis vec- 
tors are defined by the location of the FOE. 

As in the case of the ee-,/3- and v-vectors a second 
order curve separates the plane into an area of posi- 
tive and an area of negative rotation-axis vectors and 
therefore defines another pattern in the image plane, the 
"rotation-axis pattern" pattern (see Fig. 9). The curve 
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Fig. 8. F i e l d  l i n e s  o f  a r o t a t i o n a l  v e c t o r  f i e l d  a n d  p o s i t i v e  r o t a t i o n  

a x i s  v e c t o r s .  

Fig. 9. 
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R o t a t i o n - a x i s  p a t t e r n .  

h(xo, Yo, z, £) which contains rotation-axis vectors of 
Y Y .  

value zero is gwen by the equatxon 

h(xo, Yo,~,~) 

= x2(f + -~Yo) + YZ(f + -~Xo) 

--xy(-~yO+~XO)--xf(-~f --kXO) 

--Yf(-~f +Yo) + fZ(-~XO+ -~YO) =0 
(8) 

By considering only the rotation-axis vectors, we 
achieve derotation for a subset of the normal flow 
vectors without actually subtracting rotational values. 
Thus a fourth set of normal flow vectors can be used 
for further reducing the set of candidate solutions for 

the axes of translation and rotation computed in the 
first module. For every quadruple of the set $1 we find 
the rotation-axis vectors defined bv (~-, £) and test if 
each vector s sign is consistent with the sign defined 
by the rotation-axis pattern due to (Xo, Y0, ,~, 6). All 
quadruples that lead to a successful fitting c)f ~ e  cor- 
responding rotation-axis pattern are kept as possible 
solutions in the set $2. 

3.3 Detranslation 
Proper selection of normal flow vectors also makes it 
possible to eliminate the normal flow's translational 
components. If the location of the FOE is given the 
directions of the translational motion components are 
also known. The optical flow vectors lie on lines pass- 
ing through the FOE. The normal flow vectors per- 
pendicular to these lines do not contain translational 
components; thus they have only rotational compo- 
nents. This can be seen from Eq. (7). If the selected 
gradient direction at apoint (x, y) is  ((Yo - y), ( -x0  + 
x)) the scalar product of the translational motion com- 
ponent and a vector in the gradient direction is zero. 
In the third module, this method of eliminating the 
translational component, in the future referred to as 
"detranslation", is used to compute the third rotational 
component and to further reduce the possible number 
of solutions. 

For each of the possible solutions computed in the 
second module the normal flow vectors perpendicular 
to the lines passing through the FOE have to be tested 
to determine if they are really only due to rotation (see 
Fig. 10). This results in solving an overdetermined 
system of linear equations. Since two of the rotational 
parameters are already computed, there is only one un- 
known, the value y. Every point supplies an equation 
of the form 

Y "--~Un/(~(Tnx']-  (Y'~ -~-f)nY ) 

+ (ynx - Xny)) (9) 

If the chosen normal flow vectors are due only to ro- 
tation then the solution to the overdetermined system 
gives the y value. In a practical application a threshold 
has to be chosen to discriminate between possible and 
impossible solutions. The value of the residual is used 
to confirm the presumption that the selected normal 
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/ 

2"- 

Fig. 10. Normal flow vectors perpendicular to lines passing through 
the FOE are only due to rotation, 

flow values are purely rotational. Usually "detrans- 
lation" will not result in only one solution, but will 
provide a set $3 of possible parameter quintuples. 

3.4 Complete Derotation 

In the fourth module the elements of the set $3 are ex- 
amined for further constraints. The modules described 
so far considered only subsets of the normal flow vec- 
tors. In order to eliminate all motion parameters which 
are not consistent with the given normal flow field, ev- 
ery normal flow vector has to be checked. 

This check is performed using a "derotation" tech- 
nique. For every parameter quintuple of $4 a possible 
FOE and a rotation is defined. The three rotational 
parameters are used to derotate the normal flow vec- 
tors by subtracting the rotational component. At every 
point the flow vector (Uder, Uder) is computed: 

btder ~ U n r t x  - -  Urot/~ x 

t)de r = U n n y  - -  Vrot/gy (10) 

If  the parameter quintuple defines the correct solu- 
tion, the remaining normal flow is purely translational. 
Thus the corresponding optic flow field consists of vec- 
tors that all point away from one point, the FOE. Since 
the direction of optical flow for a given FOE is known, 
the possible directions of the normal flow vectors can 
be determined. The normal flow vector at every point 
is confined to lie in a half plane (see Fig. 11). The tech- 
nique checks all points for this property and eliminates 
solutions that cannot give rise to the given normal flow 
field. 

'll 
s ~S 

s 

Fig. 11. Normal flow vectors due to translation are constrained to 
lie in halfplanes. 

3.5 The Algorithm 

In this section we summarize the complete algorithm 
in form of a block diagram (see the next page). The 
sets of candidate solutions which are determined in the 
four modules are called $1, $2, $3, and $4. To denote 
single solutions or single parameters, subscripts are 
used: St,i, S2,i, Xo,i, Yo,i, etc. The input to the algorithm 
is a normal flow field and the outputs are all possible 
solutions (direction of translation and rotation) which 
could give rise to this normal flow field. 

The complexity of the algorithm is O(n 3) in the 
size of the image because of the complexity of pattern 
matching. As explained later, in the implementation 
search is carried out in a straightforward uninformed 
manner. However, one could envision a massively 
parallel implementation with a polynomial number of 
processors that reduces the complexity of the algorithm 
to a constant time. 

It can easily be shown that normal flow fields, in 
general, are not unique. In fact, for any two flow fields 
a common normal flow field can be constructed. Con- 
sider two different normal flow fields that arise from 
different scenes and different observer motions. At ev- 
ery point in the image plane there exist two motion 
vectors. A normal flow vector, which is defined as the 
projection of a flow vector, is constrained to lie on a 
circle. The intersection of the two circles defines a 
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Normal flow field 

Pattern matching: 
Select c~-,/3- and ?,-vectors 
Fit a-patterns to a-vectors,/3-patterns to/3-vectors and y-patterns to y-vectors. 
Find solutions to the direction of translation and axis of rotation that give rise 
to successful fitted or-,/3- and y-patterns. 

I 
S 1 (set of quadruples {Xo, Y0, ~, £e}) 

Partial derotation: 
For every Sl,i select rotation-axis vectors defined by (~i, ~i) 

Check if the rotation-axis pattern defined by (xo,i, yo,i, ~i' ~i ) 
fits the rotation vectors. 

I 
Sz (set of quadruples {xo, Yo, ~, ~ 1) 

Detranslation: 
For every S2,i select the normal flow vectors perpendicular to the lines through Xo,i, Yo,i 
Check if system of linear equations is consistent with rotation and compute third 
rotational component 

I 
$3 (set of quintuples {xo, Yo, cl, t ,  ?,}) 

Complete derotation: 
s4 = {} 
Repeat until $3 is empty 

For every S3.i derotate by {c~i,/3i Vi}- 
If all derotated normal flow vectors lie within the allowed halfplane 
defined by { xo, i, Yo, i } keep quintuple as solution 
$4 = & u S3,~ 
s3 =$3-$3,~ 

$4 (set of quintuple(s) {!), Yo, c~,/3, g}) 
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Fig. 12. The intersection of  two circles defines the possible location 

of the normal  flow vector which corresponds to two different optical 

flow vectors, 

normal flow vector which is compatible with both mo- 
tions (Fig. I2). 

The algorithm determines the complete set of solu- 
tions. If for a given normal flow field the algorithm 
finds more than one solution, then from that normal 
flow field alone the 3D motion cannot be determined 
uniquely. In this case one can use matching of promi- 
nent features to eliminate the incorrect motion param- 
eters, in the following manner: 

If the quintuple (x0,i, Yo,i, Ogi, ~i, Yi) for i = 1 --- n 
is a candidate solution from the set of possible so- 
lutions, then from these parameters and the normal 
flow values the optical flow values can be computed. 
If (u, v) is the optical flow value at point (x, y) and 
Utrans, 1)trans, Urot, Urot the translational and rotational 
parts of the flow respectively, the following linear 
equations determine the optical flow (u, v) completely. 

b/ - -  b/ro t Utrans 

V - -  1)rot Vtrans 

Un = Unx -k- Vny (11) 

The matching of prominent features can then be used 
to verify the correctness of the optical flow and thus 
whether (Xo,i, Yo, i, oli, fii, Yi) should be rejected. 

4 Experiments 

In a series of experiments the four modules of the ego- 
motion recovery strategy were tested. In the imple- 
mentation of these modules the following approach was 
taken: The elimination of impossible parameters from 

the space of solutions involves discrimination on the 
basis of quantitative values. This was realized in the 
following way: Normal flow values in certain direc- 
tions are selected, if they are within a tolerance inter- 
val. In the pattern matching-, partial derotation-, and 
complete derotation-modules pattern fitting is basically 
implemented as a template matching, where the qual- 
ity of the fitting, the "success rate", is measured by the 
number of values with correct signs normalized by the 
total number of selected values. The amount of rotation 
in the detranslation module is computed as an average 
of the values derived at every point and the discrimina- 
tion between accepted and rejected motion parameters 
is based on the value of the standard deviation. 

In the first (pattern matching) and second (partial 
derotation) module no quantitative use of values is 
made, since only the sign of the normal flow is consid- 
ered. This limited use of data makes the modules very 
robust, and the correct solutions for the axes of transla- 
tion and rotation are usually found even in the presence 
of high amounts of noise. To give some quantitative 
justification of this we define the error in the normal 
flow at a point as a percentage of the correct vector's 
length. Since the sign of the vector is not affected as 
long as the error does not exceed the correct vector in 
value, the "pattern fitting" will find the correct solution 
in all cases of up to 100% error. 

Several experiments have been performed on syn- 
thetic data. For different 3D motion parameters normal 
flow fields were generated; the depth value (in an inter- 
val) and the gradient direction were chosen randomly. 
In all experiments on noiseless data the correct solution 
was found as the best one. Figure 13 shows the opti- 
cal flow field and the normal flow field for one of the 
generated data sets: The image size is 100 x 100, the 
focal length is 150, the image coordinates of the FOE 
are ( - 5 ,  +30), and the relationship of the rotational 
components is oe:fi:y = 10:11:150. In Fig. 14 the fit- 
ting of the circle and the hyperbolas to the ce-, fi-, and 
y-vectors and the rotation-axis vectors is displayed. 
The tolerance interval Ibr the direction of normal flow 
vectors was taken to be 10 °. Points with positive nor- 
mal flow values are rendered in a light color and points 
with negative values are dark. Perturbation of the nor- 
mal flow vectors' lengths by up to 50% did not prevent 
the method from finding the correct solution. 

Figures 15 and 16 show in a graphical form the inter- 
mediate and final results of the algorithm demonstrat- 
ing how uncertainty decreases through the successive 
application of the four modules. Since not all five di- 
mensions of the algorithm's output can be displayed, 
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Fig. 13. Flow fields of synthetic data. 
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only values for the FOE are presented. The figures 
show two different areas of the plane where the coor- 
dinates of the FOE have been searched for, with the 
success rate in the three modules where pattern match- 
ing is performed displayed as a grey value--white de- 
noting the highest and black the lowest value. For the 
case of detranslation, the standard deviation derived 
from the computation of the third rotational compo- 
nent is rendered with the smallest value displayed in the 
lightest grey shade. (Although the whole half sphere 
of all possible directions has been searched, for the 
sake of clarity of the pictorial description only a part 
of the search space on the plane is displayed). For ev- 
ery candidate location of the FOE the rotation leading 
to the highest success rate (smallest standard devia- 
tion) has been chosen to derive the grey value at the 
location considered. In Figs. 15a, b,c, and d the re- 
suits of the synthetic experiment described above are 
displayed for a search area equal to the size of the 
image ( [ -50,  50] x [ -50 ,  +50]). Figure 15a shows 
the result of pattern fitting, 15b the result of partial 
derotation, 15c the result of detranslation, and finally 
Fig. 15d shows the result of total derotation and thus the 
output of the complete algorithm. In this presentation 
every fifth pixel is displayed. Figures 16a-d display re- 
sults for the same data, but in this case the search area 
is [ -155,  +145] x [ -120,  -180]  while the image is 

again of size [ -50 ,  50] x [ -50 ,  +50]. (The image is 
displayed as a black rectangle in Fig. 16d.) In this 
presentation every fifteenth pixel is displayed. 

As a first example of a real scene the NASA-Ames 
sequence 2 was chosen. The camera undergoes only 
translational motion; thus different amounts of rota- 
tion were added. For all points at which translational 
motion can be found the rotational normal flow is com- 
puted, and the new position of each pixel is evaluated. 
The "rotated" image is then generated by computing 
the new greylevels through bilinear interpolation. The 
images were convolved with a Gaussian of kernel size 
5 x 5 and standard deviation ~r = 1.4. The normal flow 
was computed by using 3 x 3 Sobel operators to esti- 
mate the spatial derivatives in the x- and y-directions 
and by subtracting the 3 x 3 box-filtered values of con- 
secutive images to estimate the temporal derivatives. 

When adding rotational normal flow on the order of a 
third to three times the amount of the translational flow, 
the exact solution was always found among the best 
fitted parameter sets. The solution could not clearly 
be derived as a unique point in the five-dimensional 
parameter space; rather we obtained a number of solu- 
tions that form a "fuzzy Nob" in the solution space (see 
Fig. 18). All solutions with success rates higher than 
99% were very close to the correct one with the FOE 
deviating by at most 6% of the focal length from the 
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Fig. 14. 
pattern. 

g 

(a), (b), (c): Positive and negative c~-, fl-, and F-vectors. (d), (e), (f) Fitting of a-,/~-, and F-pattems. (g): Fitting of  rotation axis 
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(c) 

Fig. 15. Synthetic data: Intermediate and final results of the algorithm displayed for a search are for the FOE equal to the size of the image. 
(a) Results after pattern matching. (b) Results after partial derotation. (c) Results after detranslation. (d) Final result. 

correct positions (x0, Yo). It should be explained here 
that the algorithm in its first two modules is a search 
procedure and it is carried out in a discrete manner. It 
searches for a quadruple (axis of  translation, axis of  ro- 
tation). Then, in the "detranslation" module, the com- 
plete rotation is computed quantitatively. As opposed 
to the previous steps, during this step small errors can 
occur. What is displayed in Fig. 18 is the projection 
of  the cluster of  solutions in the five-dimensional mo- 
tion space on the image plane. If  we chose the "suc- 
cess rate" threshold to be lower than 99%, all solu- 

tions would be connected. If  we chose it higher, only 
the cluster in the center would appear. In Fig. 17 the 
computed normal flow vectors and the fitting of  the 
or-,/3- and y-vectors for one of  the "rotated" images 
is shown. Areas of negative normal flow vectors are 
marked by horizontal lines and areas of  positive values 
with vertical lines. The ground truth for the FOE is 
( - 5  , -8 ) ,  the focal length is 599 pixels, and the ro- 
tation between the two image frames is o~ = 0.0006, 
/3 = 0.0006, and y = 0.004. The algorithm com- 
puted the solution exactly. Figure 19 shows, overlaid 



Qualitative Egomotion 23 

(c) 

Fig. 16. Synthetic data: Intermediate and final results of the algorithm displayed for a search area for the FOE three times the size of the image. 
(a) Results after pattern matching. (b) Results after partial derotation. (c) Results after detranslation. (d) Final result. 

on the original image in black, the curves and lines 
separating positive and negative ~-, fl-, and F-vectors. 
(Due to the large focal length the parts of the o~- and fl- 
hyperbolas which appear in the image plane are close 
to straight lines.) The curve separating the rotation- 
axis vectors is rendered in white. This is to visualize 
the fact that the intersection of  the second order curves 
gives the FOE, and the intersection of  the straight lines 
and the curve separating the rotation-axis vectors gives 
the point where the axis of  rotation pierces the im- 
age plane. 

A second series of  experiments was performed on 
a series of  images containing translation and rotation 
around the X- and Y-axes (table top scene). The cam- 
era translated along a straight line, while at the same 
time rotating around the X- and Y-axes. The param- 
eters of  the camera were as follows: focal length in 
X-direction: 1163 pixels, focal length in Y-direction: 
1316pixels, image size: 574x652,  center of theimage:  
(332, 305) (measuring from the bottom left corner). 

The algorithm was run on three different sequences. 
In all cases it computed the axes of  rotation and 
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Fig. 17. NASA scene: Normal flow field and fitting of c~-,/3-, and ?/-vectors. 

translation correctly, but due to the high value of the 
focal length a number of  other solutions (in the range 
=t=0.08 times the focal length away from the true solu- 
tion) had acceptable confidence. Furthermore, since 
the rotational components were very small with re- 
gard to the translational ones (the absolute values were 
five to ten times smaller) the amount of  rotation was 

not computed correctly in all cases. Figure 20 shows 
the scene. For one of  the settings the results are dis- 
played: the ground truth is F O E =  ( -129 ,  +146)  
(measured from the image center); oe = 0.000125663 
rad;/3 = 0.000251327 rad, y = 0.0 rad. Notice, be- 
cause y = 0, the lines separating the rotational compo- 
nents of the ~- and/%vectors lie in infinity and thus do 
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Fig. 18. NASA scene: The FOE's of all solutions with a success 
rate of 99% and higher are marked by black squares. The actual 
solution is at the center of the blob. 

k__ 

Fig. 19. NASA scene with overlaid curves and lines separating 
positive and negative a-,/5 -, and y-vectors and rotation-axis vectors. 
At the intersection of the second order curves is the FOE (at the 
center of the coke can). The intersection of the straight lines denotes 
the point where the rotation axis pierces the image plane (over the 
pullover). 

not appear in the image plane. Since the focal length 
is different in X- and Y-direction the circle in the y -  
pattern is distorted to an ellipse. For this case the algo- 
rithm computed the correct FOE and the correct ratio ~, 

Fig. 20. First image of series containing both translation ana rota- 
tion (table top scene). 

however the estimated value for the rotation was equal 
to 90 percent of the actual one. In Fig. 21 the positive 
and negative or-, t3-, and ?/-vectors and the correspond- 
ing patterns are displayed. For these experiments a 
tolerance interval of  6 ° has been allowed in the choice 
of  normal flow vectors for the or-,/%, and y-vectors. 
For the clarity of  the pictorial description, all the points 
corresponding to the chosen vectors were enlarged by a 
factor of  four. Figure 22 shows the rotation-axis pattern 
(partial derotation). Since the rotation is very small in 
relation to the translation, a smaller tolerance interval, 
namely only 3 ° was chosen. Figure 23 shows the com- 
puted normal flow field, and Fig. 24 shows the conic 
sections separating the translation vectors of  the ~-, fi-, 
?/-patterns and the rotation-axis pattern overlaid on the 
image. At the intersection of these curves lies the FOE. 

In Fig. 25a and b final and intermediate results of  
the algorithm's output for this scene are displayed. 
Figure 25a shows the results of  pattern fitting and 25b 
the final result of  total derotation. 

A final set of  experiments was performed imag- 
ing the same last scene (table top scene) but with 
translation along and rotation around all three axes. 
The ground truth is FOE = ( - 1 2 9 ,  +146)  (mea- 
sured from the image center); a = 0.000125663 
rad; fi = 0.000251327 rad, y = 0.001005304 lad, 
and thus the intersection point of  the rotation axis 
with the image plane is outside the image at (+145, 
+329).  The algorithm computed the correct solution 
for the axes of  translation and rotation, but the esti- 
mated value for the rotation was 105% of the actual 
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Fig. 21. 
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Table top scene: (a), (b), (c): Positive and negative t~-, fl-, and y-vectors. (d), (e), (f) Fitting o f  a- ,  fl-, and y-patterns. 

one. Figure 26a show the intermediate results for pat- 
tern fitting and the final results computed in the dero- 
tation module. Comparing Figs. 25a and 26, we ob- 
serve that in the absence of ),-rotation, the result of 
pattern fitting provided a much larger set of candidate 
solutions. 

5 Conclusions 

We have described several geometric relations that are 
characteristic of a normal flow field due to rigid motion. 
These relations were exploited to solve the problem of 
computing the 3D motion of an observer relative to a 
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Fig. 22. Table top scene: Positive and negative vectors containing 
only translation (et, t ,  0) and fitting of rotation-axis pattern. 

scene in a robust way. Robustness is achieved by using 
the data in a global and mostly qualitative manner. The 
algorithm is qualitative, because for estimation of the 
translational and rotational axes only the sign of the 
normal flow vectors is used; and it is global, because 
values in all parts of the image are considered. The 
a lgor i thm can be regarded as a search technique in a 
p a r a m e t e r  s p a c e ,  w h e r e  a p p r o p r i a t e  s e l e c t i o n  o f  no r -  

Fig. 24. Table top scene: Curves separating the translational com- 
ponents of the o~-,/3-, ~,-vectors and the rotation-axis vectors. At 
their intersection lies the FOE. 

real flow values is used in different ways to reduce the 
dimensionality of the motion estimation problem. In 
order to compute the axes of translation and rotation, 
three different subsets of the vector field are examined 
for patterns defined by only three of the five parameters. 
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Fig. 23. Normal flow field: Table top scene. 
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(a) 

Fig. 25. Table top scene: (a) Results after pattern matching. (b) Final result. 

(a) 

Fig. 26. Scene containing translation along and rotation around all three axes: (a) Results after pattern matching, (b) Final result. 

A fourth set of values, which does not contain any ro- 
tational components, can be used to further reduce the 
set of candidate solutions for the two axes. By select- 
ing values which are only due to rotation, the complete 
rotation is computed, and in the last phase of the algo- 
rithm every normal flow vector is tested for consistency 
with the computed motion parameters. 

Normal flow measurements alone do not always de- 
fine a unique 3D-motion interpretation. Our algorithm 
might be used as a front end tool in combination with 
other methods that use correspondence or optical flow. 
A study of uniqueness aspects of normal flow wilt be 
a very valuable theoretical contribution to this method 
and is part of our future research. Also, an interesting 
research problem would be the study of heuristics or 
other geometric constraints for pruning the search tree 
and reducing the complexity of the algorithm. 

N o t e s  

1~ If the image intensity pattern in the neighborhood of a point 
is such that it allows reliable computation of the sign of the 
projection of the flow on directions other than the image gradient, 
this additional information can be utilized in the pattern matching 
procedure (Fermtiller & Aloimonos, 1994). 

2. This is a calibrated motion sequence made public for the Work- 
shop on Visual Motion, 1991. 
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