The Fibre of the Prym Map in Genus Three*

Alessandro Verra

Dipartimento di Matematica, Università di Torino, via Principe Amedeo, 8, I-10123 Torino, Italy

1

If $\pi: \tilde{C} \to C$ is an étale double cover of a smooth curve of genus g and $\pi_*: J\tilde{C} \to JC$ is the induced morphism of jacobians one defines the Prym variety as the connected component of the identity in $\text{Ker}(\pi_*)$:

$$
P(\tilde{C}, C) = (\text{Ker}\,\pi_*)^0;
$$

 $\dim(P(\tilde{C}, C)) = q-1$ and $P(\tilde{C}, C)$ has a natural principal polarization $\mathcal{E} = \frac{1}{2}(P \cdot \theta)$, θ being the theta divisor on $J\tilde{C}$, [12, p. 342]. We denote by

 \mathcal{R}_a , \mathcal{A}_a

respectively the coarse moduli spaces for the pairs (\tilde{C}, C) and for principally polarized abelian varieties of dimension q ; then the morphism

 $P: \mathcal{R}_a \rightarrow \mathcal{A}_{a-1}$

which sends the class of (\tilde{C}, C) in the class of $P(\tilde{C}, C)$ is by definition the Prym map. P extends to a morphism \overline{P} : $\overline{\mathcal{R}}_q \to \mathcal{A}_{q-1}$; where $\overline{\mathcal{R}}_q$ contains \mathcal{R}_q as a dense open subset and is the moduli space for allowable double covers of stable genus g curves, [2], [8, Definition 2.1].

 \overline{P} is known to be generically injective for $g > 6$, [9], and dominant for $g = 6$, [8]. For $g = 5$ it is announced in [7] that the fibre of \overline{P} is a double cover of the Fano surface of the lines of a cubic threefold; while, for $g = 4$, it is known that the fibre of \overline{P} is a 3-dimensional Kummer variety, [16].

In this paper we study the (extended) Prym map:

$$
\bar{P}:\bar{\mathscr{R}}_3\to\mathscr{A}_2.
$$

It turns out that, in this case too, the fibre of \bar{P} is rich of geometry; our main result is the following:

Let \overline{S} be an abelian surface, s its moduli point, $\theta \subset \overline{S}$ a symmetric theta divisor; assume s general [i.e. $Aut(\theta) = \mathbb{Z}/2\mathbb{Z}$], then

* Research partially supported by grants of Italian Ministry of Public Instruction and the C.N.R.

(1) $\overline{P}^{-1}(s)$ is obtained from the Siegel modular quartic threefold V by a sequence of two blowing up's σ_1 and σ_2 . σ_1 : $\hat{V} \rightarrow V$ blows up V in a point v, while σ_2 : $\bar{P}^{-1}(s) \rightarrow \hat{V}$ is centered along a curve B isomorphic to θ /Aut(θ). The exceptional divisor of $\sigma_1 \cdot \sigma_2$ is the union of two surfaces \mathscr{I}_s and \mathscr{E}_s . The points of $\mathscr{I}_{s} = (\sigma_1 \cdot \sigma_2)^{-1}$ (v) correspond to double covers $\pi : C \to C$ such that C is hyperelliptic. $\mathscr{E}_s = \sigma_2^{-1}(B)$ is entirely contained in $\mathscr{R}_3 - \mathscr{R}_3$, its points correspond to allowable double covers π : $C \rightarrow C$ such that both C and C are elliptic tails, [7, (3) 2.3 and Sect. 3 (3.16)].

The Siegel modular quartic threefold $V \subset \mathbb{P}^4$ is considered by Van der Geer in [19]. In this paper the author shows that, via theta functions, V is biregular to \mathcal{A}_2^2 ; where \mathcal{A}_2^2 is the moduli space for principally polarized abelian surfaces endowed with a level two structure and \mathcal{A}_2^2 is a minimal compactification of it. Thus we can rephrase our result in this way:

(2) $\bar{P}^{-1}(s)$ is obtained from \mathcal{A}_2^2 by a sequence of two blowing up's σ_1 and σ_2 as above.

Since σ_1 has its center in a point $v \in \mathcal{A}_2^2$, we are also able to deduce from [19] that $f(v)=s$; $f: \mathcal{A}_2^2 \rightarrow \mathcal{A}_2$ being the forgetful map.

The proof of our theorem relies on the results in $[13, 15]$ and the classical geometry of Kummer surfaces, [4, 11]: If \tilde{C} is a stable curve in the linear system $|2\theta|$ then the quotient morphism $\pi: \tilde{C} \rightarrow \tilde{C}/\langle -1 \rangle$ is allowable and the associated Prym variety is \tilde{S} . Since $|2\theta| = \mathbb{P}^3$ this defines a rational map $\phi : \mathbb{P}^3 \to \overline{P}^{-1}(s)$ sending \tilde{C} in class of $(\tilde{C}, \tilde{C}/\langle -1 \rangle)$ in $\bar{\mathcal{R}}_3$. We describe the curve $T = {\{\tilde{C} \in |2\theta|}/{\tilde{C}}}$ is not stable which is the fundamental locus of ϕ (Sect. 2) and show that the complementary set of $\phi(\mathbb{P}^3 - T)$ in $\overline{P}^{-1}(s)$ contains exactly-the classes of pairs (\widetilde{C}, C) such that \widetilde{C} is hyperelliptic or both \tilde{C} and C are elliptic tails.

On the other hand the group G of the translation on \tilde{S} by elements of order 2 acts linearly on $|2\theta|$; We use the geometry of Kummer surfaces to show that ϕ is the restriction to $\mathbb{P}^3 - T$ of the quotient morphism $p : \mathbb{P}^3 \to \mathbb{P}^3/G$. By [4, Vol. III, p. 210], \mathbb{P}^3/G is biregular to the Siegel modular quartic threefold V, hence $\bar{P}^{-1}(s)$ is birational to V. To complete the description of $\overline{P}^{-1}(s)$ we show in Sect. 3 how to extend ϕ to a finite surjective morphism ϕ on a suitable birational model \tilde{P}^3 of \mathbb{P}^3 such that $\vec{P}^{-1}(s) = \phi(\vec{\mathbb{P}}^3) = \vec{\mathbb{P}}^3/G = (\sigma_1 \cdot \sigma_2)^{-1} (V).$

We work over the complex field. Nevertheless our result, as it is stated in (1) , seems to hold in any characteristic ± 2 .

Further Comments and Notations

Two allowable double covers $\pi_i: C_i \to C_i$, $(i=1,2)$, are said to be isomorphic iff there exists isomorphisms $\beta: C_1 \rightarrow C_2$ and $\beta: C_1 \rightarrow C_2$ such that $\beta \cdot \pi_1 = \pi_2 \cdot \beta_1$.

If π : $\mathcal{C} \rightarrow C$ is an allowable double cover [C, C] stands for its isomorphism class in \mathscr{R}_{g} . Conversely, $\forall [\tilde{C}, C] \in \mathscr{R}_{g}$, the corresponding double cover will be denoted by π .

We recall that to give $\pi : C \to C$ is equivalent to give a pair (C, η) where η is a non zero order two element in Pic(C), $[2, Lemma 3.2]$; if C is smooth these elements are $2^{2g}-1$.

If S is a principally polarized abelian variety, dim(S) = g, then [S] stands for its class in \mathscr{A}_{g} . $-1: S \rightarrow S$ is the involution sending p in $-p$; if $Z \subset S$ then $-Z$ is its image by -1 . Z is said to be symmetric if $Z = -Z$. We denote by θ a symmetric theta divisor on S and by S_n the set of the elements of order n on S.

If C is a curve *JC* stands for its jacobian, ω_c for the dualizing sheaf.

If V is a vector or projective space V^* denotes its dual.

2

Let \tilde{S} be a principally polarized abelian surface, s its class in \mathscr{A}_2 , $\theta \in \tilde{S}$ a symmetric theta divisor; the 3-dimensional linear system $|2\theta|$ will be denoted by

\mathbb{P}^3

In this section we construct a dominant rational map

$$
\phi : \mathbb{P}^3 \to \overline{P}^{-1}(s)
$$

and study its fundamental locus; $(P:\mathcal{R}_3\rightarrow\mathcal{A}_2)$ is the extended Prym map: see Definition 2.2). With this purpose, let us review some known facts about the geometry of Kummer and abelian surfaces:

Proposition 2.1. (a) *Every element* \tilde{C} of \mathbb{P}^3 *is a symmetric curve of arithmetic genus* 5. \mathbb{P}^3 is a base point free linear system and its general element is a smooth, irreducible *curve.*

Let $g: \tilde{S} \rightarrow \mathbb{P}^{3}$ *be the morphism associated to* $|\tilde{C}|$ *and* $R = g(\tilde{S})$ *, then:*

(b) *Either* $deg(a) = 2$ *and R* is the Kummer quartic surface of \tilde{S} or $deg(a) = 4$ *and R is a smooth quadric.*

(c) $\text{Deg}(g) = 2 \Leftrightarrow \tilde{S} = J\theta$, where θ is a smooth, irreducible genus 2 curve. $\text{Deg}(g)$ $=4\Leftrightarrow \tilde{S}=E\times F$, with E, F elliptic curves, $\theta = \{e\} \times F + E \times \{f\}$, *(e, f being the identities on E, F).*

Proof. Cf. [3, p. 129, pp. 139-142]; [10, Chap. 6]; [11].

We want to describe the elements \tilde{C} of \mathbb{P}^3 according to their singularities and their stability, therefore let us consider the following subvarieties of \mathbb{P}^3 , [which is canonically identified to its bidual (\mathbb{P}^3)]:

(2.1) R^{\sim} dual surface of R, $Z_{\tau} = {\{\tilde{C} \in \mathbb{P}^3/\tau \in \tilde{C}\}}, \text{ with } \tau \in \tilde{S},$ $Z=\cup Z_{\tau}$, $\tau \in \tilde{S}_2$, $T = Z \cap R^*$.

 R^{\sim} is birational to R; if deg(R) = 2 then R^{\sim} is a smooth quadric. If deg(R) = 4 it is well known that R° is a Kummer quartic surface. Z_{τ} is just a plane in \mathbb{P}^{3} .

The following fact is a standard consequence of the duality between \tilde{S} and $\tilde{S} = Pic^0(\tilde{S})$ (cf. [14, II.8]):

Let δ : $\dot{\delta} \rightarrow \dot{\delta}$ be the duality isomorphism sending $x \in \dot{\delta}$ in $\delta(x)=x$ = class of $\theta_{x} - \theta_{-x}$ in Pic^o(\tilde{S}). The principal polarization of \tilde{S} is $\theta = \delta(\theta) = \{x'/x \in \theta\}$; moreover, by the square theorem on an abelian variety, $\theta_x + \theta_{-x}$ is linearly ^{equivalent} to 20. Let $g^{\hat{ }}:S^{\hat{ }}\rightarrow \mathbb{P}^3$ be the morphism sending x^o in $\theta_x+\theta_{-x}$, g^o is

associated to $|2\theta|$ and the following diagram commutes:

$$
\begin{array}{ccc}\n\widetilde{S} & \xrightarrow{\delta} & \widetilde{S} \\
\downarrow{\delta} & & \downarrow{\delta} \\
\vdots & & \downarrow{\delta} \\
\widetilde{R} & \xrightarrow{\delta} & \widetilde{R}\n\end{array}
$$

where δ is the birational map sending R in its dual surface.

Proposition 2.2. (a) $\tilde{C} \in Z \cup R \iff \tilde{C}$ *is a sinaular curve.* (b) $\tilde{C} \in R \cong \tilde{C} = \theta_a + \theta_{-a}$ for some $a \in \tilde{S}$. (c) $\tilde{C} \in Z - T \Leftrightarrow \tilde{C}$ is reduced, irreducible with $m \leq 3$ ordinary nodes and $\text{Sing}(\tilde{C})$ $=\tilde{S}_2\cap\tilde{C}$.

Proof. (a) Let $S = \frac{S}{\langle -1 \rangle}$ be the Kummer surface of \tilde{S} , $\varrho : \tilde{S} \rightarrow S$ the quotient morphism; the ramification set of ρ is \tilde{S}_2 and $\rho(\tilde{S}_2)=\text{Sing}(S)$. Moreover $g=q_0$ and either $R = S$, $\sigma = id_s$ or $deg(R) = 2$, $\sigma : S \rightarrow R$ is a finite morphism of degree 2. Therefore \tilde{C} singular $\Leftrightarrow \frac{1}{2} \varrho_* \tilde{C}$ singular \Leftrightarrow either $(1/\deg(g)) g_* \tilde{C}$ is a singular plane section of R or $g(\tau) \in g(\overline{C})$ for some $\tau \in \overline{S}_2 \Leftrightarrow \overline{C} \in Z \cup \overline{R}$.

(b) Let $g^*: \tilde{S} \to \mathbb{P}^3$ be as above, by (2.2) $g(\tilde{S}) = R^*$. This implies (b).

(c) The "if' part follows from the equivalences in {a) and (b). Conversely, assume $\tilde{C} \in Z-T$, then, by definition of R^2 , $\tilde{C} \notin R^2 \Rightarrow$ Sing (\tilde{C}) $\subset \tilde{S}_2$. Let us show that $\tilde{S}_2 \cap \tilde{C} \subset \text{Sing}(\tilde{C})$ and that every singular point of \tilde{C} is a node. Let $\tau \in \tilde{S}_2 \cap \tilde{C}$, up to translating by an order 2 element we can assume $\tau = o =$ identity on \tilde{S} and $o \in \theta$. Notice that $\tilde{S}_2 \cap \theta$ is the set of the six Weierstrass points of θ and that every translate θ_i of θ , $(j = 1, ..., 6)$, by such a point is a symmetric theta divisor containing o. Moreover 2θ , \in |2 θ | and any three elements of the set {2 θ _i}, j = 1, ..., ⁶ are linearly independent in $|2\theta|$. Let us fix $\theta_1, \theta_2, \theta_3$ together with local coordinates u, v at *o*; let $p_i = p_i(u, v) = 0$, $(i = 1, 2, 3)$, be the local equation of θ_i at *o*, then every element of Z_0 has a local equation: $x_1p_1^2 + x_2p_2^2 + x_3p_3^3 = 0$; where $x = (x_1 : x_2 : x_3) \in \mathbb{P}^2$. If \tilde{S} is not a product of two elliptic curves θ is smooth and it is immediate to check that θ_i and θ_j are transversal at o , $(i+j; i, j=1, 2, 3)$. Therefore we can assume $p_1 = u + \text{higher degree terms}, p_2 = v + \dots, p_3 = au + bv + \dots$ $b = 0$. If $\overline{S} = E \times F$ then $o = (e, f)$, (e, f) being the identities on the elliptic curves E, F) and we can choose θ_1 , θ_2 smooth and transversal at $o; \theta_3 = \theta = \{e\} \times F$ $+E \times \{f\}$. The local equations are as above but for the third which has $a = b = 0$. In both cases \tilde{C} is given by setting $0 = x_1u^2 + x_2v^2 + x_3(au + bv)^2 + \dots$. Notice that $x_1=x_2=0 \Rightarrow \tilde{C}=2\theta \Rightarrow \tilde{C} \in T$. Hence \tilde{C} has a double point at *o* and Sing(\tilde{C}) $=S_2\cap\tilde{C}.$

To check that o is a node for \tilde{C} we describe explicitely the curve $B \subset Z_0$ of the elements for which this is not true. The equation of \overline{B} is clearly the discriminant of the quadratic form in $u, v: x_1u^2 + x_2v^2 + x_3(au + bv)^2$ and B is a conic. Notice that the differential of the -1 involution on \tilde{S} acts as the identity on the tangent space $T_{g,o} = H^o(\theta, \omega_\theta)$; hence $o \in \theta_x \cap \theta_{-x} \Rightarrow \theta_x, \theta_{-x}$ are not transversal at o. Moreover $o \in \theta_x \cap \theta_{-x} \Leftrightarrow x \in \theta$, so that $\{\theta_x + \theta_{-x}, x \in \theta\} \subset B$. It is easy to check that the previous inclusion is actually a bijection; hence $B \subset T$ and o is a node for \bar{C} . In particular:

$$
(2.3) \t\t\t B = {\theta_x + \theta_{-x}, x \in \theta} = \theta/\langle -1 \rangle.
$$

Let $\tilde{C} \in Z-T$, to complete the proof observe that: (1) $\tilde{C} \in Z-T \Rightarrow \tilde{C}$ has finitely many singular points $\Rightarrow \tilde{C}$ is reduced.

(2) Let $D \subset \tilde{C}$ be an irreducible component of \tilde{C} , $\tau \in D \cap \tilde{S}_2$; as for the case $\tau = o$ the differential of the -1 involution of \tilde{S} acts as the identity on $T_{\tilde{S}}$, hence $-D$ is not transversal to D at τ . Since $-D \subset \tilde{C}$ and τ is a node for \tilde{C} the only possibility is $D = -D$. Moreover D is the unique irreducible component of \tilde{C} through τ . Since \tilde{C} is connected and Sing(\tilde{C}) = $\tilde{C} \cap \tilde{S}_2$ it follows $D = \tilde{C}$ and \tilde{C} is irreducible.

(3) Assume \tilde{C} has $m \ge 4$ nodes, then $C = \tilde{C}/\langle -1 \rangle$ is a curve of arithmetic genus 3 with at least 4 singular points. Hence C splits and also \tilde{C} splits: contradiction.

We recall that a curve C is said to be *stable* if it is connected with only nodes as its singularities and if every smooth, irreducible, rational component contains three nodes of C.

Definition 2.1. Let \tilde{S} , θ , $g : \tilde{S} \rightarrow R$ be as above, then, for every $\tau \in \tilde{S}_2$, the curve $g(\theta)$, is said to be a trope of R , [11].

Every trope is a conic and it is biregular to $\theta/(-1)$, [1], [10, Chap. 6].

Corollary 2.1. (a) Let $\tilde{C} \in \mathbb{P}^3$, then \tilde{C} not stable $\Leftrightarrow \tilde{C} \in T \Leftrightarrow \tilde{C} = \theta_{x+\tau} + \theta_{-x+\tau}$, for *some* $x \in \theta$, $\tau \in \tilde{S}_2$.

(b) *T* is the union of the tropes of R^{$\hat{ }$}. Sing(*T*)= $g\hat{ }$ (S₂). In particular: $\tilde{C} \in$ Sing(T) $\Leftrightarrow \tilde{C}=2\theta$, for some $\tau \in \tilde{S}_2$.

Proof. (a) follows from Proposition 2.2 and the proof of its statement (c). (b): from (2.3) and the commutative diagram (2.2) it follows $T =$ union of the tropes of \mathbb{R}^2 , $\operatorname{Sing}(T) = a^{\gamma}(R^{\gamma}).$

We quote from the theory of Prym varieties some basic results and definitions:

Definition 2.2. Let $\pi : \tilde{C} \to C$ be a double cover of stable curves of arithmetic genera $2g-1$ and g. Let $i: \tilde{C} \to \tilde{C}$ be the involution induced by π , $i_* : J\tilde{C} \to I\tilde{C}$, $\pi_* : J\tilde{C} \to JC$ the induced homomorphisms of (generalized) jacobians. Consider $P(\tilde{C}, C)$ $=\text{Im}(\text{id}-i_{\star})=\text{Ker}(\pi_{\star})^{\circ}$: π is said to be allowable if the following equivalent conditions hold:

(1) $P(\tilde{C}, C)$ is a $g-1$ dimensional abelian variety;

(2) the only fixed points of i are nodes where the two branches are not exchanged. The number of nodes exchanged by *i* equals the number of irreducible components exchanged by i .

The equivalence of (1) and (2) is shown in [2, Lemma 5.1]. $P(\tilde{C}, C)$ is principally polarized by $\frac{1}{2}(\theta \cdot P(\tilde{C}, C))$, $(\theta =$ theta divisor of $J\tilde{C}$).

Let \mathscr{R}_g be the coarse moduli space for allowable double covers of genus g Curves: \mathscr{R}_g exists, is irreducible and contains \mathscr{R}_g as an open subset; moreover the map

$$
\bar{P}:\bar{\mathcal{R}}_g\to\mathcal{A}_{g-1}
$$

Schaing $[C, C] \in \bar{\mathcal{R}}_a$ in $[P(\bar{C}, C)]$ is a proper morphism, $[2, 8]$. \bar{P} is called the ^{caten}ded Prym map; of course $\bar{P}/\mathcal{R}_3 = P =$ Prym map for etale double covers.

Definition 2.3. Let $\pi: \tilde{C} \to C$ be an allowable double cover, $X = P(\tilde{C}, C), j: \tilde{C} \to J\tilde{C}$ the Abel-Jacobi map. The composition morphism

$$
(\mathrm{id} - i_{\star}) \cdot j = \alpha : \widetilde{C} \to X
$$

is Called the Abel-Prym map.

Proposition 2.3. Let $\pi : \tilde{C} \to C$ be an allowable double cover, $\alpha : \tilde{C} \to X = P(\tilde{C}, C)$ the Abel-Prym map, Ξ the theta divisor of X. Then $\alpha_*\tilde{C}$ is a symmetric curve *representing the homology class* $(2/(d-2))\mathbb{E}^{d-2}$ *,* $(\dim(X) = d)$ *. Moreover, if* $\alpha_+(\tilde{C})$ *is stable, then* π *is the quotient map* $\alpha_{\pi}(\tilde{C}) \rightarrow \alpha_{\pi}(\tilde{C}) / \langle -1 \rangle$.

Proof. Cf. [15, Lemma 3.2].

The converse of this proposition can be stated in the following way:

Proposition 2.4. Let X be a d-dimensional abelian variety, Ξ its principal polariza*tion,* $\tilde{C} \subset X$ *a symmetric curve representing the homology class* $(2/(d-2))\tilde{z}^{d-2}$ *. If the quotient morphism* $\pi : \tilde{C} \rightarrow \tilde{C}/\langle -1 \rangle$ *is allowable then* $X = P(\tilde{C}, C)$ *as a principally polarized abelian variety.*

Moreover, up to translating by an order 2 element, the inclusion $\tilde{C} \subset X$ *is the Abel-Prym map.*

Proof. Cf. [15, 5.3], [8, 4.4], [2].

It is easy to apply these results to the situation we considered at the beginning of this section: let \tilde{S} , θ be as above, $\mathbb{P}^3 = |2\theta|$. Consider the quotient morphism $\varrho : \widetilde{S} \to \widetilde{S}/\langle -1 \rangle$, then, for every $\widetilde{C} \in \mathbb{P}^3$, if the double cover $\varrho / \widetilde{C} : \widetilde{C} \to C = \widetilde{C}/\langle -1 \rangle$ is allowable it follows from Proposition 2.4 that $P(\tilde{C}, C) = \tilde{S}$. Hence $[\tilde{C}, C] \in \overline{P}^{-1}(\tilde{s})$.

Proposition 2.5. Let $\tilde{C} \in \mathbb{P}^3$, then ρ/\tilde{C} is allowable if and only if \tilde{C} is stable.

Proof. It follows from the description of stable elements of \mathbb{P}^3 given in Proposition 2.2, Corollary 2.1: \tilde{C} stable $\Leftrightarrow \tilde{C} \in \mathbb{P}^3 - T$; assume \tilde{C} stable, let $i\colon \widetilde{C}\to \widetilde{C}$ be the involution induced by ρ/\widetilde{C} . o is fixed by i iff o is a node and $o\in \widetilde{\mathfrak{Z}}_2\cap \widetilde{C}$, since the differential of -1 is the identity on $T_{\bar{S},0}$ the two branches of \bar{C} at o are not interchanged. If \tilde{C} is reducible then $\tilde{C} = \theta_x + \theta_y$ and it is immediate to check that the number of nodes exchanged by i equals the number of irreducible components exchanged by *i*.

By Propositions 2.4, 2.5 there exists a map

$$
\phi : \mathbb{P}^3 - T \to \overline{P}^{-1}(s)
$$

sending $\tilde{C} \in \mathbb{P}^3$ in $[\tilde{C}, \tilde{C}/\langle -1 \rangle] = \text{class of } \varrho/\tilde{C}$.

Let $\mathscr{C} = \{(\tilde{C}, x) \in (\mathbb{P}^3 - T) \times \tilde{S}/x \in \tilde{C}\}\)$ be the universal curve over $\mathbb{P}^3 - T$, $\mathscr{C} = \{(\tilde{C}, y) \in (\mathbb{P}^3 - T) \times \tilde{S}/\langle -1 \rangle / y \in \tilde{C}/\langle -1 \rangle \}$ the universal quotient curve, $R:\widetilde{\mathscr{C}}\rightarrow\mathscr{C}$ the obvious quotient morphism; then there exists a commutative diagram

(2.4)
\n
$$
\begin{array}{ccc}\n\widetilde{\mathcal{C}} & R & \mathcal{C} \\
\vdots & \vdots & \vdots \\
\mathbb{P}^3 & T & \xrightarrow{id} & \mathbb{P}^3 - T\n\end{array}
$$

(\tilde{p}, p being the natural projections). If $z \in \mathbb{P}^3 - T$ and $\tilde{p}^{-1}(z) = \tilde{C}$ then $p^{-1}(z)$ $= \tilde{C}/\langle -1 \rangle$ and $R/\tilde{p}^{-1}(z) = \rho/\tilde{C}$. Hence, by the universal property of \mathcal{R}_3 , ϕ is a morphism.

3

Let $\phi : \mathbb{P}^3 - T \to \overline{P}^{-1}(s)$ be as above: ϕ is a rational map from \mathbb{P}^3 in $\overline{P}^{-1}(s)$ having \overline{T} as its fundamental locus. In this section we show that ϕ extends to a morphism $\tilde{\phi} = \phi \cdot \sigma : \tilde{\mathbb{P}}^3 \to \bar{P}^{-1}(s)$

where $\sigma = \sigma_2 \cdot \sigma_1$: $\tilde{\mathbb{P}}^3 \rightarrow \mathbb{P}^3$, σ_2 = blowing up of \mathbb{P}^3 at Sing(T) and σ_1 blows up the strict transform of the conics which are components of T .

For sake of simplicity, unless explicitely mentioned, we assume \tilde{S} is not a product (i.e. θ smooth, irreducible). If \tilde{S} is a product the results are analogous (cf. Remark 3.1).

If $[\tilde{C}, \tilde{C}] \in \mathcal{R}_3$, we will denote by $\pi : \tilde{C} \to C$ the corresponding allowable double cover, by α the Abel-Prym map and by *i* the involution induced by π on \tilde{C} .

A stable curve C , $(p_a(C) > 1)$, will be said *hyperelliptic*, [2, Lemma 4.7] iff there exist $L \in Pic(C)$ such that $h^0(L) = deg(L) = 2$ on every irreducible component of C. If C is hyperelliptic then $\mathscr L$ is unique.

By Proposition 2.3, for every $[\tilde{C}, \tilde{C}] \in \overline{P}^{-1}(s)$, $\alpha_{\star} \tilde{C} \in \mathbb{P}^{3}$; therefore we need to know for which $[\tilde{C}, C] \alpha_{\star} \tilde{C} \in T$.

Let σ_1 : $\mathbb{P}^3 \rightarrow \mathbb{P}^3$ be the blowing up of \mathbb{P}^3 at Sing(T). Assume $t \in$ Sing(T) is the point corresponding to the divisor 2θ (or 2θ , $\tau \in \overline{S_2}$), *let*

 $E = \sigma_1^{-1}(t)$

be the exceptional plane over t . Consider the exact sequence

$$
0 \to H^0(\mathcal{O}_{\widetilde{S}}(\theta)) \to H^0(\mathcal{O}_{\widetilde{S}}(2\theta)) \stackrel{r}{\longrightarrow} H^0(\mathcal{O}_{\theta}(2\theta)) \to 0:
$$

the restriction homomorphism r defines a natural 1 : 1 correspondence between E and $\mathbb{P}H^0(\mathcal{O}_p(2\theta))$. Indeed:

(3.1) $E = \{\text{pencils } P \in |2\theta| \text{ containing } 2\theta \text{ as an element}\},\$

thus, to every $P = \lambda s_0 + \mu s_1$, $((\lambda : \mu) \in \mathbb{P}^1$; $s_0, s_1 \in H^0(\mathcal{O}_S(2\theta))$, $div(s_0) = 2\theta$, it corresponds the one dimensional vector space $V_P \subset H^0(\mathcal{O}_p(2\theta))$ generated by $r(s_1) = s_1/\theta$. For every $P = \lambda s_0 + \mu s_1 \in E$ we denote by

$$
(3.2) \t\t\t b_{\mathbf{P}}
$$

the zero scheme of s_1/θ and by

$$
\alpha_P : \widetilde{C}_P \to \theta
$$

the double covering of θ branched on b_P . Notice that $\mathcal{O}_{\theta}(2\theta) = \omega_{\theta}^2 = \text{bicanonical}$ sheaf of θ . Moreover $\tilde{C}_{\bf p}$ has arithmetic genus 5 and it is not difficult to see that $\tilde{C}_{\bf p}$ is stable but for the following exception:

(3.4)
$$
b_p = 4r
$$
, where τ is a Weierstrass point of θ .

For every trope (Definition 2.1) $B \subset R^*$ let \hat{B} its strict transform by σ_1 and

$$
(3.5) \t\t \hat{T} \subset \mathbf{P}^3
$$

the union of the curves \hat{B} , then:

Proposition 3.1. *Assume* $P \in E = \sigma_1^{-1}(t) \subset \sigma_1^{-1}(\text{Sing}(T)) =$ *exceptional divisor of* σ_1 ; $then \ \tilde{C}_P$ is stable if and only if $P \notin \hat{T}$.

Proof. As it is well known θ contains exactly six points of order 2 so that there are six tropes $B_t = Z_t \cap R$, $\tau \in \tilde{S}_2 \cap \theta$, through the point t. As in the proof of

$$
b_{\mathbf{p}}
$$

Proposition 2.2 we can choose local parameters u, v at τ and three symmetric theta divisors $\theta_1, \theta_2, \theta_3 = \theta$ through τ whose equations are given respectively by the polynomials $p_1(u, v) = u + \dots + p_2(u, v) = v + \dots$, $p_3(u, v) = au + bv + \dots$. Then the curves of Z, are given by $x_1p_1^2 + x_2p_2^2 + x_3p_3^2 = 0$, $((x_1:x_2:x_3) \in \mathbb{P}^2)$ and the equation of B, is the discriminant of the quadratic form $x_1u^2 + x_2v^2 + x_3(au + bv)^2$, (cf. proof of Proposition 2.2).

Therefore the tangent line to B_r at t is the pencil $P = \{b^2x_1 + a^2x_2 = 0\}$ and the curve $C = {a^2p_1 - b^2p_2 = 0}$ belongs to P. Since $\theta = {au + bv + ... = 0}$ C is tangent to θ and $C \cdot \theta = 3\tau + q$. On the other hand $b_p \in |\omega_{\theta}^2|$ so that the only possibility is $\tau = q$, $b_p = 4\tau$. Hence \tilde{C}_p is not stable. This implies the statement.

Proposition 3.2. *Assume* $P \in \sigma_1^{-1}(\text{Sing}(T))$ *,* $P \notin \hat{T}$ *. Then there exists a unique admissible double cover* π : $\tilde{C}_p \rightarrow C_p$ *such that* $[\tilde{C}_p, C_p] \in \bar{P}^{-1}(s)$ *and* α_p : $\tilde{C}_p \rightarrow \theta$ *is the* $Abel-Prym$ map. Moreover \widetilde{C}_p is hyperelliptic.

Proof. Since $\rho : \theta \to \theta/(-1)$ is the canonical map and $b_P \in |\omega_\theta|^2$ it follows that $\varrho(b_P)$ is a degree 2 divisor. Let β : $N \rightarrow \theta/(-1)$ be the double cover of $\theta/(-1)$ branched on $\rho(b_p)$, consider the fibre product:

(3.6)
$$
\begin{array}{ccc}\n\tilde{C} & \xrightarrow{\alpha'} & \theta \\
\downarrow^{\gamma} & & \downarrow^{\mathbf{e}} \\
N & \xrightarrow{\beta} & \theta/\langle -1 \rangle\n\end{array}
$$

clearly α' is branched on b_p ; hence $\tilde{C}_p = \tilde{C}$, $\alpha' = \alpha_p$. Since $p_a(N) = 0$ \tilde{C}_p is hyperelliptic.

Let a and g be the involutions induced by α' and γ ; by (3.6) \tilde{C}_P carries a third involution $i = g \cdot a = a \cdot g$. It is not difficult to check that the quotient morphism $\pi : \tilde{C}_p \to C_p$, $(\tilde{C}_p = \tilde{C}_p \langle -1 \rangle)$, is admissible. Let α be the Abel-Prym map of π : since \tilde{C}_P has a unique hyperelliptic linear series $i(x + g(x)) \sim x + g(x)$ for every $x \in \tilde{C}_P$. Hence $x - i(x) = \alpha(x) = i(g(x)) - g(x) = \alpha(i(g(x))) = \alpha(a(x))$ so that α factors through α' and $\alpha_{\ast}(\tilde{C}_{p})$ is not reduced. Thus $\alpha_{\ast}(\tilde{C}_{p})$ has to be twice the theta divisor of the Prym of π . This implies deg(α) = 2, $\alpha = \alpha'$, α' , α' (\tilde{C}_P) = 2 θ so that $[\tilde{C}_P, C_P] \in \bar{P}^{-1}(\alpha)$. The uniqueness of the construction is clear.

By the previous proposition there exists a well defined map

$$
\hat{\phi} : \mathbf{P}^3 - \hat{T} \rightarrow \bar{P}^{-1}(s)
$$

such that $\hat{\phi}/(\hat{\mathbb{P}}^3 - \sigma_1^{-1}(T)) = \phi \cdot \sigma_1$ and, for every $P \in \sigma_1^{-1}(\text{Sing } T)$, $P \notin \hat{T}$

 $\hat{\phi}(P) = [\tilde{C}_P, C_P]$ as in Proposition 3.2.

Proposition 3.3. $\hat{\phi}$: $\hat{\mathbb{P}}^3 - \hat{T} \rightarrow \bar{P}^{-1}(s)$ *is a morphism.*

Proof. To show the theorem it is not restrictive to assume $\sigma_1 = \text{blowing up of } \mathbb{P}^3$ just one of the sixteen points of $Sing(T)$. Assume also that this point is t and corresponds to the divisor 2θ .

Let us consider as in (2.4) the universal curves \tilde{p} : $\tilde{\mathscr{C}} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p : \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S}/\langle -1 \rangle \times \mathbb{P}^3$, together with the universal double cover $R : \tilde{\mathscr{C}} \to \mathscr{C}$. Let s_0, s_1, s_2, s_3 be a basis for $H^0(\mathcal{O}_3(2\theta))$ such that $div(s_0) = 2\theta$; assume $p_i(u, v) = 0$ is the equation. for div(s_i), $i = 1, 2, 3$, on an open subset of S with local parameters u, v. Then \mathscr{C} is The Fibre of the Prym Map in Genus Three 441

locally given in $\mathbb{P}^3 \times \tilde{S}$ by

$$
(3.7) \t\t\t z_1p_1+z_2p_2+z_3p_3+p_0^2=0,
$$

where $p_0(u, v) = au + bv + \dots$ is a local equation for θ ; z_1, z_2, z_3 are affine coordinates on $\mathbb{A}^3 \subset \mathbb{P}^3$. After blowing up \mathbb{P}^3 at $t = (0, 0, 0)$, \mathscr{C} pulls back to a smooth, flat family $d: \mathcal{D} \rightarrow \mathbb{P}^3$ which is locally given by

(3.8)
$$
z_3x = z_1, z_3y = z_2, z_3(p_1 + xp_2 + yp_3) + p_0^2 = 0.
$$

After the local base change $\alpha : B \rightarrow \sigma_1^{-1}(\mathbb{A}^3)$ given by

$$
\xi^2 = z_3
$$

 $\tilde{\mathcal{D}}$ pulls back again to the family $\beta : \tilde{\mathcal{B}} \rightarrow B$ which is given by

(3.9)
$$
\xi^2 x = z_1, \xi^2 y = z_2, \xi^2 = z_3
$$

$$
\xi^2 (p_1 + xp_2 + yp_3) + p_0^2 = 0
$$

in local parameters $(\xi; x, y; z_1, z_2, z_3; u, v)$ on $\mathbb{A}^1 \times \mathbb{A}^2 \times \mathbb{A}^3 \times \tilde{S}$. Since α is unramified on $z_3 + 0$ and $\tilde{\mathcal{D}}$ is smooth it follows that $\tilde{\mathcal{B}} - \{z_3 = 0\}$ is smooth.

On the other hand it is clear from (3.9) that

$$
\mathrm{Sing}(\widetilde{\mathscr{B}}) = \{z_3 = 0\}.
$$

Let q be any point of Sing(\mathscr{B}), we can always choose u, v so that $u(q) = v(q) = 0$, then the tangent cone to \tilde{M} at q is

(3.10)
$$
\xi^2(\bar{p}_1+\bar{x}\bar{p}_2+\bar{y}\bar{p}_3)+(au+bv)^2=0, z_1=z_2=z_3=0,
$$

(where \bar{p}_i , \bar{x} , \bar{y} are the values of p_i , x , y at q). Moreover, if $\tilde{\beta}(q) = P''$, then $P = \alpha(P'') \in E = \sigma_1^{-1}(t)$ corresponds, via the bijection in (3.1), to the pencil

 $\{\lambda p_0^2 + \mu (p_1 + \bar{x}p_2 + \bar{y}p_3) = 0\}$

and, obviously, $\tilde{\beta}^{-1}(P'') = \theta$. Then, by 3.10, it follows that

(3.11) ***3*** has two branches at
$$
q \Leftrightarrow \bar{p}_1 + \bar{x}\bar{p}_2 + \bar{y}\bar{p}_3 = 0 \Leftrightarrow q \in b_p
$$
,

(where b_P is defined as in 3.2). Therefore the normalization

$$
\tilde{p}' : \tilde{\mathscr{C}}' \to B
$$

of $\tilde{\mathcal{B}}$ is a family of curves such that, if $P'' \in B$ and $\alpha(P'') = P \in E$

$$
\tilde{p}^{\prime*}(P^{\prime\prime})=\tilde{C}_P
$$

^{as in} (3.3). Otherwise $\tilde{p}^*(P'') = \tilde{p}^*(\sigma_1(\alpha(P')).$

Consider now the universal quotient curve $p:~\mathscr{C} \rightarrow \mathbb{P}^3$, one can construct in exactly the same way, families $d: \mathcal{D} \to \mathbb{P}^3$ and $\beta: \mathcal{B} \to B$ from \mathcal{C} . In this case $q \in \mathcal{B}$ is a not normal double point if and only if $\beta(q) = P''$ and $\alpha(P'') = P \in E$. Moreover, if so, $\beta^{-1}(P'') = \theta/(-1)$. Observe also that $\mathscr{C} \subset \mathbb{P}^3 \times \mathscr{S}/\langle -1 \rangle$ is singular (with normal singularities) along $\mathscr{C}(\mathbb{P}^3 \times \text{Sing}(\tilde{S} \langle -1 \rangle))$ and \mathscr{D} is singular along the pull back of it. In particular, if $P \in E$, $d^{-1}(P) = \theta/\langle -1 \rangle$ intersects Sing(\mathcal{D}) along the six branch points of $\rho:\theta \to \theta/(-1)$. Using this remark and the equation for the tangent cone to $\mathscr B$ at q as in (3.10) it turns out that

(3.12) \mathscr{B} has two branches at $q \Leftrightarrow q \in \varrho(b_p)$ or q is a branch point for ϱ .

Let \tilde{p}' : $\mathscr{C}' \rightarrow B$ be the normalization of \mathscr{B} : it is not difficult to see that the universal double covering $\mathbb{R} \colon \widetilde{\mathscr{C}} \to \mathscr{C}$ induces a commutative diagram

If $\alpha(P'') = P$ and $P \in E$ then the morphism of fibres $R_{P''}: \mathscr{C}'_{P''} \to \mathscr{C}'_{P''}$ is exactly the allowable double covering considered in Proposition 3.2 (provided that $P \notin \hat{T}$). If $\alpha(P'') \notin E$ then $R_{P''}=R_P$: $\mathscr{C}_P \rightarrow \mathscr{C}_P$. Thus, by the universal property of \mathscr{R}_3 and Proposition 3.2, (3.13) defines a morphism $\psi : B \to \overline{P}^{-1}(s)$ such that $\hat{\phi} \cdot \alpha = \psi$. Hence δ is a morphism.

Consider in $\overline{P}^{-1}(s)$ the subloci

$$
\mathscr{I}_s, \mathscr{T}_s, \mathscr{E}_s,
$$

which are defined in the following way:

(3.14) $[\tilde{C}, C] \in \mathcal{I}$, if and only if \tilde{C} is a hyperelliptic curve.

(3.15) (see [8, (2) 2.3], [2]): $[\tilde{C}, C] \in \mathcal{T}_s$ if and only if $\tilde{C} = \theta_1 \cup \theta_2$ is the union of two copies θ_{i} , (*j* = 1, 2), of θ intersecting transversally at two points and *i*/ θ_{i} is the identity isomorphism from θ_1 to θ_2 , (*i* being the involution induced by $\pi : \overline{C} \to C$).

(3.16) *(Elliptic tails: see* [8 (3) 2.3], [2]): $[\tilde{C}, C] \in \mathscr{E}_s$ if and only if the following conditions hold:

(i) $\tilde{C} = \theta_1 \cup \tilde{E} \cup \theta_2$ is the union of two copies θ_i , $(j = 1, 2)$, of θ and a curve \tilde{E} of arithmetic genus 1. θ_i intersects \tilde{E} transversally in a point p_i ; $p_1 - p_2$ is a non zero order 2 element on $\text{Pic}^0(\tilde{E})$;

(ii) $i(\theta_1) = \theta_2$ and i/θ_1 is the identity isomorphism between the two copies of θ ; $i(E) = E$ and i/E induces the translation by $p_1 - p_2$ on Pic^o(

(iii) $C = \theta \cup E$; $\vec{E} = E/\langle i \rangle$ and $p_a(E) = 1$. $E \cap \theta = \{p\}$, $p = \pi(p_1) = \pi(p_2)$. Since S is not a product it follows easily that, for every $[C, C] \in P^{-1}(S)$,

(3.17) \tilde{C} is reducible if and only if $[\tilde{C}, C] \in \mathscr{T}_{s} \cup \mathscr{E}_{s}$.

Furthermore:

 (3.18) (i) $\mathscr{T}_{s} \cap \mathscr{E}_{s} = \emptyset$,

(ii) $\mathscr{T}_{s} \cap \mathscr{I}_{s} = \{[\tilde{C}, C] \in \mathscr{T}_{s}/\tilde{C} \text{ is obtained from two copies of } \theta \text{ by glueing the } \theta$ point $x \in \theta$ to $-x$, $(x + -x)$,

(iii) $\mathscr{E}_s \cap \mathscr{I}_s = \{[\tilde{C}, C] \in \mathscr{E}_s / \tilde{C} = \theta_1 \cup \tilde{E} \cup \theta_2 \text{ as in (3.16) and } \theta_j, (j = 1, 2), \text{ is glued to} \}$ \tilde{E} in the Weierstrass point $\tilde{\tau} \in \theta \cap \tilde{S}_2$.

Proposition 3.4. $\hat{\phi}(\hat{\mathbb{P}}^3 - \hat{T}) = \bar{P}^{-1}(s) - \mathscr{E}_s$. *In particular:*

(1) Let R' be the strict transform of R^{\cdot} by σ_1 , then $\hat{\phi}(R'-(R'\cap\hat{T})) = \mathcal{T}_s$;

(2) Let E be an exceptional plane for σ_1 , then $\hat{\phi}(E-(E\cap \hat{T}))=\mathscr{I}_s-(\mathscr{I}_s\cap \mathscr{E}_s)$.

Proof. $[\tilde{C}, C] \in \hat{\phi}(\mathbb{P}^3 - \hat{T}) \Rightarrow \alpha(\tilde{C}) \in |2\theta|$ or \tilde{C} is a finite double cover of θ . In both cases \tilde{C} cannot split as in (3.16); hence $\hat{\phi}(\hat{\mathbb{P}}^3 - \hat{T}) \subset \bar{P}^{-1}(s) - \mathscr{E}_{s}$. Conversely let $[\tilde{C}, C] \in \overline{P}^{-1}(s) - \mathscr{E}_s$, assume \tilde{C} is irreducible: If deg(α) = 1 then, by Corollary 2.1, $\alpha_{\star}(\tilde{C})$ is stable; hence, by Proposition 2.3, $[\tilde{C}, C] = [\alpha_{\star}(\tilde{C}), \alpha(\tilde{C})/\tilde{\zeta} - 1]$, so that $[\tilde{C}, C] \in \phi(\mathbb{P}^3 - T)$. If deg(α) > 1 consider x, $y \in \tilde{C}$, $(x + y)$, such that $\alpha(x) = \alpha(y)$. Then $x - i(x) \sim y - i(y)$ so that $x + i(y) \sim y + i(x)$ and \tilde{C} is hyperelliptic. Thus $\alpha_{\bullet}(\tilde{C})$ $=(\deg \alpha) \alpha_{\star}(\tilde{C})= 2\theta$ and the following diagram commutes:

(3.19)
$$
\begin{array}{ccc}\nC & a & \theta \\
\hline\n\pi & e & \gamma \\
\hline\nC & \theta & \gamma \langle -1 \rangle\n\end{array}
$$

Since π is admissible $\pi^*\omega_c = \omega_{\tilde{c}}$, [2, Lemma 5.1]; hence it easily follows that β is branched on $w + b$; where $w = \sum \tau$, $\tau \in \theta \cap \tilde{S}_2$ is a Weierstrass point and deg(b) = 2. Therefore $\varrho^*b \in |\omega_{\theta}^2|$ and $\varrho^*b = \overline{b_p}$ for some $\overline{P} \in E$. Moreover α is branched on b_p so that $C = C_P$ and, being C stable, $P \notin E \cap T$. By Proposition 3.3 $\phi(P) = [C, C]$. In the end assume $[C, C] \in P^{-1}(s) - \mathscr{E}_s$, C reducible; then $[C, C] \in \mathscr{F}_s$. Looking to the Abel-Prym map one sees that either $\alpha_{\bullet}(\tilde{C}) = \tilde{C} = \theta_{x} + \theta_{-x} \in R^{\circ}$ or α is a double cover of θ branched on $2(x + y)$, $(x + y)$.

This implies $\hat{\phi}(\hat{\mathbb{P}}^3 - \hat{T}) = \bar{P}^{-1}(s) - \mathscr{E}_s$ and the statement (1).

To show (2) observe that, since \tilde{S} is not a product, $|2\theta|$ cannot contain elements which are hyperelliptic curves. Hence $[\tilde{C}, C] \in \mathscr{I}_{s}-(\mathscr{I}_{s} \cap \mathscr{E}_{s}) \Rightarrow \alpha_{*}(\tilde{C})$ $= 2\theta \Rightarrow [\tilde{C}, C] \in \tilde{\phi}(E).$

Let us consider now \mathscr{E}_{s} :

Lemma 3.1.
$$
\forall s \in \mathcal{A}_2
$$
, $\mathcal{E}_s = (\theta / \text{Aut}(\theta)) \times \mathcal{R}_1$.

Proof. It follows from the more general Lemma 1.31 of [8]; in fact: to give $[C, C] \in \mathscr{E}_s$ is equivalent to give $x \in \theta \pmod{\text{Aut}(\theta)}$ such that $\{x\} = \theta \cap E$, where $C = \theta \cup E$ as in (3.16), together with $\lceil \vec{E}, E \rceil \in \mathcal{R}_1$.

We recall that

 $\overline{\mathscr{R}}_1 = \mathbb{P}^1$.

Assume $[\tilde{C}, C] \in \mathscr{E}_s$, $\tilde{C} = \theta_1 \cup \tilde{E} \cup \theta_2$; since i/\tilde{E} is induced by the translation by a non zero order two element in Pic $^0(\tilde{E})$ we have:

(3.20)
$$
\alpha(\widetilde{E}) = \text{one point } \tau \in \widetilde{S}_2.
$$

On the other hand α/θ_i maps θ_i isomorphically onto a copy of θ and clearly

$$
\alpha(\theta_1) \cap \alpha(\theta_2) = \{\tau\}
$$

 $\sigma(\alpha(\theta_1) = \alpha(\theta_2)$. Hence, by the description of reducible curves of $|2\theta|$ given in Sect. 2, $\alpha_*(\tilde{C}) = \theta_{\tau+x} + \theta_{\tau-x}$ for some $x \in \theta$. That is:

$$
\alpha_* (\tilde{C}) \in B \subset T,
$$

Where B is a trope. We know that $B = \theta / \langle -1 \rangle = \mathbb{P}^1$, (S not a product), and that B is a conic passing through six fundamental points of σ_1 . In particular $B = Z_{\tau} \cap Q$, (where \hat{Q} is a quadric), and its strict transform is the complete intersection

$$
\hat{B} = \hat{Z}_c \cap \hat{Q}
$$

(with \hat{Z}_r, \hat{Q} = strict transforms of Z_r, Q). The ideal \mathscr{F} of \hat{B} in $\hat{\mathbb{P}}^3$ is \hat{c}_0 (-2) $\hat{\Theta}$ $\hat{\theta}$ $\hat{\theta}$ $(-\hat{Q})$; moreover $\hat{B}^2 = -2$ in \hat{Z} , and $\hat{B}^2 = -4$ in \hat{Q} so that the conormal bundle of \hat{B} in \hat{P}^3 is:

$$
\mathscr{F}/\mathscr{F}^2=\mathcal{O}_{\mathbf{P}^1}(2)\bigoplus\mathcal{O}_{\mathbf{P}^1}(4).
$$

Let $\mathscr{G} \subset \mathscr{F}$ be the ideal $\mathscr{O}_{\hat{p}3}(-2\hat{Z})\oplus \mathscr{O}_{\hat{p}3}(-\hat{Q})$ having \hat{B} as its support: after blowing up \mathbb{P}^3 along the ideal $\mathscr G$ the exceptional divisor is

(3.22)
$$
\mathbb{P}(\mathscr{G}/\mathscr{G}^2) = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(4) \oplus \mathcal{O}_{\mathbb{P}^1}(4)) = \hat{B} \times \mathbb{P}^1.
$$

Since all the \hat{B} 's are two by two disjoint we can blow up all of them as above, in this way we obtain a birational morphism

$$
\sigma_2\colon \tilde{\mathbb{P}}^3\!\to\!\tilde{\mathbb{P}}^3
$$

having as exceptional divisor the union of 16 copies of $\theta/(-1) \times \mathbb{P}^1$. Thus, for every \hat{B} , we can identify $\sigma_2^{-1}(\hat{B})$ to $\hat{B} \times \hat{B}$. This defines in a natural way a map

$$
\widetilde{\phi}: \widetilde{\mathbb{P}}^3 \to \overline{P}^{-1}(s)
$$

which is surjective and extends $\hat{\phi}$. By definition $\tilde{\phi} = \sigma_2 \cdot \hat{\phi}$ on $\hat{\mathbb{P}}^3 - \sigma_2^{-1}(\hat{T})$; on the other hand, if $P = (\pm x; [\tilde{E}, E]) \in \hat{B} \times \hat{M}_1 \subset \sigma_2^{-1}(\hat{T})$, we set $\tilde{\phi}(P) = [\tilde{C}, \tilde{C}]$; where \tilde{C} is obtained by glueing to the copies θ_x , θ_{-x} of θ the curve \tilde{E} in such a way that $\theta_{\star} \cap \tilde{E} = \{x\}, \ \theta_{-\star} \cap \tilde{E} = \{-x\}.$ Moreover the difference of these two points on \tilde{E} defines an order two translation *j* whose quotient is E and $C = \tilde{C}/\langle i \rangle$, where $i/\tilde{E} = j$ and $i/(\theta_x \cup \theta_{-x})$ is the -1 involution of S. It is clear that, (up to automorphisms), the quotient map $\pi: \tilde{C} \to C$ is defined as in (3.16) and that \tilde{C} , $C \in \mathscr{E}_r$.

In particular

$$
\tilde{\phi}(\tilde{\mathbb{P}}^3) = \overline{P}^{-1}(s), \phi(\sigma_2^{-1}(\hat{B})) = \mathscr{E}_s.
$$

By Lemma 3.1, if Aut(θ) = $\mathbb{Z}/2\mathbb{Z}$ then $\tilde{\phi}/(\sigma_2^{-1}(\hat{B}))$ is an isomorphism.

After some tedious computations, similar to the ones we produced in Proposition 3.3, one shows the following

Proposition 3.5. *The map* $\tilde{\phi}: \mathbb{P}^3 \rightarrow \overline{P}^{-1}(s)$ *is a surjective morphism.*

Remark 3.1. In particular, by Proposition 3.5, $\bar{P}^{-1}(s)$ is irreducible. If \tilde{S} is a product this is no longer true: $\bar{P}^{-1}(s)$ contains a 3-dimensional component \mathscr{F}_s such that $\mathscr{F}_s \cap P^{-1}(s) = \emptyset$, $(P = \overline{P}/\mathscr{R}_3)$. The elements of \mathscr{F}_s are defined in [9, Lemma 12, Proposition 1.5]. Nevertheless one can extend the results of this section by constructing a morphism $\tilde{\phi} : \tilde{\mathbb{P}}^3 \to \tilde{p}^{-1}(s)$ also when \tilde{S} is a product. In this case it turns out that $\tilde{\phi}(\tilde{\mathbb{P}}^3) = Zariski$ closure of $P^{-1}(s)$ in $\overline{P}^{-1}(s)$.

4

To complete the construction of $\bar{P}^{-1}(s)$ we describe now the morphism $\tilde{\phi}$. We assume again that \tilde{S} is not a product (see Remark 4.1). Let G be the group of the translations on \tilde{S} by elements of order two. G is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$. Since $2\theta \sim 2\theta_v$, $\tau \in \tilde{S}_2$, G acts linearly (and faithfully) on $\mathbb{P}^3 = |2\theta|$. Observe that:

(1) The sixteen points of $\text{Sing}(T)$ form the orbit of the element 2θ ;

(2) G acts transitively on the sixteen tropes of R^2 .

Then, since $\sigma_1 : \hat{\mathbb{P}}^3 \to \mathbb{P}^3$ is a blowing up centered in Sing(T), the action of G extends to an action on \mathbb{P}^3 and G acts transitively on the strict transforms of the sixteen tropes of R^{$\hat{ }$}. On the other hand σ_2 : $\mathbf{\tilde{P}}^3 \rightarrow \mathbf{\tilde{P}}^3$ is a blowing up centered on $\hat{\tau}$ = union of the strict transforms of the tropes of R^{$\hat{\tau}$}. Hence the action of G extends to an action on \mathbf{P}^3 .

Proposition 4.1. *Assume* $Aut(\theta) = \mathbb{Z}/2\mathbb{Z}$ *then:* $\forall P_1, P_2 \in \mathbb{P}^3$

$$
\tilde{\phi}(P_1) = \tilde{\phi}(P_2) \Leftrightarrow P_1
$$
 and P_2 are in the same G-orbit.

Proof. Let $\tilde{\phi}(P_i) = [\tilde{C}_i, C_i]$, $(i = 1, 2)$; assume $\tilde{\phi}(P_1) = \tilde{\phi}(P_2)$. This implies that the allowable double covers π_1 : $\widetilde{C}_1 \rightarrow C_1$ and π_2 : $\widetilde{C}_2 \rightarrow C_2$ are isomorphic. Hence there exist isomorphisms $\tilde{\sigma}:\tilde{C}_1\to\tilde{C}_2$, $\sigma:C_1\to C_2$, such that $\pi_2\cdot\tilde{\sigma}=\sigma\cdot\pi_1$ and $i_2 \cdot \tilde{\sigma} = \sigma \cdot i_1$, $(i_j, j = 1, 2,$ being the involution induced by π_j). $\tilde{\sigma}$ extends to an isomorphism $\tilde{\sigma}_*: JC_1 \to JC_2$ such that $i_{2*} \cdot \tilde{\sigma}_* = \sigma_* \cdot i_{1*}$. Therefore $\tilde{\sigma}_{\star}/\text{Im}(\text{id}-i_{1\star}) = t$ is an isomorphism from $\text{Im}(\text{id}-i_{1\star})$ to $\text{Im}(\text{id}-i_{2\star})$. In other words t is an automorphism of \tilde{S} as a principally polarized abelian surface. Since we can choose Abel-Jacobi embeddings $\tilde{C}_1 \subset J \tilde{C}_1$, $\tilde{C}_2 \subset J \tilde{C}_2$ such that $\tilde{\sigma}_*(\tilde{C}_1) = \tilde{C}_2$ it follows that $t(\alpha_1(\tilde{C}_1)) = \alpha_2(\tilde{C}_2)$, $(\alpha_j$ being the Abel-Prym map for \tilde{C}_j). Hence [20] is changed in itself by t. On the other hand t is induced by an element of $Aut(\theta)$; since Aut $(\theta) = \mathbb{Z}/2\mathbb{Z}$ it follows $t = id$ or $t = -1$ so that t acts as the identity on |2 θ |.

Since the Abel-Prym map is defined up to translating by an element of \tilde{S}_2 , we have $\alpha_1(\tilde{C}_1) = \alpha_2(\tilde{C}_2)$ modulo such a translation. Hence P_1 , P_2 are in the same G-orbit. Conversely assume $P_1 = P_2 \text{mod}(G)$, then $\alpha_1(C_1) = \alpha_2(C_2)$, $(\tau \in S_2)$. If $\varphi(P_1) \notin \mathscr{I}_{s} \cup \mathscr{E}_{s}$ then $\alpha_{i*} C_i$ is stable and $[C_i, C_i] = [\alpha_{i*} C_i, \alpha_{i*} C_i / \langle -1 \rangle].$

Hence, obviously, $[C_1, C_1] = [C_2, C_2]$. If $P_1 \in \mathscr{I}_s$ then $\alpha_1(C_1) = \theta$ and α_1 is branched on b_{P_1} [which is defined as in (3.3)]. Thus $\alpha_2(C_2) = \theta_{\tau}$. Let b_{P_2} be the branch divisor of α_2 , since $P_1 = P_2 \mod(G)$ it follows $b_P = (b_P)$, and $C_1 = C_2$. By Proposition 3.2 this implies $[C_1, C_1] = [C_2, C_2]$. A similar argument applies if $P_1 \in \mathscr{E}_{\alpha}$

Corollary 4.1. *Assume Aut*(θ) = $\mathbb{Z}/2\mathbb{Z}$, *then* $\mathbb{P}^3/G = \overline{P}^{-1}(s)$.

The group G and its representation as a subgroup of the projective linear group $PGL(4)$ are classically well known, [4, Vol. III], [11]: there exist finitely many system of coordinates $(x_1 : x_2 : x_3 : x_4)$ on $|2\theta|$, [finitely many bases of $H^0(\tilde{S}, \mathcal{O}_{\tilde{S}}(2\theta))$, such that the equation of $R^{\hat{}}$ is

$$
E(x_1^4 + x_2^4 + x_3^4 + x_4^4) + 2D(x_1x_2x_3x_4) + A(x_1^2x_2^2 + x_3^2x_4^2) + B(x_1^2x_3^2 + x_2^2x_4^2) + C(x_1^2x_4^2 + x_2^2x_3^2) = 0,
$$

Where $(A : B : C : D : E) \in \mathbb{P}^4$ and satisfies the cubic equation

 \overline{a}

(4.2)
$$
E(4E^2 - A^2 - B^2 - C^2 - D^2) + ABC = 0.
$$

It is also known that to fix $(x_1 : x_2 : x_3 : x_4)$ as above is equivalent to fix a level two structure on \overline{S} . Moreover, if the equation of R^{\prime} is normalized as in (4.1), then G acts linearly on $\mathbb{P}^3 = |2\theta|$ as the group generated by the involutions sending $(x_1:x_2:x_3:x_4)$ respectively in

$$
(x_4:-x_3:x_2:x_1), (x_4:x_3:-x_2:-x_1), (x_3:x_4:-x_1:-x_2),(-x_2:x_1:x_4:-x_3), (x_2:-x_1:x_4:-x_3).
$$

We denote by V^{\dagger} the cubic threefold defined by (4.2) and by

 $V \subset \mathbb{P}^4$

its dual hypersurface; it is well known [4, Vol. VII], [11] that $V^{\hat{}}$ is the so called Segre primal containing ten nodes as its only singularities. On the other hand V_{15a} (rational) quartic threefold having as its singular locus 15 double lines intersecting three by three in 15 triple points. In the end the space $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))^G$ of the G-invariant quartic forms is 5-dimensional and a basis for it is

 $(x_1^4 + x_2^4 + x_3^4 + x_4^4), (x_1x_2x_3x_4), (x_1^2x_2^2 + x_3^2x_4^2), (x_1^2x_3^2 + x_2^2x_4^2), (x_1^2x_4^2 + x_2^2x_3^2).$

We denote by

 $\mu : \mathbb{P}^3 \rightarrow \mathbb{P}^4$

the morphism associated to $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))^G$.

Proposition 4.2. (1) $\mu(\mathbb{P}^3) = V$, (2) $V = \mathbb{P}^3/G$ *and* $\mu : \mathbb{P}^3 \to V$ *is the quotient map.*

Proof. This is shown in [4, Vol. III, p. 210].

Lemma 4.1. (1) $\mu(\text{Sing}(T))=o$, where o is a smooth point of V,

(2) $\mu(R \hat{ }) = R \hat{ }$,

(3) $\mu(R) = H_0 \cap V$ where H_0 is the tangent hyperplane to the quartic threefold V *at the point o,*

(4) $\mu(T) = Q$, where Q has an ordinary sixtuple point in o and the normalization *of Q in o is isomorphic to* $\theta/(-1)$ *.*

Proof. (1) By Proposition 4.2 deg(μ)=16, since $\mu \mu^{-1}(0) = \frac{\mu \sin(\pi/2)}{2} = 160$ is not in the branch locus of μ hence σ is smooth. (2) It is clear that the following diagram is commutative

$$
\begin{array}{ccc}\n\widetilde{S}^{\prime} & \xrightarrow{\mu_2} & \widetilde{S}^{\prime} \\
\downarrow & & \downarrow \\
R^{\prime} & \xrightarrow{\mu} & R^{\prime}\n\end{array}
$$

where μ_2 is the multiplication by 2 on the dual \tilde{S} of \tilde{S} and the vertical arrows are the quotient map from \tilde{S} to $R = \tilde{S}/\langle -1 \rangle$. Hence $\mu(R) =$ Kummer surface of $\tilde{S} = R^{\prime}$ [recall also that R^{\prime} is *G*-invariant: for instance its Eq. (4.1) is given by an invariant quartic form]. (3) Since the equation of $R^{\hat{}}$ is given by an element of $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))^G$ it follows that $\mu(R)$ is a hyperplane section of V. The general hyperplane section of V is a quartic surface with 15 nodes; on the other hand $R^{\text{'is a}}$ quartic surface with 16 nodes, $Sing(R') = Sing(T)$ and $\mu(Sing(R')) = o$. Hence 0 is singular for $\mu(R)$. Since o is smooth for V the result follows. (4) Let $B \subset T$ be a trope, then $\mu(B) = \mu(T)$. It is immediate to check that $\mu(B) = Q$: μ/B is 1:1 except for the six points of $B \cap$ Sing(T) which are contracted to o. This implies (4).

Theorem 4.1. *Assume Aut(* θ *)* = $\mathbb{Z}/2\mathbb{Z}$, then, with the same notations as above, $\bar{P}^{-1}(s) = (\zeta_1 \cdot \zeta_2)^{-1}(V)$; where $\zeta_1 : V \to V$ blows up the point $o = \mu(\text{Sing}(T))$ and $\zeta_2 : \overline{P}^{-1}(s) \to V$ is a blowing up of V centered in the strict transform of the curve $Q = \mu(T)$.

Proof. By Proposition 4.1 $\bar{P}^{-1}(s) = \bar{P}^3/G$ and $\tilde{\phi}: \tilde{P}^3 \to \bar{P}^{-1}(s)$ is the quotient map. Hence we have a commutative diagram:

(4.3)
\n
$$
\overrightarrow{p}^{3} \xrightarrow{\sigma_{1} \cdot \sigma_{2}} \overrightarrow{p}^{3}
$$
\n
$$
\overrightarrow{p}^{-1}(s) \xrightarrow{\qquad \qquad \downarrow \qquad \downarrow}_{\qquad \qquad \downarrow}.
$$

 σ_1, σ_2 are defined as in Sect. 3: $\sigma_1 : \hat{\mathbb{P}}^3 \to \hat{\mathbb{P}}^3$ blows up Sing(T), $\sigma_2 : \hat{\mathbb{P}}^3 \to \hat{\mathbb{P}}^3$ is a blowing up centered on \hat{T} = union of the strict transforms of the irreducible components of T. Since μ is not ramified along T it follows that $\zeta = \zeta_1 \cdot \zeta_2$.

Corollary 4.2. Let $\zeta = \zeta_1 \cdot \zeta_2$ be as above, then $\mathcal{I}_s = \zeta^{-1}(0)$; $\mathcal{E}_s = \zeta_2^{-1}(Q')$, where Q' is *the strict transform of Q by* ζ_1 *;* \mathcal{T}_s *= strict transform of* $\mu(R)$ *by* ζ *.*

Proof. It follows from Proposition 3.4, Proposition 2.2 (b) and the commutativity of the diagram (4.3).

It is interesting to remark that \mathbb{P}^3/G is well known from another point of view, [19]:

Let \mathcal{H}_2 be the Siegel upper half space of degree 2 and $\Gamma_2(2)$ the 2-congruence subgroup of the symplectic group $Sp(4, Z)$. The quotient $\mathcal{H}_2/\Gamma_2(2)$ is the moduli space for principally abelian surfaces endowed with a level 2 structure. Its minimal compactification \mathcal{A}_2^2 is biregular, via modular forms, to the quartic threefold $V = \mathbb{P}^3/G$. For this reason V is also called Siegel modular quartic threefold.

By the results of [19] the condition $R^{\hat{}} = T_{V,\rho} \cap V$ of Lemma 4.1 implies that, under the previous isomorphism $g:V\rightarrow\overline{\mathscr{A}}_2^2$, the point $g(o)$ is one of the isomorphism classes of \tilde{S} endowed with a level two structure. Notice also that the orbit of $g(o)$ by Aut (\vec{M}^2) is exactly the set of all such isomorphism classes. Hence we can reformulate the results of Theorem 4.1 and Corollary 4.2 in the following way:

Theorem 4.2. *Let* $s \in \mathcal{A}_2$, assume $\text{Aut}(\theta) = \mathbb{Z}/2\mathbb{Z}$; fix a point $o \in \mathbb{Z}_2^2$ corresponding t_0 the isomorphism class of \tilde{S} and a level two structure on it. Then there exists a sequence of blowing up's

 $\overline{p}^{-1}(s) \xrightarrow{\zeta_2} \hat{a} \xrightarrow{\zeta_1} \overline{a_2}^2$

^{*such that:* (1) ζ_1 *is the blowing up of* $\overline{\mathscr{A}_2}$ *in o.* (2) The exceptional divisor of ζ_2 *is*} $\mathscr{E}_{s} = \theta / \langle -1 \rangle \times \overline{\mathscr{R}}_{1}$ and $\zeta_{2}(\mathscr{E}_{s}) = \theta / \langle -1 \rangle$. (3) $(\zeta_{1} \cdot \zeta_{2})^{-1}(0) = \mathscr{I}_{s}$.

Remark 4.1. If \tilde{S} is not a product $Aut(\theta) = \mathbb{Z}/2\mathbb{Z}$ but for finitely many exceptions, [5]. If \tilde{S} is a product we have Aut $(\theta) = (\mathbb{Z}/2\mathbb{Z})^2$ for general \tilde{S} . Under this assumption the results of this section extend to products (with modified proofs) if one considers instead of $\overline{P}^{-1}(s)$ the Zariski closure of $P^{-1}(s)$, $(P = \overline{P}/\overline{\mathcal{R}}_3)$; (cf. Remark 3.1).

References

- 1. Beauville, A.: Varietés de Prym et jacobiennes intermediaires. Ann. Sc. Ec. Norm. Sup. 10, $309 - 391$ (1977)
- 2. Beauville, A.: Prym varieties and the Schottky problem. Invent. math. 41, 149–196 (1977)
- 3. Beauville, A.: Surfaces algébriques complexes. Asterisque 54, 1-162 (1978)
- 4. Baker, H.: Principles of geometry. Cambridge: Cambridge Univ. Press 1922
- 5. Boiza, O.: On binary sextics with linear transformations into themselves. Am. J. Math. 10, 47-70 (1888)
- 6. Catanese, F.: On the rationality of certain moduli spaces related to curves of genus 4. Lect. Notes Math. 1008, pp. 30-50. Berlin, Heidelberg, New York: Springer 1981
- 7. Donagi, R.: The terragenal construction. Bull. Am. Math. Soc. 4, 181-185 (1981)
- 8. Donagi, R., Smith, R.: The structure of the Prym map. Acta Math. 146, 25–109 (1981)
- 9. Friedman, R., Smith, R.: The generic Torelli theorem for the Prym map. Invent. math. 74, 473-490 (1982)
- 10. Griliiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978
- 11. Hudson, R.: Kummer's quartic surface. Cambridge: Cambridge Univ. Press 1905
- 12. Mumford, D.: Prym varieties. I. Contributions to analysis, pp. 325-350. New York: Academic Press 1974
- 13. Mumford, D.: Curves and their jacobians. Ann Arbor: Univ. of Michigan Press 1974
- 14. Mumford, D.: Abelian varieties. Oxford: Oxford Univ. Press 1970
- 15. Masiewicki, L.: Universal properties of Prym varieties with an application to algebraic curves of genus 5. Trans. Am. Math. Soe. 222, 221-240 (1976)
- 16. Recillas, S.: Ph.D. thesis: Brandeis Univ., 1974
- 17. Teixidor, M.: For which Jacobi varieties is $Sing(\theta)$ reducible? Univ. de Barcelona, preprint No. 17, 1983
- 18. Tiurin, A.: On the intersection of quadrics. Russian Math. Surv. 27, 51-105 (1975)
- 19. Van der Gcer, G.: On the geometry of a Siegel modular threefold. Math. Ann. 260, 317-350 (1982)

Received June 13, 1985; in revised form August 5, 1986