The Fibre of the Prym Map in Genus Three*

Alessandro Verra

Dipartimento di Matematica, Università di Torino, via Principe Amedeo, 8, I-10123 Torino, Italy

1

If $\pi: \tilde{C} \to C$ is an étale double cover of a smooth curve of genus g and $\pi_*: J\tilde{C} \to JC$ is the induced morphism of jacobians one defines the Prym variety as the connected component of the identity in Ker (π_*) :

$$P(\tilde{C}, C) = (\operatorname{Ker} \pi_*)^0;$$

 $\dim(P(\tilde{C}, C)) = g - 1$ and $P(\tilde{C}, C)$ has a natural principal polarization $\Xi = \frac{1}{2}(P \cdot \theta)$, θ being the theta divisor on $J\tilde{C}$, [12, p. 342]. We denote by

Ra, Aa

respectively the coarse moduli spaces for the pairs (\tilde{C}, C) and for principally polarized abelian varieties of dimension g; then the morphism

 $P:\mathcal{R}_g \to \mathcal{A}_{g-1}$

which sends the class of (\tilde{C}, C) in the class of $P(\tilde{C}, C)$ is by definition the Prym map. P extends to a morphism $\bar{P}: \bar{\mathcal{R}}_g \to \mathscr{A}_{g-1}$; where $\bar{\mathcal{R}}_g$ contains \mathscr{R}_g as a dense open subset and is the moduli space for allowable double covers of stable genus g curves, [2], [8, Definition 2.1].

 \overline{P} is known to be generically injective for g > 6, [9], and dominant for g = 6, [8]. For g = 5 it is announced in [7] that the fibre of \overline{P} is a double cover of the Fano surface of the lines of a cubic threefold; while, for g = 4, it is known that the fibre of \overline{P} is a 3-dimensional Kummer variety, [16].

In this paper we study the (extended) Prym map:

$$\overline{P}:\overline{\mathscr{R}}_3\to\mathscr{A}_2.$$

It turns out that, in this case too, the fibre of \overline{P} is rich of geometry; our main result is the following:

Let \tilde{S} be an abelian surface, s its moduli point, $\theta \in \tilde{S}$ a symmetric theta divisor; assume s general [i.e. Aut $(\theta) = \mathbb{Z}/2\mathbb{Z}$], then

* Research partially supported by grants of Italian Ministry of Public Instruction and the C.N.R.

(1) $\overline{P}^{-1}(s)$ is obtained from the Siegel modular quartic threefold V by a sequence of two blowing up's σ_1 and σ_2 . $\sigma_1: \hat{V} \to V$ blows up V in a point v, while $\sigma_2: \overline{P}^{-1}(s) \rightarrow \hat{V}$ is centered along a curve B isomorphic to $\theta/\operatorname{Aut}(\theta)$. The exceptional divisor of $\sigma_1 \cdot \sigma_2$ is the union of two surfaces \mathscr{I}_s and \mathscr{E}_s . The points of $\mathscr{I}_s = (\sigma_1 \cdot \sigma_2)^{-1} (v)$ correspond to double covers $\pi : \tilde{C} \to \tilde{C}$ such that \tilde{C} is hyperelliptic. $\mathscr{E}_s = \sigma_2^{-1}(B)$ is entirely contained in $\overline{\mathscr{R}}_3 - \mathscr{R}_3$, its points correspond to allowable double covers $\pi: \tilde{C} \to C$ such that both \tilde{C} and C are elliptic tails, [7, (3) 2.3 and Sect. 3 (3.16)].

The Siegel modular quartic threefold $V \in \mathbb{P}^4$ is considered by Van der Geer in [19]. In this paper the author shows that, via theta functions, V is biregular to $\overline{\mathcal{A}}_{1}^{2}$; where \mathscr{A}_{2}^{2} is the moduli space for principally polarized abelian surfaces endowed with a level two structure and $\overline{\mathcal{A}}_2^2$ is a minimal compactification of it. Thus we can rephrase our result in this way:

(2) $\overline{P}^{-1}(s)$ is obtained from $\overline{\mathscr{A}}_2^2$ by a sequence of two blowing up's σ_1 and σ_2 as above.

Since σ_1 has its center in a point $v \in \mathscr{A}_2^2$, we are also able to deduce from [19] that f(v) = s; $f: \mathscr{A}_2^2 \to \mathscr{A}_2$ being the forgetful map.

The proof of our theorem relies on the results in [13, 15] and the classical geometry of Kummer surfaces, [4, 11]: If \tilde{C} is a stable curve in the linear system $|2\theta|$ then the quotient morphism $\pi: \tilde{C} \to \tilde{C}/\langle -1 \rangle$ is allowable and the associated Prym variety is \tilde{S} . Since $|2\theta| = \mathbb{P}^3$ this defines a rational map $\phi : \mathbb{P}^3 \to \overline{P}^{-1}(s)$ sending \tilde{C} in class of $(\tilde{C}, \tilde{C}/\langle -1 \rangle)$ in $\bar{\mathcal{R}}_3$. We describe the curve $T = \{\tilde{C} \in |2\theta|/\tilde{C} \text{ is not stable}\}$ which is the fundamental locus of ϕ (Sect. 2) and show that the complementary set of $\phi(\mathbb{P}^3 - T)$ in $\overline{P}^{-1}(s)$ contains exactly the classes of pairs (\tilde{C}, C) such that \tilde{C} is hyperelliptic or both \tilde{C} and C are elliptic tails.

On the other hand the group G of the translation on \tilde{S} by elements of order 2 acts linearly on $|2\theta|$; We use the geometry of Kummer surfaces to show that ϕ is the restriction to $\mathbb{P}^3 - T$ of the quotient morphism $p: \mathbb{P}^3 \to \mathbb{P}^3/G$. By [4, Vol. II], p. 210], \mathbb{P}^3/G is biregular to the Siegel modular quartic threefold V, hence $\overline{P}^{-1}(s)$ is birational to V. To complete the description of $\overline{P}^{-1}(s)$ we show in Sect. 3 how to extend ϕ to a finite surjective morphism $\tilde{\phi}$ on a suitable birational model $\tilde{\mathbb{P}}^3$ of \mathbb{P}^3 such that $\overline{P}^{-1}(s) = \widetilde{\phi}(\widetilde{\mathbb{P}}^3) = \widetilde{\mathbb{P}}^3/G = (\sigma_1 \cdot \sigma_2)^{-1}(V).$

We work over the complex field. Nevertheless our result, as it is stated in (1), seems to hold in any characteristic ± 2 .

Further Comments and Notations

Two allowable double covers $\pi_i: \tilde{C}_i \to C_i$, (i=1,2), are said to be isomorphic iff

there exists isomorphisms $\tilde{\beta}: \tilde{C}_1 \to \tilde{C}_2$ and $\beta: C_1 \to C_2$ such that $\beta \cdot \pi_1 = \pi_2 \cdot \tilde{\beta}$. If $\pi: \tilde{C} \to C$ is an allowable double cover $[\tilde{C}, C]$ stands for its isomorphism class in $\overline{\mathscr{R}}_{g}$. Conversely, $\forall [\widetilde{C}, C] \in \overline{\mathscr{R}}_{g}$, the corresponding double cover will be denoted by π .

We recall that to give $\pi: \tilde{C} \to C$ is equivalent to give a pair (C, η) where η is a non zero order two element in Pic(C), [2, Lemma 3.2]; if C is smooth these elements are $2^{2g} - 1$.

If S is a principally polarized abelian variety, $\dim(S) = g$, then [S] stands for its class in \mathcal{A}_{g} . $-1: S \rightarrow S$ is the involution sending p in -p; if $Z \subset S$ then -Z is its image by -1. Z is said to be symmetric if Z = -Z. We denote by θ a symmetric theta divisor on S and by S_n the set of the elements of order n on S.

If C is a curve JC stands for its jacobian, $\omega_{\rm C}$ for the dualizing sheaf.

If V is a vector or projective space V^{*} denotes its dual.

2

Let \tilde{S} be a principally polarized abelian surface, s its class in $\mathscr{A}_2, \theta \in \tilde{S}$ a symmetric theta divisor; the 3-dimensional linear system $|2\theta|$ will be denoted by

₽³.

In this section we construct a dominant rational map

$$\phi: \mathbb{P}^3 \rightarrow \overline{P}^{-1}(s)$$

and study its fundamental locus; $(\overline{P}: \overline{\Re}_3 \to \mathscr{A}_2)$ is the extended Prym map: see Definition 2.2). With this purpose, let us review some known facts about the geometry of Kummer and abelian surfaces:

Proposition 2.1. (a) Every element \tilde{C} of \mathbb{P}^3 is a symmetric curve of arithmetic genus 5. \mathbb{P}^3 is a base point free linear system and its general element is a smooth, irreducible curve.

Let $g: \tilde{S} \to \mathbb{P}^{3^{\wedge}}$ be the morphism associated to $|\tilde{C}|$ and $R = g(\tilde{S})$, then:

(b) Either $\deg(g) = 2$ and R is the Kummer quartic surface of \tilde{S} or $\deg(g) = 4$ and R is a smooth quadric.

(c) $\text{Deg}(g) = 2 \Leftrightarrow \tilde{S} = J\theta$, where θ is a smooth, irreducible genus 2 curve. $\text{Deg}(g) = 4 \Leftrightarrow \tilde{S} = E \times F$, with E, F elliptic curves, $\theta = \{e\} \times F + E \times \{f\}$, (e, f being the identities on E, F).

Proof. Cf. [3, p. 129, pp. 139-142]; [10, Chap. 6]; [11].

We want to describe the elements \tilde{C} of \mathbb{P}^3 according to their singularities and their stability, therefore let us consider the following subvarieties of \mathbb{P}^3 , [which is canonically identified to its bidual (\mathbb{P}^3)]:

(2.1) $R^{\hat{}} = \text{dual surface of } R,$ $Z_{\tau} = \{ \tilde{C} \in \mathbb{P}^{3} / \tau \in \tilde{C} \}, \text{ with } \tau \in \tilde{S},$ $Z = \bigcup Z_{\tau}, \quad \tau \in \tilde{S}_{2},$ $T = Z \cap R^{\hat{}}.$

R^{is} birational to *R*; if deg(*R*) = 2 then *R*^{is} a smooth quadric. If deg(*R*) = 4 it is well known that *R*^{is} a Kummer quartic surface. Z_r is just a plane in \mathbb{P}^3 .

The following fact is a standard consequence of the duality between \tilde{S} and $\tilde{S} = \text{Pic}^{0}(\tilde{S})$ (cf. [14, II.8]):

Let $\delta: \tilde{S} \to \tilde{S}$ be the duality isomorphism sending $x \in \tilde{S}$ in $\delta(x) = x^2 = \text{class of } \theta_x - \theta_{-x}$ in Pic⁰(\tilde{S}). The principal polarization of \tilde{S} is $\theta^2 = \delta(\theta) = \{x/x \in \theta\}$; moreover, by the square theorem on an abelian variety, $\theta_x + \theta_{-x}$ is linearly equivalent to 2θ . Let $g^2: \tilde{S}^2 \to \mathbb{P}^3$ be the morphism sending x^2 in $\theta_x + \theta_{-x}$, g^2 is associated to $|2\theta|$ and the following diagram commutes:

(2.2)
$$\begin{array}{c} \widetilde{S} \longrightarrow \widetilde{S}^{\wedge} \\ g \downarrow \\ R \longrightarrow \widetilde{R}^{\wedge} \end{array} \xrightarrow{\delta} \widetilde{R}^{\wedge} \end{array}$$

where δ is the birational map sending R in its dual surface.

Proposition 2.2. (a) $\tilde{C} \in Z \cup R^{\uparrow} \Leftrightarrow \tilde{C}$ is a singular curve. (b) $\tilde{C} \in R^{\uparrow} \Leftrightarrow \tilde{C} = \theta_a + \theta_{-a}$ for some $a \in \tilde{S}$. (c) $\tilde{C} \in Z - T \Leftrightarrow \tilde{C}$ is reduced, irreducible with $m \leq 3$ ordinary nodes and $\operatorname{Sing}(\tilde{C}) = \tilde{S}_2 \cap \tilde{C}$.

Proof. (a) Let $S = \tilde{S}/\langle -1 \rangle$ be the Kummer surface of \tilde{S} , $\varrho: \tilde{S} \to S$ the quotient morphism; the ramification set of ϱ is \tilde{S}_2 and $\varrho(\tilde{S}_2) = \operatorname{Sing}(S)$. Moreover $g = a\varrho$ and either R = S, $\sigma = \operatorname{id}_S$ or $\deg(R) = 2$, $\sigma: S \to R$ is a finite morphism of degree 2. Therefore \tilde{C} singular $\Leftrightarrow \frac{1}{2}\varrho_*\tilde{C}$ singular \Leftrightarrow either $(1/\deg(g)) g_*\tilde{C}$ is a singular plane section of R or $g(\tau) \in g(\tilde{C})$ for some $\tau \in \tilde{S}_2 \Leftrightarrow \tilde{C} \in Z \cup R^{\wedge}$.

(b) Let $g^{\hat{}}: \tilde{S} \to \mathbb{P}^3$ be as above, by (2.2) $g(\tilde{S}) = R^{\hat{}}$. This implies (b).

(c) The "if" part follows from the equivalences in (a) and (b). Conversely, assume $\tilde{C} \in \mathbb{Z} - T$, then, by definition of R^{2} , $\tilde{C} \notin R^{2} \Rightarrow \operatorname{Sing}(\tilde{C}) \subset \tilde{S}_{2}$. Let us show that $\tilde{S}_2 \cap \tilde{C} \subset \text{Sing}(\tilde{C})$ and that every singular point of \tilde{C} is a node. Let $\tau \in \tilde{S}_2 \cap \tilde{C}$, up to translating by an order 2 element we can assume $\tau = o = identity$ on \tilde{S} and $o \in \theta$. Notice that $\tilde{S}_2 \cap \theta$ is the set of the six Weierstrass points of θ and that every translate θ_i of θ , (j=1,...,6), by such a point is a symmetric theta divisor containing o. Moreover $2\theta_i \in |2\theta|$ and any three elements of the set $\{2\theta_i\}, i = 1, ..., 6$ are linearly independent in $|2\theta|$. Let us fix $\theta_1, \theta_2, \theta_3$ together with local coordinates u, v at o; let $p_i = p_i(u, v) = 0$, (i = 1, 2, 3), be the local equation of θ_i at o, then every local equation: $x_1p_1^2 + x_2p_2^2 + x_3p_3^3 = 0$; where of Z_0 has a element $x = (x_1 : x_2 : x_3) \in \mathbb{P}^2$. If \tilde{S} is not a product of two elliptic curves θ is smooth and it is immediate to check that θ_i and θ_j are transversal at o, $(i \neq j; i, j = 1, 2, 3)$. Therefore we can assume $p_1 = u + higher$ degree terms, $p_2 = v + ..., p_3 = au + bv + ..., (a, b)$ $b \neq 0$). If $\tilde{S} = E \times F$ then o = (e, f), (e, f) being the identities on the elliptic curves *E*, *F*) and we can choose θ_1 , θ_2 smooth and transversal at o; $\theta_3 = \theta = \{e\} \times F$ $+E \times \{f\}$. The local equations are as above but for the third which has a=b=0. In both cases \tilde{C} is given by setting $0 = x_1u^2 + x_2v^2 + x_3(au + bv)^2 + \dots$ Notice that $x_1 = x_2 = 0 \Rightarrow \tilde{C} = 2\theta \Rightarrow \tilde{C} \in T$. Hence \tilde{C} has a double point at o and $\operatorname{Sing}(C)$ $=S_2 \cap \tilde{C}.$

To check that o is a node for \tilde{C} we describe explicitly the curve $B \in Z_0$ of the elements for which this is not true. The equation of B is clearly the discriminant of the quadratic form in $u, v: x_1u^2 + x_2v^2 + x_3(au + bv)^2$ and B is a conic. Notice that the differential of the -1 involution on \tilde{S} acts as the identity on the tangent space $T_{\tilde{S},o} = H^0(\theta, \omega_{\theta})$; hence $o \in \theta_x \cap \theta_{-x} \Rightarrow \theta_x, \theta_{-x}$ are not transversal at o. Moreover $o \in \theta_x \cap \theta_{-x} \Leftrightarrow x \in \theta$, so that $\{\theta_x + \theta_{-x}, x \in \theta\} \subset B$. It is easy to check that the previous inclusion is actually a bijection; hence $B \subset T$ and o is a node for \tilde{C} . In particular:

(2.3)
$$B = \{\theta_x + \theta_{-x}, x \in \theta\} = \theta/\langle -1 \rangle.$$

Let $\tilde{C} \in Z - T$, to complete the proof observe that: (1) $\tilde{C} \in Z - T \Rightarrow \tilde{C}$ has finitely many singular points $\Rightarrow \tilde{C}$ is reduced.

(2) Let $D \subset \tilde{C}$ be an irreducible component of \tilde{C} , $\tau \in D \cap \tilde{S}_2$; as for the case $\tau = o$ the differential of the -1 involution of \tilde{S} acts as the identity on $T_{\tilde{S},\tau}$; hence -D is not transversal to D at τ . Since $-D \subset \tilde{C}$ and τ is a node for \tilde{C} the only possibility is D = -D. Moreover D is the unique irreducible component of \tilde{C} through τ . Since \tilde{C} is connected and $\operatorname{Sing}(\tilde{C}) = \tilde{C} \cap \tilde{S}_2$ it follows $D = \tilde{C}$ and \tilde{C} is irreducible.

(3) Assume \tilde{C} has $m \ge 4$ nodes, then $C = \tilde{C}/\langle -1 \rangle$ is a curve of arithmetic genus 3 with at least 4 singular points. Hence C splits and also \tilde{C} splits: contradiction.

We recall that a curve C is said to be *stable* if it is connected with only nodes as its singularities and if every smooth, irreducible, rational component contains three nodes of C.

Definition 2.1. Let \tilde{S} , θ , $g: \tilde{S} \to R$ be as above, then, for every $\tau \in \tilde{S}_2$, the curve $g(\theta_{\tau})$ is said to be a trope of R, [11].

Every trope is a conic and it is biregular to $\theta/\langle -1 \rangle$, [1], [10, Chap. 6].

Corollary 2.1. (a) Let $\tilde{C} \in \mathbb{P}^3$, then \tilde{C} not stable $\Leftrightarrow \tilde{C} \in T \Leftrightarrow \tilde{C} = \theta_{x+\tau} + \theta_{-x+\tau}$, for some $x \in \theta$, $\tau \in \tilde{S}_2$.

(b) T is the union of the tropes of R^{\uparrow} . Sing(T) = $g^{\uparrow}(\tilde{S}_2)$. In particular: $\tilde{C} \in \text{Sing}(T) \Leftrightarrow \tilde{C} = 2\theta_{\tau}$ for some $\tau \in \tilde{S}_2$.

Proof. (a) follows from Proposition 2.2 and the proof of its statement (c). (b): from (2.3) and the commutative diagram (2.2) it follows T = union of the tropes of R^{2} , $Sing(T) = g^{2}(R^{2})$.

We quote from the theory of Prym varieties some basic results and definitions:

Definition 2.2. Let $\pi: \tilde{C} \to C$ be a double cover of stable curves of arithmetic genera 2g-1 and g. Let $i: \tilde{C} \to \tilde{C}$ be the involution induced by $\pi, i_*: J\tilde{C} \to I\tilde{C}, \pi_*: J\tilde{C} \to JC$ the induced homomorphisms of (generalized) jacobians. Consider $P(\tilde{C}, C) = \text{Im}(\text{id} - i_*) = \text{Ker}(\pi_*)^0: \pi$ is said to be allowable if the following equivalent conditions hold:

(1) $P(\tilde{C}, C)$ is a g-1 dimensional abelian variety;

(2) the only fixed points of i are nodes where the two branches are not exchanged. The number of nodes exchanged by i equals the number of irreducible components exchanged by i.

The equivalence of (1) and (2) is shown in [2, Lemma 5.1]. $P(\tilde{C}, C)$ is principally polarized by $\frac{1}{2}(\theta \cdot P(\tilde{C}, C))$, $(\theta = \text{theta divisor of } J\tilde{C})$.

Let $\overline{\mathcal{R}}_g$ be the coarse moduli space for allowable double covers of genus g curves: $\overline{\mathcal{R}}_g$ exists, is irreducible and contains \mathcal{R}_g as an open subset; moreover the map

$$\bar{P}:\bar{\mathscr{R}}_{g}\to\mathscr{A}_{g-1}$$

sending $[\tilde{C}, C] \in \overline{\mathscr{R}}_g$ in $[P(\tilde{C}, C)]$ is a proper morphism, [2, 8]. \overline{P} is called the extended Prym map; of course $\overline{P}/\mathscr{R}_3 = P = Prym$ map for etale double covers.

Definition 2.3. Let $\pi: \tilde{C} \to C$ be an allowable double cover, $X = P(\tilde{C}, C), j: \tilde{C} \to J\tilde{C}$ the Abel-Jacobi map. The composition morphism

$$(\mathrm{id} - i_*) \cdot j = \alpha : \tilde{C} \to X$$

is called the Abel-Prym map.

Proposition 2.3. Let $\pi: \tilde{C} \to C$ be an allowable double cover, $\alpha: \tilde{C} \to X = P(\tilde{C}, C)$ the Abel-Prym map, Ξ the theta divisor of X. Then $\alpha_* \tilde{C}$ is a symmetric curve representing the homology class $(2/(d-2)!)\Xi^{d-2}$, $(\dim(X)=d)$. Moreover, if $\alpha_*(\tilde{C})$ is stable, then π is the quotient map $\alpha_{\star}(\tilde{C}) \rightarrow \alpha_{\star}(\tilde{C})/\langle -1 \rangle$.

Proof. Cf. [15, Lemma 3.2].

The converse of this proposition can be stated in the following way:

Proposition 2.4. Let X be a d-dimensional abelian variety, Ξ its principal polarization, $\tilde{C} \subset X$ a symmetric curve representing the homology class $(2/(d-2)! \Xi^{d-2})$. the quotient morphism $\pi: \tilde{C} \to \tilde{C}/\langle -1 \rangle$ is allowable then $X = P(\tilde{C}, C)$ as a principally polarized abelian variety.

Moreover, up to translating by an order 2 element, the inclusion $\tilde{C} \subset X$ is the Abel-Prym map.

Proof. Cf. [15, 5.3], [8, 4.4], [2].

It is easy to apply these results to the situation we considered at the beginning of this section: let \hat{S} , θ be as above, $\mathbb{P}^3 = |2\theta|$. Consider the quotient morphism $\rho: \tilde{S} \to \tilde{S}/\langle -1 \rangle$, then, for every $\tilde{C} \in \mathbb{P}^3$, if the double cover $\rho/\tilde{C}: \tilde{C} \to C = \tilde{C}/\langle -1 \rangle$ is allowable it follows from Proposition 2.4 that $P(\tilde{C}, C) = \tilde{S}$. Hence $[\tilde{C}, C] \in \overline{P}^{-1}(s)$.

Proposition 2.5. Let $\tilde{C} \in \mathbb{P}^3$, then ρ/\tilde{C} is allowable if and only if \tilde{C} is stable.

Proof. It follows from the description of stable elements of \mathbb{P}^3 given in Proposition 2.2, Corollary 2.1: \tilde{C} stable $\Leftrightarrow \tilde{C} \in \mathbb{P}^3 - T$; assume \tilde{C} stable, let $i: \widetilde{C} \to \widetilde{C}$ be the involution induced by ρ/\widetilde{C} . o is fixed by i iff o is a node and $o \in \widetilde{S}_2 \cap \widetilde{C}$, since the differential of -1 is the identity on $T_{\tilde{S},o}$ the two branches of \tilde{C} at o are not interchanged. If \tilde{C} is reducible then $\tilde{C} = \theta_x + \theta_{-x}$ and it is immediate to check that the number of nodes exchanged by i equals the number of irreducible components exchanged by *i*.

By Propositions 2.4, 2.5 there exists a map

$$\phi: \mathbb{P}^3 - T \to \overline{P}^{-1}(s)$$

sending $\tilde{C} \in \mathbb{P}^3$ in $[\tilde{C}, \tilde{C}/\langle -1 \rangle] = \text{class of } \varrho/\tilde{C}$.

Let $\widetilde{\mathscr{C}} = \{ (\widetilde{C}, x) \in (\mathbb{P}^3 - T) \times \widetilde{S} | x \in \widetilde{C} \}$ be the universal curve over $\mathbb{P}^3 - T$, $\mathscr{C} = \{ (\tilde{C}, y) \in (\mathbb{P}^3 - T) \times \tilde{S} / \langle -1 \rangle / y \in \tilde{C} / \langle -1 \rangle \}$ the universal quotient curve, $R: \mathscr{C} \rightarrow \mathscr{C}$ the obvious quotient morphism; then there exists a commutative diaoram

 $(\tilde{p}, p \text{ being the natural projections})$. If $z \in \mathbb{P}^3 - T$ and $\tilde{p}^{-1}(z) = \tilde{C}$ then $p^{-1}(z)$ $=\tilde{C}/\langle -1\rangle$ and $R/\tilde{p}^{-1}(z)=\varrho/\tilde{C}$. Hence, by the universal property of $\bar{\mathcal{R}}_{3}$, ϕ is a morphism.

3

Let $\phi: \mathbb{P}^3 - T \to \overline{P}^{-1}(s)$ be as above: ϕ is a rational map from \mathbb{P}^3 in $\overline{P}^{-1}(s)$ having Tas its fundamental locus. In this section we show that ϕ extends to a morphism $\tilde{\phi} = \phi \cdot \sigma : \tilde{\mathbb{P}}^3 \to \overline{P}^{-1}(s)$

where $\sigma = \sigma_2 \cdot \sigma_1 : \mathbb{P}^3 \to \mathbb{P}^3$, $\sigma_2 =$ blowing up of \mathbb{P}^3 at Sing(T) and σ_1 blows up the strict transform of the conics which are components of T.

For sake of simplicity, unless explicitly mentioned, we assume \tilde{S} is not a product (i.e. θ smooth, irreducible). If \tilde{S} is a product the results are analogous (cf. Remark 3.1).

If $[\tilde{C}, C] \in \overline{\mathcal{R}}_3$ we will denote by $\pi : \tilde{C} \to C$ the corresponding allowable double cover, by α the Abel-Prym map and by *i* the involution induced by π on \tilde{C} .

A stable curve C, $(p_a(C) > 1)$, will be said hyperelliptic, [2, Lemma 4.7] iff there exist $\mathcal{L} \in \text{Pic}(C)$ such that $h^0(\mathcal{L}) = \text{deg}(\mathcal{L}) = 2$ on every irreducible component of C. If C is hyperelliptic then \mathcal{L} is unique.

By Proposition 2.3, for every $[\tilde{C}, \tilde{C}] \in \overline{P}^{-1}(s)$, $\alpha_* \tilde{C} \in \mathbb{P}^3$; therefore we need to know for which $[\tilde{C}, C] \alpha_* \tilde{C} \in T$.

Let $\sigma_1: \mathbb{P}^3 \to \mathbb{P}^3$ be the blowing up of \mathbb{P}^3 at Sing(T). Assume $t \in \text{Sing}(T)$ is the point corresponding to the divisor 2θ (or $2\theta_t, \tau \in \tilde{S}_2$), let

 $E = \sigma_1^{-1}(t)$

be the exceptional plane over t. Consider the exact sequence

$$0 \to H^{0}(\mathcal{O}_{\overline{S}}(\theta)) \to H^{0}(\mathcal{O}_{\overline{S}}(2\theta)) \xrightarrow{\mathbf{r}} H^{0}(\mathcal{O}_{\theta}(2\theta)) \to 0:$$

the restriction homomorphism r defines a natural 1:1 correspondence between E and $\mathbb{P}H^{0}(\mathcal{O}_{g}(2\theta))$. Indeed:

(3.1) $E = \{ \text{pencils } P \in |2\theta| \text{ containing } 2\theta \text{ as an element} \},$

thus, to every $P = \lambda s_0 + \mu s_1$, $((\lambda : \mu) \in \mathbb{P}^1; s_0, s_1 \in H^0(\mathcal{O}_{\mathcal{S}}(2\theta)))$, $\operatorname{div}(s_0) = 2\theta$, it corresponds the one dimensional vector space $V_P \subset H^0(\mathcal{O}_{\theta}(2\theta))$ generated by $r(s_1) = s_1/\theta$. For every $P = \lambda s_0 + \mu s_1 \in E$ we denote by

the zero scheme of s_1/θ and by

$$(3.3) \qquad \qquad \alpha_P \colon \tilde{C}_P \to \theta$$

the double covering of θ branched on b_P . Notice that $\mathcal{O}_{\theta}(2\theta) = \omega_{\theta}^2 =$ bicanonical sheaf of θ . Moreover \tilde{C}_P has arithmetic genus 5 and it is not difficult to see that \tilde{C}_P is stable but for the following exception:

(3.4)
$$b_{\mathbf{p}} = 4\tau$$
, where τ is a Weierstrass point of θ .

For every trope (Definition 2.1) $B \subset R^{\hat{}}$ let \hat{B} its strict transform by σ_1 and

$$(3.5) \qquad \qquad \hat{T} \subset \mathbf{\hat{P}}^3$$

the union of the curves \hat{B} , then:

Proposition 3.1. Assume $P \in E = \sigma_1^{-1}(t) \subset \sigma_1^{-1}(\operatorname{Sing}(T)) = exceptional divisor of <math>\sigma_1$; then \tilde{C}_P is stable if and only if $P \notin \hat{T}$.

Proof. As it is well known θ contains exactly six points of order 2 so that there are six tropes $B_{\tau} = Z_{\tau} \cap R^{2}$, $\tau \in \tilde{S}_{2} \cap \theta$, through the point *t*. As in the proof of

Proposition 2.2 we can choose local parameters u, v at τ and three symmetric theta divisors $\theta_1, \theta_2, \theta_3 = \theta$ through τ whose equations are given respectively by the polynomials $p_1(u, v) = u + ..., p_2(u, v) = v + ..., p_3(u, v) = au + bv + ...$ Then the curves of Z_{τ} are given by $x_1p_1^2 + x_2p_2^2 + x_3p_3^2 = 0$, $((x_1 : x_2 : x_3) \in \mathbb{P}^2)$ and the equation of B_{τ} is the discriminant of the quadratic form $x_1u^2 + x_2v^2 + x_3(au + bv)^2$, (cf. proof of Proposition 2.2).

Therefore the tangent line to B_r at t is the pencil $P = \{b^2x_1 + a^2x_2 = 0\}$ and the curve $C = \{a^2p_1 - b^2p_2 = 0\}$ belongs to P. Since $\theta = \{au + bv + ... = 0\}$ C is tangent to θ and $C \cdot \theta = 3\tau + q$. On the other hand $b_p \in |\omega_{\theta}^2|$ so that the only possibility is $\tau = q$, $b_P = 4\tau$. Hence \tilde{C}_P is not stable. This implies the statement.

Proposition 3.2. Assume $P \in \sigma_1^{-1}(\operatorname{Sing}(T))$, $P \notin \hat{T}$. Then there exists a unique admissible double cover $\pi : \tilde{C}_P \to C_P$ such that $[\tilde{C}_P, C_P] \in \bar{P}^{-1}(s)$ and $\alpha_P : \tilde{C}_P \to \theta$ is the Abel-Prym map. Moreover \tilde{C}_P is hyperelliptic.

Proof. Since $\varrho: \theta \to \theta/\langle -1 \rangle$ is the canonical map and $b_P \in |\omega_{\theta}^2|$ it follows that $\varrho(b_P)$ is a degree 2 divisor. Let $\beta: N \to \theta/\langle -1 \rangle$ be the double cover of $\theta/\langle -1 \rangle$ branched on $\varrho(b_P)$, consider the fibre product:

(3.6)
$$\begin{array}{c} \tilde{C} & \xrightarrow{\alpha'} & \theta \\ \gamma & \downarrow & \downarrow e \\ N & \xrightarrow{\beta} & \theta/\langle -1 \rangle \end{array}$$

clearly α' is branched on b_P ; hence $\tilde{C}_P = \tilde{C}$, $\alpha' = \alpha_P$. Since $p_a(N) = 0 \tilde{C}_P$ is hyperelliptic.

Let a and g be the involutions induced by α' and γ ; by (3.6) \tilde{C}_P carries a third involution $i=g \cdot a=a \cdot g$. It is not difficult to check that the quotient morphism $\pi: \tilde{C}_P \to C_P$, $(\tilde{C}_P = \tilde{C}_P / \langle -1 \rangle)$, is admissible. Let α be the Abel-Prym map of π : since \tilde{C}_P has a unique hyperelliptic linear series $i(x+g(x)) \sim x+g(x)$ for every $x \in \tilde{C}_P$. Hence $x - i(x) = \alpha(x) = i(g(x)) - g(x) = \alpha(i(g(x)) = \alpha(a(x)))$ so that α factors through α' and $\alpha_*(\tilde{C}_P)$ is not reduced. Thus $\alpha_*(\tilde{C}_P)$ has to be twice the theta divisor of the Prym of π . This implies deg $(\alpha) = 2$, $\alpha = \alpha'$, $\alpha_*(\tilde{C}_P) = 2\theta$ so that $[\tilde{C}_P, C_P] \in \bar{P}^{-1}(s)$. The uniqueness of the construction is clear.

By the previous proposition there exists a well defined map

$$\hat{\phi}: \hat{\mathbb{P}}^3 - \hat{T} \rightarrow \bar{P}^{-1}(s)$$

such that $\hat{\phi}/(\hat{\mathbb{P}}^3 - \sigma_1^{-1}(T)) = \phi \cdot \sigma_1$ and, for every $P \in \sigma_1^{-1}(\operatorname{Sing} T)$, $P \notin \hat{T}$

 $\hat{\phi}(P) = [\tilde{C}_P, C_P]$ as in Proposition 3.2.

Proposition 3.3. $\hat{\phi}: \hat{\mathbf{P}}^3 - \hat{T} \rightarrow \bar{P}^{-1}(s)$ is a morphism.

Proof. To show the theorem it is not restrictive to assume $\sigma_1 =$ blowing up of \mathbb{P}^3 in just one of the sixteen points of Sing(T). Assume also that this point is t and corresponds to the divisor 2θ .

Let us consider as in (2.4) the universal curves $\tilde{p}: \tilde{\mathscr{C}} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$ in $\tilde{S} \times \mathbb{P}^3$, $p: \mathscr{C} \to \mathbb{P}^3$, $p: \mathcal{C} \to \mathbb{P}^$

The Fibre of the Prym Map in Genus Three

locally given in $\mathbb{P}^3 \times \tilde{S}$ by

$$(3.7) z_1p_1+z_2p_2+z_3p_3+p_0^2=0,$$

where $p_0(u, v) = au + bv + ...$ is a local equation for θ ; z_1, z_2, z_3 are affine coordinates on $\mathbb{A}^3 \subset \mathbb{P}^3$. After blowing up \mathbb{P}^3 at t = (0, 0, 0), $\tilde{\mathscr{C}}$ pulls back to a smooth, flat family $\tilde{d} : \tilde{\mathscr{D}} \to \hat{\mathbb{P}}^3$ which is locally given by

(3.8)
$$z_3x = z_1, z_3y = z_2, z_3(p_1 + xp_2 + yp_3) + p_0^2 = 0$$

After the local base change $\alpha: B \rightarrow \sigma_1^{-1}(\mathbb{A}^3)$ given by

$$\xi^2 = z_3$$

 $\tilde{\mathscr{D}}$ pulls back again to the family $\beta: \tilde{\mathscr{B}} \to B$ which is given by

(3.9)
$$\begin{aligned} \xi^2 x = z_1, \ \xi^2 y = z_2, \ \xi^2 = z_3 \\ \xi^2 (p_1 + x p_2 + y p_3) + p_0^2 = 0 \end{aligned}$$

in local parameters $(\xi; x, y; z_1, z_2, z_3; u, v)$ on $\mathbb{A}^1 \times \mathbb{A}^2 \times \mathbb{A}^3 \times \tilde{S}$. Since α is unramified on $z_3 \neq 0$ and $\tilde{\mathscr{D}}$ is smooth it follows that $\tilde{\mathscr{B}} - \{z_3 = 0\}$ is smooth.

On the other hand it is clear from (3.9) that

$$\operatorname{Sing}(\widetilde{\mathscr{B}}) = \{z_3 = 0\}.$$

Let q be any point of Sing($\tilde{\mathscr{B}}$), we can always choose u, v so that u(q) = v(q) = 0, then the tangent cone to $\tilde{\mathscr{B}}$ at q is

(3.10)
$$\xi^{2}(\bar{p}_{1}+\bar{x}\bar{p}_{2}+\bar{y}\bar{p}_{3})+(au+bv)^{2}=0, \ z_{1}=z_{2}=z_{3}=0,$$

(where \bar{p}_i , \bar{x} , \bar{y} are the values of p_i , x, y at q). Moreover, if $\tilde{\beta}(q) = P''$, then $P = \alpha(P'') \in E = \sigma_1^{-1}(t)$ corresponds, via the bijection in (3.1), to the pencil

 $\{\lambda p_0^2 + \mu(p_1 + \bar{x}p_2 + \bar{y}p_3) = 0\}$

and, obviously, $\tilde{\beta}^{-1}(P'') = \theta$. Then, by 3.10, it follows that

(3.11)
$$\mathscr{B}$$
 has two branches at $q \Leftrightarrow \bar{p}_1 + \bar{x}\bar{p}_2 + \bar{y}\bar{p}_3 = 0 \Leftrightarrow q \in b_P$,

(where b_P is defined as in 3.2). Therefore the normalization

$$\tilde{p}': \tilde{\mathscr{C}}' \to B$$

of $\widetilde{\mathscr{B}}$ is a family of curves such that, if $P'' \in B$ and $\alpha(P'') = P \in E$

$$\tilde{p}'^*(P'') = \tilde{C}_F$$

as in (3.3). Otherwise $\tilde{p}^{\prime*}(P^{\prime\prime}) = \tilde{p}^*(\sigma_1(\alpha(P^{\prime\prime})))$.

· • ·

Consider now the universal quotient curve $p: \mathscr{C} \to \mathbb{P}^3$, one can construct in exactly the same way, families $d: \mathcal{D} \to \mathbb{P}^3$ and $\beta: \mathscr{B} \to B$ from \mathscr{C} . In this case $q \in \mathscr{B}$ is a not normal double point if and only if $\beta(q) = P''$ and $\alpha(P'') = P \in E$. Moreover, if so, $\beta^{-1}(P'') = \theta/\langle -1 \rangle$. Observe also that $\mathscr{C} \subset \mathbb{P}^3 \times \tilde{S}/\langle -1 \rangle$ is singular (with normal singularities) along $\mathscr{C} \cap (\mathbb{P}^3 \times \operatorname{Sing}(\tilde{S}/\langle -1 \rangle))$ and \mathscr{D} is singular along the pull back of it. In particular, if $P \in E$, $d^{-1}(P) = \theta/\langle -1 \rangle$ intersects $\operatorname{Sing}(\mathscr{D})$ along the six branch points of $q: \theta \to \theta/\langle -1 \rangle$. Using this remark and the equation for the tangent cone to \mathscr{B} at q as in (3.10) it turns out that

(3.12) \mathscr{B} has two branches at $q \Leftrightarrow q \in \varrho(b_p)$ or q is a branch point for ϱ .

Let $\tilde{p}': \mathscr{C} \to B$ be the normalization of \mathscr{B} : it is not difficult to see that the universal double covering $R: \widetilde{\mathscr{C}} \to \mathscr{C}$ induces a commutative diagram

If $\alpha(P'') = P$ and $P \in E$ then the morphism of fibres $R_{P''} : \widetilde{\mathscr{C}}_{P''} \to \mathscr{C}_{P''}$ is exactly the allowable double covering considered in Proposition 3.2 (provided that $P \notin \hat{T}$). If $\alpha(P'') \notin E$ then $R_{P''} = R_P : \widetilde{\mathscr{C}}_P \to \mathscr{C}_P$. Thus, by the universal property of $\overline{\mathscr{R}}_3$ and Proposition 3.2, (3.13) defines a morphism $\psi: B \to \overline{P}^{-1}(s)$ such that $\hat{\phi} \cdot \alpha = \psi$. Hence $\hat{\delta}$ is a morphism.

Consider in $\overline{P}^{-1}(s)$ the subloci

$$\mathcal{I}_{s}, \mathcal{T}_{s}, \mathcal{E}_{s},$$

which are defined in the following way:

(3.14) $[\tilde{C}, C] \in \mathscr{I}_s$ if and only if \tilde{C} is a hyperelliptic curve.

(3.15) (see [8, (2) 2.3], [2]): $[\tilde{C}, C] \in \mathcal{T}_s$ if and only if $\tilde{C} = \theta_1 \cup \theta_2$ is the union of two copies θ_{i} (j=1,2), of θ intersecting transversally at two points and i/θ_{i} is the identity isomorphism from θ_1 to θ_2 , (*i* being the involution induced by $\pi: \widetilde{C} \to C$).

(3.16) (Elliptic tails: see [8 (3) 2.3], [2]): $[\tilde{C}, C] \in \mathscr{E}_s$ if and only if the following conditions hold:

(i) $\tilde{C} = \theta_1 \cup \tilde{E} \cup \theta_2$ is the union of two copies θ_j , (j = 1, 2), of θ and a curve \tilde{E} of arithmetic genus 1. θ_i intersects \tilde{E} transversally in a point p_i ; $p_1 - p_2$ is a non zero order 2 element on $\operatorname{Pic}^{0}(\tilde{E})$;

(ii) $i(\theta_1) = \theta_2$ and i/θ_1 is the identity isomorphism between the two copies of θ ;

$$\begin{split} i(\widetilde{E}) &= \widetilde{E} \text{ and } i/\widetilde{E} \text{ induces the translation by } p_1 - p_2 \text{ on } \operatorname{Pic}^0(\widetilde{E});\\ (\text{iii}) \quad C = \theta \cup E; \quad \widetilde{E} = E/\langle i \rangle \text{ and } p_a(E) = 1. \quad E \cap \theta = \{p\}, \quad p = \pi(p_1) = \pi(p_2).\\ \text{Since } \widetilde{S} \text{ is not a product it follows easily that, for every } [\widetilde{C}, C] \in \overline{P}^{-1}(s), \end{split}$$

(3.17) \tilde{C} is reducible if and only if $[\tilde{C}, C] \in \mathcal{T}_s \cup \mathcal{E}_s$.

Furthermore:

(3.18) (i) $\mathcal{T}_{\bullet} \cap \mathscr{E}_{\bullet} = \emptyset$,

(ii) $\mathscr{T}_s \cap \mathscr{I}_s = \{ [\tilde{C}, C] \in \mathscr{T}_s / \tilde{C} \text{ is obtained from two copies of } \theta \text{ by glueing the} \}$ point $x \in \theta$ to -x, $(x \neq -x)$ },

(iii) $\mathscr{E}_s \cap \mathscr{I}_s = \{ [\tilde{C}, C] \in \mathscr{E}_s / \tilde{C} = \theta_1 \cup \tilde{E} \cup \theta_2 \text{ as in (3.16) and } \theta_j, (j = 1, 2), \text{ is glued to} \} \}$ \tilde{E} in the Weierstrass point $\tau \in \theta \cap \tilde{S}_2$.

Proposition 3.4. $\hat{\phi}(\mathbf{\hat{P}}^3 - \hat{T}) = \bar{P}^{-1}(s) - \mathscr{E}_s$. In particular:

(1) Let R' be the strict transform of R° by σ_1 , then $\hat{\phi}(R' - (R' \cap \hat{T})) = \mathcal{F}_{s'}$ (2) Let E be an exceptional plane for σ_1 , then $\hat{\phi}(E - (E \cap \hat{T})) = \mathcal{F}_s - (\mathcal{F}_s \cap \mathcal{E}_s)$.

442

Proof. $[\tilde{C}, C] \in \hat{\phi}(\mathbb{P}^3 - \hat{T}) \Rightarrow \alpha(\tilde{C}) \in |2\theta|$ or \tilde{C} is a finite double cover of θ . In both cases \tilde{C} cannot split as in (3.16); hence $\hat{\phi}(\mathbb{P}^3 - \hat{T}) \subset \bar{P}^{-1}(s) - \mathscr{E}_s$. Conversely let $[\tilde{C}, C] \in \bar{P}^{-1}(s) - \mathscr{E}_s$, assume \tilde{C} is irreducible: If deg(α) = 1 then, by Corollary 2.1, $\alpha_*(\tilde{C})$ is stable; hence, by Proposition 2.3, $[\tilde{C}, C] = [\alpha_*(\tilde{C}), \alpha(\tilde{C})/\langle -1 \rangle]$, so that $[\tilde{C}, C] \in \phi(\mathbb{P}^3 - T)$. If deg(α) > 1 consider $x, y \in \tilde{C}$, $(x \neq y)$, such that $\alpha(x) = \alpha(y)$. Then $x - i(x) \sim y - i(y)$ so that $x + i(y) \sim y + i(x)$ and \tilde{C} is hyperelliptic. Thus $\alpha_*(\tilde{C}) = (\text{deg}\alpha) \alpha_*(\tilde{C}) = 2\theta$ and the following diagram commutes:

(3.19)
$$\begin{array}{c} \tilde{C} \xrightarrow{a} \theta \\ \pi \\ \downarrow \\ \tilde{C} \xrightarrow{\beta} \theta / \langle -1 \rangle \end{array}$$

Since π is admissible $\pi^*\omega_C = \omega_{\tilde{C}}$, [2, Lemma 5.1]; hence it easily follows that β is branched on w + b; where $w = \sum \tau$, $\tau \in \theta \cap \tilde{S}_2$ is a Weierstrass point and deg(b) = 2. Therefore $\varrho^*b \in |\omega_{\theta}^2|$ and $\varrho^*b = b_P$ for some $P \in E$. Moreover α is branched on b_P so that $\tilde{C} = \tilde{C}_P$ and, being \tilde{C} stable, $P \notin E \cap \hat{T}$. By Proposition 3.3 $\hat{\phi}(P) = [\tilde{C}, C]$. In the end assume $[\tilde{C}, C] \in \overline{P}^{-1}(s) - \mathscr{E}_s$, \tilde{C} reducible; then $[\tilde{C}, C] \in \mathcal{F}_s$. Looking to the Abel-Prym map one sees that either $\alpha_*(\tilde{C}) = \tilde{C} = \theta_x + \theta_{-x} \in R$ or α is a double cover of θ branched on 2(x + y), $(x \neq y)$.

This implies $\hat{\phi}(\hat{\mathbf{P}}^3 - \hat{T}) = \overline{P}^{-1}(s) - \mathscr{E}_s$ and the statement (1).

To show (2) observe that, since \tilde{S} is not a product, $|2\theta|$ cannot contain elements which are hyperelliptic curves. Hence $[\tilde{C}, C] \in \mathscr{I}_s - (\mathscr{I}_s \cap \mathscr{E}_s) \Rightarrow \alpha_*(\tilde{C}) = 2\theta \Rightarrow [\tilde{C}, C] \in \hat{\phi}(E).$

Let us consider now \mathscr{E}_s :

Lemma 3.1.
$$\forall s \in \mathcal{A}_2, \mathcal{E}_s = (\theta / \operatorname{Aut}(\theta)) \times \overline{\mathcal{R}}_1$$
.

Proof. It follows from the more general Lemma 1.31 of [8]; in fact: to give $[\tilde{C}, C] \in \mathscr{E}_s$ is equivalent to give $x \in \theta \pmod{\operatorname{Aut}(\theta)}$ such that $\{x\} = \theta \cap E$, where $C = \theta \cup E$ as in (3.16), together with $[\tilde{E}, E] \in \tilde{\mathscr{R}}_1$.

We recall that

 $\bar{\mathscr{R}}_1 = \mathbb{P}^1$.

Assume $[\tilde{C}, C] \in \mathscr{E}_s, \tilde{C} = \theta_1 \cup \tilde{E} \cup \theta_2$; since i/\tilde{E} is induced by the translation by a non zero order two element in Pic⁰(\tilde{E}) we have:

$$\alpha(\tilde{E}) = \text{ one point } \tau \in \tilde{S}_2.$$

On the other hand α/θ_i maps θ_i isomorphically onto a copy of θ and clearly

$$\alpha(\theta_1) \cap \alpha(\theta_2) = \{\tau\}$$

or $\alpha(\theta_1) = \alpha(\theta_2)$. Hence, by the description of reducible curves of $|2\theta|$ given in Sect. 2, $\alpha_*(\tilde{C}) = \theta_{\tau+x} + \theta_{\tau-x}$ for some $x \in \theta$. That is: (3.21)

$$\alpha_*(\tilde{C}) \in B \subset T,$$

where B is a trope. We know that $B = \theta/\langle -1 \rangle = \mathbb{P}^1$, (S not a product), and that B is a conic passing through six fundamental points of σ_1 . In particular $B = Z_\tau \cap Q$, (where Q is a quadric), and its strict transform is the complete intersection

$$\hat{B} = \hat{Z}_{\tau} \cap \hat{Q}$$

(with $\hat{Z}_t, \hat{Q} = \text{strict}$ transforms of Z_t, \hat{Q}). The ideal \mathscr{F} of \hat{B} in $\hat{\mathbb{P}}^3$ is $\mathscr{O}_{\hat{\mathbb{P}}}(-\hat{Z}) \oplus \mathscr{O}_{\hat{\mathbb{P}}}(-\hat{Q})$; moreover $\hat{B}^2 = -2$ in \hat{Z}_t and $\hat{B}^2 = -4$ in \hat{Q} so that the conormal bundle of \hat{B} in $\hat{\mathbb{P}}^3$ is:

$$\mathscr{F}/\mathscr{F}^2 = \mathcal{O}_{P^1}(2) \oplus \mathcal{O}_{P^1}(4).$$

Let $\mathscr{G} \subset \mathscr{F}$ be the ideal $\mathscr{O}_{\hat{\mathbf{P}}^3}(-2\hat{Z}) \oplus \mathscr{O}_{\hat{\mathbf{P}}^3}(-\hat{Q})$ having \hat{B} as its support: after blowing up $\hat{\mathbf{P}}^3$ along the ideal \mathscr{G} the exceptional divisor is

(3.22)
$$\mathbf{\mathbb{P}}(\mathscr{G}/\mathscr{G}^2) = \mathbf{\mathbb{P}}(\mathscr{O}_{\mathbf{P}^1}(4) \oplus \mathscr{O}_{\mathbf{P}^1}(4)) = \hat{B} \times \mathbf{\mathbb{P}}^1.$$

Since all the \hat{B} 's are two by two disjoint we can blow up all of them as above, in this way we obtain a birational morphism

$$\sigma_2: \mathbb{P}^3 \to \mathbb{P}^3$$

having as exceptional divisor the union of 16 copies of $\theta/\langle -1 \rangle \times \mathbb{P}^1$. Thus, for every \hat{B} , we can identify $\sigma_2^{-1}(\hat{B})$ to $\hat{B} \times \overline{\mathscr{R}}_1$. This defines in a natural way a map

(3.23)
$$\tilde{\phi}: \tilde{\mathbf{P}}^3 \to \bar{P}^{-1}(s)$$

which is surjective and extends $\hat{\phi}$. By definition $\tilde{\phi} = \sigma_2 \cdot \hat{\phi}$ on $\hat{\mathbb{P}}^3 - \sigma_2^{-1}(\hat{T})$; on the other hand, if $P = (\pm x; [\tilde{E}, E]) \in \hat{B} \times \bar{\mathscr{R}}_1 \subset \sigma_2^{-1}(\hat{T})$, we set $\tilde{\phi}(P) = [\tilde{C}, C]$; where \tilde{C} is obtained by glueing to the copies θ_x , θ_{-x} of θ the curve \tilde{E} in such a way that $\theta_x \cap \tilde{E} = \{x\}, \ \theta_{-x} \cap \tilde{E} = \{-x\}$. Moreover the difference of these two points on \tilde{E} defines an order two translation *j* whose quotient is *E* and $C = \tilde{C}/\langle i \rangle$, where $i/\tilde{E} = j$ and $i/(\theta_x \cup \theta_{-x})$ is the -1 involution of \tilde{S} . It is clear that, (up to automorphisms), the quotient map $\pi: \tilde{C} \to C$ is defined as in (3.16) and that $[\tilde{C}, C] \in \mathscr{E}_s$.

In particular

$$\tilde{\phi}(\tilde{\mathbf{P}}^3) = \bar{P}^{-1}(s), \, \phi(\sigma_2^{-1}(\hat{B})) = \mathscr{E}_s.$$

By Lemma 3.1, if Aut(θ) = $\mathbb{Z}/2\mathbb{Z}$ then $\tilde{\phi}/(\sigma_2^{-1}(\hat{B}))$ is an isomorphism.

After some tedious computations, similar to the ones we produced in Proposition 3.3, one shows the following

Proposition 3.5. The map $\tilde{\phi}: \mathbb{P}^3 \to \overline{P}^{-1}(s)$ is a surjective morphism.

Remark 3.1. In particular, by Proposition 3.5, $\overline{P}^{-1}(s)$ is irreducible. If \tilde{S} is a product this is no longer true: $\overline{P}^{-1}(s)$ contains a 3-dimensional component \mathscr{F}_s such that $\mathscr{F}_s \cap P^{-1}(s) = \emptyset$, $(P = \overline{P}/\mathscr{R}_3)$. The elements of \mathscr{F}_s are defined in [9, Lemma 12, Proposition 1.5]. Nevertheless one can extend the results of this section by constructing a morphism $\tilde{\phi}: \mathbb{P}^3 \to \overline{P}^{-1}(s)$ also when \tilde{S} is a product. In this case it turns out that $\tilde{\phi}(\mathbb{P}^3) = \mathbb{Z}$ ariski closure of $P^{-1}(s)$ in $\overline{P}^{-1}(s)$.

4

To complete the construction of $\overline{P}^{-1}(s)$ we describe now the morphism $\tilde{\phi}$. We assume again that \tilde{S} is not a product (see Remark 4.1). Let G be the group of the translations on \tilde{S} by elements of order two. G is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$. Since $2\theta \sim 2\theta_r$, $\tau \in \tilde{S}_2$, G acts linearly (and faithfully) on $\mathbb{P}^3 = |2\theta|$. Observe that:

(1) The sixteen points of Sing(T) form the orbit of the element 2θ ;

(2) G acts transitively on the sixteen tropes of R^2 .

Then, since $\sigma_1: \mathbb{P}^3 \to \mathbb{P}^3$ is a blowing up centered in Sing(T), the action of G extends to an action on \mathbb{P}^3 and G acts transitively on the strict transforms of the sixteen tropes of R^{\uparrow} . On the other hand $\sigma_2: \mathbb{P}^3 \to \mathbb{P}^3$ is a blowing up centered on $\hat{T} =$ union of the strict transforms of the tropes of R^{\uparrow} . Hence the action of G extends to an action on \mathbb{P}^3 .

Proposition 4.1. Assume Aut(θ) = $\mathbb{Z}/2\mathbb{Z}$ then: $\forall P_1, P_2 \in \mathbb{P}^3$

$$\widetilde{\phi}(P_1) = \widetilde{\phi}(P_2) \Leftrightarrow P_1$$
 and P_2 are in the same G-orbit.

Proof. Let $\tilde{\phi}(P_i) = [\tilde{C}_i, C_i]$, (i=1,2); assume $\tilde{\phi}(P_1) = \tilde{\phi}(P_2)$. This implies that the allowable double covers $\pi_1: \tilde{C}_1 \to C_1$ and $\pi_2: \tilde{C}_2 \to C_2$ are isomorphic. Hence there exist isomorphisms $\tilde{\sigma}: \tilde{C}_1 \to \tilde{C}_2$, $\sigma: C_1 \to C_2$, such that $\pi_2 \cdot \tilde{\sigma} = \sigma \cdot \pi_1$ and $i_2 \cdot \tilde{\sigma} = \sigma \cdot i_1$, $(i_j, j=1,2)$, being the involution induced by π_j). $\tilde{\sigma}$ extends to an isomorphism $\tilde{\sigma}_*: J\tilde{C}_1 \to J\tilde{C}_2$ such that $i_{2*} \cdot \tilde{\sigma}_* = \sigma_* \cdot i_{1*}$. Therefore $\tilde{\sigma}_*/\text{Im}(\text{id} - i_{1*}) = t$ is an isomorphism from Im $(\text{id} - i_{1*})$ to Im $(\text{id} - i_{2*})$. In other words t is an automorphism of \tilde{S} as a principally polarized abelian surface. Since we can choose Abel-Jacobi embeddings $\tilde{C}_1 \subset J\tilde{C}_1, \tilde{C}_2 \subset J\tilde{C}_2$ such that $\tilde{\sigma}_*(\tilde{C}_1) = \tilde{C}_2$ it follows that $t(\alpha_1(\tilde{C}_1)) = \alpha_2(\tilde{C}_2)$, $(\alpha_j$ being the Abel-Prym map for \tilde{C}_j). Hence $|2\theta|$ is changed in itself by t. On the other hand t is induced by an element of Aut(θ); since Aut(θ) = $\mathbb{Z}/2\mathbb{Z}$ it follows t = id or t = -1 so that t acts as the identity on $|2\theta|$.

Since the Abel-Prym map is defined up to translating by an element of \tilde{S}_2 , we have $\alpha_1(\tilde{C}_1) = \alpha_2(\tilde{C}_2)$ modulo such a translation. Hence P_1 , P_2 are in the same G-orbit. Conversely assume $P_1 = P_2 \mod(G)$, then $\alpha_1(\tilde{C}_1)_\tau = \alpha_2(\tilde{C}_2)$, $(\tau \in \tilde{S}_2)$. If $\tilde{\phi}(P_1) \notin \mathscr{I}_s \cup \mathscr{E}_s$ then $\alpha_{i*} \tilde{C}_i$ is stable and $[\tilde{C}_i, C_i] = [\alpha_{i*} \tilde{C}_i, \alpha_{i*} \tilde{C}_i/\langle -1 \rangle]$.

Hence, obviously, $[\tilde{C}_1, C_1] = [\tilde{C}_2, C_2]$. If $P_1 \in \mathscr{I}_s$ then $\alpha_1(\tilde{C}_1) = \theta$ and α_1 is branched on b_{P_1} [which is defined as in (3.3)]. Thus $\alpha_2(\tilde{C}_2) = \theta_r$. Let b_{P_2} be the branch divisor of α_2 , since $P_1 = P_2 \mod(G)$ it follows $b_{P_2} = (b_{P_1})_r$ and $\tilde{C}_1 = \tilde{C}_2$. By Proposition 3.2 this implies $[\tilde{C}_1, C_1] = [\tilde{C}_2, C_2]$. A similar argument applies if $P_1 \in \mathscr{E}_s$.

Corollary 4.1. Assume Aut(θ) = $\mathbb{Z}/2\mathbb{Z}$, then $\tilde{\mathbb{P}}^3/G = \bar{P}^{-1}(s)$.

The group G and its representation as a subgroup of the projective linear group PGL(4) are classically well known, [4, Vol. III], [11]: there exist finitely many system of coordinates $(x_1:x_2:x_3:x_4)$ on $|2\theta|$, [finitely many bases of $H^0(\tilde{S}, \mathcal{O}_{\tilde{S}}(2\theta))$], such that the equation of R° is

^(4.1)
$$E(x_1^4 + x_2^4 + x_3^4 + x_4^4) + 2D(x_1x_2x_3x_4) + A(x_1^2x_2^2 + x_3^2x_4^2) + B(x_1^2x_3^2 + x_2^2x_4^2) + C(x_1^2x_4^2 + x_2^2x_3^2) = 0,$$

where $(A:B:C:D:E) \in \mathbb{P}^4$ and satisfies the cubic equation

....

$$(4.2) E(4E^2 - A^2 - B^2 - C^2 - D^2) + ABC = 0.$$

It is also known that to fix $(x_1 : x_2 : x_3 : x_4)$ as above is equivalent to fix a level two structure on \tilde{S} . Moreover, if the equation of R^{-1} is normalized as in (4.1), then Gacts linearly on $\mathbb{P}^3 = |2\theta|$ as the group generated by the involutions sending $(x_1: x_2: x_3: x_4)$ respectively in

$$(x_4:-x_3:x_2:x_1), \quad (x_4:x_3:-x_2:-x_1), \quad (x_3:x_4:-x_1:-x_2), \\ (-x_2:x_1:x_4:-x_3), \quad (x_2:-x_1:x_4:-x_3).$$

We denote by V^{\uparrow} the cubic threefold defined by (4.2) and by

 $V \in \mathbb{P}^4$

its dual hypersurface; it is well known [4, Vol. VII], [11] that V° is the so called Segre primal containing ten nodes as its only singularities. On the other hand $V_{is a}$ (rational) quartic threefold having as its singular locus 15 double lines intersecting three by three in 15 triple points. In the end the space $H^{\circ}(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))^G$ of the *G*-invariant quartic forms is 5-dimensional and a basis for it is

 $(x_1^4 + x_2^4 + x_3^4 + x_4^4), (x_1x_2x_3x_4), (x_1^2x_2^2 + x_3^2x_4^2), (x_1^2x_3^2 + x_2^2x_4^2), (x_1^2x_4^2 + x_2^2x_3^2).$

We denote by

 $\mu: \mathbb{P}^3 \to \mathbb{P}^4$

the morphism associated to $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))^G$.

Proposition 4.2. (1) $\mu(\mathbb{P}^3) = V$, (2) $V = \mathbb{P}^3/G$ and $\mu: \mathbb{P}^3 \to V$ is the quotient map.

Proof. This is shown in [4, Vol. III, p. 210].

Lemma 4.1. (1) $\mu(\operatorname{Sing}(T)) = o$, where o is a smooth point of V,

(2) $\mu(R^{\prime}) = R^{\prime}$,

(3) $\mu(R') = H_0 \cap V$ where H_0 is the tangent hyperplane to the quartic threefold V at the point o,

(4) $\mu(T) = Q$, where Q has an ordinary sixtuple point in o and the normalization of Q in o is isomorphic to $\theta/\langle -1 \rangle$.

Proof. (1) By Proposition 4.2 deg(μ)=16, since $\#\mu^{-1}(o) = \#\operatorname{Sing}(T) = 16 \ o$ is not in the branch locus of μ hence o is smooth. (2) It is clear that the following diagram is commutative

where μ_2 is the multiplication by 2 on the dual \tilde{S}^{\uparrow} of \tilde{S} and the vertical arrows are the quotient map from \tilde{S}^{\uparrow} to $R^{\uparrow} = \tilde{S}^{\prime}/\langle -1 \rangle$. Hence $\mu(R^{\uparrow}) = \text{Kummer surface of}$ $\tilde{S}^{\uparrow} = R^{\uparrow}$ [recall also that R^{\uparrow} is G-invariant: for instance its Eq. (4.1) is given by an invariant quartic form]. (3) Since the equation of R^{\uparrow} is given by an element of $H^{\circ}(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4))^G$ it follows that $\mu(R^{\uparrow})$ is a hyperplane section of V. The general hyperplane section of V is a quartic surface with 15 nodes; on the other hand R^{\uparrow} is a quartic surface with 16 nodes, $\operatorname{Sing}(R^{\uparrow}) = \operatorname{Sing}(T)$ and $\mu(\operatorname{Sing}(R^{\uparrow})) = o$. Hence o is singular for $\mu(R^{\uparrow})$. Since o is smooth for V the result follows. (4) Let $B \subset T$ be a trope, then $\mu(B) = \mu(T)$. It is immediate to check that $\mu(B) = Q$: μ/B is 1:1 except for the six points of $B \cap \operatorname{Sing}(T)$ which are contracted to o. This implies (4).

Theorem 4.1. Assume Aut $(\theta) = \mathbb{Z}/2\mathbb{Z}$, then, with the same notations as above, $\overline{P}^{-1}(s) = (\zeta_1 \cdot \zeta_2)^{-1}(V)$; where $\zeta_1 : \hat{V} \to V$ blows up the point $o = \mu(\operatorname{Sing}(T))$ and $\zeta_2 : \overline{P}^{-1}(s) \to \hat{V}$ is a blowing up of \hat{V} centered in the strict transform of the curve $Q = \mu(T)$. *proof.* By Proposition 4.1 $\overline{P}^{-1}(s) = \mathbb{P}^3/G$ and $\tilde{\phi}: \mathbb{P}^3 \to \overline{P}^{-1}(s)$ is the quotient map. Hence we have a commutative diagram:

(4.3)
$$\begin{array}{c} \mathbf{\tilde{P}}^{3} & \xrightarrow{\sigma_{1} \cdot \sigma_{2}} & \mathbf{\mathbb{P}}^{3} \\ \tilde{\phi} & & \downarrow^{\mu} \\ \bar{P}^{-1}(s) & \xrightarrow{\zeta} & V. \end{array}$$

 σ_1, σ_2 are defined as in Sect. 3: $\sigma_1: \hat{\mathbb{P}}^3 \to \mathbb{P}^3$ blows up Sing(T), $\sigma_2: \hat{\mathbb{P}}^3 \to \hat{\mathbb{P}}^3$ is a blowing up centered on \hat{T} = union of the strict transforms of the irreducible components of T. Since μ is not ramified along T it follows that $\zeta = \zeta_1 \cdot \zeta_2$.

Corollary 4.2. Let $\zeta = \zeta_1 \cdot \zeta_2$ be as above, then $\mathscr{I}_s = \zeta^{-1}(o)$; $\mathscr{E}_s = \zeta_2^{-1}(Q')$, where Q' is the strict transform of Q by ζ_1 ; $\mathscr{T}_s =$ strict transform of $\mu(R')$ by ζ .

Proof. It follows from Proposition 3.4, Proposition 2.2 (b) and the commutativity of the diagram (4.3).

It is interesting to remark that \mathbb{P}^3/G is well known from another point of view, [19]:

Let \mathscr{H}_2 be the Siegel upper half space of degree 2 and $\Gamma_2(2)$ the 2-congruence subgroup of the symplectic group Sp(4, Z). The quotient $\mathscr{H}_2/\Gamma_2(2)$ is the moduli space for principally abelian surfaces endowed with a level 2 structure. Its minimal compactification $\overline{\mathscr{A}}_2^2$ is biregular, via modular forms, to the quartic threefold $V = \mathbb{P}^3/G$. For this reason V is also called Siegel modular quartic threefold.

By the results of [19] the condition $R^{2} = T_{V,o} \cap V$ of Lemma 4.1 implies that, under the previous isomorphism $g: V \to \overline{\mathscr{A}}_{2}^{2}$, the point g(o) is one of the isomorphism classes of \tilde{S} endowed with a level two structure. Notice also that the orbit of g(o) by Aut $(\overline{\mathscr{A}}_{2}^{2})$ is exactly the set of all such isomorphism classes. Hence we can reformulate the results of Theorem 4.1 and Corollary 4.2 in the following way:

Theorem 4.2. Let $s \in \mathcal{A}_2$, assume Aut $(\theta) = \mathbb{Z}/2\mathbb{Z}$; fix a point $o \in \overline{\mathcal{A}}_2^2$ corresponding to the isomorphism class of \tilde{S} and a level two structure on it. Then there exists a sequence of blowing up's

 $\bar{P}^{-1}(s) \xrightarrow{\zeta_2} \hat{\mathscr{A}} \xrightarrow{\zeta_1} \bar{\mathscr{A}}_2^2$

such that: (1) ζ_1 is the blowing up of $\overline{\mathscr{A}}_2^2$ in o. (2) The exceptional divisor of ζ_2 is $\mathscr{E}_s = \theta/\langle -1 \rangle \times \overline{\mathscr{R}}_1$ and $\zeta_2(\mathscr{E}_s) = \theta/\langle -1 \rangle$. (3) $(\zeta_1 \cdot \zeta_2)^{-1}(o) = \mathscr{I}_s$.

Remark 4.1. If \tilde{S} is not a product $\operatorname{Aut}(\theta) = \mathbb{Z}/2\mathbb{Z}$ but for finitely many exceptions, [5]. If \tilde{S} is a product we have $\operatorname{Aut}(\theta) = (\mathbb{Z}/2\mathbb{Z})^2$ for general \tilde{S} . Under this assumption the results of this section extend to products (with modified proofs) if one considers instead of $\overline{P}^{-1}(s)$ the Zariski closure of $P^{-1}(s)$, $(P = \overline{P}/\overline{\mathcal{R}}_3)$; (cf. Remark 3.1).

References

- ^{1.} Beauville, A.: Varietés de Prym et jacobiennes intermediaires. Ann. Sc. Ec. Norm. Sup. 10, 2³⁰⁹⁻³⁹¹ (1977)
- ². Beauville, A.: Prym varieties and the Schottky problem. Invent. math. **41**, 149–196 (1977)

- 3. Beauville, A.: Surfaces algébriques complexes. Asterisque 54, 1-162 (1978)
- 4. Baker, H.: Principles of geometry. Cambridge: Cambridge Univ. Press 1922
- 5. Bolza, O.: On binary sextics with linear transformations into themselves. Am. J. Math. 10, 47-70 (1888)
- 6. Catanese, F.: On the rationality of certain moduli spaces related to curves of genus 4. Lect. Notes Math. 1008, pp. 30-50. Berlin, Heidelberg, New York: Springer 1981
- 7. Donagi, R.: The terragonal construction. Bull. Am. Math. Soc. 4, 181-185 (1981)
- 8. Donagi, R., Smith, R.: The structure of the Prym map. Acta Math. 146, 25-109 (1981)
- 9. Friedman, R., Smith, R.: The generic Torelli theorem for the Prym map. Invent. math. 74, 473-490 (1982)
- 10. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978
- 11. Hudson, R.: Kummer's quartic surface. Cambridge: Cambridge Univ. Press 1905
- Mumford, D.: Prym varieties. I. Contributions to analysis. pp. 325-350. New York: Academic Press 1974
- 13. Mumford, D.: Curves and their jacobians. Ann Arbor: Univ. of Michigan Press 1974
- 14. Mumford, D.: Abelian varieties. Oxford: Oxford Univ. Press 1970
- 15. Masiewicki, L.: Universal properties of Prym varieties with an application to algebraic curves of genus 5. Trans. Am. Math. Soc. 222, 221-240 (1976)
- 16. Recillas, S.: Ph. D. thesis: Brandeis Univ., 1974
- Teixidor, M.: For which Jacobi varieties is Sing(θ) reducible? Univ. de Barcelona, preprint No. 17, 1983
- 18. Tjurin, A.: On the intersection of quadrics. Russian Math. Surv. 27, 51-105 (1975)
- Van der Geer, G.: On the geometry of a Siegel modular threefold. Math. Ann. 260, 317-350 (1982)

Received June 13, 1985; in revised form August 5, 1986