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1 

If n: C--' C is an 6tale double cover of a smooth curve of genus g and n.:  J C---, JC is 
the induced morphism ofjacobians one defines the Prym variety as the connected 
component of the identity in Ker(n.): 

P(C, C) = (Kern.)~ 

dim(P(d, C)) = g -  1 and P(C, C) has a natural principal polarization 2 = �89 0), 
0 being the theta divisor on JC, [12, p. 342]. We denote by 

respectively the coarse moduli spaces for the pairs (C, C) and for principally 
polarized abelian varieties of dimension g; then the morphism 

e:~tg~g-1 
which sends the class of(C, C) in the class of P(d, C) is by definition the Prym map. 
P extends to a morphism P: 9~o--,~r 1; where ~o contains 9tg as a dense open 
subset and is the moduli space for allowable double covers of stable genus g curves, 
[2], [8, Definition 2.1]. 

Pis known to be generically injeetive for g > 6, [9], and dominant for g = 6, [8]. 
For g = 5 it is announced in [7] that the fibre of P is a double cover of the Fano 
surface of the lines of a cubic threefold; while, for g =4, it is known that the fibre of 
P is a 3-dimensional Kummer variety, [16]. 

In this paper we study the (extended) Prym map: 

P:~3--,~r 

It turns out that, in this case too, the fibre of/~ is rich of geometry; our main 
result is the following: 

Let g be an abelian surface, s its moduli point, 0 C ~' a symmetric theta divisor; 
~ n e r a l  [i.e. Aut(0)=Z/2Z], then 
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(1) P - - I ( s )  is obtained from the Siegel modular  quartic threefold V by a 
sequence of two blowing up's 0-1 and a2. 0-1 : I7"---, V blows up V in a point v, while 
a2:/~- l ( s )~  ~'is centered along a curve B isomorphic to 0/Aut (0). The exceptional 
divisor of O-l-O- 2 is the union of two surfaces J ,  and ~,. The points d 
o~ = (trl �9 0-2)- 1 (v) correspond to double covers ~: C ~  C such that C is hypereltip- 
tic. ~, = 0-2 I(B) is entirely contained in ~3  - ~3, its points correspond to allowable 
double covers n : ( 7 ~  C such that both C and C are elliptic tails, I7, (3) 2.3 and 
Sect. 3 (3.16)]. 

The Siegel modular  quartic threefold V C F 4 is considered by Van der Geer in 
1'1 9]. In this paper the author shows that, via theta functions, V is biregular to ~ ;  
where M22 is the moduli space for principally polarized abelian surfaces endowed 
with a level two structure and ~ 2  is a minimal compactification of it. Thus we can 
rephrase our result in this way: 

(2) /~- l(s) is obtained from ~ 2  by a sequence of two blowing up's at and 0" 2 as 
above. 

Since ~r I has its center in a point v ~ ~r we are also able to deduce from [19] 
that f ( v ) = s ;  f :  ~r162 being the forgetful map. 

The proof of our theorem relies on the results in [1 3, 15] and the classical 
geometry of Kummer  surfaces, 1~ 11 ]: If C is a stable curve in the linear system 1201 
then the quotient morphism n: C~ C/(-1 ) is allowable and the associated Prym 
variety is ft. Since 1201 = F 3 this defines a rational map ~ : F 3 ~ / ~ -  ~(s) sending Cin 
class of (C, C / ( -  1 )) in ~3. We describe the curve T =  {C e 1201/C is not stable} 
which is the fundamental locus of ~ (Sect. 2) and show that the complementary set 
of if(p3 _ T) in /~ -  l(s) contains exactly-the classes of pairs (C, C) such that C is 
hyperelliptic or both C and C are elliptic tails. 

On the other hand the group G of the translation on S by elements of order 2 
acts linearly on 1201; We use the geometry of Kummer  surfaces to show that ~ is the 
restriction to ~a _ T of the quotient morphism p : ~3--~3/G. By 1-4, Vol. Ill, 
p. 210], ~3/G is biregular to the Siegel modular  quartic threefold V, hence/~- ~(s)is 
birational to V. To complete the description of /~- l (s)  we show in Sect. 3 how to 
extend ~ to a finite surjective morphism ~ on a suitable birational model ~3 of 1~ 3 
such tha t /~ -  l(s) = ~(]~a) = ~a/G = (0-1" 0-2)- 1 (V). 

We work over the complex field. Nevertheless our result, as it is stated in (1), 
seems to hold in any characteristic =k 2. 

Further Comments and Notations 

Two allowable double covers n~:Ci~C~, ( i=  1,2), are said to be isomorphic itt 
there exists isomorphisms if: C1 ~ C 2  and fl:Cl ~C2 such that fl.zq = ~2" fl: 

I fn  : ~ C is an allowable double cover [C, C] stands for its isomorphism cJass 
in 9~ o. Conversely, V[C, (7] ~ ~0, the corresponding double cover will be denoted 
by n. 

We recall that to give n: t ~  C is equivalent to give a pair (C, ~/) where ~ is a non 
zero order two element in Pic(C), [2, Lemma 3.2]; if C is smooth these elements 
are 2 2g-  1. 

If S is a principally polarized abelian variety, dim(S) = g, then [S] stands for its 
class in ~r - 1 : S--* S is the involution sending p in - p; if Z C S then - Z is its 
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image by - 1. Z is said to be symmetric if Z = - Z. We denote by 0 a symmetric 
theta divisor on S and by S, the set of the elements of order n on S. 

If C is a curve JC stands for its jacobian, co c for the dualizing sheaf. 
If V is a vector or projective space V ~ denotes its dual. 

2 

Let Sbe a principally polarized abelian surface, s its class in d2,  0 C ga  symmetric 
theta divisor; the 3-dimensional linear system 1201 will be denoted by 

F 3 . 

In this section we construct a dominant rational map 

~ : lP3--,P-l(s) 

and study its fundamental locus; (P :~3- - 'd2  is the extended Prym map: see 
Definition 2.2). With this purpose, let us review some known facts about the 
geometry of Kummer and abelian surfaces: 

Propos i t ion  2.1. (a) Every element C of ]l>3 is a symmetric curve of arithmetic genus 
5. F 3 is a base point free linear system and its general element is a smooth, irreducible 
curve. 

Let 9 : ; ~ F 3 "  be the morphism associated to ICI and R =g(S~), then: 
(b) Either deg(9 ) = 2 and R is the Kummer quartic surface of S or deg(9 ) = 4 and 

R is a smooth quadric. 
(c) Deg(g) = 2 r S= JO, where 0 is a smooth, irreducible genus 2 curve. Deg(g) 

=4r x F, with E,F elliptic curves, 0={e} x F + E  x {f}, ( e , f  being the 
identities on E, F). 

Proof. Cf. [3, p. 129, pp. 139-142]; [10, Chap. 6]; [11]. 

We want to describe the elements C of p3 according to their singularities and 
their stability, therefore let us consider the following subvarieties of ]pa, [which is 
canonically identified to its bidual (F33"]: 

(2.1) R~= dual surface of R, 

Z ~ = { C E F 3 / z e ~ } ,  with ~e,{, 

Z = u Z ~ ,  ~ $ 2 ,  

T = Z n R  ~. 

Wis birational to R; if deg(R) = 2 then R"is a smooth quadric. If deg(R) = 4 it is 
well known that R" is a Kummer quartic surface. Z, is just a plane in F 3. 
~,. The following fact is a standard consequence of the duality between g and 

=Pic~ ") (cf. [14, II.8]): 
Let 6~: ;~_.,~'- be the duality isomorphism sending x e S in $(x)=x"= class of 

0~-0-~ in PicO(~. The principal polarization of if" is O"=$(O)={x"/xeO}; 
moreover, by the square theorem on an abelian variety, 0~ + 0_~ is linearly 
equivalent to 20. Let 9 " :~"~P  3 be the morphism sending x ~ in 0~+0_~, O" is 
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associated to [201 and the following diagram commutes: 

(2.2) 01 1o" 

where 6 is the birational map sending R in its dual surface. 

Proposition 2.2. (a) ~ E  ZwR'.r  C is a sinaular curve. 
(b) ~eR"r176 for some a e g .  

,(c) ~ ~ Z -  T r ~ is reduced, irreducible with m <= 3 ordinary nodes and Sing(C) 
= S 2 n C .  

Proof. (a) Let S = ~ / ( - - 1 )  be the Kummer surface of S, Q : S ~ S  the quotient 
morphism; the ramification set of O is $2 and 0(~2)=Sing(S). Moreover g=a0 
and either R = S, tr = ids  or deg(R)= 2, a :  S - , R  is a finite morphism of degree 2. 
Therefore C singular r189 singular r either (1/deg(g)) g , C  is a singular plane 
section of R or g(z) ~ g(C) for some z e if2 r C ~ Z u R  ~. 

(b) Let 0~: ~'--*F 3 be as above, by (2.2) O(~3=R". This implies (b). 
(c) The "if '  part follows from the equivalences in {a) and (b). Conversely, 

assume C e Z -  T, then, by definition of R ,  t~ ~ R ~ => Sing (~') ( S'2. Let us show that 
S'2n~C Sing(~ "-') and that every singular point of C is a node. Let z c $2n(7, up to 
translating by an order 2 element we can assume -c = o = identity on S and o �9 0. 
Notice that g2n0  is the set of the six Weierstrass points of 0 and that every 
translate 0i of 0, ( j=  1 . . . . .  6), by such a point is a symmetric theta divisor 
containing o. Moreover  20~ e 1201 and any three elements of the set {20j},j = 1, ..., 6 
are linearly independent in 1201. Let us fix 0a, 02, 0a together with local coordinates 
u, v at o; let pi =p~(u, v) = 0, (i = 1,2, 3), be the local equation of 0~ at o, then every 

x z p  2 + xaP  3 -- O, element of Z o has a local equation: xxp~ -~- 2 3__ �9 where 
x = (x~ : x2 : x3) e F 2. I fg i s  not a product of two elliptic curves 0 is smooth and it is 
immediate to check that 0~ and 0j are transversal at o, (i ~-j; i,j = 1, 2, 3). Therefore 
we can assume p ~ = u + h i g h e r  degree terms, p 2 = v +  .... pa=au+bv+ .... (a, 
b + 0). If ~'= E • F then 0 = (e, f ) ,  (e, f being the identities on the elliptic curves 
E ,F )  and we can choose 0~, 02 smooth and transversal at o; 03=0={e} • 
+ E  x {f}.  The local equations are as above but for the third which has a =b-0.  
In both cases d is given by setting 0 = xxu 2 + x2 v2 + xa(au + by) 2 + .... Notice that 
x l = x 2 = O ~ C = 2 0 = : , ~ e T .  Hence ~ has a double point at 0 and Sing(~) 
= S2nC.  

To check that o is a node for ~ we describe explicitely the curve B C Zo of the 
elements for which this is not true. The equation of B is dearly the discriminant of 
the quadratic form in u, v: x~u z + x~v 2 + xa(au + by) z and B is a conic. Notice that 
the differential of the - 1 involution on gae t s  as the identity on the tangent space 
Tg. o = H~ coo); hence o e 0xn0_~ =~ 0~, 0_~ are not transversal at o. Moreover 
o e O x n O _ x ~ x e O ,  so that {0x+0_x, xeO}CB.  It is easy to check that the 
previous inclusion is ac tuary  a bijection; hence BE T and o is a node for (. In 
particular: 

(2.3) B = {0~ + 0_:,, x ~ 0} = 0/( -- 1 ) .  
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Let (7~ Z - T ,  to complete the proof observe that: (1) F e Z - T  =~ C has 
finitely many s~gular points :r C is reduced. 

(2) Let D C C be an irreducible component of (7, z ~ Dc~g 2; as for the case z = o 
the differential of the - 1 involution of g acts as the identity on Tg.,; hence - D is 
not transversal to D at z. Since - D C (7 and r is a node for ~ the only possibility is 
D = - D. Moreover D is the unique irreducible component of C through z. Since C 
is connected and Sing(C-') = (Tc~g 2 it follows D = C and (7 is irreducible. 

(3) Assume (7 has m > 4 nodes, then C = 5 / (  - 1 ) is a curve of arithmetic genus 
3 with at least 4 singular points. Hence C splits and also (7 splits: contradiction. 

We recall that a curve C is said to be stable if it is connected with only nodes as 
its singularities and if every smooth, irreducible, rational component contains 
three nodes of C. 

Definition 2.1. Let S, 0, 0 : S ~ R  be as above, then, for every z ~ Sz, the curve g(0,) 
is said to be a trope of R, [11]. 

Every trope is a conic and it is biregular to 0 / ( - 1 ) ,  [1], [10, Chap. 6]. 

Corollary 2.1. (a) Let ~ p 3 ,  then (7 not stable < , ~  Tc:,~=Ox+~+O_x+~, for 
some x e O, T ~ g2. 

(b) T is the union of the tropes of  R ~. Sing(T)=9^(S~. In particular: 
~ESing(T)r d = 2 0 ,  for some * ~ gz. 

Proof. (a) follows from Proposition 2.2 and the proofofits statement (c). (b): from 
(2.3) and the commutative diagram (2.2) it follows T = union of the tropes of R ,  
Sing(T) = g"(R3. 

We quote from the theory of Prym varieties some basic results and definitions: 

Definition 2.2. Let ~r : (7--* C be a double cover of stable curves of arithmetic genera 
20-1 and O. Let i: C--.C be the involution induced by rr, i. : J C ~ I C ,  rr. : J (7~JC  
the induced homomorphisms of (generalized) jacobians. Consider P(C,C) 
---Im(id-i,)=Ker(Tr,)~ is said to be allowable if the following equivalent 
conditions hold: 

(1) P(C, C) is a O -  1 dimensional abelian variety; 
(2) the only fixed points of i are nodes where the two branches are not 

exchanged. The number of nodes exchanged by i equals the number of irreducible 
components exchanged by i. 

The equivalence of(l) and (2) is shown in I-2, Lemma 5.1]. P(C, C) is principally 
polarized by �89 (0- P(~, C)), (0 = theta divisor of JC). 

Let ~ be the coarse moduli space for allowable double covers of genus # 
CUrves: ~g exists, is irreducible and contains t~g as an open subset; moreover the 
map 

P:  ~ a  ~ r  - 1 

Sending [~, C] e ~a in [P((7, C)] is a proper morphism, [2, 8]. /~ is called the 
extended Prym map; of course/~/~3 = P =  Prym map for etale double covers. 

Definition 2.3. Let lr: d ~ C  be an allowable double cover, X = P((7, C),j: C ~ J ~  
the Abel-Jacobi map. The composition morphism 

( i d - i , )  . j = a :  6 ' ~ X  
is Called the Abel-Prym map. 
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Proposition 2.3. Let rr : C ~ C  be an allowable double cover, a : C--* X = P(d, C) the 
Abel-Prym map, 3 the theta divisor of  X.  Then a , C  is a symmetric curve 
representing the homology class (2 / (d -  2)!)~d- 2, (dim(X) = d). Moreover, if ~,(~) 
is stable, then n is the quotient map ct,(C-~)--*a.(C)/(- 1). 

Proof. Cf. [15, Lemma 3.2]. 
The converse of this proposition can be stated in the following way: 

Proposition 2.4. Let X be a d-dimensional abelian variety, ~ its principal polariza- 
tion, C C X  a symmetric curve representing the homology class (2/ (d-2)!  E d-2./f 
the quotient morphism rt : ~ ~ C/ ( - 1) is allowable then X = P( C, C) as a principally 
polarized abelian variety. 

Moreover, up to translating by an order 2 element, the inclusion C C X is the Abel- 
Prym map. 

Proof. Cf. [15, 5.3], [8, 4.4], [2]. 
It is easy to apply these results to the situation we considered at the beginning 

of this section: let ,(, 0 be as above, F 3 = 1201. Consider the quotient morphism 
Q : ff-~ S/( - 1 ), then, for every C e F 3, if the double cover Q/C: C ~ C  = t~/( - 1~ is 
allowable it follows from Proposition 2.4 that P(t~, C) = S. Hence [(~, C] e/~- l(s). 

Proposition 2.5. Let C ~ F a, then Q/C is allowable if and only if C is stable. 

Proof. It follows from the description of stable elements of F a given in 
Proposition 2.2, Corollary 2.1: C stable r C e  F a -  T; assume C stable, let 
i: C ~ t~ be the involution induced by Q/C. o is fixed by i iff o is a node and o�9 $2 ~ G, 
since the differential of - 1 is the identity on Ts.o the two branches of C at o are not 
interchanged. If ~ is reducible then C --- 0~ + 0_ ~ and it is immediate to check that 
the number  of nodes exchanged by i equals the number of irreducible components 
exchanged by i. 

By Propositions 2.4, 2.5 there exists a map 

(~ : F 3 - -  T ~ P -  l ( s )  

sending ~ e p3 in [~, ~ / (  - 1)] = class of O/~. 
Let ~ =  {(~, x) e (F 3 -  T) • ~/x e C} be the universal curve over F 3- T, 

c~ = {(~, y) e (pa _ T) x S/(  - 1 ~/y e C/(  - 1 )} the universal quotient curve, 
R : ~ - - , ~  the obvious quotient morphism; then there exists a commutative 
diagram 

(2.4) vl !~  

~ a  __ T ia , - T 

(P,e being the natural projections). If z e ~ a _  T and f i - X ( z ) = ~  then p-~(z) 
= ~ / ( - 1 )  and R/ i f -~ ( z )=~/d .  Hence, by the universal property of ~3, ~ is a 
morphism. 

3 

Let r : F 3 - T ~ / ~ -  l(s) be as above: ~ is a rational map from p3 in P -  t(s) having T 
as its fundamental locus. In this section we show that q~ extends to a morphism 
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where a = if2 "trl : ~3._.~3, (72 = blowing up o f ~  3 at Sing(T) and tr 1 blows up the 
strict transform of the conics which are components of T. 

For sake of simplicity, unless explicitely mentioned, we assume S is not a 
product (i.e. 0 smooth, irreducible). If ffis a product the results are analogous (cf. 
Remark 3.1). 

If [C, C] e ~3  we will denote by n: ~ -~C the corresponding allowable double 
cover, by �9 the Abel-Prym map and by i the involution induced by r~ on C. 

A stable curve C, (p,(C) > 1), will be said hypereIliptic, [2, Lemma 4.7] iffthere 
exist ~ e Pie(C) such that h~ e) = deg (~ )  = 2 on every irreducible component  of 
C. If C is hyperelliptic then ~ is unique. 

By Proposition 2.3, for every [5 ,  C] ~ P -  l(s), a , C  e F3; therefore we need to 
know for which [-C, C] % 5  ~ T. 

Let ai : ~a  ~ F 3  be the blowing up of F 3 at Sing(T). Assume t e Sing(T) is the 
point corresponding to the divisor 20 (or 20,, ~ ~ $2), let 

E=o ' ? l ( t )  

be the exceptional plane over t. Consider the exact sequence 

0 ~ H~ ~ H~ "~ H~ ~ 0 : 

the restriction homomorphism r defines a natural 1 : 1 correspondence between E 
and PH~ Indeed: 

(3.1) E = {pencils P ~ t20[ containing 20 as an element}, 

thus, to every P=2so+lts~,  ( Q . : # ) e ~ ;  So, Sx~H~ div(so)=20), it 
corresponds the one dimensional vector space VI, CH~ generated by 
r(sl) = si/O. For every P = ;~So +/ls~ e E we denote by 

(3.2) be 

the zero scheme of sl/O and by 

(3.3) ~e: CI,~ 0 

the double covering of 0 branched on bp. Notice that •0(20) = co~ = bicanonical 
sheaf of 0. Moreover 5v has arithmetic genus 5 and it is not difficult to see that Cr is 
stable but for the following exception: 

(3.4) bl, = 4r, where z is a Weierstrass point of 0. 

For every trope (Definition 2.1) B C R  ~ let/~ its strict transform by al  and 

(3.5) fc~3 

the union of the curves/~, then: 

PrOl~sition 3.1. Assume P e E = ~r [ l(t) C tr i- 1(Sing(T)) = exceptional divisor of tr 1; 
then C~ is stable if and only if P ~ 7". 

Proof. As it is well known 0 contains exactly six points of order 2 so that there are 
sEX tropes B , = Z ~ n R ,  z e f f 2 n 0  , through the point t. As in the proof  of  
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Proposition 2.2 we can choose local parameters u, v at z and three symmetric theta 
divisors 0~, 02, 03 = 0 through z whose equations are given respectively by the 
polynomials pt(u, v) = u + .. . .  p2(u, v) = v + . . . .  p3(u, v) = au + by + . . . .  Then the 
curves of Z,  are given by x lp2+x2p~+x3p]=O,  ( ( x l : x 2 : x 3 ) e P  2) and the 
equation of B, is the discriminant of the quadratic form x tu 2 + x2 v2 + x3(au + by) 2, 
(cf. proof of Proposition 2.2). 

Therefore the tangent line to B~ at t is the pencil P = {b2x~ + a2x2 = 0} and the 
curve C = {a2pt -b2p2 = 0} belongs to P. Since 0 = {au + by + . . . .  0} C is tangent 
to 0 and C-0  = 3z + q. On the other hand b, ~ 10921 so that the only possibility is 
z = q, bl, = 4z. Hence ~p is not stable. This implies the statement. 

Proposition 3.2. Assume P e a ;  ~(Sing(T)), P 6 ~'. Then there exists a unique 
admissible double cover ~ : Cp---'~Cp such that ICe, Cp'] ~ P -  ~(s) and ~e : ~p~O is the 
Abel-Prym map. Moreover Ce is hyperelliptic. 

Proof. Since ~ : 0 ~ 0 / (  - 1) is the canonical map and be ~ I~ogl it follows that #(bp) 
is a degree 2 divisor. Let fl : N ~ O / ( -  1 ) be the double cover of 0/( - 1 ) branched 
on Q(bp), consider the fibre product: 

at' ) 0 

(,6) ,1 1. 
N ,0 / ( -1>  

clearly a" is branched on bp; hence ~_,p=C, a '=ee.  Since p~(N) = 0 Cv is 
hyperelliptic. 

Let a and g be the involutions induced by ~' and y; by (3.6) Cp carries a third 
involution i = g. a = a.  g. It is not difficult to check that the quotient morphism 
n : C e ~ C e ,  (Ce = Ce/ (  - 1)), is admissible. Let ~ be the Abel-Prym map of z: si~e 
~e has a unique hyperelliptic linear series i(x + g(x)),~ x + g(x) for every x ~ Ce. 
Hence x -  i(x) = ~(x) = i (g (x ) ) -  g(x) = ~(i(g(x)) = ~t(a(x)) so that ~ factors through 
a" and a,(Cp) is not reduced. Thus 0t.(t~e) has to be twice the theta divisor of the 
Prym ofn. This implies deg(a) = 2, a = 0t', a.(Cv) = 20 so that [Ce, Cp] ~ P -  l(s). The 
uniqueness of the construction is clear. 

By the previous proposition there exists a well defined map 

f__,p- l(s ) 

such that ~/(p3 _ try- t(T)) = ~. al  and, for every P ~ try- 1(Sing T), e r i" 

q~(P) = [Cp, Ce] as in Proposition 3.2. 

Proposition 3.3. ~: 1 ~3-  i"--.P- l(s) is a morphism. 
�9 3'i1 

Proof�9 To show the theorem it is not restrictive to assume trl = blowing up o f f  lj 
just one of the sixteen points of Sing(T). Assume also that this point is t an0 
corresponds to the divisor 20. 

Let us consider as in (2.4) the universal curves/~: ~ p 3  in g x  F 3, p : ff ~F3 i11 
g / (  - 1 ) x F 3, together with the universal double cover R : ~ q r  Let so, s~, s~, s3 
be a basis for H~ such that div(so) = 20; assume p~(u, v) = 0 is the equati0.~ 
for div(s~), i = 1, 2, 3, on an open subset of g with local parameters u, v. Then ~ ~s 



The Fibre of the Prym Map in Genus Three 441 

locally given in !,3 x ~ by 

(3.7) ziP1 + z2p2 + z3p3 + p~ = 0, 

where p o ( U , o ) = a u + b v + . . ,  is a local equation for 0; z l , z2 , z3  are affine 
coordinates on &3 C~3. After blowing up p3 at t =  (0, 0, 0), ~ pulls back to a 
smooth, fiat family aY: ~ ] [ , 3  which is locally given by 

(3.8) zax  = z l ,  zaY = z2, za(Pl + xp2 + YP3) + P~ = O . 

After the local base change ~ : B---,a~-1(_~3) given by 

~2 = Z3 

pulls back again to the family fl : ~ B  which is given by 

~2 X=zl ,~2y=z2 ,~2=z3  
(3.9) 

~2(p 1 "1- xp2 q- YPa) + P~ = 0 

in local parameters (~ ; x , y ; z l , z2 ,Za ;U ,V)  on , ~ •  Since ~ is 
unramified on z 3 :~ 0 and ~ is smooth it follows that ~ - { z 3  = 0} is smooth. 

On the other hand it is clear from (3.9) that 

Sing(~) = {z3 = 0}. 

Let q be any point of Sing(~), we can always choose u, v so that u(q) = v(q) = 0, then 
the tangent cone to ~ at q is 

(3.10) ~2(ffa +xff2 + Y f f s ) + ( a u + b v )  2 =0,  z 1 = z  2 = z  3 = 0 ,  

(where/~i, 2, ~ are the values of p~, x, y at q). Moreover, if if(q)= P", then 
P= ~(P")e E = oi-1(0 corresponds, via the bijection in (3.1), to the pencil 

{)~p2 + fl(Pl @ xP2 "{- YP3) = 0} 

and, obviously,/~-l(P") = 0. Then, by 3.10, it follows that 

(3.11) /~ has two branches at qc>Pl  + s  

(where be is defined as in 3.2). Therefore the normalization 

/~ ' :~ '~B  

of ~ is a family of curves such that, if P" e B and ~(P") = P e E 

as in (3.3). Otherwise/~'*(P') =i~*(al(~(e')). 
Consider now the universal quotient curve p : ~ p 3 ,  one can construct in 

exactly the same way, families d: D ~ p 3  and fl: ~ B  from cg. In this case q e ~ is a 
not normal double point if and only if fl(q) = P" and o~(P") = P e E. Moreover, if so, 
~- l(p,,) = 0 / < -  1 >. Observe also that ~ C p3 • g /<  _ l > iS singular (with normal 
Singularities) along ~'c~(P 3 x Sing(~'/< - 1 >)) and ~ is singular along the pull back 
of it. In particular, if P e E ,  d - ~ ( P ) = O / < -  I> intersects Sing(~) along the six 
branch points of ~: 0 ~ 0 / < - 1 > .  Using this remark and the equation for the 
tangent cone to ~ at q as in (3.10) it turns out that 
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(3.12) ~ has two branches at q,*~qeo(bp) or q is a branch point for 0. 

Let/Y: cg '~B be the normalizat ion of ~ :  it is not  difficult to see that  the universal 
double covering R : ~ g  induces a commutat ive  diagram 

(3.13) ~ ' ~  / 

B 

If a(P") = P and P ~ E then the morphism of fibres Re,, : r ~ cr is exactly the 
allowable double covering considered in Proposi t ion 3.2 (provided that P r ~ .  If 
~t(P")~E then Rp,.=Rp:Cgl,~cgp . Thus, by the universal property of ~3 and 
Proposi t ion 3.2, (3.13) defines a morphism ~p : B--*/~- 1 (s) such that ~- a = tp. Hence 

is a morphism. 
Consider  i n /~ - l ( s )  the subloci 

which are defined in the following way: 

(3.14) [(7, C] ~ Y, if and only if C is a hyperelliptic curve. 

(3.15) (see [8, (2) 2.3], [2]): [(7, C] e ~ if and only if (7 = 01 u 02 is the union of tw0 
copies 0j, (j = 1, 2), of 0 intersecting transversally at two points and i/Ojis the 
identity i somorphism from 01 to 02, (i being the involution induced by ~ : C-,C). 

(3.16) (Elliptic tails: see [8 (3) 2.3], [2]): [(7, C] e r if and only if the following 
condit ions hold: 

(i) (7 = 0x u / ~ u  02 is the union of two copies O j, (] = 1, 2), of 0 and a curve/~ of 
arithmetic genus 1.0j intersects/~ transversally in a point  pj; Pl - P 2  is a non zero 
order 2 element on Pic~ 

(ii) i(O0 = 02 and i/01 is the identity i somorphism between the two copies of 0; 
i(/~) =/~ and i/~ induces the translation by P l - P z  on Pic~ 

(iii) C=OuE; ff~=E/(i) and pa(E)= 1. EchO= {p}, p=x(pl) =z~(pE). 
Since ~ is not  a product  it follows easily that, for every [(7, C] ~ P -  t(s), 

(3.17) (7 is reducible if and only if [C, C] ~ u r  

Fur thermore:  

(3.18) (i) ~ c ~ g , = O ,  

(ii) ~ r a J ,  = {[(7, C] e ~ / ~  is obtained from two copies of 0 by glueing the 
point  x e 0 to - x, (x 4: - x)}, 

(iii) g, r aJ ,  = {[(7, C] e g,/(7 = 01 u /~u02  as in (3.16) and Oj, (] = I, 2), is glued to 
in the Weierstrass point  ~ ~ OnS'z}. 

Prol~si t ion 3.4. ~(~a _ ~-) = /~ -  t(s ) _  g~. In particular: 
(1) Let R" be the strict transform of R" by al, then q~(R'-(R'n~')) =J~; 
(2) Let E be an exceptional plane for al, then q~(E-(En~))=Js-(~r ng~)' 
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Proof. [C, C] e q~(]~3_ ~-) =~ ~(C-3 c 1201 or C is a finite double cover of 0. In both 
cases C cannot split as in (3.16); hence r 3 -  ~)C/~- l ( s ) -gs .  Conversely let 
[5, C] e/~-  1 (s) - 88, assume C is irreducible: If deg(~) = 1 then, by Corollary 2.1, 
~(d) is stable; hence, by Proposition 2.3, lC, C] = [a,((7), ~(C)/( - 1 )] ,  so that 
[C, C] ~ ~ F  3 - T). If deg(a) > 1 consider x, y e 5, (x OF y), such that ~(x) = ~(y). 
Then x -  fix) ~ y - i(y) so that x + i(y) ~ y + i(x) and C is hyperelliptic. Thus ~,[ C) 
=(deg~) ~,(C)= 20 and the following diagram commutes: 

5 , 0  

(3.19) "1 l '  

c , / ( - 1 )  

Since n is admissible n*egc = ~o6, [2, Lemma 5.1]; hence it easily follows that fl is 
branched on w + b; where w = )-', z, z c 0 c ~  2 is a Weierstrass point and deg(b) = 2. 
Therefore Q*b c le~gl and a*b = be for some P ~ E. Moreover ct is branched on be so 
that C= Cp and, being 5 stable, P ~ E n  ~r. By Proposition 3.3 ~(P) = [5,  C]. In the 
end assume [5, C] e P -  *(s) - ~ ,  5 reducible; then [5, C] e ~r. Looking to the 
Abel-Prym map one sees that either ~,((7) = (7 = 0~ + 0_~ e R" or 0t is a double cover 
of 0 branched on 2(x + y), (x + y). 

This implies q~(]~a _ ~) = p -  ~(s)- 8~ and the statement (1). 
To show (2) observe that, since Sis not a product, 1201 cannot contain elements 

which are hyperelliptic curves. Hence [5, C] e d t , -  ( d , n ~ )  =~ 0t,(C) 
= 20 [5 ,  c ]  

Let us consider now g~: 

Lemmn 3.1. V s ~ ~r g~ = (0/Aut(0)) x ~ , .  

Proof. It follows from the more general Lemma 1.31 of [8]; in fact: to give 
[C, C] ~g, is equivalent to give x~ 0(modAut(0)) such that {x} =OozE, where 
C = 0wE as in (3.16), together with [g, E] e ~ .  

We recall that 
~ =IP ~ . 

Assume [5,  C] e 8~, ~ = 0, w~w 02; since i/E is induced by the translation by a 
non zero order two element in Pic~ we have: 

(3.20) ~t(/~) = one point z ~ $2. 

On the other hand ~/0~ maps 0~ isomorphically onto a copy of 0 and dearly 

= {z} 

or ~(0t) = ~(0~). Hence, by the description of reducible curves of 120t given in Sect. 2, 
%[C)---0,+~+ 0,_~ for some xeO.  That is: 

(3.21) ct,(5) ~ B C T, 

Where B is a trope. We know that B = 0/( - 1) = P*, (~not  a product), and that B is 
a conic passing through six fundamental points of try. In particular B = Z,c~Q, 
(Where Q is a quadric), and its strict transform is the complete intersection 
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(with ~ , , ~ = s t r i c t  transforms of Z,,Q). The ideal 6~" of /3 in ~3 is 
o t ( - ~ ) ~ ( g t ( - Q ) ;  m o r e o v e r / ~ 2 = _ 2  in z ,  and / ~ 2 = - 4  in Q so that the 
conormal bundle of/~ in ~,3 is: 

~-/~- 2 = •e 42)~ ~e1(4). 

Let f# c ~- be the ideal ~i,3(- 2 2 ) ~  d~i,3(- Q) having/~ as its support: after blowing 
up 1[,3 along the ideal f9 the exceptional divisor is 

(3.22) p(~/ff2) = F(0rl(4) @ (9r1(4))=/~ x F 1 . 

Since all the/~'s are two by two disjoint we can blow up all of them as above, in this 
way we obtain a birational morphism 

0.2 : p3  .....~ ]~ 3 

having as exceptional divisor the union of 16 copies of 0 / ( - 1 )  x F n. Thus, for 
every/~, we can identify cry- l(/~) to/3 x ~1. This defines in a natural way a map 

(3.23) ~: ]~3 ~ p -  ~(s) 

which is surjective and extends ~. By definition ~ =  02-~ on ~3 _ a~-~(T); on the 
other hand, if e = (+  x; [/~, El) e / ]  x ~ C o-~ ~(T), we set ~(P) = [C, C]; where Cis 
obtained by glueing to the copies 0,,, 0-x of 0 the curve/~ in such a way that 
0xn/~=(x}, 0_,ra/~= { -x} .  Moreover the difference of these two points on/~ 
defines an order two translationj whose quotient is E and C = C/(i), where i/E=j 
and i/(O, wO_:) is the - 1 involution of-S. It is clear that, (up to automorphisms), 
the quotient map n:C---,C is defined as in (3.16) and that [(~, C] er 

In particular 
= P - ' ( s ) ,  

By Lemma 3.1, if Aut(0)=Z/2Z then ff/(a~ ~(/J)) is an isomorphism. 
After some tedious computations, similar to the ones we produced in 

Proposition 3.3, one shows the following 

Proposition 3.5. The map ~: ]~3_.~p-I(S ) is a surjective morphism. 

Remark 3.1. In particular, by Proposition 3.5, /~-~(s) is irreducible. If S is a 
product this is no longer true: P -  l(s) contains a 3-dimensional component ~ such 
that ~ c ~ P -  l(s) = 0, (P =/~/~a). The elements of ~ are defined in [-9, Lemma 12, 
Proposition 1.5]. Nevertheless one can extend the results of this section by 
constructing a morphism ~: ~,3 ~p -~ ( s )  also when g is a product. In this case it 
turns out that ~ ' (~ )=  Zariski closure of P-X(s) in P-~(s). 

4 

To complete the construction of/~-l(s)  we describe now the morphism $. We 
assume again that g i s  not a product (see Remark 4.1). Let G be the group of the 
translations on ~ by elements of order two. G is isomorphic to (Z/2Z):. Since 
20~20,,  t ~ g2, G acts linearly (and faithfully) on p 3 =  120[. Observe that: 

(1) The sixteen points of Sing(T) form the orbit of the element 20; 
(2) G acts transitively on the sixteen tropes of R ~. 
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Then, since at  : 1 ~ 3 ~  '3 is a blowing up centered in Sing(T), the action of G 
extends to an action on ~3 and G acts transitively on the strict transforms of the 
sixteen tropes of R A. On the other hand a2 : ~3~]~3 is a blowing up centered on 

= union of the strict transforms of the tropes of RA. Hence the action of G extends 
to an action on ]p3. 

Proposition 4.1. Assume Aut (0 )=Z/2Z  then: V P1, P2 ~ ~3 

~(P1)=~(P2)c*,P1 and P2 are in the same G-orbit. 

Proof. Let ~(Pi)= [Ci, Ci], ( /=  1,2); assume qY(P1)= r This implies that the 
allowable double covers n l : C1 ~ C~ and n2 : (72--' C2 are isomorphic. Hence there 
exist isomorphisms ff:C1~(72, a : C ~ C 2 ,  such that n2 .#=a . rq  and 
i2.~=a.il, (ij, j = l , ~  being the involution induced by nj). ~ extends to an 
isomorphism 5 ,  :JC1 ~JC2 such that i2," # ,  = a , .  i~,. Therefore 
# , / Im( id - i l , )  = t is an isomorphism from I m ( i d - i ~ , )  to I m ( i d -  i2,). In other 
words t is an automorphism of g as a principally polarized abelian surface. Since 
we can choose Abel-Jacobi embeddings C1 C J(71, (72 cJC2  such that 6,((71) = ~2 
it follows that t(~((71) ) = a2((72), (c~j being the Abel-Prym map for (Tj). Hence [201 
is changed in itself by t. On the other hand t is induced by an element of Aut(0); 
since Aut(0) = Z/27Z. it follows t = id or t = - l so that t acts as the identity on 1201. 

Since the Abel-Prym map is defined up to translating by an element of $2, we 
have a~((~)= ~2(C'2) modulo such a translation. Hence Pt ,  P2 are in the same 
G-orbit. Conversely assume PI = P2 mod(G), then at(C1)~ = cr (z E $2)- If 
~(P~) ~ J~wo~ then ctl, Ci is stable and [C~, C~] = [ ~ ,  ~ ,  c~i,~/( - 1 )1. 

Hence, obviously, [Cx, Cx] = [~2 ,  C2]. If P~ e ~ then ~ ( C t ) = 0  and ~1 is 
branched on be~ [which is defined as in (3.3)1. Thus ~2(~2)= 0,. Let be~ be the 
branch divisor of ~2, since PI = P2 mod(G) it follows be~ = (be~), and C~ = C2. By 
Proposition 3.2 this implies [ ~ ,  C1] = [C2, C2]. A similar argument applies if 

Corollary 4.1. Assume Aut(0) = ~/2~,  then ~3/G = P -  ~(s). 

The group G and its representation as a subgroup of the projective linear group 
PGL(4) are classically well known, [4, Vol. III], [11]: there exist finitely many 
system of coordinates (x~ : x2 : xa : x4) on 1201, [finitely many bases of 
//0(g, (9~(20))], such that the equation of R" is 

(4.1) E(x*~ + x'~ + x'~ + x~,) + 2D(x tx2x ~x,~) + A(x2x~ + x2x 2) 
+B(x x  2 2 + x2x,) + C(x x, + = 0 ,  

Where (A : B : C : D : E) ~ P* and satisfies the cubic equation 

(4.2) E(4E 2 - A 2 - B 2 - C 2 - D 2) + ABC = O. 

It is also known that to fix (x~ : x2 : x3 : x~) as above is equivalent to fix a level 
two structure on ~'. Moreover, if the equation of  R' is  normalized as in (4.1), then G 
acts linearly on 1 ~ =  1201 as the group generated by the involutions sending 
(x~ :x~ : x a : x~) respectively in 
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We denote by V A the cubic threefold defined by (4.2) and by 

VCP 4 

its dual hypersurface; it is well known [4, Vol. VIIi, [11] that W is the so called 
Segre primal containing ten nodes as its only singularities. On the other hand Visa 
(rational) quartic threefold having as its singular locus 15 double lines intersecting 
three by three in 15 triple points. In the end the space H~ 3, Cry(4)) G of the 
G-invariant quartic forms is 5-dimensional and a basis for it is 

4 4 4- 4 2 2 2 2 2 2 2 2 2 2 2 2 
(X 1 At- X 2 -{- X 3 -J-X4), (X1X2X3X4), (X 1X 2 At- X3X4),  (X 1X3 "4- X2X4) , (X1X 4 -1 t- X2X3) . 

We denote by 
# : p3 ~ p 4  

the morphism associated to H~ 3, (9r~(4)) a. 

Proposition 4.2. (1) #(p3)= V, 
(2) V=p3/G and # : p a ~  V is the quotient map. 

Proof. This is shown in [4, Vol. III, p. 210]. 

L e m m a  4.1. (1) #(Sing(T))=o, where o is a smooth point of V, 
(2) #(R') = R ,  
(3) it(R') = Hon V where H o is the tangent hyperplane to the quartic threefold V 

at the point o, 
(4) It(T) = Q, where Q has an ordindry sixtuple point in o and the normalization 

of Q in o is isomolThic to 0 / ( -  1 ). 

Proof. (1) By Proposition 4.2 deg(/z)=16, since 4~#-1(o)= #Sing(T)=16 o is 
not in the branch locus of # hence o is smooth. (2) It is clear that the following 
diagram is commutative 

1 1 
R ~ ~ >R ~ 

where/z 2 is the multiplication by 2 on the dual ~" of g and the vertical arrows are 
the quotient map from gA to R ' = g ' / ( - 1 ) .  Hence/z(R')= Kummer surface of 
g'=R" [recall also that R" is G-invariant: for instance its Eq. (4.1) is given by an 
invariant quartic form]. (3) Since the equation of R ~ is given by an element of 
H~ 3, d~r,(4)) a it follows that MR') is a hyperplane section of V. The general 
hyperplane section of Visa quartic surface with 15 nodes; on the other hand R'is a 
quartic surface with 16 nodes, Sing(R ~) = Sing(T) and #(Sing(R~)) = o. Hence 0 is 
singular for #(R3. Since o is smooth for V the result follows. (4) Let BC T be a 
trope, then MB) = #(T). It is immediate to check that #(B) = Q: #/B is I : 1 except 
for the six points of BnSing(T) which are contracted to o. This implies (4). 

Theorem4.1. Assume Aut(O)=~/2Z, then, with the same notations as above, 
P -  t(s) = (~1" ~2)- t (V); where ~1" f/'~ V blows up the point 0 = #(Sing(T)) and 
~2 :P - l ( s )  ~I~ is a blowino up of f" centered in the strict transform of the curve 
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Proof. By Proposition 4.1/5- l(s ) = ~3/G and ~:~3 ~/5-  t(s ) is the quotient map. 
Hence we have a commutative diagram: 

(4.3) 

]•3 ax "0"2 ~, ~ 3  

P -  l(s) ~ , V. 

0"1,0" 2 are defined as in Sect. 3: al :~3__,p3 blows up Sing(T), 0 2 : ~[~3"4"]~3 is a 
blowing up centered on 7"= union of the strict transforms of the irreducible 
components of T. Since # is not ramified along T it follows that ~ = ~1 "(2- 

Corollary 4.2. Let ~ = ~l ' ~2 be as above, then Js = ~- 1(o); ~s = ~2 I(Q,), where Q' is 
the strict transform of Q by ~1; Y-~= strict transform of ~t(R3 by ~. 

Proof. It follows from Proposition 3.4, Proposition 2.2 (b) and the commutativity 
of the diagram (4.3). 

It is interesting to remark that p3/G is well known from another point of view, 
[19]: 

Let 3r176 be the Siegel upper half space of degree 2 and F2(2) the 2-congruence 
subgroup of the symplectic group Sp(4, Z). The quotient ~z/F2(2) is the moduli 
space for principally abelian surfaces endowed with a level 2 structure. Its minimal 
compactification ~ is biregular, via modular forms, to the quartic threefold 
V=p3/G. For this reason V is also called Siegel modular quartic threefold. 

By the results of [19] the condition R '=  Tv,onV of Lemma 4.1 implies that, 
under the previous isomorphism g : V - - * ~ ,  the point 9(o) is one of the 
isomorphism classes of ;~ endowed with a level two structure. Notice also that the 
orbit of g(o) by Aut(M~) is exactly the set of all such isomorphism classes. Hence 
we can reformulate the results of Theorem 4.1 and Corollary 4.2 in the following 
way: 

Theorem 4.2. Let s ~ s42, assume Aut(0) =Z/2Z; fix a point o ~ ~ corresponding 
to the isomorphism class of ;~ and a level two structure on it. Then there exists a 
sequence of blowin# up's 

p-l(s  ) , , 

such that: (1) ~1 is the blowing up of ~ in o. (2) The exceptional divisor of ~2 is 
g, = 0/( - 1 ) • ~ and ~2(C) = O/( - 1 ). (3) (~ .  (2)- 1 (o) = J, .  

Remark 4.1. If g is not a product Aut(0)= Z/2Z but for finitely many exceptions, 
[5]. Ifgis a product we have Aut (0) = (7./27.) 2 for general g. Under this assumption 
!he results of this section extend to products (with modified proofs) if one considers 
instead of P-t(s)  the Zariski closure of P-l(s),  (P =P/~Ts); (cf. Remark 3.1). 
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