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Let D be bounded symmetric domain of rank p, and let o9 be the KRhler form of its 
Bergmann metric, where the metric is normalized so that the minimum holo- 
morphic sectional curvature is - 1. I fX is a compact manifold whose universal cover 
is D, to defines a cohomology class [to] e H 2 (X, R). The purpose of this paper is to 
compute its sup norm in the sense of Gromov [5]. We show II [ to]  II co = pn. Strictly 
speaking, we only prove this for three of the four classes of classical domains (cf. 
Sect. 2). 

This theorem has the following topological corollary. Let S be a Riemann 
surface of genus 0 > 1 and f : S ~ X  a continuous map. Then ! f ' t o  < 4 p ( # -  1)n. 

This was proved in [8] for the case p =  1, i.e., D = u n i t  ball in C", by different 
methods: harmonic mappings and Bochner's formula. The original motivation for 
this paper was to extend these methods to higher rank. This turned out to be 
impossible, in the sense that the pointwise inequality needed to apply Boehner's 
formula is actually false for p >  1. We thus find it quite interesting that Gromov's  
methods can be used to derive the topological corollary. 

In [8] the case of equality was also settled: it can only hold for mappings 
homotopic to a totally geodesic holomorphic (or anti-holomorphic) immersion. 
For higher rank we find that certain complex geodesics give equality, but that (at 
least in certain "reducible" situations) these need not be the only extremal 
homotopy classes. 

We point out the relation of this paper to bounded cohomology. One would 
like to prove that i fD = G/K is a symmetric space of  non-compact type and to is a 
G-invariant form on D, then for any compact manifold X covered by D, the 
Corresponding cohomology class [to] is bounded. One would then want to find the 
precise value of II [to] II ~. What  is known in the literature is the following: 

I) If to is a characteristic class, II[to]lloo<oo [5]. 
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2) Ifo9 is the volume form of real hyperbolic space, I1 [co] II oo < ~ ,  and its value is 
known [5, 6]. 

3) If o9 is the volume form of SL(n, P~)/SO(n), then II Eco] I1~ < ~ 1,7]. 
4) If o9 is as in this paper, explicit upper bounds are given in [3, 9]. 

Since the form co considered in this paper is a characteristic class, II I-co] II ~ <',~ 
follows from (1). Coarse but explicit upper bounds have been derived by Dupont in 
1,3]. For  the symplectic group Turaev 1,9] gives as an upper bound our value of 
11 [~1 II | but  does not prove its sharpness. Our  contribution is to compute the 
precise value II [o9] II ~o = pTr. This is the only case, other than (2), where the precise 
value of II [~9] Iloo is known. 

1. Reduction of  the Problem 

We first recall the definitions and basic properties of Gromov norms. Let X be a 
topological space and c a singular cochain on S. The sup norm of c is defined by 

Ilcll ~ =sup(Ic(o)l:  a a singular simplex in X}.  

If 0t ~ H*(X, R), the sup norm of ~ is defined by 

II ~U ~o = inf { IIc II ~ : c a singular cocycle representing a}. 

This defines a pseudo-norm on H*(X, R) - all properties of a norm except that it 
can take on the value oo. 

If z=~a~a i is a singular chain in X, i.e., aielL ai singular simplices in X, its 
Ll-norm is defined by [Iz111 - -Zla i l ,  and i~ x ~ H , (X ,  R), its L1 norm is defined by 
IIx II ~ = inf { II z II ~ : z a singular cycle representing x}. This defines a pseudo-norm on 
H.(X ,  R ) -  all properties of a norm except that it can have the value zero on non- 
zero homology classes. 

The basic properties of these norms that we will need are: 
1) I~(x)l _-_ [[ �9 I1 ~o [I x ll~. 

2) If f : X---> Y is continuous, then 

I I f*~ l l~ l l~ l l~  and IIf.xlll<llxllx. 

3) If X is a complete manifold of non-positive curvature, we can consider, in 
the definition of the norms, only the class of  geodesic simplicies, and not change the 
value of the norm. A geodesic simplex in S is a singular simplex or obtained in the 
following way. Let ~ be the universal covering of X, let Po . . . . .  Pk be points of X, 
and let 

be the map 

(20 .. . . .  2k)~center of gravity of the mass distribution 
2otSpo +-..2k~e~, where 
~ = Dirac measure at P. 

Then let a= n.  ~, where n: ~ ' ~ X  is the covering projection. Note  that the asserted 
center of gravity exists by a well-known theorem of Cartan. Also note that if X is 
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not of constant curvature this is not the only definition of "geodesic simplex" that 
has been used in this context, but the particular choice is immaterial. The only 
point for our purposes is that geodesic k-simplicies are parametrized by 
7( k + I/z~(X), and that their edges are geodesic segments. 

4) If X is a Riemann surface of genus g > 1 and [X] its fundamental integral 
homology class, then II IX]  II ~ = 4(g - 1). 

Assertions (1) and (2) are clear from the definitions; for details on (3) and (4) see 
[5]. 

Now let D be a bounded symmetric domain with its Bergmann metric. We 
assume the situation is normalized so that the minimum holomorphic sectional 
curvature is - 1 ,  and thus the image of the holomorphic sectional curvature 
function of/) is the closed interval [ -  1, - 1/p], p = rank (D) (corresponding to the 
values of the holomorphic sectional curvature on a maximal totally geodesic 
polydisk, which is a product of p disks each with the Poincar6 metric of curvature 

- 1). Let co be the K/ihler form of this metric, and let X be a manifold with universal 
cover D. By (3) above, to give an upper bound for II [co] II ~, where [09] e H2(X, R) is 
the two-dimensional cohomology class determined by co, it is enough to give an 

estimate for ~ 09, A a geodesic triangle in D. We will prove. 

Theorem 1. Let D, p, and to be as above, and A a geodesic triangle in D. Then 

09 <pro. 

Corollary 1. Let X be covered by D, and [co] c H2(X, R) be the class of co. Then 

II [09] It o~ _- p~.  

Corollary 2. Let G be the group of biholomorphic automorphisms of  D, let Ga = G 
with the discrete topology, and let [09] m H2(Ga, R)  be the cohomology class of the 
Eilenberg-MacLane cochain 

<go, gl,  g2> ~ ~ co, 
d(go, gl, g2) 

where d(go, gl, g2)=geodesic triangle with vertices goO, glO, g2 0 for some f ixed 
point 0 e D. Then I1 [co] II | <p~. 

Corollary 2 is a "universal formulation" of Corollary 1. It is useful in studying 
characteristic classes of flat G-bundles, e.g., representations nl (surface) ~ G as in 
[4]. 

We now start the proof of Theorem 1, with the main computation deferred to 
the next section. We first observe that if P e D, there exists a (unique) potential Qv 
for the Bergmann metric, i. e., a function Qp much that ddCQp = 09, with the following 
properties: 

A) Q~,(P)-- 0 
B) Q~, is invariant under Kv = isotropy group of P, 
C) dC0e=0 on geodesics through P. 
To see this, take any potential satisfying (A), average it so it satisfies (B), and 

observe that (C) follows: Let y(t) be a geodesic with y(0)= P. y is contained in a 
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maximal flat F that is a totally real subspace of D which at each of its points is 
orthogonal to the Kp - orbit through that point. Thus if J denotes the complex 
structure, JY'(0 is orthogonal to F, hence tangent to Kp~(t). But then dCol,(y'(t)) 
= dee(Jy'(t)= 0 since qe is Kv-invariant. 

Using these properties we can begin to compute. Let A be a geodesic simplex in 
D, with vertices P, Q, R. Then 

f I d:Q,,= I d%,= I :Q,, 
A A 8A ~((2, R) 

where y(Q, R) = geodesic segment from Q to R, and the last equality follows from 
(C). 

Now hee=Oe-OQ is a pluri-harmonic function on D (i.e., ddCheo=O), thus 
heo =ReHvq, where HvQ is holomorphic on D. Let kve= ImHpe. Then 

I dkm. = keq(R)-  kpqfQ), 
~,fQ, R) 

where the second equality follows from (C) applied to Oq. Thus we have to show 
that 

[keQ(R) -- kee (Q)l < p~t . 

We observe that both sides are additive under products, so it is enough to prove the 
inequality for irreducible domains. The irreducible case is discussed in the next 
section. 

2. The Domain Dp, q 

Recall that the irreducible bounded symmetric domains are classified as follows: 
[2] 

Io,~: Dp.~ = {Z e Mp, q(C) : Z*Z < 1}. We may (and do) assume p < q. 

IIp: {ZeDp, p : Z ~ = - Z }  

IIIp: {Z ~ Do, p : Z' = Z} 

IV,: { (ZI , . . . ,Zn)~C' : IZ~+. . .+ZZI<I  and 

1 + IZ + .. .  + z 12 > 2(IZ l + ...  +lZ l 2} 

V, VI: Exceptional domains in dimensions 16, 27. 

The ranks are as follows: Ip,, and IIIp have rank p, II o has rank [p/2], IVn has 
rank 2. IIIp is the "unit ball moder'  of the Siegel upper half-plane, IV, is the non- 
compact dual of the complex quadric hypersurface in IEW +1. 

We complete the proof of the estimate promised in Sect. 1 for the domain/)p,r 
This domain is the non-compact dual of the Grassmannian G(p, q) of complex P" 
planes in tE ~ + q = {(u, v): u ~ IE p, v e IE*}, in fact it is the open submanifold of G(p, q) 
on which the Hermitian form lul 2 -  ]vl 2 is positive definite, the correspondence 
being given by 

Z e Dp,~ ~ {(u, Zu): u E C p) ~ G(p, q). 
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From this it is easy to see that its group of automorphisms is 

(;: x:)('0 0)(: ;)=(; 0)} 
SU(p,q) acts on Dv, a by Z ~ ( A Z + B ) ( C Z + D )  -1. 

Proposition. Let A be the geodesic triangle in Dv, q with vertices O, Zo, Z. Then 

det(1 - Z ' Z )  
J o9 = arg 
d det(1 -Z'~Z) 

"arg" means the continuous branch that vanishes when Z = Z o. 

Proof. The potential of the Bergmann metric centered at 0 is easily seen to be 

& = - l o g  det(1 - Z ' Z ) .  

To obtain QZo we observe that the following is an element of SU(p, q) that takes Zo 
to 0: 

(a D B) ((l-ZoZ~) -1/2 -(l-ZoZ~)-l]2Zo~ 
= _ z ~ O _ Z o Z ~ ) - l j ~  O-Z~Zo) - l~  ~ j 

Then 

QZo = - log det(1 - [(AZ + B) ( CZ + D)- 1]. ( AZ + B) ( CZ + D )- 1) 

= -- log det ((CZ + D)*- ' (CZ + D)* (CZ + D) (CZ + D)- ~ 

- ( c z  + D)* - ' ( a Z  + B)* (AZ + 1~) (CZ + D)-  ') 

= logldet(CZ + D)I 2 

- log det((CZ + D)* (CZ + D ) -  (AZ + B)* (AZ + B)) 

=logJdet(CZ+D)]  2 + Q0 

since, by the defining equations for 

SU(p,q), ( C Z + D ) * ( C Z + D ) - ( A Z + B ) * ( A Z + B ) = I - Z * Z .  

Thus the pluriharmonic function hoz ~ as in Sect. 1 is given by the formula 

hoz ~ = - log Idet (CZ + D)I 2 = Re(log det(CZ + D)- 2). 

By the formula at the end of Sect. 1 

S co = arg det(CZ + D)- 2lz o zl 
det(CZ+D) z det(1 +D-1CZ) z 

=arg  ~ ~ b - )  zo =arg  det(1 +D-1CZ) zo" 

Now, using the explicit formulas for C, D in terms of Zo 

D- 1CZ = - (1 - Z'~Zo) 1/2Z~(1 - ZoZ*)- 112Z = - Z*Z 
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[since Z*f (ZoZ*)=f(Z*Z)Z~ for an analytic function f ] .  Hence 

det(l  - Z ~ Z )  z det(1 - Z ~ Z )  
! co=arg d - - ~ - - - - Z ~ z o  = a r g  d e t ( 1 - Z * Z ) '  

as was to be proved. 
Theorem 1 for Dp, q follows immediately from the proposition, since Z0, 

Z ~ Dp,~ =~ Zo*Z ~ Dp, p, hence the eigenvalues 21 .. . . .  ,t n of Z~Z lie in the unit circle, 
so 

arg 1-2-,  l - ; ? p I  
IS col = ~ + . . .  + arg ~ < pro 

because arg < rc for Id[ < 1. 

For  a domain of type IIIp, since it has rank p and is totally geodesically 
embedded in Dp, p, the same argument goes through to prove Theorem 1. 

For  a domain of type IIp, its rank is [./)/2] and is totally geodesically embedded 
in Dp, p with minimum holomorphic sectional curvature - �89 Let o3 be the K/ihler 
form induced from D~,,p. One checks that, in the notation above, Z*Z has rank 
< 2[p/2], hence we get 

! ~5 __<2[p/2]rc. 

If co is the Kiihler form of the normalized Bergmann metric, o3 = 2co, hence 

II col _-< [p/2]  rc 

which is Theorem 1 in this case. 
The case of a domain of type IV requires separate treatment, which we do n0l 

present. We have not attempted to try the domains V, VI. 

3. Computation of the Norm 

So far we have proved the inequality l[ [co] II oo ~ p~. We now prove an equation: 

Theorem 2. Let D, p, co be as in Sect. 1, and let X be a compact manifold covered by D 
(thus X = F\D, F ( G co-compact and torsion-free). Then I[ [cox] II ~ = P~, where 
[cox] E H2(X, R)  is the class of 09. 

Corollary. Let [co] be as in Corollary 2, Sect. 1. Then II [co] II | = P~. 

Proof of Theorem 2. We know that universally (as in Sect. 1, Corollary 2), 
II [co] II ~ ~ pro. We only need to find, for each D, a discrete, torsion-free, to.compact 
F in G so that II [cox] II oo = p~ for X = / ~ D :  The proportionality principle [4, 
Sect. 2.3] says that II [cox] I1 ~ is the same for all compact X with universal cover D. 

We construct an example for the domain Dp.r The other domains are treated 
in a similar way. 

We use the following fact from the theory of arithmetic groups, cf. last sectioa of 

[1]: In the Grassmannian model of  Dp.q, change the form to tul 2 - l /~ lv l  z, i.e., 
represent Dp,~ as the open subset of G(p,q) on which l u l2 - l /~ lv l  2 is positive 
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definite. Let O be the ring of integers in Q(i,l/~ ) and F=SL(p+q,O)c~SU(H), 
where H =  lul 2-l/21vl 2. Then F is co-compact in S U ( H ) ~  G. 

Now represent the unit disk D1,1 = {Z e C: Izl < 1/[/~} in the same way: lines in 

~: on which the form Hi  = lul 2-1/21vl 2 is positive. The mapping 

Dl,l~Dp,q,  

is a totally geodesic mapping whose image has curvature - 1/p in the normalized 
Bergmann metric. It is stabilized by a group isomorphic to SU(ItO. Let 
F l = SL(2, O)c~SU(I-I1). Then F1 is co-compact in SU(I-I1). Let F~, F'  be torsion free 
subgroups of finite index in F1, F respectively, let S = FI"~D 1.1, X = F'~Dp, q. Then S is 
a compact Riemann surface of some genus g > l,  X is a compact manifold covered 
by Dp, q, and the above mapping gives a mapping f : S ~ X  with the property that 
f*o  is the K/ihler form ( = area form) of a metric of constant curvature - 1/p on S. 
Therefore 

f.09 =p ~ 1/pf .09=-p i - K d , 4  = p 4 ~ ( g - 1 )  
S S S 

by the Gauss-Bonnet formula. By the properties of the norm [(1), (2), and (4) of 
Sect. 1], and Theorem 1, 

I$f'091 = If*l-09x] (lS])[ =< II 109x] II II IS] II1 =< i0rta(g- 1). 

Since equality holds, II [09x] II ~ = p~, as was to be proved. 
As pointed out in the introduction, Theorem 1 has the following topological 

consequence: 

Corollary. Let S be a Riemann surface of  genus g> 1 and X,  09 as above. Let 
f : S ~ X  be a continuous map. Then 

! f . 0 9  =<4p(g- 1)~. 

In the proof of Theorem 2 we saw that totally geodesic complex curves of 
curvature _ l/p give extremals for these inequality, and in [8] it was proved that 
for p= 1 these are, up to homotopy, the only extremals. If the rank p > 1 there can 
be other extremals. For example, if S is a Riemann surface, X = S x S and f is the 
graph of any orientation - preserving diffeomorphism, then equality also holds. It 
would be interesting to find geometric conditions on X that insure that all 
extremals are homotopic to geodesics. 

Finally we point out that the use of Bochner's formula, as in [8], easily gives 
that the only holomorphic extremals are geodesics. 
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