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1. Introduction 

Using the so-called Henkin-Ramirez reproducing kernel introduced in [2,71, 
Grauert-Lieb and Henkin were able to define for a strictly pseudoconvex domain 
D an integral operator  T satisfying ~ T f  = f for ~-closed forms f and for which a 
H61der 1/2-estimate holds [1, 3, 5]. The problem arises whether something similar 
is true for weakly pseudoconvex domains. 

Reproducing kernels can (trivially) be constructed in convex domains and so 
the operator  T is also defined in this case (see Sect. 2). In [8], Range considered the 
domain 

D = [Zi[ m' < 1 

where m~ . . . . .  m, are positive even integers, and proved that T satisfies a H61der 
1/m-estimate, where m =  max {ml, ..., m,}. It is natural to ask whether this result 
holds for all convex domains with real analytic boundary.  

In this paper  we show that this is the case for domains D = {z : r(z) < 0} where r 
is a real-analytic, convex function of the type 

r(z)= ~ si(izil2) - 1, 
i = l  

and obtain as well LP-estimates for the ~-equation. As in the strictly pseudoconvex 
case, the results depend on having a good control of the support  function F(~, z) 

/ 

bD, z ~ D, which appears in the denominator  of the reproducing kernel ( in  the 
convex case is simply \ 

, :~ ~ (3) ( ~ , -  z~) . 

* This paper contains some results obtained in the Ph.D. thesis ofthe second author, read at the 
Universitat Aut6noma de Barcelona 
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Ministerio de Educaci6n y Ciencia, Madrid 



528 J. Bruna and J, del Castillo 

In the strictly pseudoconvex case this control is 

2 R e F ( ~ , z ) > - r ( z ) + c l ~ - z t  2 , ~ebD,  z e D ,  t~--zl small. 

As in [8], the crucial point is to replace this by 

2 Re F(~., z) > -- r(z) + c Lr (~) (4 -- z) z + c l~ -  zl" (*) 

where Lr({) denotes the complex Hessian of r at ~ and m is some positive integer. 
The motivation for (*) comes from the fact, also pointed out in [4], that the 
eigenvatues of Lr(~) appear in the numerator of the kernels. Once (*) is established, 
the proof of [8] essentially works and we slightly modify it so as to give as well the 
LP-estimates. 

The paper is organized as folio,vs. We consider first a real version of (,) 

2ReF(~ , z ) >- - r ( z )+cHr (~ ) (~ - z )Z+c t~ - - z t  m, ~ebD (**) 

where Hr(~) denotes the real hessian of r at r Note that (**) amounts to say that 
Hr(~) absorbs, even if it degenerates along certain directions, the remainder terms 
of the Taylor series of r at ~. We are able to prove (**) only if, all (~, zi are small 
(Sect. 2). Then in Sect. 3 we use it to obtain (,) if st(Izil 2) is strictly convex away from 
zero and in this case we show that the results hold for T (Theorems 3.3 and 3.4). In 
the general case (Sect.4) we must construct another support function ~b and 
consider a modification of T introduced in 1"9]. 

One final comment is in order: we feel that (**) is true for all convex (bounded) 
domains with real analytic boundary. If this were the case, surely it could be 
applied to treat more general types of domains t. 

Finally, concerning notation, we use c to denote most of the constants and also 
employ -~ to mean that two quantities are of the same order of growth. 

2. The Canonical Support Function and Its Estimate 

2,1 

From now on D wilt denote a bounded domain of the type D = {z: r(z) < 0} where 

r(z)= ~ st(lzif2) - 1 
i = 1  

is convex and real-analytic. We will denote by rt the function of one complex 
variable defined by ri(w)=s~(lwl2). To be precise, the s t are assumed to be real- 
analytic functions in an interval [0, a~] such that 

(i) s~(t)>O, s~(t)+2t sT(t)>O for O<t<al  (i.e, rt is convex) 
(ii) st(O) = 0 and st(ai) > 1 (i.e. D is bounded). 

If st(t)= bktk+.., is the development near 0, note that this implies b k > O, hence 
s~(t)>O for small t+O, hence for all O < t < a i  (because r~(t) is convex and r~(t) 
= 2t s~(t 2) increases). In particular, s~(t) + t sT(t) > 0 if 0 < t < a. Since the complex 
Hessian ofr~ at w is si(Iwl 2) + Iwl 2 sT(Iwl 2) this shows that ri is strictly subharmonic if 
w + 0. To exclude the strictly pseudoconvex case we assume of course 

(iii} s~(0) = 0. 

I See the note at the end of the paper 
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Thus Lr~(w) degenerates exactly at w = 0, but Hr,(w) may degenerate at some other 
points. 

2.2 

We define 
~r i 

Fi(w, v) = ffww (w) ( w -  v). 

Using Taylor's development and the hypothesis on st it is easy to see that 

9i(w, v) %f ri(v) - ri(w) + 2 Re Fi(w, v) > 0 

(1) 
and is = 0  only if w = v .  

The function F(~, z )=  Z F~(~, z~) is the canonical support function for the 

domain D. 

2.3 

We shall obtain two different estimates of the function g~ in (1). In this subsection 
we drop out the index i and write r for ri, g for gl, F for F~. 

The first estimate is well known and is based on the following result [11]: 

Theorem (Lojasiewicz). Let g be a real analytic function in an open set U in IR" and 
let z(g) denote the set of zeroes of g. Given a function h ~ C~ ( U) vanishing on z(g) and 
a compact set K C U, there exist a positive constant c and a positive integer m such 
that Lg(x)l > clh(x)[ m, x ~ K. 

By (1), we can apply the above to g(w, v) in (1) with h(w, v) = rw - vP z. Hence we 
get 

g(w, v) > c l w -  vt" (2) 

(this is the observation that all domains with real-analytic boundary are of finite 
type). 

The second estimate we will need is the one contained in the following theorem. 
We use the notation 

Hr(w) ( w -  v) z = ( w -  v, ~ -  ~) ( rw~ 
\ r ~  

Theorem. There exists ~ > 0 and e > 0 such that 

g(w, v) > c Hr(w) ( w -  v) z for 

;::)(; 
lwl, Ivl N ~- (3) 

(Note that the theorem simply says that ifr is a radial, convex and analytic function 
in a neighbourhood of 0 in the complex plane, then Hr(w) ( w - v )  z controls all the 
other terms of higher order in the Taylor's development ofr(v) at w, for small v, w). 
Proof We regard both terms in (3) as functions of(w, v) in a neighbourhood of the 
origin in C 2. First we prove the theorem for r(z) = Iz[ 2k. In this case by homogeneity 
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we may suppose (w, v)e S 3, the unit sphere in II; 2 and, because of (1), we may 
suppose as well that (w, v) is near the diagonal of S 3. But then w is far from zero and 
the result follows, for Hr(w) does not degenerate there. 

The general case will be essentially reduced to this one. The main tool is the so- 
called "curve selection lemma' ,  whose proof can be found in [6]: 

Curve Selection Lemma. Let U be an open set in ~1. m which is defined by inequalities 
between real-analytic functions. Then, if 0 is an accumulation point of U, there 
exists an analytic curve 7 : [0, c ~ ) ~ "  such that ?(0)=0  and ?(t) ~ U for 0 < t < ~ .  

We use it in the following form: 

Corollary. Let G1, G2 be two analytic functions in a neighbourhood of 0 in F,". Then 
to prove that G1 ~ G2 in some neighbourhood of 0 it is enough to prove that for each 
analytic curve y(t), with y(0)= 0, there exists ~ > 0 (which may depend on 7?) such 
that Gl(;~(t)) > G2(y(t)) for 0 ~ t < 0~. 

Hence it is enough to find c > 0  such that for any analytic curve ),(t) 
= (w(t), v(t)), ~(0)= 0, there exists ~ = 7(7) such that 

g(w(t), v(t)) > c Hr (w(t)) (w(t) - v(t)) 2 

for 0 < t < a. Lets consider the developments of w, v 

w(t) = Wo tp + o(tP), v(t) = Vo tp + o(tP), 

Wo or Vo+0, p>_l 

and that of r, r (z)= ~. b,,[zl TM with bk>O. Here we write rk(Z)= M 2k, gk for the 
ra=k 

corresponding function defined by (1) and let Ck > 0 be some constant correspond- 
ing to this case. Then, clearly, 

g(w(t), v(t)) = bkgk(Wo, Vo)t 2pk + O(t zpk) 

Hr (w(t)) (w(t)-- v(t)) 2 = bk Hrk(Wo) (W0 -- Vo)Et zpk + O(t2Pk) . 

Hence, if Wo + Vo, t 2p* is the lower order term and we can choose any c < Ok. 
Ifwo = vo we must find out which is the lower order term in 9(w(t), v(t)). To do 

so we will make a change of parameter. Note that, due to the rotation invariance of 
(3) we may assume that w is real and take, for small values of t, w as a new 
parameter (assuming Wo > 0). Let x(t), y(t) denote the real and imaginary parts of 
v(t). Since now we are assuming that Vo = w0 is real 

x ( w )  = w + q~w ~ + o(twl~)  , 
(4) 

y(w)= awP + o(lwlP) , 

with e, fl rationals greater than 1. Lets denote as before r,,(z) = ]zl 2m and gm for the 
corresponding function. A computation shows that 

gm(x(w), y(w), w) 

m! = 52" 2k2w2k,+k2(x__w)k2((X__W)2 +yZ)k~, ki>O (5) 
M + k 2 + k 3 = m k l  ! k 2  ! k 3 !  ' - -  
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where by the tilda we mean that the combinations k l = m ,  k 2 = k 3 = 0  and 
kL = m -  1, k2 = 1, k3 = 0  are omitted. When we use (4) we find that the k-th term of 
(5) is, if Q =min(~,fl)  

o(wZk~ + k2 + k2~ + 2k30) + higher order terms. 

Since 2kl + k z + k 2 o ~ + k 3 o = 2 m + ( ~ - 1 ) k 2  + 2 ( 0 - 1 ) k  3, it turns out that 

9,, = const w 2" + 2t0-1 ) + higher order terms 

(in fact this is the contribution of the term k 2 =-- 0 k 3 = 1 and also that of k2 = 2 and 
k 3 = 0 if ~ = ~). This implies 

g(x(w) ,  y(w),  w) = A w  2k + 2~0-1) "4- O(IWI 2k + 2(0- 1)) 

with A > 0 ,  i.e., what this analysis reveals is that the lower order term of 
9(x(w) ,  y(w),  w) comes only from the first t e r m  bklZ[ 2k of r  (and A depends on bk, k, 
~p2, and a2). The same will happen with Hr(w) (r - w) 2, which consists in the terms 
k2 = 0, k3 = 1 (with its corresponding coefficients) of (5). In fact we will have, of 
course, 

Hr(w) (v - w) 2 = 2 A w  2k + 2(0 - 1) + O(]wl2k + 2(0 - 1 ) ) .  

Therefore it suffices to take c also smaller than 1/2. This ends the proof  of the 
theorem. [] 

Remark .  We have been unable to obtain a more satisfactory proof  of the theorem, 
in particular one not so heavily based on the radial character of r. It would be very 
interesting to find it, and for other types of functions. As said in the introduction we 
feel that the theorem holds for all real-analytic and convex functions 1. 

For  w real we already noticed that Hr(w) is a diagonal matrix with entries 
2S'(W 2) + 4wZs"(W 2) and 2S'(W2), and Lr(w) = s'(w 2) + wZs"(w2). Now it is clear that 
these three quantities are of the same order if w is near 0. Hence 
H r ( w ) ( w - v ) Z ~ _ L r ( w ) t w - v [  2 if [w] is small. Thus we can replace Hr  by Lr in (3). 
Using then (2), we get 

r(v) - r(w) + 2ReF(w, v) 

> c L r ( w ) ] w - v l 2 + c ] w - v ]  m for ]w],}v]<~. (6) 

3. The Results in a Particular Case 

3.1 

In this section we will prove our results with the auxiliary hypothesis 

(iv) s~(t) + 2ts~(t) > for 0 < t < ai, 

which means that Hri(w) only degenerates at w = 0. As said in the introduction, (iv) 
is not necessary but will allow us to obtain the results for the canonical kernels 
associated with the canonical support  function F((,  z) in 2.2. To make more clear 
the exposition we prefer to treat first this case and then deal in the next section with 
the general case. 

1 See the note at the end of the paper 
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Since now Hrl and Lh only degenerate at w = 0 it is clear that g~ will satisfy (3) 
with Hri replaced by Lh for all Iwl > e if Iw - v[ is small. Thus (6) holds for r i if [w - v[ 
is small, hence for all w, v because of(l), and adding on i we obtain the fundamental 
inequality 

r(~)-  r(z) + 2ReF(~, z) 

> c L r ( ~ ) ( r  " ,  r  (7) 

which is the basis of all estimates. 

3.2 

Now we briefly recall the definition of the reproducing kernel H(~, z) and the 
integral solution operator T. Set 

W'(~)----- ~] ( - - 1 ) i - 1 ~ i  A dCj, W(~)=d~IA. . .AS~ . 
i=1 j * i  

~r 
P,(~) = ~ (~)' P(~) = (P,(~), ..., P,(~)) �9 

For u r Cl(/)) one has the decomposition formula 

u(z) = c, ~ u(~)H(~, z) + c, I ~u(r A w'(rl) A w(~) 
bD bDx[O, 1 ] 

- c. I ~u(~) ^ B(~, z) 
D 

where 

and 

~--~ p(~) 
q = ( 1 - t ) ~  + t - - ,  

F(~, z) 
c. = ( -  1) "~"- 1)/2(n - 1)! (2gi)-" 

H ( ~ , z ) = w ' ( P )  ^w(~),  

,( 

are respectively the reproducing kernel and the Bochner-Martinelli kernel. The 
integral solution operator T is then, for a (0, 1) form f regular to the boundary, 

Tf(z) = T l f ( z  ) + T2f(z  ) , 

where 

Taf (z )=c ,  ~ f(~)AW'(rl)AW(~), 
bDx[O, 1 ] 

T2f(z) = - c, ~ f (~)  ^ B(~, z). 
D 
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Using the relation 

(n-  1)! w'(O ^ w(O 

"~'-(--1)n(n'-l)/2(i=~l~id~i)^(i=~id.i^d~i) n-1 

and Newton's binomial formula for two forms, it is easily seen that the component 
in dt of w'01) ̂  w(0 to be considered is 

( - 1 )  "~'- 1 ) / :  ( t j~yz+( l_ t )~yO. -2^d t  

where 

Now, since 

O~t~--zlZ and Y2 = 0r(i) 
~ i -  l~_zl2 F(r 

~ ' ~ -  l ~ - z l  ~ - F ( L z )  + ~ ' 2 ^ . . .  

we finally obtain, performing the integration in t, that T~f can be written 

n - 2  

T1 = E c(n, k)Hk 
k=O 

where the c(n, k) are constants and 

Hkf(z) = ~ f(~.) ^ Hk(~, z), z e D bD 
Hk( ~, z) = }~-- ZJ z~k + 1-")F( ~, z) - k -  1~r162 z]2 

^ ~ r ( 0  ^ ( /7~r(0)  k ^ ( ~ l ~ - - z t : )  " - k - ~  

In the same manner the reproducing kernel H(r z) can be written 

(8) 

3.3. Theorem. 

( _  1)nt,- 1)/2 dr(i) A (~-ar(~)) ~- 
H(~, z)= (9) 

(n - l) ! F(~, z)" 

I f  m is as in (7), for each ~< I/m there exists c(~)>0 such that 

ITf(z)-Tf(w)l<c(cO}Iftl~Iz-wl ~, z ,w~D.  (10) 

Proof Once one has (7) the proof of [8] can be applied. We include it here 
presented in a somewhat different way, because some aspects of the computation 
will be needed as well to obtain the LV-estimates. 

It is well known that T2f has modulus of continuity 311ogc51. So, taking into 
account the expression of 7"1 f obtained above it is enough to prove 

~o V~Hk( r Z) ̂  f ( O ~ c(cOlr(z)l ~- 1 v=normal  field (11) 
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for it is also well known that  this implies tha t  H k f  satisfies (1t3). Now,  there exists r 0 
0r 

and 00 such that  if lr(z)l < ro and ~zj (z) # 0, say j = 1, then 

tl  = r ( O -  r(z), t2 = I m  F(~, z) ,  

t2j-  1 = Re ( ~ j -  z j),  t2j = Im ( ~ j -  z j) j = 2 . . . . .  n 

is a real coordinate  system in the ball B(z, ~0) such that  t(z)= 0, ]t12- ~ I~-z ]  z and 
da(~) ~- dt2dt3. . .dtz,  in bDcnB(z, 60). Of course, in proving (l 1) we may assume that 
Ir(z)l < ro and estimate only the cont r ibut ion  of bDcnB(z, 6o) in the integral. Hence 
we proceed to  est imate V~Hk( ~, z)/x f ( O as a multiple of dt 2 A ... ^ dr2, in B( z, 6o). 
F r o m  (8), 

v~t~_zl2 ~ j ~ - z l  ~ 
v.Hk(~,Z)= (k+  t -n ) i~_z lZ~ ._~)  F(~,z)k+ ~ 

v~F(~, z) c~t~ -- zl z 
- ( k +  1) F(~,z)k+ 2 i~_zi2( ._k_,)  

v~l~-z l  ~ ~ + 
[~-  z[ z("- ,-k)F(~, z) k+ ' 

^ &(O ^ (U0r(O) ~ ̂  (UOt~-zlZY -~- z 

We use the nota t ions  

~ 2 r  t~r 

~i(~) = (~/i ~i  (~)' P~(O = ~ (~). 

Using ~r,d~2 ..... d~n, ~r,d~2 ,...,d~. as basis of l-forms it is easy to see that 
~r(O A (J~r(O) k equals the exterior product of ~r(~) with 

+koq lP l t  -2  o~id~iAd~ i A lPid~iA Pid~i  . 
i i = 2  i=2  

This last expression is in turn  a sum of forms of type (k, k) in dr . . . . .  d~. whose 
coefficients are products  of  k different ~'s between the 52 . . . . .  c~. or products  of k -  1 
different ~'s, ~h . . . .  , ~i~_, between the c~2 . . . . .  cq, with k~, I P , I -  Zpjpk, J, k different 
from 1, i 1 . . . . .  i k -  I" 

NOW observe that the hypothesis on r imply that 

IP~[ <_- c~j 

To summarize, V~Hk(~, z) ̂  f(~) is in bD~B(z, go) da(O times a function which is a 
finite linear combination of functions of type 

h~,i,." f~(Oo~i,(~). �9 .~i~(O 
.i~(O ir - z i  z"- Zk-2F(r z)k+~ (12) 

f~(O~.(O---~i~(O 
or  h~i .... i~(~) l~ - zt 2"- 2k- aF(~, z)k + 2 (12) 
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where f = ~f id~ ,  the i~, ..., ik are different indexes between 2 .. . . .  n and the h's are 
bounded functions (with bounds independent of z). 

From (7) follows that 

~ 4 )  < 1 4~bD,  z e D  (13) 
IV(~, z)l --  c i r ~ ) l  + [ 4 ~ -  z>l z '  

Writing t' for (t3 . . . . .  t2,), observing that t~ = [r(z)l is the equation of bO and 
using (7) and (13) one is lead to the estimates (assuming ia = 2  . . . .  , ik=k+ 1) 

I , ( k ,  t l )  = I 
t t21 ~< ~o 
~'[$~o 

dt2dt" 
k + l  

(tl +tt2i+lt't)2"-Ek-E(t, +lt2l+tt ' I") I-[ (t, +t2_, + t  2) 
j =2  

< ~(~)t~ -~ 

(14)  
I2(k, t l )= I 

t'I g ~o 

dt2dt" 
k + l  

(t l  + It21 + It'l) 2" - ~*-  3(t,  + It21 + It't") 2 1-[ (t,  + t~i 1 + t~) -~ c(~)tZ- 1 
j = 2  

which can be consulted in [8]. [-~ 

3.4. Theorem. For each p, l<=p<oo, there exists c(p)>O such that I[TfNLp 
<c(p)IIf IIL~. 

Proof. Again it is enough to consider T~, i.e., to prove the estimate for each HR, 
k=0  .. . .  , n - 2 .  It is then convenient to have an expression of Hkf  as a volume 
integral. To do this we employ 

A(~, z) = - r(4) + F(4, z) 

as a continuation of F(~, z) inside D. Note that Im A = Im F and that (7) gives 

2 Re A(~, z) > - r(4) - r(z) + c Lr(~) ( 4 -  z) z + c l~ -  z] ~ (t 5) 

and so A(4, z) never vanishes for 4, z ~ D. By the explicit expression (8) we see that 

IH~(~, z)l = 0(t4 - zl ~k+ 3 -  2 . ) ,  

IJ~H~(~, z)l = 0(14 - zt ~ +  ~ -  ~").  

So, applying Stokes theorem in D\B(z, e) and making e-*0 we obtain 

Hkf(Z) = f f (~ )A  8r z) 
O 

with H, now given by (8) with F replaced by A. Clearly it is enough to show 
(denoting by dm the Lebesgue measure in O) 

[~Hk(r ~ [8~Hk(4,z)[dm(z)<c. 
D D 
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To prove the first, by (15) we may assume, with the notations used in the proof of 
Theorem 3.3, that Ir(z)l < ro and just estimate the integral over D n B ( z ,  6o) where 
dm(r  In a similar way as in Theorem 3.3, it turns out that the 
coefficients of ~r z) are in D ~ B ( z ,  60) of the type (12) with F replaced by A 
(and without the f~'s). Using then (15), one is lead as before to the estimates 

5~ I(k, t l )d t  1 <= c ,  ~o I(k, t l )d t  1 ~ C, k : 0 . . . . .  n - 2 
0 0 

which follow from the ones in (14). The second integral is evaluated exactly in the 
same way. [] 

Remark. As it can be easily seen from the proofs, Theorems 3.3 and 3.4 hold for all 
convex domains with real analytic boundary if n = 2. This is so because in this case 
the estimate r ( z ) -  r ( r  2 Re F(r z )>  e}~- zl ~ is already sufficient (this is noticed 
in [8] for Theorem 3.3). 

3.5 

Finally we point out that in a similar way, with (9) and the basic inequalities (7) and 
(13) one can prove the following. 

Theorem. The reproducing kernel H(~, z) satisfies 

IH(~,z) l l r  z e D .  
bD 

Using this, one can extend to D a series of well known results for the strictly 
pseudoconvex domains as for instance, Cole-Range's Theorem on the structure of 
Henkin measures and its corollaries concerning the equivalence of the notions of 
zero set, peak set and peak-interpolation set for the algebra of holomorphic 
functions in D, continuous on /5  (see [10, p. 198]). 

4. The Results in the General Case 

4.1 

In the absence of condition (iv) of 3.1. we cannot prove that the canonical support 
function satisfies (7) (because we are not able to prove (3) for all w, v near a point of 
degeneracy of Hr  i different from zero). Thus our first taks in the general case is to 
replace F by another  support function ~b for which (7) holds. This can easily be done 
using the fact that the r i are strictly subharmonic away from zero. 

We define 

1 cG2ri 
Gi(w, v) = Fi(w, v) + ~ ~w 2 (w) ( w -  v) 2 . 

Let ~>0  be as in (3). By strict subharmonicity in e/2 < Iwl < a~/2, one has 

r i(v ) - r i(w ) + 2 Re Gi( w, v) > c Lri (w)lw - vl e ~-Iw - vl 2 (16) 

if Iwl>e/2 and I w - v l  is small, say I w - v [ < 6 .  
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Let now (p(w) be a C~-function in the complex plane, 0<~0< 1 equal to 1 in 
Iwl < e/2 and zero outside [wl < 2e/3. We define now 

F~(w, v) = (p(w)Fi(w, v) + (1 - q)(w))Gi(w, v) = P~(w, v) (w - v) 

with 

1 t~2ri 
P~(w, v) = Pi(w) + (1 - (p(w)) ~ ~ w  2 (w) ( w -  v). 

From (6) (for ri and F~) and (16) it follows, reducing 6 if necessary, that 

r i(v) - r i(w) + 2 Re F'i(w, v) > c Lr/(w)[w- vl 2 + clw - vl m 

for Iw-  vl < 6. Now we define for 4, z ~/ )  

F'(~, z) = ~ F~(~ i, zi). 
i=1 

Then F" e C~(D x D), is a polynomial in z and 

r (~)  - r ( z )  + 2 R e  V'(r  z)  > c Lr  (4)  (~ - z )  2 + c]~ - z[ m 

holds for I~-z[<6. 

4.2 

To avoid the Henkin-Ramirez procedure and the division problem involved, we 
will use the simpler method of [4] and [9], which we briefly recall. Choose 
Xe C~ x ~  ") such that 0<)~< 1, X<I  for I~-zl=<a/2, and X=0 for Ir 
For i = 1 . . . . .  n define 

P, (r  z)  = zP; (~ , ,  z 0  + (1 - z )  (~, - e,)  

d#(~, z) = ~. Pi(~, z) ( ~ i -  zi) = xF'(~, z) + (1 - Z)1~ - zl 2. 
i=1 

Then there exists t /> 0 such that I~b(~, z)l > c > 0 for r  r (z )< t/if  I~-  zl->_ 6/2, 
~b(~,z) and Pi(~,z)  are holomorphic in z in I~ -z l<6 /2  and the fundamental 
inequality 

r(r - r(z) +2 Rer z) > cLr (r (4 - z) 2 + cl~ - z[ m (17) 

remains for 14- zl < 6/2. For t e [0, 1] and ~ e bD, one sets 

w/(~, z, t )="  Pi(~, z) +(1 - t )  ~ i - i i  

which is well defined for z ~ D w { z  : r(z) ~ t/, I z -  ~1 > 6/2}, and W= k wfl~i. 
i=1 

Finally, the Cauchy-Fantappi6 form f2q(w) is defined, for q = 0, 1, by 

f2q(w)=(2rci)-" ( n ;  1)  W A (~ ,2  W)n -q -  I A (~zW) q 
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Set now, for a (0, 1) form f 

Tof  = I f A f2o -  f f A f2o 
bOx[O,11 Ox{0} 

E f =  ~ f A#* f21 ,  g(~)=(~, 1). 
bD 

In [9] it is proved the following 

Lemma. l f  f ~ C~o ' 1)( D), E f is defined and of class C ~ on D, = { z " r(z) < q}. I f  •f = O, 
then aEf  = 0 in D and f = E f  + JTof. Further 

11Ef II L ~(On) ~ C $1 f II L~ <~,). 

Thus the problem of solving ~u = f  in D is reduced to that of solving ~u =Ef.  
But now E f e  C(~,I)(/3) and if T, denotes the canonical operator T of 3.2. for the 
(convex) domain D,, it follows that the operator 

S = T n E + T  o satisfies ~ S f = f  

4.3. Theorem. The operator S satisfies the estimates 

ISf(z)-Sf(w)l<c(~){LflL~o[z-wl ~ , ~< 1/m 

tl s f  [1LP(D) ~ c(p) II f [I LP(D)" 

Proof. The estimates that an integral operator like E or To satisfy only 
depend on the singularity of its kernel near the diagonal. The kernel # * f2~ of E is 
zero for I~-zl  < 6/2 and so there is no problem with E. Clearly for T~ we have 

IIT, E f l[g,,<o) < c(p) IIE f ItLP(D,7 ) 

II T, E f I1L,~ ~, <= c( ~) II E f II L~r �9 

Hence everything is reduced to T o. But, because of(17), we can argue with T O in the 
same manner we did for T in Theorems 3.3 and 3.4. The only change is that in (8) 

one must replace 0 r ( i )=  ~ P~(r by Y, Pi(~, z)d~i. Near the diagonal Pi = PI 
i = l  i = 1  

and it is easily seen that also [P~I < ccq. The rest of the proof is identical. [] 
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N ote added in proof: Recently Prof. A. Nagel has sent us a nice proo fofinequality (**) for all convex 
functions r for which there exists an integer m such that for all directions v and all points x, 

ID~r(x)l > 0. This can be used to extend our results to convex domains of finite type satisfying 
J=2 

certain geometric conditions, the most relevant being the following one: 

Hr( w) ( v, v) ~ Hr( w) (Jr, Jr), 

for webD and v~ T~(bD), the complex tangent space at w. Here J denotes the operator of 
multiplication by i and it can be easily seen that this condition does depend on the defining function r. 


