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O. I n t r o d u c t i o n  

In this paper we deal with the existence of periodic solutions of Hamiltonian 
systems with n degree of freedom: 

c~H ~H 
, , k = l ,  . . . , n .  (H) Pk "= 3q k qk- (~Pk 

Recently Rabinowitz [16] has shown that if H is "superquadratic" then for all 
T > 0  (H) has nontrivial T-periodic solutions. He left open the question to find a 
solution having T as minimal period. 

The results we are able to prove here are just a contribution to the solution of 
such a problem. One of these results is valid for a class of convex, superquadratic 
Hamiltonians, to which belong, for example, the H homogeneous of degree greater 
than 2: for every T > 0  (H) possesses a solution having T as minimal period. A 
second result is concerned with the case in which H"(O) is a positive definite 
symmetric matrix. This situation is different from the previous one because it is 
known by examples (cf. [16]) that the minimal period of the solutions of (H) 
cannot be arbitrarly large. We show that it is possible to find a solution of minimal 

period T, provided T <  2~, the smallest fundamental pulsation of the linear part. 
(.O n 

This result is proven in the particular case in which (H) can be transformed in a 
second-order system. Even if we expect the result to be true for (H), we are not able 
to handle such general case. 

The method of the proof consists in two steps. First, using a device introduced 
by Clarke [21], we transform the original system (H) into an equivalent one by 
means of the Legendre-transform G of H. This new dual system is solved using the 
calculus of variation in the large, namely finding the stationary points of a 
functional f on a Banach space E. Unfortunately, since H is superquadratic, f is 
not bounded from above nor from below and the stationary points o f f  are saddle 
points (cf. Ekeland [11], where is given an elegant proof of the Rabinowitz result). 

* Supported by C.N.R. 
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On the other side, it is natural to expect that solutions of minimal period should 
correspond to some "minimal" property of these stationary points. Then, unlike 
[11], we use the following device: the search of the stationary points o f f  on E is 
substituted with an equivalent problem of critical points o f f  on a suitable manifold 
M: it turns out that f has a minimum on M, which allows to find a solution of (H) 
having Tas minimal period. Such a device has been used by several people (Nehari 
[14], Coffman [10], Hempel [12, 13], [1, 3]) for the purpose of the existence of 
solutions of elliptic equations. While those results can be found in greater 
generality using direct variational arguments (see, for example Clark [7], [-5, 2]), 
the new feature here is that the method is employed to obtain stationary points 
satisfying additional properties (for another application to a free boundary 
problem arising in fluid dynamics, see [-4]). 

The paper is divided into 6 sections. Section 1 contains the abstract framework, 
while in Sect. 2, 4, and 6 are stated the existence results. The relationships between 
the periods and the amplitudes of the orbits are investigated in Sect. 3. Section 5 is 
devoted to obtain wider classes to which apply the above results: with per- 
turbation arguments we find solutions of large minimal period and small 
amplitude. 

While many papers deal with the existence of periodic solutions of 
Hamiltonian systems (see, for example [16, 21, 11], Amann and Zehnder [19] and 
references therein), on the contrary, we know only one result concerning the 
existence of solutions of (H) with prescribed minimal period : the work by Clarke 
and Ekeland [8]. They assume H convex and subquadratic: in this case, unlike 
then in our situation, the dual functional is bounded from below and has a 
minimum to which correspond a solution with given minimal period. 

1. Abstract Setting: Minimal Critical Points 

Let E be a real Banach space with dual E'; denote by I[ "I[ the norm in E and by 
( . , . )  the pairing between E and E'. Let us consider a functional f:E--,IR~ which 
throughout in the following will be assumed to possess a continuous Frech6t 
derivative f'(u). Motivated by-the applications in the following sections, we take f 
of the form: 

f(u) = - �89 u) + b(u), 

where a: E x E ~ l R  and b: E~IR satisfy to 

(11) a is a continuous, symmetric, bilinear form; 
(Iz) there exist g, 1 ,<~<2 and constants el, c2>0 such that 

qllull~<(b'(u),u) <c211ull ~' Vu~E; 

(13) there exists 0>�89 such that 

b(u)>O(b'(u),u) gu~E; 

(14) set d(u)=(b'(u),u), then d~CI(E,~,) and 

(d'(u), u) < 2d(u). 
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Under the above assumptions (indeed under much weaker ones) it is known 
that, if a is positive somewhere and condition ( P -  S) holds, then f has a stationary 
point v 4: 0, i.e. f '(v) = O, which can be found using minimax arguments [-5]. But, in 
view of our applications, we are interested in finding stationary points veryfying 
additional properties. To this purpose, we are going to expose a variational 
principle which will enable us to find stationary points as minima. Set 

h(u) = (f ' (u) ,  u )  

and 

M = {u~E,u#O:h(u)=O}.  

If f ' (u)=O for some uEE, u#O, then u~ M and is a critical point of JiM, the 
restriction of f to M. Conversely we have: 

Proposition 1.1. Suppose f he CI(E, IR) and 

(1.1) (h ' (u) ,u)~O VuEM.  

Then f ' (u )=  O, u ~= O, iff u is a critical point of f/~ t. 

Proof First of all, let us note that (1.1) implies that M is a C 1 manifold of 
codimension 1 in E. Let fi~M be such that ./iM(fi)=0. This means that f i#0  and 
there exists 2~IR such that f'(K)=2h'(~). Then it follows 

(1.2) (f'(gO, g~)=2(h'(gO, fi ) . 

Since (f'(gO, F~)=h(gO=O, while (h'(gO,~)#0 by assumption, (1.2) implies 2=0 ,  
and thus f'(fi) =0. 

In view of our existence result (Theorem 1.5 below) we first state some 
preliminary lemmas. 

Lemma 1.2. Assume (I1) and (I4). Then he Cl(E, lR) and (h ' (u) ,u )<0 VueM.  

Proof It results 

h(u) = (f '(u),  u)  = - a(u, u) + d(u). 

Hence heCI(E,  IR) and 

(1.3) (h'(u), u)  = - 2a(u, u) + (d'(u), u ) .  

If uEM, then a(u,u)=d(u) and hence, substituting in (1.3) and using (14) we get 

(1.4) (h ' (u ) ,u )=(d ' (u ) ,u ) -2d (u )<O V u e m .  

Lemma 1.3. Assume (I1), (Iz), and (I3). Then: 
(i) there exists 0 > 0  such that Vue E, O< }lu[} <Q, it results h(u)>O. In particu- 

lar, Hull >0  VueM. 
(ii) Vue M it results f(u) > cllull~, c > 0 constant. 

Proof Using (11) and (I2) we obtain 

(1.5) h(u) = - a(u, u) + (b'(u), u)  >= eli I u [I ~ - e3 II u II 2. 
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Here and throughout  in the following, we denote by c x, c 2 . . . .  (possibly different) 
constants. Since c~ < 2, the right hand side in (1.5) is positive for 0 < 11 u l] < r with 0 
small enough, and this proves (i). 

For  all u e M  it results a(u ,u)=(b ' (u) ,u)  and hence f has the form 

f(u) = b (u ) -  �89 u} . 

Using (13) it follows 

f ( u )>(O- �89  V u ~ M ,  

and by (I2)f(u)>c4llut]  ~, Vu~M.  

Lemma 1.4. Assume (Ix) and (14). I f  uEE then for all s > 0  it results: 

a [h(su) l 
(1.6) ds[ s 2 ] < 0 ;  

(1.7) d [ f ( s u ) ] =  !h(su) .  

Proof  Set h(s) = s -  2h(su). From the expression of h it follows : 

~(s) = - a(u, u) + s -  2d(su) 

Differentiating and setting su = v, we have:  

h ' ( s )  = S -  3 [ - (d ' (v) ,  V)  - -  2d(v)]. 

Thus/~'(s) < 0 Vs > 0 by (14). 
As for (1.7), it is enough to calculate the derivative of 

f(su) = - �89 a(u, u) + b(su) . 

We are now in position to state our  main abstract result: 

Theorem 1.5. Assume (11-14). Moreover suppose: 

(1.8) there exists ~EE such that fi=a(fi, f i )>0;  

and the pair (f, M) satisfies: " 

( P - S )  every sequence u, e M  such that f (u , )  is bounded and f ' /M(u , )~O,  has a 
convergin 9 subsequence. 

Then f/M assumes its minimum in a point v~ M. Such v is a stationary point oj f 
on E, i.e. i f (v)=0,  and has the followin 9 property: 

(.) a(v, v) = max {a(u, u) :ue E, u 4= O, b(su) < b(sv) u > O, 

( b'(u), u)  <= (b'(v), v)  } . 

Proof  First of all, let us show that  M 4= 0. In fact one has 

h(s~) = - s2a + (b'(sfi), sfi) . 

By (I2) it follows 

h(srO <= c2s ~ II ~ IJ" - s 2 a .  
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Since 8 > 0 and c~ < 2, then h(s~t)< 0 for s > 0 large enough. On the other hand, we 
know by (i) of Lemma 1.3, that h(sfi)>0 for s small: hence there exists 3 >0  such 
that h(g, ~)=0, i.e. g~eM. Let us remark that such g is unique in view of (1.6): this 
will be useful later in the proof. Next, by Lemma 1.2, we have that (1.1) holds and, 
in particular (see the proof of Proposition 1.1), M is a C a manifold in E. Moreover, 
combining (i) and (ii) of Lemma 1.3, we deduce that f is bounded from below on 
M. Using ( P - S )  it is well known (see for example Rabinowitz [15]) that f/M takes 
its minimum in a point veM.  By Proposition 1.1 such a v is a stationary point o f f  
on E. It remains to prove that property (,) holds. By contradiction, let uE E, u +0,  
be such that 

(1.9) b(su)<b(sv) u  and (b'(u),u}<=(b'(v),v); 

(1.10) a(u,u)>a(v,v). 

Using (1.9) and (1.10) and the fact that veM,  we get 

0 = h(v) > - a(u, u) + (b'(u), u) = h(u). 

This implies that there exists a unique 3, 0 < 3 <  1, such that -duEM: in fact, it is 
sufficient to repeat the arguments exposed above to prove M 4= 0. Using again (1.9) 
and (1.10) we have 

(1.11) f(-gu) = - �89 u) + b(-gu) < - �89 v) + b(gv) = f(-gv). 

On the other hand, by (1.6) and (l.7) and because 0 < 3< 1, it results f (v)> f(gv). 
Lastly, using (1.11), we obtain f (v)> f('du), a contradiction, because ~ue M and 
f(v) = rain {f(u) :ue M}. 

2. P e r i o d i c  S o l u t i o n s  for a C l a s s  o f  C o n v e x  H a m i l t o n i a n s  

Let P=(Pl . . . .  ,P,), q=(ql ,  ...,q,)~IR" and H~C2(IR" x IR",IR). We will deal with the 
Hamiltonian system 

OH OH 
-- , , k = l ,  . . . , n  (H) Dk •qk qk- ~l)k 

which will be also written in the compact form 

=JH'(z) or - J ~ = H ' ( z ) ,  

where z=(p ,q )~ lR2" , j=(O I ; I )  with I i d e n t i t y i n l R " , a n d  H'indicates the 
gradient of H. 

We look for periodic solutions z(t) of (H) having a given number T > 0  as the 
minimal period. Denote by (.,-) the Euclidean scalar product in 1112" and by 1. { the 
corresponding norm. 

On the Hamiltonian H we assume, first of all : 

(111) HeC2(IR2",IR) and there exist c 1, c2, C3>0 and f l>2  such that 

qlzla < H(z)<c21zl p VzelR z" 

(H"(z)(,~)>c3lzl ~-2 VzeN 2" and V(elR2"; I~[=l ,  

(II2) flH(z)<(H'(z),z) V z e N  2". 
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Remark 2.1. (i) From the hypotheses above it follows that H is strictly convex and 
super-quadratic at zero and infinity. 

(ii) Condition (112) and the first inequality of (111) are related in the sense that 
the former implies H(z)> c lJzf as z ~  oo and H(z)< ca lzf  as z--*0. 

Before stating our results, we have to introduce the Legendre transform G of H, 
defined on IR 2" by 

G(u) = sup {(u, z ) -  H(z):z~lRZ"} . 

From (Iia-112) several properties of G can be deduced [11]: 

(G1) G is everywhere defined, finite, GGC2(IR2n\{o} , IR) ,  is strictly convex and 
G(O) = a'(O) = O. 

Recall also that 

(2.1) G'(u)=z iff H'(z)=u.  

(G2) Let c~ = / / ( 3 -  1)- 1. Then 

c4[uI'<G(u)<csIu[ ~ Vu~]R 2n . 

1 
(G3) G(u)>O(G'(u),u), 0 = - ,  VuelR 2". 

0~ 

Furthermore, from the properties of the Legendre transform and (G2) we get 

(G4) (G'(u),u)>c4lul ~ V u e ~ R  2n , 

(G5) c6[u[a- l~ lGt(u)[~Cv[U[a-1  Vuf f lR  2n . 

Lastly, from (111) and (G5) it follows 

(G6) IlG"(u)[I <cs[ul "-2 Vu~IR 2". 

We are now ready to state: 

Theorem 2.2. Assume (II1-I12), and 

(113) there exists #E]0, 1[ such that Vu6~, 2", u~=O, it results 

( G"(u)u, u) < #( G'(u), u) . 

Then for all T > 0 ,  (H) has a periodic solution having Tas minimal period. 

We remark that, in terms of the original Hamiltonian, the assumption (II3) can 
be stated:(K(z)u, u)<#(z, u)Vu, where u = H'(z) and K(z)= (H"(z))-1. Examples of 
Hamiltonians verifying (113) will be given at the end of this section, as well as in 
Sects. 4 and 5. 

The proof of the theorem is carried out by substituting the system (H) with a 
dual one, and studying this latter by means of the variational arguments of Sect. 1. 

First we introduce some notations and the functional framework. 
Let A be the operator defined in 

domA = {z~ WI'~(0, 2~ ; IR z") :z(0) = z(2~)} 
by 

(2.2) A z =  - Jk. 
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Remark that KerA=IR 2". Set 

E={u~L~(O, 2Tc;IR2n)'2iu=O } 

and denote by I[" [[ the norm in U(0, 2~;IRZ"). For  all uEE there exists z~domA 
such that Az = u; such a z is unique, provided ~ z L 0 (here and in the following all 
the integrals are between 0 and 2n). Setting Lu=z,  it turns out that L, as an 

2To 
operator from E to L~(0,2~;IR 2") is compact. Let a =  ~ -  and consider for u~E: 

1 
(2.3) L ( u ) = -  ~ I ( u ,  Lu)+~6(u). 

From (G2) and (G5) it follows that f~e CJ(E, IR); i f f ' (v )=0  for some v in E, then 
there is ~ I R  2" such that 

1 
- - L v  + G ' ( v )  = 4 .  

G 

Setting z = a - l L v + ~ ,  then aAz=v and G'(v)=z. From (2.1) we get aAz=H'(z). 
Hence, in view of (2.2), we conclude that z(at) defines, by continuation, a 
T-periodic solution of (H). This is the so called dual action principle [8, 11, 6]. 
Clearly, T is the minimal period of z iff 2zr is the minimal period of v. In the 
remainder of the section, since a plays no r61e in the arguments, we will take a = 1. 

In order to use the results of Sect. 1, we set, for u~E: 

a(u, u) = ~ (u, Lu), b(u) = ~ G(u) 

and hence (2.3) becomes 

f (u) = - �89 u) + b(u) . 

We will use the notations introduced in Sect. 1. First we state: 

Lemma 2.3. f satisfies (I 1-14). 

Proof It is clear that (11) holds. Due to (G2) and (G5), b6CI(E, IR). It results: 

( b'(u), u) = d(u) = ~ ( G'(u), u) 

and hence, from (G4-G5), we deduce that (I2) holds. (13) follows directly from (G3). 
As for (I4), we note that the mapping u-~(G'(u), u) is C~(IR 2", lR) ; in view of (G5-G6) 
we get de C 1. Lastly from (113) it follows: 

(2.4) (d'(u),u)=~(G"(u)u,u)+~(G'(u),u) 

=< (1 + #) y (G'(u), u) < 2d(u). 

In (2.4) we mean that G"(u)u=O for u=0.  
Since f verifies (I1-I4), we know (cf. Lemma 1.2) that (h'(u),u)<O Vu~M. 

Actually, a bit sharper result can be proven: 

(2.5) 3c>O:Vu~M -(h'(u),u)>=c. 
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In fact, from (2.4) and (1.4) we have 

- (h'(u), u) = 2d(u)- (d'(u), u) > (1 - I~)d(u). 

Then, from (I2), it follows: 

- (h ' (u) ,  u )  > (1 - / ~ ) c  4 [I u [['. 

But, u ~ M  implies [cf. (i) of Lemma 1.3] that [[u[[ >=~>0 and thus (2.5) holds. 
Next we prove: 

Lemma 2.4. The pair ( f  M) satisfies ( P -  S). 

Proof Let u .~M be such that 

(2.6) f(un) is bounded; 

(2.7) f/~(u,)= f'(u.)+a,h'(u.)=_w,-,O (a,6R).  

From (2.6) and (ii) of Lemma 1.3, it follows that [[u,L[-<_cl. Multiplying (2.7) by u,, 
and taking into account that u,~M, i.e. (f'(u,), u,) =O, we find 

(2.8) a,(h'(u.),u,) = (w , ,u , ) .  

In (2.8) (w , ,u , )  tends to zero, because w , ~ 0  and Ilu, ll <c  1. By (2.5), (h'(u,),u,) is 
bounded away from zero and hence a ,~0 .  From (2.7) and since h' is bounded on 
bounded sets, we infer that f '(u,)~O. The argument is now as in [11]. We sketch it 
here for completeness. So, it results that if(u,) = - Lu, + b'(u,) + ~, (with ~,elR 2") 
tends to zero. Since 3, is bounded and L is compact, we deduce (passing to a 
subsequence) that b'(u,)=z, is convergent. On the other side G'(u,)=z, is 
equivalent to H'(z,) = u, ; since H' is continuous from L ~ to U,  we conclude that u, 
has a converging subsequence. 

We are now in position to prove Theorem 2.2. 

Proof of  Theorem 2.2. We apply Theorem t.5 to f We have already shown in 
Lemmas above that the assumptions (I!-I4) hold, as well as that (f, M) satisfies 
(P-S) .  Moreover, choosing ~=(~sint,  ~ cost) with ~elR", ~+0, it results L ~ = ~  
and thus a(fi, fi)= 2rcl~12 > 0, so that (2.8) holds, too. Let us denote by v the critical 
point o f f  given by Theorem 1.5. We complete the proof showing how property (,) 

implies that 2~ is the minimal period of v. In fact, if v has period 2n for some 
m 

integer m> 1, we take v*( t )=v( t ) .  It is immediate to verify that v*eE and that 
g ~  

b(sv*)=b(sv) Vs>0, and (b'(v*),v*)=(b'(v),v).  

On the other hand, by a direct computation it results: 

a( v*, v* ) = ma( v, v ) . 

Lastly, recalling that a(v, v)> 0 (indeed this is true for all ue M because for those u 
it is a(u, u) = (b'(u), u)) we conclude that a(v*, v*) > a(v, v), in contradiction with (*). 

Remark 2.5. It is clear that the solution found above is nonconstant. 
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Remark 2.6. F r o m  the p roof  of  Theorem 2.2 we see readly that  in the right hand 
side of (G2) and (G5) we could take:  

G(u)_<_cllul  ~ + c 2 

IG'(u)[ < c3lu[ ~- 1 + c 4 .  

Analogously,  in (G6) we could assume 

[G"(u)ul < cslul ~- 1 + c6" 

As an example  of Hami l ton ian  system to which Theorem 2.2 can be applied, we 
may  consider a H(z) which is strictly convex and homogeneous  of d e g r e e / 3 >  2, 
namely  such tha t  H(sz)=JH(z)Vs>O. In this case it is easy to verify that  G is 
homogeneous  of degree ~ = f l ( f l -  1)- 1, and hence (II1-II3) hold. However ,  in such 
a case, the existence of a periodic solution with minimal  period T = 2re (say), can be 
obtained more  directly. In fact, let us consider the level surface 

S= {ueE:S G(u)= l}. 

It is easy to see that  the action a(u, u) has a positive m a x i m u m  ~ on S. This ~ has 27z 
as minimal  period and satisfies 

L~ = 2G ' (~ ) -  ~ 

for some 2 > 0  and ~eR z". Since G is e -homogeneous ,  setting w = 2  ~- ag, we get 
1 

Lw = G'(w)- ~, ~ = 2~- 2 r 

Then z = Lw + ~ is a solution of  (H), with minimal  period 2ft. 

3. Energy Estimates 

Given  T = 27w- 1, we indicate with v~ the solution of (H) which has T as minimal  
period. Our  purpose,  now, is to investigate the dependence of v~ on a. Apar t  f rom 
the possible interest in itself, this will be useful in per turbat ions  (see Sect. 5). 

First we state:  

Lemma 3.1. Assume (111-113). Then there exist c', c " > 0  such that 
ct 

c'o2-~ >=L(v~)>=c,,~2-~. 

Proof. We set f ~ ' ) ( u ) = - l S ( u ,  Lu)+ci~lul ~ ( i=1 ,2) ,  where c 1 and c 2 are the 

constants  which appea r  in (G2). In cor respondence  of f~i) we will consider h i and 
M v F r o m  (G2) it follows 

(3.1) f~')(u)< f~(u)< f~2)(u). 

Set m'(~r) = min {fJl)(u) : u e Mx } and m"(a) = min {f~Z)(u): u e m 2 }, and let us denote  
by 2' (resp. 2") the value of 2 such that  2v~eM 1 (resp. M2). F r o m  L e m m a  1.4 and 
(3.1) it follows 

f~')(2'v~) =< f~(2'v~) =< f~(v.) ___< f~z)(v.) _< f~(2)(2"v~). 
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Hence 

(3.2) m'(a) < f,(v ) <m"(a). 

To evaluate m', let B + =  {we B:llwl[ = 1, f(w, Lw)>0}. 
We have that we M~ iff weB + and 

s Lw)=   clllwl �9 
o 

Hence we deduce 

f lwl  ~ 
(3.3) 12-~=aecl  ~(w, Lw)" 

Since on M1 the functional f~)  has the form 

taking u=2w, weB +, we get 

where 2 is given by (3.3). Then from the continuity orS(w, Lw) we infer that 3c"> 0 
such that 

(3.4) m'(a)>c"a 2-~. 

Next, we bound from above m". Fixed ~ e B  +, the same calculations show that 
X~,eM z iff 

Hence 3c' > 0 such that 

We then conclude: 

(3.5) m"(~)<-_c'a 2-" 

From (3.2), (3.4), and (3.5) the temma follows. 
Set z~(t)= G'(v~(i)). The behaviour of the energy C~ = H(z,(t)) is given in the 

following 

Proposition 3.2. Assume (IIl-II3). Then C ~ 0  (resp. oe) as a~O (resp. oe). As 
consequence Ilz~llL~--'0 (resp. oo) as ~-~0 (resp. oc). 

Proof Using Lemma 3.1 we have that f~(%)-,0 for a~0 .  From (ii) of Lemma 1.3 
we deduce that ]lv~ll--,0 for cry0. Hence C,=H(G'(v~(t)))-~O and, from (I/t) 
I}z~}IL~---,0 as well. 



Class of Convex Hamiltonian Systems 415 

Analogously, from f,(v~) < ~ G(v~) < e It v, [j ~ and Lemma 3.1, it follows that II v, I{, 
C~, and t[z~llL= diverge as a ~ o o .  

Remark 3.3. Similar arguments as in Lemma 3.1 and Proposition 3.2 yield energy 
bounds for solutions of given period of a family of convex Hamiltonians. More 
precisely, let H., H satisfy the assumptions of Theorem 2.2 (or weaker ones as in 
Remark 2.6) with inffl, > 2. Let us fix a = 1. Then, if (G'.(u), u)<(G'(u), u) Vu, it 

results sup C , <  +o% where C,=-H,(z,(t)), and z, is the solution given by 
n 

Theorem 2.2. In fact, as in (3.1), we have, with obvious notations f , (v,)<f(v) and 
hence 

2~C, ( ~  - l ) = ( ~  - l ) ~ H,(z,(t) < ~ , (H'(z,), z , ) -  ~ H,(z,) 

1 , 
= - ~ ~ (G,(v,), v,) + ~ G,(v,) = f,(v,) < f(v). 

4. Hamiltonians with Positive-Def'mite Quadratic Form 

This section is devoted to study the existence of periodic solutions of Hamiltonian 
systems when H"(0) is no longer zero. More precisely, instead of considering the 
general equation (H), we will deal with the second order system: 

(4.1) - S i  = Q x  + Ut(x),  x = ( x 1 ,  . . . ,Xn)elR n, 

where Q and U satisfy to: 

2 2 (III) Q is a positive definite, symmetric matrix with eigenvalues co j,  0<(ol  < . . .  
< (o2; U: IR"--.Ill verifies the same conditions of H in (111-113), with obvious 
modifications. 

In particular, as seen in Sect. 2, convex fl-homogeneous U (fl > 2) are allowed. 
Let us note that now, unlike than in our Remark after Theorem 2.2, it does not 
seem easy to find solutions of (4.1) with prescribed minimal period in the same 
straightforward manner. 

It is known [16, Remark 2.56] that, the minimal period of the solutions of(4.1) 
cannot be arbitrarly large. 

Our result is: 
2n 

Theorem 4.1. Assume (III) and let a = - ~  >(o,. Then (4.1) has a (noneonstant) 

solution v~ of minimal period T. Moreover, as T'r zr~ then tlv ~ItL=--*O, while if T~O then 
(O n 

Proof As for the existence, we indicate the differences with respect to the proof of 
Theorem 2.2. Set E = L'(0, 2g; IR") and let A~ be the densely defined operator given 
by A~u = -  a2ii - Qu. Since a > co,, then A, is invertible with compact inverse L~. 
For ueE we set 

L(u) = - �89 ~ (u, L.u) + S G(u), 
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where G is the Legendre transform of U. In order to apply Theorem 1.5, we need 
only to find flEE such that ~(fi, L~fi)>0: the remainder is the same as in 
Theorem 2.2 [let us remark that the form a(. , . )  was not assumed to be definite]. 

2 Taking Let ~, be the unit eigenvector of Q associated to ~o,. 

fi = Ao((, sin t) = (t72 - 092)~n sin t, 

we o b t a i n  J'(O, L~rfi)=/r(tr 2 2 -~%)>0 .  
Next, to take advantage of property (,), we state : 

Lemma 4.2. Let ~r>co, and ucE, u= ~ Uk eikt, U_k~-~lkE(~ n. Then 
keZ 

1 2 
(u, L,,u) = - 2n(u o, Q - lUo) + k.~o ( ~ - l u l l  

1 1 2 + + 

Proof. The Fourier-coefficients of z=Lou satisfy 

((o'k)2I - Q)z k = Uk, k E 77. 

Since, for k 4: 0, ak > o9., and co. 2 is the largest eigenvalue of Q, we have, for those k : 

1 ( ( f f k ) Z i _ Q ) _ l = ( ~ ( i  1 1 2 ( ~ Q +  ( ~ Q  +"')"  

Taking the scalar product (u, z)= (u, L~u) and integrating, the lemma follows. 

Proof of Theorem 4.1 Completed. Let v = v~ be the minimum of f~ on M~ given by 
2re 

Theorem 1.5. If v is - - -per iodic  for some m> 1 integer, we set v=  ~ vmke ~mkt and 
m k~27 

V* -~- 2 13ink eikt" Using Lemma 4.2 and taking into account that Q is symmetric and 
keZ 

positive definite, we readily conclude that ~ (v, L~v)< ~ (v*, L~v*), in contradiction 
with property (.). 

As for the asymptotic behaviour, we will use the same arguments of Lemma 3.1 
and Proposition 3.2 with the following modifications. Since the quadratic part of 
f~ is now ~(u,L~u), we need to evaluate m' and m" in a fairly different way. 

Let B + = {wE E: It wll = 1, ~(w, L,w)>0}. Note that fi~ B + for all ~ > w,. As in 
Lemma 3.1, we have 

(4.2) f~l)(2w)>clU, 

where 2 satisfies 

(4.3) 2 2-~t= C2 (w,L,w) for some constant c2. 

From Lemma 4.2, we obtain for all w, Itwll = 1 

(4.4) ~(w,L,w)=-2~Z(Wo, Q- lWo)+Q(a ) 
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w h e r e o ( a ) = o ( l s ) u n i f o r m l y w i t h r e s p e c t t o w i n  {w~E:[[w[l=l} . In(4 .4)  the 

right-hand side tends to - 2 ~  (Wo, Q-  lwo)<0, as a~o o .  On the other hand we 
have ~(w,L~w)>O for every w in B~ +. Hence we can conclude that 
sup{~(w,L~w):weB+~}--,O as a-~oo. Then, from (4.2) and (4.3) it follows that 
m'(a)~ oo as a---, oo. This estimate substitute the (3.4) of Lemma 3.1 and allows to 
show that klz~l[L~-~oo as T~0 .  

Lastly, if we take ~ = in sin t, it results 

(4.5) S(< L ~ ) -  G2 2. 
- -  ( O  n 

For a---,(O, the right-hand side in (4.5) tends to infinity, and this implies m"(a)~O, 
in substitution of (3.5). Then IIz~llL~--,0 as a~(O,, and the proof is complete. 

Remark 4.3. The proof of Theorem 4.1 could be done, alternatively, transforming, 
by a change of coordinates, the system 4.1 into another one, where the quadratic 
part is in diagonal form. 

We do not know if Theorem 4.1 holds under the weaker assumption a > ( o  1, 
ka ~: cot, j = 1 ..... n (non resonant case). Let us remark that in the example of [16] it 
is (ol =(O2 = 1 (n=2) and the minimal period must be smaller than 2re. 

Moreover, we expect that results as in Theorem 4.1 can be obtained for more 
general Hamiltonian systems, but this would require additional arguments 
involving, for example, better estimates than in Lemma. 

5. Perturbations and Oscillations of Large Periods and Small Amplitude 

In this section we consider the case in which the Hamiltonian H is a perturbation 
of a homogeneous one : this will provide a wider class of systems to which apply 
the results of the previous sections. More precisely we consider: 

H(z) =/~(z) + R(z), (5.1) 

where 

(IV1) 

(IVz) 

/~(Z)E C2(IR2n,~R) is strictly convex and homogeneous of degree fi > 2; 

R E C 2(1R2", Ill), R(0) = R'(0) = 0 and l[ R"(z)II = o(]zf- 2), as z ~0 .  

To take advantage of the asymptotic condition (I V2), we will look for solutions 
of (H) of small amplitude (namely near zero). Actually, we will find them as 
solutions of large minimal period. 

Theorem 5.1. Assume that H(z)= PI(z)+ R(z) and that ( IV 1-IV2) hold. Then there 
exists T o >0  such that for all T >  To, (H) has a solution havin 9 Tas minimal period. 
The amplitude of such a solution tends to zero for T--* oo. 

The proof of the theorem is carried out in some steps. The first one consists in 
modifying the Hamiltonian. Let X~ C~176 +) be such that 

~((s)=l for O-<s-<�89 Z(s)=O for s > l ,  ~((s)__<O, s>O. 

Put R~(z)=R(z~(lzle)z), where )~a(s)= ~ , and H~(z)=/4(z) + Ra(z ). 



418 A. Ambrosetti and G. Mancini 

Lemma 5 . 2 , / f 6  is sufficiently small then H~ is convex and satisfies (111-113). 

Proof. The arguments consist in standard (but long) calculations. For  brevity, we 
indicate only the outline of the proof of (113). 

Suppose that 6 is so small that H~ verifies (111-112). The following notations 
will be used : Ga is the Legendre transform of H a as well as 1~ that of /4 ;  B is H " -  a 
and Ba is H~ -1. From (IV2) it follows that, given e>0,  then 

(5.2) IRg(z)vl<~lzla-2lv[ Vz, ve IR  z" 

provided 6 is small. Set Sa=BoRg. Since/4" is (/3-2)-homogeneous, then [IB(z)][ 
<clz[ 2-r Thus, using (5.2), it follows ][So(z)n[<e for 6 small. Hence 
B~=(I+So)  -1 oB=(I+Sa)oB,  where S~= - S ~ + S ~ -  ... and I]S~[[ <e  (6 small). Let 
~ -  1 < p <  1 and take 0<~ < c o ( p - e +  1). In correspondence of such e let 6 be such 
that all the above inequalities hold. We evaluate: 

( a~(u)u, u) = (B~(z)u, u) 

(%(u), u) = (z, H'~(z)), 

where z = G'~(u) and thus u = H'~(z). It results 

(5.3) (B~(z)u, u) = (B(z)u, u) + (S~ oB(z)u, u). 

Since H~ satisfies (111), it follows that [u[ < c l z f - ~ ,  for 6 small. Hence, this fact 
jointly with liB(z)[[ <cIz[ 2-~ implies 

I(S~B(z)u, u)l < Ell B(z)lt ]ul 2 <zlzl a . 

As for the first addendum in the right hand side of (5.3), setting w o =/4'(z) and 
w~ = R~(z), it results u = w o + % and 

(5.4) (B(z)u, u) = (B(z)w o, Wo) + (B(z)Wo, xo) + (B(z)wo, u). 

In (5.4) the second and third addendum are bounded, for 3 small, by ~lzl ~. 
Moreover, we have 

(z, n'~(z)) = (z, W o) + (z, w ~) < ((~'(Wo) , Wo) + ~lzl ~ . 

Combining these inequalities, we have, for 6 small enough: 

(G'~(u)u, u ) -  (G'~(u), u) < (B(z)Wo, Wo) - (Wo, (~'(wo)) + ejzf 

= (G"(Wo)Wo, Wo)- IZ(Wo, G'(wo)) + ~lzt ~ 

= (~(c~- 1)-- #~)G(wo) + ~1 (3'(Wo)l a __< (~(~ - 1 ) - / ~  + e)clwol = < 0 .  

Proof  o f  Theorem5.t .  Let 6 be such that Lemma 5.2 holds. By Theorem 2.2 we 
know that for all T > 0 the system 

=JH'a(z ) 

2~ 
has a solution z~ with T =  - -  as minimal period. By Proposition 3.2 we infer that 

there exists To>0 such that for T >  T01[zr o <6. Since for [z[<6, H(z) coincides 
with Ha(z), we conclude that the found solution is actually a solution of (H). 
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Remark. If H is subquadratic, the existence of a T-periodic solution (with T 
minimal period), T large enough, has been proved by Brezis and Coron [20] by 
means of perturbation arguments, but in the framework of the paper by Clarke 
and Ekeland [8]. 

An interwinning of our techniques and those of Clarke and Ekeland [-9] yields 
to prove a result concerning the existence of subharmonics like Theorem 2.34 of 
Rabinowitz [17]. We will not carry over the details. 

6. A Further Existence Result 

In this section we expose another existence theorem where we can eliminate the 
growth restrictions in (111). For brevity, we will omit below some details, which 
either are similar to the arguments already discussed or are essentially known 
results of convex analysis (see for example Rockafeller [18]). We assume: 

(1111) H~C2(IR2";IR), H is strictly convex, H(z)>=O, 

(1112) flH(z)<:(H'(z),z) Vz~ 2", 

(1113) [H'(z)l<-_cl{H'(z)[I']z[ Vz~IR 2", 

(1114) (H"(z)~, ~) > cllH"(z) llV(, z ~  IR 2" , I { I :  1 ,  

(IIIs) 3/2]0,1[:(G"(u)u,u)<la(G'(u),u) Vu~IR2"\{0}. 

In (1111-1115) we have used the same notations as above. 
We remark (see Ekeland [11]) that (1112) is equivalent to assume that 

(6.1) H(sz)>=sPH(z) Vz, Vs>l  

as well as (6.1) jointly with 

(6.2) [H'(sz)] > s p- l lH'(z)] Vs > 1, Vz 

implies (1113). However, we do not know if (1113) implies (6.1). 
We have introduced assumptions (1113-1114) to prove: 

Lemma 6.1. Assume (1111-1114). Then 

IG"(u)ul<=ex+c21uU ~ Y u l e ,  2". 

Proof Set z = G'(u). It results by (III4): 

tul lu[ 
[G"(u)u[ <= rain (H"(zK, ~) =<c IIH"(z)][ " 

IKI=I 

Using (1113) we get IG'(u)ul<=clzl. (1112) and the convexity of G imply that 
Izl = IG'(u)I _-< elul ~- 1, p r o v i d e d  Izl _-> 1. I f  Izl < 1 we  have ]G'(u)u[ <~ c. 

Set 

(6.3) H.(z):y~n[.{H(z-y)+~]z['}. 
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n 
It  is well known that  H, ,  the inf-convolut ion of H and ~ [z[ ~, is convex and its dual  

1 
G,(u) coincides with G(u)+ ~ [u[ . Then,  using also L e m m a  6.1, it is easy to see 

that  G n satisfies all the assumpt ions  G1-G6, with the modificat ions al lowed in 
R e m a r k  2.6. Fu r the rmore  H',~H' uniformly on bounded  sets. We are ready to 
state : 

Theorem 6.2. Assume (1111-1115). Then, for all T > O, (H) has a solution, having Tas 
minimal period. 

Proof Fix T = 27~. Due  to the preceding remarks ,  we can apply  Theorem 2.2 to get 
a solution z, of  

(H.) - J ~ . : H ' . ( z . ) ;  

z n has 27r as minimal  period. We first show that  z n converges in C 1 to a solution z of  
(H). Indeed, by R e m a r k  3.3 [with H ,  given by (6.3) and H - H a l  it follows that  
[C,  = H,(z,) and thus] IIz, II 1,~ < c. F r o m  (H,) it follows that  also II z[I L= < c. Hence 
we can extract  a subsequence z,- ,z  uniformly. Equat ion  (H,) implies that  z ,~z  in 
C 1 and  -J.~=H'(z).  

It  remaihs  to prove  tha t  z has 2~ as minimal  period. 
We set v=H'(z)=lim H'n(Zn), and prove  that  v has minimal  period 27r. Set 

n 

IVI = {u~ L ~176 : ~ (u, Lu) = ~ (G'(u), u)}. 

It  is easy to see that  v (belongs to ~ / a n d )  minimizes f(u)= -�89 ~ (Lu, u)+ S G(u) on 
A~/[note that,  due to (1112) and the convexity of  G, it results G(v)> clvl ~ for w IR 2n, 

Ivl<= l]. Now, if~(t)=V(k)is2rc-periodicforsomek> 1, f rom 6 ~ e ~ I  for a 6 < 1, and 

f(6~)<f(6v)<f(v) we get a contradict ion,  so the p roof  is complete.  

Acknowledoement. The A. A. wish to thank I. Ekeland for the useful discussions. 
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