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1. I n t r o d u c t i o n  

In [53, hereafter referred to as EQ, the geometry of intersecting hypersurfaces F, G 
in a symplectic manifold was analysed, near points at which F and G intersect 
normally but at which the Hamilton foliation of F (resp. G) is simply tangent to G 
(resp. F). In this second part  the more degenerate situation, in which the Hamil ton 
foliation of F is still simply tangent to G but that of G is tangent to F to second 
order, is considered. It is no longer true that dimension is the only symplectic 
invariant of such a system; we show the existence of a countable family of 
(functional) obstructions to equivalence, all of which can be seen in the formal 
power series analysis on the submanifold of maximal degeneracy. 

Whereas in EQ symplectic manifolds were treated initially and then recon- 
sidered with the addition of homogeneity, contact manifolds, the case of principal 
interest in the application to differential boundary problems, will be considered 
directly here. 

In a contact manifold (E,M+), where M + is the (oriented) contact line 
subbundle of T'E, the space C~(M *) of smooth sections of the dual bundle to M is 
equipped with the structure of a Lie algebra, through the Lagrange bracket [,]. 
Any hypersurface F can be defined, near any p~F, as the zero set of a section 
fE C| with the bundle-valued 1-form df non-vanishing at p. The conditions 
we wish to consider on the intersection of F and G can be written, in terms of any 
f, g~ C~(M *) defining them near p as 

(1.1) * * Np F, Np G, Mp are linearly independent, 

(1.2) f(p)=g(p)=[fg](p)=O, 

(1.3) [f[fg]](p)+-O, 

(1.4) [g,[g,f]](p)=O, [g,[g,[g,f]]](p)4:0. 
The definition of equivalence will be somewhat weaker than that used in EQ, 

since we shall treat F as the boundary of a region of interest. Thus, let e be an 
orientation of F at p and write G e for the part  of G on the positive side of F, near p. 
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(1.5) Definition. Two systems (Fi, Gi, Ei, M+,pi, ei) i= 1,2, consisting of contact 
manifolds (Ei, M +) containing hypersurfaces Fi, G~ intersecting at p~, at which 
point F~ has orientation e i, in such a way that (1.1)-(1.4) are satisfied are said to be 
equivalent if there is a germ of contact transformation 

c~:Ea,pl-~E2, P2, ~ * M ~ = M ~  

such that 

(1.6) (~(F1)=F2, ~ ( G ] , ) = G ~  ~. 

The full equivalence property used in EQ, requiring q~(G1)=G 2, will now be 
referred to as two-sided equivalence. Consider the problem of EQ, where (1.4) is 
replaced by [g, [g, f]](p) + 0, with respect to the weaker one-sided definition of 
equivalence. Two such systems are equivalent if, and only if, [g, [g, f ] ]  has the 
same sign in each, where f = f ~ * ,  a*~C~~ has :(*(m+)>0 and dpf~e, and 
the dimensions of the underlying manifolds are the same. The difficulty of the 
proof of the one-sided equivalence depends on the sign; for one choice (>0,  
"diffraction") the problem is formal, involving no convergence arguments beyond 
Borel's theorem whereas for the other choice (<0,  "gliding") the arguments needed 
are no simpler than those for the proof of two-sided equivalence, as in EQ. 

In the present case there is a somewhat subtler orientation invariant, discussed 
below. However, the alternative definition of one-sided equivalence, in which G 
has an orientation and in place of (1.6) one requires 

q~(F~')=F~ 2, q~(G,)=G 2 

does exhibit a marked change with change of orientation. Indeed, two systems are 
not, then, equivalent unless [f, [ f ,g]]  has the same sign when g=~a*, ~* >0, 
dStee  and then the problem is formal if this is positive, whereas when this is 
negative the equivalence of formally equivalent systems involves convergence 
arguments beyond those presented below. 

As in EQ, the main part of the analysis concerns the intersections maps and 
associated relations. According to (1.1), F and G are both non-radial (see 
Guillemin and Schaeffer [3] for a discussion of radial points on hypersurfaces), 
their normals being outside Mp, so they have well-defined, local, Hamilton 
foliations V F and V G with leaves the "bicharacteristic curves". Since any non-radial 
hypersurface, F, projects naturally onto the quotient contact manifold F/V F = B e 
the inclusion maps J ~F ,  J ~G, where J=Fc~G, define intersection maps Iv, I~ 

(1.7) r --~ " 

with the contact property BF 

(1.8) * + + * + - -  + Iv(M r ) = A~ , I~(M a ) -  Aj  . 

J �9 ~ G 

B G 
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Here M ; ,  M + + a are the induced contact bundles on BF, B6, and A] is the pull-back 
of M + to J ;  Af  does not quite define a contact structure on J but is minimally 
degenerate and defines what we shall call a folded contact structure (see Sect. 2). 
Indeed, as a consequence of (1.3) I e has a simple fold (singularity of type $1, o) at p. 
Clearly if two intersection systems are equivalent the corresponding maps I v are 
equivalent in the following sense. 

(1.9) Definition. If (J~,A~-,pi) and (Bi, M+,qi) are, respectively, a folded contact 
manifold and a contact manifold, for i = 1, 2, the C ~ germs 

li:Ji, Pi "---~ Bi, qi I*M{  = A~ 

are said to be equivalent under contact transformation if there are diffeomorphisms 
if9 :Bl,qi ~B2,q2,  ~:J l ,Pl  ~J2,p2 such that 

and tile following square commutes 

JI,Pl ~ ~ ~J2,P2 

ll 1 [ I2 
B l , q l ~ B : , q 2 .  

This definition leads to the following refinement of a classical theorem of Whitney. 

(1.10) Theorem. Between manifolds of a fixed dimension, 2n + 1, all germs of maps 
exhibiting S1, o singularity are equivalent under contact transformation, as are all 
germs exhibiting $1,1,o singularity. 

The point of the second part of this theorem is that, under the assumptions 
(1.1)-(1.4) I G has a Whitney cusp at p (a singularity of type $1,1,o, see for example 
Golubitsky and Guillemin [2]), as is proved in Sect. 3. 

o 
Now, when F has an orientation e, let B~ = Ge/"~e be defined by the relation, Pl 

We Pe if and only if pl and P2 lie on a segment [Pl,P2] C (~e of G-bicharacteristic, in 
the interior (~e of G ~. Clearly, there is a projection n~'.B~e~B~, under which B~ 
covers B G simply outside (and on) the cusp in B~, defined by t~, and doubly inside, 
and a map leg :J \K-  -.Be~ defined on the open dense submanifold of J where V G is 
not tangent to F from the outside such that n~oJ~=I~lJ\K -. Here, K - C J  is 
defined by [g, f]  = g = f = 0 ,  [g,[g, f]]  <0. 

B ~ 
G 

J BG 
Cusp 
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Thus, when F is oriented, in place of (1.7), we have the following system of 
oriented-intersection maps 

(1.11) Bv~--Jc-~J\K- ! -~B~,BG.  

which are all contact maps, inducing local isomorphisms of the various line 
e e * bundles Me, Aj, M t = (zr) M G. 

(1.12) Definition. Two systems of oriented-intersection maps, as in (1.11), are 
equivalent under contact transformation if there exist germs of smooth contact 
diffeomorphism 4) v, tp,4)~ giving a commutative diagram 

(1.13) 

I F I e G ~Te 

B F ~-~ J ~ J / K -  = B e G ~ BG 

B~: = J ' - - , - ~ - )  J ' /K - '  = B e' G - -  B~ 
e, 

I F I G ~T e' 

e t  o e o e e e e !  such that ~ ~ t  I t  and ~ o~aola extend smoothly to J and J' respectively. 

(1.14) Theorem. Two systems of intersecting hypersurfaces are equivalent in the 
sense of Definition 1.5 if, and only if, the associated systems of oriented-intersection 
maps are equivalent in the sense of Definition 1.12. 

Apart from the need for joint conjugation of I v and I t there is also an orientation 
invariant between Theorem 1.10 and the hypotheses of Theorem 1.14. Consider 
the obvious definition of joint equivalence : the existence of a diagram of contact 
maps, with vertical diffeomorphisms 

I F  

BF< J I%B t 

,B;. 

Since the orientation e of F fixes an orientation of Vt, namely the positive direction 
along bicharacteristies on G leads (eventually, locally) into G e, and at L, where I t 
has S 1 1, o singularity, V t is t'angent to K and non-zero, e defines an orientation eL 

, J 

of L in K. Thus, in addition to (1.15) we must have 

(1.16) ~p*(e'L)=e L. 

Equivalence in the sense of Definition 1.12 is weaker than (1.15), with (1.16) since 
then 4) G lifts to ~b~. 

In outline, the paper proceeds as follows. In Sect. 2, folded contact structures 
are discussed, leading to the proof of the first part of Theorem 1.10, the second part 
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is proved in Sect. 3. Sections 4 and 5 contain the treatment of the joint conjugation 
problem (1.13) [and (1.15)] at the level of formal power series, including the display 
of the obstructions to such conjugation. Sections6 and 7 give factorization 
theorems which show that there are no obstructions to the replacement of the 
formal equivalence by C ~ equivalence in the sense of (1.13). Theorem 1.14 is 
proved in Sect. 8. Section9 contains a complete set of examples. For  the 
convenience of the reader some, essentially classical, material on the Lagrange 
bracket and extension theorems for contact manifolds is presented in the 
appendix. 

To a certain extent, the results of this paper, as they affect boundary value 
problems, are negative. The appearance of large spaces of moduli, distinguishing 
between apparently similar situations in "geometric optics" indicates that the 
construction of parametrices for boundary value problems with bicharacteristic 
tangency to higher order than first (see [1, Sect. 4]) is a formidable task. It should 
be noted however that certain results (as illustrated by Morawetz et al. [7]) can be 
expected to follows from more qualitative aspects of the canonical geometry. In 
particular using the results of Sect.9, the (C ~) propagation of singularities for 
boundary value problems with (non-degenerate) bicharacteristic inflection will be 
analysed in [6]. 

2. Folded Contact Structure 

Much of the analysis in subsequent sections is concerned with minimally 
degenerate contact structures, which we term folded contact structures, their 
reflective involutions and Lagrange algebras. 

(2.1) Definition. A folded contact structure on a (2n + 1)-manifold J is an oriented 
line subbundle A § C T*J for any local, non-vanishing section, ~, of which the 
(2n + 1)-form ~ A (da)" vanishes simply on a hypersurface t a :K ~ J  and, if aK = ~ ,  

(2.2) ~K A (d~K)"- 1 + 0. 

Martinet [4] showed that closed 2-forms with the property analogous to this 
("S1, o singularity") can be brought to a fixed form by change of coordinates. We 
shall show that folded contact structure can similarly be brought to normal form. 
As our basic example we take ]R 2"§ with coordinates (y,~,x,~,z) y , ~ l R  n-l ,  
x,~,z~lR,  and let AC T*IR 2n+1 be spanned by 

n- - I  

(2.3) ~=  ~ q jdYs+X~dx+dz>O.  
j = l  

(2.4) Theorem. I f (J ,  A +, p) is a germ o f  folded contact structure at pc  J then there is 
a germ of  diffeomorphism c~: J, p ~ IR 2n + 1, 0 such that c~*fi + = A +. 

Proof. Suppose e e C ~ ( A , p ) ,  a > 0  then a/x (dc&=f7 where 7 is a non-vanishing 
volume form and f e C ~ ( J , p )  has f (p )=0 ,  dpf:i:O. If a e C ~ ( J , p )  then 

(2.5) (d(acO) n =(da /x ot + ada) A ... /x (da ^ c~ + ad~) 

= an(d~). + nan- ida ^ o~/x (da) n - 1. 
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Pulling this equation back to K (defined by f = 0 ) ,  gives (2.5) with ~ replaced by 
~K = t*~. If 7~ is a volume form on K then 

c~ K A (dc~r)"- 1 = ix ~ 

defines a non-vanishing vector field, by assumption (2.2). So, on K, we define o- to 
satisfy 

0 =(d( fO~K))  n = 6n(dO~K) n + na"- ada ^ i x7  K 

which can be rewritten 

Xcr+ga=O, l (d~K)"=gy r.  
l'l 

This certainly has a solution with a(p) = 1. If &e C~176 p) restricts to ~ on K then 
= &c~ satisfies (d~K)" = 0. By the version of Darboux's  theorem given by Sternberg 

[9, Theorem 6.2] coordinates Yl . . . . .  Y,- 1, ql, ..-, t/,, 4, z can be introduced at p in K 
so that 

n - - 1  

(2.6) ~K= ~ tlfly~+dz. 
1 

Returning to (2.5)~ with ~ replaced by & note that (d~r)" = 0 so at K (d~)" = df/x v. 
Now, ~ A (d~k) ,, a -  4:0 and if or___ 1 on K, then d~=~ld fa t  K, aleC~~ and 

(d(a~))"=df A v + na ld f  A(dy 1Adql/x ... Ady,_ 1/xdtl,_l) at K.  

Since d{/x d~ K = dz ^ d ~  = O, d{/~ v = dz/~ v --- 0 the equation (d(a~))" = 0 can be 
solved for ~i, on K, providing us with ~eCoo(A,O), ~ > 0  such that (2.6) holds and 

(d~)"=0 at K .  

Now, extend ~ to an element of Coo(J,p) and define V~., in f=t=0, where A is a 
contact bundle (see the appendix): 

(2.7) 2d~(V, . )=-d~+o~,  ~(V) = ~ .  

From (A.5), 0Jvanishes on K, so OeCoo(J,p). Evaluating (2.7) on the vector fields 
Oy,, ~,~, ~ ,  0= on K shows that V is not Coo across K, howeverfV is smooth and 
transversal to K, so the equations 

(2.8) V(Z)= 1, Vyj=Vz=[{,qj~*]=O 

have unique solutions such that Z=0,  on K aJnd yj, qj, z are extensions of these 
functions off that surface. Now Z vanishes to exactly second order on K so, 
reversing the sign of { if necessary, )~=�89 2. From Jacobi's identity and Remark 
A.15 it follows that 

n - - 1  

~= Y~ ~fly~+~d(�89 
j=~  

as desired. 
We shall use this result to prove a stronger one, namely the first part  of 

Theorem 1.10. 
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Let Con(J ,A+,p)=Con  be the group of germs of diffeomorphism J , p ~ J , p  
leaving invariant the oriented bundle A +. The subset Ref(J, A +, p)= Ref, consist- 
ing of the involutions which leave K pointwise fixed, excluding the identity so that 
all j r e  Ref exchange the local components at p of J\K,  is of special importance. If 
J ~ Ref and q~ ~ Con then 4):~jr ~ 5-a~ Ref. 

(2.9) Proposition. The action of  Con (J, A +, p) on Ref(J, A +, p), by conjugation, is 
transitive. 

Proof Using Theorem2.4 we only need show that any J s  Ref(lR 2"+1, el+,0) is 
conjugate by some ~b~ Con(lR 2"+ 1, ft.+, 0) to the basic involution 

(2.10) Jo(y ,~ l , x ,~ , z )=(y ,q , -x ,~ , z ) .  

Let ~ = �89 (~*)) be the jr-even part of ~* ,  using the assumption j 2  = Id. 
The Hamilton field V z (see Appendix), well-defined in x + 0, satisfies 

2d~(v,.) + d~(~) = 0~, ~(v) = ~(~). 

From (A.5) it follows that o~C~176 and hence that 

V= Vz = l(~?x +h(?r + W, 

where h and W are C ~ across x =0. Thus, we can follow the proof of Theorem 2.4 
above, solving equations (2.8) to give functions X, Yj, and section Hi, 
~*eC~(A*,p), (with initial conditions x, yj, tiff*, c~* on K), such that 

= ZHj(a)d Yj +XE(~)dX + dZ > O. 

Now since J is itself a contact diffeomorphism these functions 1XZ, Yj, Z and 
sections Hi, ~* are all jr-invariant as V and the initial data are J-invariant.  Thus, 
jr*Yj= Yj, J * H j = H j ,  J * Z = Z ,  ~*~*=~*,  J * E = ~  and J * X = - X ,  since j r  
exchanges the components of J\K.  We can therefore take 

4~(Y, H,X,~,Z)=(y,~,x,  ~,z). 

Proof of  Theoem 1.10 (first part). Suppose the given map is I :J, p-+ B, q where B has 
contact bundle M +, and I has a fold singularity at p, and A + = I * M  + is a folded 
contact bundle on J. Using Darboux's theorem on B and Theorem 2.4 on J, I is 
equivalent under contact transformation to a map, with Sa, 0 singularity 
I' : IR 2" + i, ~ +, 0-+ IR 2" + 1, ~ +, 0 where AI is the standard contact structure (A. 11). 
Clearly, the involution j r  on J, defined by exchange of points identified by I', lies 
in Ref(J,A+,0); using Proposition2.9 a further change of coordinates on J, 
leaving A + fixed, reduces jr  to jro as in (2.10) and shows that I is equivalent under 
contact transformation to 

LX2 Io:lR2"+l--+(y,~l,x,~,z)--+(y, rl, 2 ,~,z). 

Next let us note how the Lagrange isomorphism and bracket carry over to folded 
contact structures. The space, cg~(A+,p), of germs at p of contact vector fields, 
Ve cdV(A, p) satisfies 

Agv~ = qv, ~o~ Va~ C~(A +, p) , 
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is again mapped into C~176 by the evaluation map Vt~oe(V). This map is 
certainly injective but, because of the degeneracy of A, it is not surjective ; its range 
is the Lagrange algebra, ~q'a(A, p) C C~176 *, p). 

(2.11) Lemma. 

~q~'a(A,p)={feCoo(A*,p); Vo~eCoo(A,p) 

d(f(oO) A o~ /x (doO"- 1 _ nf(a)(dot)" = 0  on K}. 

Proof. Observe that the given condition on f holds for all a if it holds for one ~, 
a(p) 4= 0, since if a = Qa 

d(f(a)O) ix O= ix (d(Qa))"- t 

=0  "+ * df(a) A ~ A (do&- 1 + nf(~)o,do /x a A (du)"- 1 

= n[o"(dot)" + O"- 1de ix c~ ix (da)"- 1]f(~,) 

= f(a')(d~')". 

Moreover, from Theorem 2.4 we can introduce local coordinates y, r#, x, ~, z and 
take ~=~. From (A.13) we deduce that the contact vector field Vs., defined on J \ K  
by any f~ *e  Coo(/l*,p), f ~  C~176 is in these coordinates 

n -  1 

1 

~J ug/ 

Thus, V s is smooth precisely when Of 63f 63x 0 on K (x =0), and since (d~)" =0  on 

K this is the given condition, df (Y  0 A ~ A (d~)"-a = 0, proving the lemma. 
We need a further refinement of this result. Note, from (2.12) that in 

coordinates in which A = A i f f~*e  s V~ = 0 at 0 exactly when 

(2.13) 63f 63f 632f 632`/  ̀
QYs - Oqs 63x2 = ~ = 0  at 0 

which condition is certainly independent of the isomorphism to (IR 2"+ ~,A,0) so 
defines the subalgebra ,s A, p) C ~ a ( J ,  A, p) consisting of the elements with 
Hamilton vector fields Vy exponentiating locally : 

.,~a'(J, A, p ) ~ f ~  exp(Vs)~ Con(J, A, p). 

3. Cusp Singularities 

We continue the analysis of folded contact structure by proving the second part of 
Theorem 1.10, that any contact map I:J,B~P,p, with $1,1, o singularity can be 
brought to normal form by contact transformation. This result is considerably 
more delicate than the theory of contact folds above. As basic example we shall 
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take the map 

(3.1) I:lR2n+1~(y, tl, x,~,z)~->(y, tl, x , x ~  +~3,  z )e lR  2n+l , 

where the image has the contact structure h), spanned by (A.13). The folded 
contact bundle 4 + = I * ~  r+ is spanned by the form 

n--I 
(3.2) ~= ~ tljdy~+(x~+~a)dx+dz>O. 

j = l  

Using Theorem2.4 and Darboux's theorem on the domain and range of I, 
respectively, the second part of Theorem 1.10 is reduced to the following result. 

(3.3) Proposition. I f  I:IR 2n+l, 0---~IR 2"+1, 0 has singularity of type S 1 l o and 
I*]Q+=J.+ then there are maps~p, dp:IR 2"+1, O--*IR 2"+1, 0 with ~*A+'=A+, 
~b*~/+ =AT/+ such that the diagram 

IRZn+l 0 ~9 )]Rzn+ 1 0 

IR2,+ 1,0 ,IR2,+ 1,0 
4 

commutes. 

Proof First note that as a simple "cusp" singularity, by ignoring the contact 
structure I can certainly be transformed to I in (3.1). In particular, if we denote by 
L the codimension 2 submanifold of IR 2"+1 where I is triple then I :L-,I(L) is a 
contact diffeomorphism, where the contact bundles on L and I(L) are the pull- 
backs of .4 and M. Indeed, it suffices to show that A defines a contact structure on 
L. Since .,] is a folded contact bundle any section c~ C~(A,p) pulls back to the fold 
K, where x + 3 ~ 2 = 0 ,  as ~r satisfies (2.2), the rank of the tangent map 
dI:TpK--*TplR 2n+l is clearly 2 n - 1  so ctt~/x (deK)"-1 does not vanish when pulled 
back to L, in fact c~ K/x (d~r)"-1> 0. 

As remarked above, one can find X, ~e  C~(IR 2" + ~, 0) such that the cusp, I(K) is 
defined by 

X 3 

so I(L) is X = E =0  and then 

[~,x],0, 
I(L) being a contact submanifold of IR z"+ ~. Changing the sign of ~ if necessary we 
can assume 

(3.5) [~,X] >0 .  

Suppose that we choose gsC~(A]t,0), /~>0, and define XeC~(M~/5,0) 
~e  C~Mr*/5,0) by )(( /0=X, ~(/~)=~. Then I(K)is defined by (Jr/3) 3 +(~/2) 2 = 0  
and [~,X]eC~(IR z"+ 1,0). If / t  were so chosen that 

(3.6) [ ~ , X ] =  1 

then Proposition A. 16 would allow the extension of any chosen contact diffeomor- 
phismq~:I(L), 0--,IRZ"+~,0 to a contact diffeomorphism on IR 2"+1, giving new 
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coordinates Y', H', X', Z', Z' in the range of 1 with X'=37(F), 3 '=Z(p') ,  
p' = y,H~d Yi + E'dX' + dZ' > 0 spanning/~ + and (3.4) still holding. Thus we could 
define new coordinates on the domain of I by 

(Y J, G x, ~) = z* (~ , /~ ,x ,  z)  

and with { satisfying ~ - +  ~3 = l*~'. Note that ~ is then smooth because it is some 
non-vanishing multiple of the original coordinate ~. Clearly these new coordinate 
systems in domain and range give the desired equivalence under contact 
transformation. 

Thus to complete the proof of Proposition 3.3 we must show that (3.6) can 
always be arranged. 

(3.7) Propos i t ion .  Given X e C~(fl*/s, 0), -~e C~(M%,  O) with X =~  = 0 at 0 and 

[ E , X ] > 0  at 0 

there exists ae C~~ z"+ 1, 0), cr(0)>0 such that 

(3.8) [o3Z, o2X] = 1. 

This result suffices to prove (3.6) since if the initial choice ~te C~(M, 0) does not 
ensure (3.6) then ~ '=  o-5p will do so. 

Proof of Proposition 3.7. First note that there is a unique section X'e C~(~r*/5,0 ) 
such that 

[E,X']= I, X'=O on X = 0 .  

So, for some he C~176 2" + ~, 0), h(0) 4= 0, X = hX' and (3.8) becomes 

(3.9) [o3E, a2hX'] = 1. 

Using Proposition A.16 we can choose fleC~176 and functions yj, rli, z such 
that, if x=X'(fl), { =E(fl), (A.11) holds. Then, using (A.7) we can write (3.9) as 

(3.10) ha4(2x[Z, aJ(fl)- 3~[X', aJ(fl) + ~ -  [~, e](fl) 
~7 

+~- [Z, 00('](fl)) = 1. 

From (A.9), (A.12), and (A.13) 

2x 
[Z,  ~] = a ~ r -  2 ~azO, Ix, ~] = - ago + - y  a ~  

so that (3.10) becomes 

(3.11) 2 x O ~ , a + 3 ~ a + x ~ V a + R o - ( h a 4 ) - x = o ,  

where V is a smooth vector field (depending on h) and Re C~(IR 2"+ ~, 0) is equal to 
1 at x = ~ =0. To prove the existence (and uniqueness) of a smooth solution to 
(3.11) we shall first sove it formally and then use an argument of Nelson [8] to 
obtain a C ~~ solution. 

Thus let 

= C ~ ( ~  ~"- ', 0)[Ex,  ~]] 
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be the ring of formal power series in x, 4, with real-valued coefficients germs of 
functions of y, t/, z. g is the countable direct product of the spaces of homogeneous 
polynomials in x, 

(3.12) g = g o @ g l @ g 2 @ . . .  

and (3.11) is meaningful as an equation for o-eg if R, h and the coefficients of V are 
replaced by their Taylor series at x--= ~ =0. Moreover cr can then be constructed 
using the homogeneous gradation (3.12) of g. The projection of (3.11) into 9o is 

ao _ ( h o o ~ ) -  1 = O ,  

where, h o is the projection of h into 9o and hence is positive. Thus a o = (h0)- 1/s > 0 
is uniquely fixed, being real. Inductively, we can assume that the projections aj of a 
into g; have been chosen for j  < n in such a way that the projection of (3.11) into g j, 
j < n is valid. Then, cr must satisfy 

(3.13) Ta,=2x~xa+ 3~O~a+(1 +hoao3)an=T,, 

where T,e g, is determined by the earlier choices a j, j < n. The linear map T:g,--,  g, 
is invertible for all n >  1 since the functions x"-S~ s are always eigenvectors with 
eigenvalues 

2 n + 3 + ( l + 4 h o 2 / 5 ) > 0 .  

Thus, (3.11) has a unique formal power series solution, let 6eC~176 2"+ 1,0) be 
some function with this series as Taylor series at x = 3 = 0 .  Returning to the 
beginning of the proof, but replacing Z by ~3Z, X by ~2X and repeating these 
arguments we arrive at (3.9) where now h - 1 vanishes to all orders at x = ~ = 0. We 
now use a variant of the Sternberg linearization theorem to simplify this equation. 
We no longer work at the germ level but, since we only need a local solution a of 
(3.10) we shall take, for some E>0, 

h=X if lyil, l~/jl, lxl, l~l or Iz[>e(forsomej) 

(3.14) h >�89 everywhere and h - 1  vanishes to all orders at x = ~ = 0. 

Then, (3.11) becomes 

(3.15) 2Xt?xt~+3~t?~t~-2x~c~cr+ VtT+(1 + ? ) t ~ - c r - 4 / h = 0 ,  

where V is a vector field and 7 a function, both vanishing outside a compact set 
and to infinite order on x = ~ = 0 .  To solve (3.15) we use Nelson's proof  of 
Sternberg's linearization theorem to eliminate the "small" V term in (3.15). First 
however, replace z by z'= z + 2x~ so that (3.15) becomes 

(3.16) 2XOx~r + 3~O~cr + Va + 7~r-~r-4/h=O. 

The vector fields 

Q = - 3 ~ -  2 x 0 x -  V Q0 = - 3r  2x~?~ 

both define global flows U(t), Uo(t ) on IR z"+ 1, given (3.14), and the wave operator 

(3.17) W(y, rl, x,~,z)= lim Uo(-t)U(t)(y, rl, x,r ) 
t~o~3  
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is a local diffeomorphism, near 0, intertwining U and U o and so conjugating Q to 

Qo, W.Q=Qo. 
We refer to Nelson [8, pp. 42-44] for the proof of the C ~ convergence in (3.17) 

and note here only the minor modifications required to that argument. The only 
estimate used by Nelson that our U and U o do not satisfy is the local exponential 
decay, for t > 0, 

[l U(t)(y, th X, 4,z)H <__e-"'[l(y, rh x, 4, z)[[ a > 0 .  

Instead we have the weaker condition of exponential decay in the x, 4 com- 
ponents. Putting (y, q, z) = q$ and U(t)(cb, x, 4) = (~(t),X(t), F.(t)), 

N(t)l<=e-a'lx], I~(t)[_-< e-a'[~l a > 0 .  

Exact compensation for this deficiency is provided by the fact that Q - Qo vanishes 
to all orders at x = 4 = 0, as opposed to the corresponding assumption in [-8] that 
this difference vanish to all orders at the base point. Thus, the components of 
( Q -  Qo) can be estimated by cK(lx[ + [4[) k for each k and so we can conclude that W 
is well-defined by (3.17). 

Working in the new coordinates provided by W, which we shall continue to 
denote by (~b,x, ~) (3.16) becomes 

3~0r + 2xOxa + (1 + y )a -  a -  4/h = O, 

where h - 1  and y vanish to all orders at x = ~ = 0 .  Polar coordinates, ~ = r  3 cos0, 
x = r  z sin0, reduce this to an ordinary differential equation in which 4) and 0 are 
parameters : 

r ~ r  +(1 + y)cr- o-4/h =0  

which has a unique smooth solution a. Indeed, putting 0 = o-- 1 gives 

f ~ +(l  + a - ( l  +o)-4)+ f(o,r,O, ga)=O, 

where f(O, r, 0, q$) vanishes to all orders at r = 0 and depends smoothly on ~, q$, 0. 
Let s(o) be the unique smooth solution, near ~ =0, of 

s (e )  = s ' (e)(1  + e - ( l  + e)- 4), 

d 
so that drr rs(Q)= -s'(o)f(~, r, O, 0). Since s(0)= 0, s'(0)4:0 this can be rewritten as 

an integral equation 

1 r 
(3.18) s= - [g(s,r, 4o, O)dr, ?. D 

where g is a C ~ function vanishing to all orders at r=0 .  Clearly the operator on 
the right of (3.18) is a contraction near the origin of the Banach space of functions 
rk~v, ~pe C k (in all variables) provided 0 < r < e with s small. Thus (3.18) has a unique 
C ~ solution. We have therefore solved (3.8) for a and so proved Proposition 3.7, 
and consequently Theorem 1.10. 
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Now, we need to verify that IG:J~B G has a Whitney cusp at p, where 
(1.1)-(1.4) hold. Using Proposition A.16 coordinates can be introduced in E, at p, 
so that M is spanned by the form (A.11) and G is the surface x~ =0. Since V G is then 
spanned by ~, ,  (1.4) and the Malgrange-Weierstrass Preparation Theorem show 
that F is defined by 

4~ + a ~  +b4, +c=O, 

where a, b, c are independent of ~ and vanish at x = ~ = z = 0 .  Using 
a 

Proposition A.16 again, ~ can be replaced by 4~ + ~ so one can assume a - 0 .  Since 

(1.3) implies that db and dc are independent it follows that the intersection map 
J--*Ba, where B G can be identified with x~ = ~t =0, has a simple cusp. It is clearly a 
contact map. 

4. Formal Power Series on L 

The folded contact structure (IR 2"§ 1,~~, 0) defined by (3.2) arose in connection with 
the relation ~ defined by the map 1 in (3.1), 

(y, Vh 2, ~,-~)~(y, rh X, 4, z)<:~y: ~,rl =Vh Z=2, x= ~, 2~ + ~3= x~ + ~ 3 . 

We need also to consider the "positive part" of ~ ,  ~+ ,  defined to be the trivial 
relation outside the region 

(4.1) D(~+)={(y, tl, x, 4,z)~lR2"+~=J; 4 < 0  and - 3 ~ 2 > x  

or ~ > 0  and - � 8 8  

and inside D(.~ +) to be ~ itself. Thus p~+(p ' )  if, and only if, p=p' or p ~ ( p ' )  and 
p, p'~D(~+). The negative part of ~ is defined analogously, being non-trivial on 

D ( ~ )  = {(y,/7, x, 4, z)e IR2"+ l ; 

4 < 0  and - � 8 8  or 4 > 0  and - 3 ~ 2 > x } .  

Let 

a :  C~(L, 0)[[x, 4]] 

be the ring of formal power series in x, 4 with coefficients in Coo(L,O) where L, 
defined by x =  ~ =0, is the surface on which ~ is triple. To utilize the quasi- 
homogeneity of ~+  we shall grade a by assigning weight 2 to x and weight 1 to 4 

a =ao|174174174 . . . .  

where a N is spanned, as a module over C~176 0), by the polynomials x~N-2~; let 

a~m = @ a k be the associated filtration. 
k~N 

The Taylor series map 

TL :Coo(J,O)-->a 



172 R.B. Melrose 

is, according to Borel's theorem, surjective. Let C~(~+)C C~(J,O) be the ring of 
germs of functions constant on the ~+-equivalence classes 

(4.2) Lemma. TL:Cm(~+)---r C~ 0)[[x, x4 + 4 3 ] ]  = a(~) is surjective. 

Proof Given f e  C~(~+) let fNs a N be the projection of the Taylor series of f into 
a N. If f, fj are representations of f f~ then, uniformly near 0 

f(Y, q, r2x, N r~, z) (4.3) r~,z)-  ~ fj(y,q, r2x, __<CNIrl N+I. 
j = 0  

Since N+ is positively quasi-homogeneous, r > 0 and (y, r/, x, 4, z)e N+ (y, q, x, 4', z) 
implies that (y, rl, r2x, r4, z ) ~ + ( y ,  r l, r2x, r4', z) so, from (4.2) and the ~ + -  
invariance of f 

N 
j~=a__ (fJ(y' tl, r2x, r4, z ) -  fj(y, t l, r2x, r4', z)) < 2CNlrl N+ 1. 

Thus each fN is itself locally ~+-invariant. The fN are polynomials and N+ is 
algebraic so the fN are actually ~-invariant globally in the complexified (x, 4)- 
space. Cauchy's formula then easily shows that fNeC~(L,O)[[x, x4+43]]. The 
surjectivity of the map, even when restricted to N-invariant germs, is obvious from 
Borel's theorem so the proof is complete. 

Next, consider ~be Con(J, A +, 0). We shall denote by Con o C Con the subgroup 
of the diffeomorphisms leaving L invariant. The Taylor series, on L, of such a germ 
determines, and is determined by, the induced action ~b* of ~b on n. Let 
Con, C Con 0 consist of the subgroup whose elements satisfy 

(4.4) (qS*- Id)a~0 C a~t +k ) VI>0. 

As ~b* is a ring homomorphism and a is generated by its elements of degree 0, 1, 2 it 
suffices to check (4.4) for l=0,  1,2. ~be Con o satisfies (4.4) for k=0.  

Consider the Lagrange algebra L~a' defined at the end of Sect. 2. Denote by 
5r o C 5aa ' the subalgebra whose elements f have Vy tangent to L. Using the 1-form 

in (3.2) to trivialize A* we can apply the Taylor series map and so easily conclude 

TL(~LPao) = m(~(x  + 3 r  * , 

where m C C~ 0) is the principal ideal. For every k > 0 put 

(4.5) b(k)=(X + 3~2)2atk+l)~*. 

(4.6) Proposition. To each c~  Con 1 there corresponds a unique J'E b~l ) such that 

(4.7) (~b*- exp(Vs)*)a= {0}. 

The map ATL:O~ f maps Con k onto b~k)for every k> 1 and if c~i~ COnk,, ki> 1 for 
i=  1,2 ATL(ga ~ o492)==-ATLC~ + AT(a 2 modulo b(kl+k~+~ ). 

Proof Given qSECon~ the vector field V, with coefficients in a is uniquely defined 
by induction over the filtration. Thus, defining V~)y.=j ~b*y.-j yj., V(1)q.=j ~b*qj- qj 
etc., we find V~)a~k)C a~k+ ~), because of (4.4). Similarly, W ), defined by 

v%~=4~*yF Y, ~ v~v, y~ 
k=O \ p = l  
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etc., satisfies IAt)a(k)C a(k +l) for all k. Clearly V = ~ V (j) is uniquely defined by this 
argument and is moreover a contact vector field, again by induction. Thus f ,  = ~(V) 
defines f Since, for g~ a, 1/9 = If, 0] one easily concludes that feb(k ) precisely when 
q~e Con k. The other parts of the proposition follow similarly. 

Define COnk(~ +) C Con k to be the group whose elements leave the relation ~ + 
fixed. In particular, if ~b ~ Con k (~  + ) then q~* Coo (~  + ) C Coo (~  + ). From Lemma 4.2 it 
follows that 

(4.8) dp*a(~l)Ca(~). 

For each k > 1 put 

(4.9) b(k)(~2 ) = b(k)C~(a(s)(~)~* ). 

(4.10) Lemma. A T  L :Cona(~+)--*b(k)(~) is, for each k> 1, surjective. 

Proof. Since a(~) is a graded (a homogeneous) subring in a we conclude from (4.7) 
and (4.8) that, if f=ATL(o with ~bcCOnk(~+) then 

If, a(~)] c a(~). 

Since f = 9~* with gE (x + 3~2)2Q(k+ 1)' 

1 

The equation 0r =(x + 3r + ~3)p has solutions g = xk(x~ + ~3)p+ 1/(p + 1) 
+ r(x)~a(~) so A T  L maps COnk(~2+) into b(k)(~ ). 

The surjectivity of the map is a consequence of the fact that each 9~(x + 3~2) 2 
�9 a(h + ~lc~ a(~) is the image under T L of a function ~ Coo(H) which vanishes to second 
order on the fold x +  3~ 2 ----0. From Lemma4.2 there certainly exists ~ ~ Coo(~) 
with TL~ 1 =g. Moreover ~ I ( x + 3 ~ 2 = 0 )  vanishes to infinite order at r  so is 
equal to h ( - 2 ~  3) for some C ~ function h. Then put 

g = g ,  - h(xr + ~s)e Coo(~2). 

Clearly TL0 = 9 and 0 vanishes on x + 3 ~a = 0, in fact ~ vanishes to second order on 
this surface if gt was selected to be a Coo function of x,x~+~a,y,q,z ,  since 
0r + 3~2)p=0 there. 

Together with these results on the formal power series of objects associated to 
~+  we need the corresponding results for objects associated to an arbitrary 
~r Ref(J, A +, 0). Since J is an involution leaving K, and hence L, pointwise fixed, 
�89 + Id) defines a projection from Coo(J, 0) to C~( f ) ,  the space of ~r 
germs, and also from a to a(~), the space of ~r series. For each k > 0  put 

(4.11) C k = C~(L, 0)[[~, (x + 3~2)2]] f'~ak, 

and let Con~(J)CCon k be the group of diffeomorphisms satisfying (4.4) and 
cummuting with or 

(4.12) Proposition. For an), f 6 Ref(J, .4 +, 0) the projection of a(k)(~)= a(~)na(J) 
into ag lies in c k and the sequence 

(4.13) 0--+a(k+t)(J)~a(~)(J)A~Ck ~ 0  
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is exact. For each k >_ 1 

ATL : Conk(J ) - -  a (J )a*  c~b~k) = b~k~(J) 

is surjective. 

Proof  Since j leaves K pointwise fixed J * Y i - Y j ,  J*r l i - t l j ,  J * ~ - ~  and j ' z - z  
all vanish at x = - 3 ~  2 and therefore lie in a(2 ). Similarly J * ( x  + 3~ 2) ~ - J * x  + 3~ 2 
modao), must vanish at x =  - 3 ~  2. Since j 2  : I d ,  j : ~ I d  this implies that J ' x - - -  
- x - 6 4 2  (modao)) and therefore leads to (4.13). 

As in the proof of Lemma 4.10, to see that A T L = f ~  a(~r when ~b e Con k ( J ) ;  
recall that (4.7) implies (by an inductive argument) 

[ f , a ( J ) ]  c a ( J ) .  

1 8 "' ~8Lca" ~" In particular I-f, r = (x -~ 3~2) ~J~- r [ j ) .  Using the first part of the lemma, 

c3x.[~e ck + 3=> fs, e Ck + 5 . 

Then, there exists f~k~ea(J)~nb(kj with [-- f (k)eb(k +~r Moreover, from Borel's 
�9 ( k )  �9 �9 theorem there exist (b(k)e COnk(~) with ATLC~(k): f SO we proceed mducnvely 

applying the last part of Proposition 4.6 to ~ oq~)~ e COnk+ ~(J). The surjectivity of 
this map is, as already noted, obvious. 

5. Obstructions to Equivalence 

Using the calculations of Sect. 4 we shall analyse, at the level of formalpower series, 
equivalence in the sense of Definition 1.12. By Proposition 3.3 there are coor- 
dinates in J, B G such that I G takes the form (3.1) and A + is spanned by fi in (3.2). 
The subset K -  C J where V G is tangent to J from the "outside" is then either the 
part ~ >0  of x =  - 3 ~  2 or else the part ~ < 0 ;  K -  is the part of J on the negative 
side of L with respect to the orientation of e L, L in K induced by the orientation of 
F. Corresponding to these two cases the relation on J \ K -  induced by 13 is either 
~ or ~+ .  We shall only treat the latter case, since the map 

(y,~,x,~,z)~(y,-~,x,-~,-z) 

transforms one to the other, and ~ to - ~, so the case in which 13 induces ~ can be 
handled by reversing the orientation of A troughout. Coordinates in which J~ 
induces ~ +  will be called G-coordinates. The other intersection map, I F defines an 
element J ~  Ref(lR 2"+ 1,,4,0). Clearly, J is well-defined up to conjugation by an 
element of Con(~+) ;  we shall denote the set of conjugacy classes by Rely+. 

In the forward direction the following result is trivial and the reverse 
implication will be proved in Sect. 8. 

(5.1) Theorem. Two systems of  oriented-intersection maps are equivalent in the sense 
of  Definition 1.12 if, and only if, they have the same orientation and define the same 
conjugacy class in Refe+ through the introduction of  G-coordinates. 

Put 

Con o ~ = Con o ~ (~xZn + 1, A, 0) = ~  Con k . 
k 
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Then we can define a weaker equivalence relation, formal equivalence at L, by 

J~dC'<=~/z~ Con(~+) ,  q$~Conoo such that L 

#Y '# - '  = 4,- ' J ~ .  

From the proof of Proposition 2.9 we note that two involutions are conjugate 
under some qSeCon(lRZ"+l,A+,0) which leaves K, and hence L, pointwise 
invariant. Thus, the action of Con o on Ref, by conjugation, is transitive. 

(5.2) j,=q~-ljq~ OeCono, 

so, f,-~L~r if, and only if, f projects onto the identity element of 

F(J) = Con ~o Cono( j ) \Cono/Cono(~  +) 

under j ' ~ [ ~ b ]  since this means precisely 

q$=~W~, ~eCono(J), #eCon0(~+), ~eCon~ 
[note that Conoo oCono(j )  is a subgroup of Cono]. 

Recall that L, defined by x =  ~ = 0  in G-coordinates, is a contact manifold with 
local diffeomorphism group Con(L). 

(5.3) Lemma. There is an extension map 

u :Con (L)3s ~(o e Con o (~  + ). 

Proof Transfer s, using the map IG of (3.1), to a contact transformation ~ on the 
manifold X=~==0  in (IR2"+ a, M, 0). By Proposition 1.6, qJ extends (uniquely) to 
~Con( lR2"+ l ,~ f ,0 )  if we demand that the sections ,(cC~176 
S~ C~176 0), equal to X, ~= at 7, be invariant. This implies that the cusp (3.4) is 
invariant under ~p so this map, just as in the proof of Proposition 3.3, lifts to the 
desired element ~b=u(s)~Con(~)CCon(~+).  Note also that 0 has the useful 
property 

, - ,  - x ~ l s  ' * - ,  _ 
(5.4) q$ (X0~2/5)-- q~ ( ~ 1 / 5 ) - - ~ / 5 .  

Using coordinates in which (2.2) spans A and J is the simple fold it is even easier 
to show the existence of an extension 

(5.5) v :Con(L)~ Cono(J ) .  

Given seCon(L) we shall denote by Cono(N+,s ) the subset of germs, in 
Cono(N+), which restrict to s on L. Put  

F ( J ,  s) = Con oo o Cono(J) \Cono/Cono(N +, s). 

From (5.2), (5.4), and Lemma 5.3, each [~b]s F ( J ,  s) has a representative 4be Con v 
For  each k > 1 define 

rk(y, s) c r0r  s) 

to be the subset consisting of the elements having a representative in Con k. 
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(5.6) Proposition. For each k >  1, ~ 6  Ref(IR2"+I,A, 0) and seCon(L)  there is an 
exact sequence 

(5.7) O---*rk+ l ( J , s ) ' - * F k ( J , s )  ~ 

where Ob k is a module over C~ O) o f  dimension 

(5.8) [k /12]+d(k)  ; 

with d(k) depending only on k modulo 12, d(k) = 1 unless k =0 ,  1, 3, 4, 7 (mod 12) when 
d(k)=0. 

Before proving this proposi t ion we shall discuss the space of  obstructions Oh k. 
Recall f rom (4.13) that the spaces CR, consisting of  polynomials  of  quasi-degree k, 
are the leading parts of the spaces a(k)(d -~) of j - invar ian t s .  

(5.9) Lemma. For every k >O 

Ck+4C~ak+4(~)C~(X + 342)2ak = {0}. 

Proof  Suppose PECk+g~ak+4(~)&(X+3~Z)Zak, then p is constant  on the ~ -  
equivalence classes, vanishes at x = - 342 and is invariant under the (non-contact)  
involution T(y, rl, x, 4, z) = (y, q, - x - 642, 4, z). A direct calculation shows that  two 
surfaces x = s142, x = s2~ 2 are ~-re la ted  precisely when r(s 0 = r(s2), 

r(s) = (s d- 1)2s- 3. 

In particular x = - 342 and x = - 3/4~ 2 are so related and p must  therefore vanish 
on the latter. T maps the surface x = s 4 2  to x - - ( - s - 6 ) ~  2 so p must  vanish on 
x = s142, s 1 = - 9 .  A sketch of  the graph of  r shows that for any s < - 3  there is a 
unique ~ in the range - 3 < ~ < - 1 with r(s) = r(s-) ; we shall write ~ = Q(s). Define s j, 
j~  N inductively by 

(5.10) ~ s i = - s J - 1 - 6  J odd 
(Sj = ~(Sj_ 1) j even 

starting with s 1 = - 21/4. Clearly s~ < - 3 or - 3 < s~ < - 1 as j is odd or even and p 
must  vanish on all the surfaces x=sj42 .  We claim that S2p + 1 increases monoton i -  
cally to - 3  as p--* oo, necessitating p---O as stated. F r o m  (5.10) it suffices to note 
that  

2(s + 3)3((s --1- 3) 2 - 5) 
r ( - s - 6 ) - r ( s ) -  s 3 ( _ s _  6) 3 < 0  

when - 3 < s < - 1, to complete the proof. 
For  each k > 1 define 

(5.11) Obk = bk/[(bkC~Ck +~*)(~(bkC~ak +s(#t)~*)] . 

The map 0 k in (5.7) is then defined by projection of  ATLdp into Ob k, where ~b~ C o n  k 
is a representative of  [q~] ~ Fk(o,~, s). Observe that 0 k is well-defined, if qS'~ Con k is 
another  representative then 
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with q5 2, qSz~Cono(N+, s), ~bl, ~b 1, 6 Con~ oCono(~). Thus 

where ~ ~ Con~ o Cona (J),  q3 2 ~ Con~ (N +), since both restrict to the identity on 
L. Applying Propositions4.6 and 4.11 and Lemmas4.10 and 5.9 one quickly 
concludes that ~1 ~C~ /~2 ~C~ and therefore, again by 
Proposition 4.5 ATLq~ = ATL~b' modulo b(k+ 1) + b~k)(J) + b(k)(N). So, from 
Proposition 4.11 O k is well-defined. 

Proof of Proposition 5.6. The surjectivity of O k is obvious and from the discussion 
above if Ok[tk] =0  then [q~] has a representative th'~ COnk+ 1, thus, (5.7) is exact. It 
remains to calculate the dimension of Ob k as given in (5.8). From (5.11), 

dimObk = dim~k+ 1 --(dimCk+ 5 - 1 ) -  (dimak+ 5(N ) -  1) 

since, if P~Ck+ 5 or p~ak+5(N ) the condition pc(a+ 3~1)2ak+1 is only one extra 
(non-trivial) linear constraint. By direct observation, 

dima k = [k/2] + 1 

dim "~" ([k/6] + 1 k -  1 (mod 6) 
akt~) = ~[k/6] k ~ 1 (mod 6) 

dimc k = [k/4] + 1 

from which (5.8) follows easily. 
Summarizing these results we have 

(5.12) Proposition./f J ,  J ' e  Ref(lR 2" + 1, A, 0) then J ' L  j if and only if, there exists 

se Con(L) such that, for each k > l, the successive obstructions O k vanish on the 
imaye of or in Fk( j ,  s). 

Proof Certainly f ~ J implies the vanishing of all the obstructions. Conversely, if 

feFk(~C,s)  for every k then there exists p0eCono(N+,s  ) and for each k > l ,  
/~,e Con(N+, Id), ~bke Con k such that 

~k]A0c~'#O 1,L/k 1 : ~ k  l~q~k" 

Moreover the image of ATL(IIk) in btl)/b(t ) is stable for k > 1, so using the surjectivity 
of the Taylor series maps in Sect. 4 one can choose peCon(N+,s)  so that 
/~f/a -1 =q~-lj~b, qSc Conoo, as desired. 

To apply this result to the intersection maps it is convenient to transform the 
first non-trivial obstruction map O k somewhat. We shall choose as "basic" 
involution 

) ( y ,  q, x, ~, z) = (y, t/, - x - 642, ~, z - 4 ~ 3 ( x  + 3~2)). 

) e  Ref(lR2,+ a, A,0), indeed J * a = ~ .  Recall the property (5.4) of the extension 
map, u, of Lemma 5.3. Clearly the sections (x + 3r ~a~'/s are invariant under 
both ~b = u(s) and J .  Since q~ is defined by the solution of differential equations 
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with AT-invariant data on L it follows that u has the useful dual extension property 

u :Con(L)~Cono (~)c~Cono ( ) ) .  

Now, note that 

aT(~)c~(x + 3~2)2% = {0} 

r n(X + 3~2)203 = (X + 3~2)2~ 3 . 

So, given f e Ref(IR 2"+ t, A, 0) we can define a germ f e  C~176 2"- 1,0) by 

(5.13) ATL(4,)=_f(y, rl, z)(x + 3~2)2x~ * 

modulo b(3), where 4,e Con 2 is such that 

(5.14) # j p -  1 =4, -  1~4, #e Con1 (~/+). 

Given a pair of intersection maps I v, I o we can define the principal invariant 

PI(F, G)6 C~176 * _ z/s), 

where A L is the contact bundle on L, by taking the section with value f on ~ in any 
G-coordinates, where f is defined through (5,13),  (5.14),  with 
J = J e ~  Ref(IRZ"+ l, A, 0). We must verify that, despite the freedom to choose 
different G-coordinates this does indeed define a section of the line bundle (A,)* 2/5 
over L. 

Suppose two systems of G-coordinates give the two germs fl ,  f2 e C~(IR z"- 1, 0). 
The coordinate systems are connected by some pc Con(~+,s),  se Con(L), so the 
corresponding involutions j 1, ~r e Ref(IR 2" + 1, A, 0) are related by 

~j~/ , -  1 =or 

Thus, the two Eq. (5.13) give 

which is simply ~p = 4,2(#2t~#-11)4,~- 16 Corl(2 ). Put 4, = u(s), then 

w '= (4,- '4,24,)(4,-1 ~ v ~ -  1)4,;, ~Conl())"  

In fact, 4,-14,24,eCon 2 and 4,- tp2p/~-leCOnl(~+) so, from Lemma5.9, 
4,-l#2#pi-leCon2(.~/+)=Con3(~+). So, we need to find the projection of 
ATL(4,-14,24,) in b(2), it is clearly of the form f l(x+3r162 *. Thus we need to 
calculate 

( 4 , - ,  �9 - ,  . _ 4,24,) (~%ls)(~)-~7 3fl(x~ +~ 3) moda(,~. 

Now, 4, (~0q/5)-~%/s , 4, (xo~els)-x%/5 and 

4,~(~<"?/5) = r - 3 f2 (x~ '~ /~ ' t /~  + (~<'t/~)~)~< *_ 2/~ 

modulo (%~*/s). Thus, 

(4,- ~ 4,24,*)(r 

~_ 3(4,,f2)(xr + ~3)(4,,~, 2/5)(~ ) (mod a(4)) 
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and since, modulo am, ~b*fi*(~)=s*~*(&t), #)*jz=S*f2, 

f l  = (s*f2)[(S*:*)(~L)]- 2/5. 

Thus, fl~*z/5 = s*(f2~* z/5) is invariantly defined as asserted. 
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6. Equivalence at K 

In the folded contact manifold (]Rzn+I,A,0), where A is spanned by (2.3), let 
m=C~~ be the ring of Taylor series on K ; m  projects onto the ring of 
Taylor series at L with kernel 

n = C ~ ( K ,  O)[[t]], 

where f ~  C~(K, 0) if f e  C~~ 0) vanishes to all orders on L. Let {nk} and {n(k)} be 
the homogeneous gradation and filtration of rt in these coordinates. Each 

6 Ref(iR2, + 1, A, 0) acts on both m and n; let n ( J )  C n be the ring of f- invariants .  

(6.1) Lemma. For each f e Ref(lR 2" + 1, A, 0) and each k e n  the sequence 

(6.2) 0~n~2k+2)(f)~rt(2k)(f) ~2~ ,nzk~0 

is exact, where n(j ) ( f )= ~t(~)~rt(j). 

Proof } * y j - y j ,  ~*t l j - t l j ,  J * # - #  and ~r all lie in m(2 ) whereas 
} * z - z E r o , )  so (f*--f*)n(k)Cn<k+t) for all k, where 

Jo(y,~,t,z,0=(y,~, -t,~,0 

and the exactness of (6.2) then follows from its obvious exactness for } = Jo.  
The singular relation N, transferred from (N 2"+ 1, A,0) to (IR 2"+ 1,A,0) by 

(6.3) (y,q,x,~,z)=(y, tl, x + 3~2,#,z-2x~3-!~-~5)=(y,q,t ,%#) 

(which satisfies ~ * e = a )  also defines an action on n (but not m) through the 
singular involution near t = 0 

R(y,~,t, ~,O=(y,,7,t, ~,O 

(6.4) "{= t -  3z z + 3~ z 

= 1 /2 ( -  r + (sgn ~) 

~= # + 2(z3 _ ~3)( t -  3z 2) + ~ ( r  5 - ~s). 

Using the same reasoning as in Lemma 6.1 we obtain, for each k s N  an exact 
sequence 

(6.5) 0~n~2k  + 2)(~  +) ,_.lt(2k)(~+ ) n2k ) lt2k__.0 ' 

where n{j)(~+)= nu)c~n(~+) and n(~+) is the ring of R-invariants in ft. We use this 
notation because of the following result on the Taylor series map 

. C ~ ( ] R 2 n +  1 0"1...~1 t 
TK L ~ ' ) " 
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(6.6) Lemma. T~::C~(~+)~n(~+)  
=C~ is the space 
to all orders at t = z = O. 

is surjective where C~ ( ~  + ) 
of  ~ +-invariant C ~ functions vanishin 9 

Proof. The involution R defined by (6.4) clearly corresponds to the involution 
defined by N+ near t=0 ,  for z>0.  On the other hand, the R-invariance of the 
Taylor series T~f  near t = 0  for z < 0  corresponds exactly to the fact that 
r e c k ( N + )  pulls back to a C | function on t = 9 z  z under the singular map R' 
defined by replacing sgnz by - s g n z  in (6.4). Thus, TrC~(~l+)Cn(N+) and the 
converse is similar. 

Next, consider the group Conoo(lR2"+~,A,0) of contact diffeomorphisms 
leaving L fixed to infinite order. Clearly this group acts on n and we denote by 
Con~o,k the subgroup of those ~b with 

((o*--Id)n(~)Cn(s+k) Vj. 

The following analogue of Proposition 4.5 can be proved by the same method. 

(6.7) Proposition. To each (o~ Cono~ ' 1 there corresponds a unique f ~ n(3)a* such that 

(~b* - exp(Vi)*) n = {0}. 

The map ATK:c])~ f maps Cono~,k onto n[k+2)0~* for each k >  1 and if thie Cono~,k, 
k i > 1, i = 1, 2, then 

(6.8) ATr(dpaOC~2)~ATr(r ATK(~2 ) 

modulo n(k ' +kz+ 2) a*" 

Similarly, we have the following analogues of Lemma 4.9 and Proposition 4.10 
for the stability subgroups, Con~,k(~+) and Conoo,k(jr that the two sequences 

(6.9) {id}~Cono~,k + 1(~+ ) ~.Conco,k(,~+ ) rtoaTK 'n(k+ 2)(~i~+)0~,/n(k + 3)(~+)(X ,___+0 

(6.10) {Id}--*Con~,k+ l(J)'-+Cono~,k(J) ,~oAr,, 'n(k+ 2)(j)~,/ntk+ 3)()r 

are exact. In particular, because of (6.2) and (6.5) 

C~ 1(~+) = C~ 2k+ 2(~+), Cono~,2k+ l(J)---- Con~,2k+ 2(J)" 

Now, the main result of this section concerns the factorization of Cono~. Put 

Con~o,o ~ = (~ Con~,k- 

(6.11) Proposition. For each J ~ Ref(IR 2" + 1, A, 13) 

Con ~ = Con | ( j )  o Con ~. oo o Con | (~+). 

Before proceeding to the proof we shall discuss the linearized analogue of this 
splitting. 
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(6.12) Lemma. For each k~lN, f ~  Ref(IR 2"+ 1, A,  0) 

n(2k) = n (2k ) (~  + ) "~- n ( 2 k ) ( j  ) . 

Proof. We shall show that n(2k) C n(2k)(~+) + n(2k)(J) + n(2k+ 2) since then the desired 
result follows by induction. Given f~  n(2k) we wish to find pc n(2k)(~), qen(2k)(~+) 
such that f2k=P2k+q2k, f2k+ 1 =P2k+ 1 +q2k+ 1" From Lemma 6.1 and (6.5) the 
maps 

V• : n2kzgP2kl-~P2p + 1 = 7~2k + 1 1/2(P2k + 6ff*P2k) ~ n2k + 1 

VR "n2k~P2kF->q2k+ 1 = 792k+ I 1/2(q2k + R*q2k)E n2k+ 1 

are well-defined and extend trivially to n(2k). Thus, the desired decomposition of f 
is fixed by the equation 

(6.13) VRq2R+ Vj(f2k--qEk)=fEk+l. 

Clearly, V~ is a first-order differential operator on K with C ~ coefficients and 
differential part everywhere tangent to the Hamilton foliation of K 

Vl=aO~+b. 

V R is of a similar form but singular at z = O; directly from (6.4) 

1 0 2k 
VRq2k-- 3z ~Z q2k-- ~Z2 q2k, 

t t 2 
since u  3zz +O(t2)' ~-= - t +  9-~ +O(t3)' ~ : (+O(t2)"  Thus, (6.13) is 

~ ' ~ q 2 k (  2k ) 
(6.14) (l+_~za~--~-- z + 3z +3zb q2k=Zr2k+l, 

w h e r e  rzk § 1 E C ~ ( K ,  0), and we require qzk6  C ~ ( K ,  0). Defining 

z 
s(y, q, z, z) -- S [(2k + qz2b)/(1 + 3r2a)-  2k]/3z. 

0 

(6.14) becomes 

(~ s s r o0 3Z~z e q2k + 2ke qZk =l) ~ C  L (L,O) 

which has the unique solution 

T-  2k/3 
qEk__ e _  -s  3 oSe2k /a- l r '~C~(K'O) '  

proving the lemma. 

Proof of Proposition 6.11. First we show that 

(6.15) C~ = C~ 1 ~176 = Con~, 1 oCon~( j ) .  
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This involves the extension of ~bK=q~lK, where ~b~Con~ so ~b~ has the form 

4 ~ , y j -  Ys, 4~,,t/s- t/s, &,r  = ~, 4,t,~ = (1 + o)~ 

with g~C[(K,O), to an element of Conoo(~+); the construction for j being 
similar, but simpler. Using q~ in (6.3) to transfer the problem to (IRZ" + I, A, 0) in 
which ~+ is simple, we can project q~K using i G onto a transformation of the cusp 
(3.4), leaving L fixed to all orders and preserving A. The condition that the cusp be 
fixed gives initial data for X on it and the choice of a smooth extension of ~b~ 
allows one to apply the method of Proposition A.16 to construct a contact 
transformation which lifts to the desired element of Con| We leave the 
reader to check that regularity of this extension follows from the fact that q~K 
leaves L fixed to all orders. 

Thus, by (6.15) given ~b~Con~ we can choose ~bleCon~(~+) so that 
q~bx~Con~, ~. Next then we must show that given q~Cono~,l there exist 
~P 1 ~ Con~(~+), ~2 ~ Conoo(~.r such that 

(6.16) ~2 l q~ l  ~Cono~,2. 

Clearly, ~llK=q~2]K and then ~p2~q~p~6Cono~,a, so we need to calculate 
AT~(~2 ~b~pa) modulo n~4)~* in terms of ~p~l K. Since ~ l~Con~ ,  

~p*z= f + flt + O(t2), 

where f =  (1 + 9)z, g6 C~(K, 0), fl~ C~(K, 0). From the invariance of y j, t/s , ~ on K 
we note that 

~*~* = (1 + O(t))~* 

so the Lagrange bracket [t/2t 2, z] = ~* 1 shows that 

~p*t = (f',)- 1/2t + 0(t2). 

Suppose that r+Tt+O(t2), 7~C~(K,0), is the J -even  part of z, then 

' - 1 /2  t ~p~(z+~t)=f+flt+V(y,t/ ,f  )(f~) +O(t 2) 

must be J-invariant ,  modulo O(t2), -SO 

f (y, t/, z + 2yt, ( ) -  2 f l t -  2y(y, t / , f  ~) (f'~)- 1/2t 

- f =O(t2). 

This determines the first-order term fl in terms of 7 and f :  

fl = 7f', - 7(f) ( f ; ) -  1/2. 

Carrying out the same calculation for 1])2~ Con~(~+) 

~p*'c=f +Qt +O(t 2) 

t 
using the invariance of z -  ~ modulo O(t z) we find 

f ,  ( f ; ) -  1/2 
+ - - g  7 - 
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Returning to (6.16) we must choose f so that, modulo O(t2), 

~,* ~b*(~v ~- 1) , ( f+  fit) =- F*(o*z 

- ~t,*(z + cf) =-f+ ~t + c(y, tl, f, ~) (f'O- 1/2t 

=-f +flt, 
~3 

where ATK(dp)=c~-ct* mod n(4)~*. Thus, 4b~14bFleConoo.2 becomes the non- 

linear analogue of (6.14): 

f ,  + (f ,)- l /2 +c(f)(f'~) -1/2 f '  1/2 - 7 ~ + 7 ( f )  ( f ' , ) -  = 0. 
6z 6f  

Rewritten as an integral equation, including the condition f = 0  at z=0,  this 
becomes 

(6.17) f (y, q, "c, ~)= i [  -1 +6iT(i)+6Sc(f)12/3 
o j 

which is easily shown to have a unique solution, of the form f = ( l + 9 ) r ,  
ge C[(K, 0), by contraction arguments. 

Thus, we conclude that the first step, the factorization (6.16) can be carried out. 
It remains to verify by induction that qSeCon~,zk can be factorized as 

4 = ~14'~2 i 

1/)1 e Conoo,2k(~), I/) 2 -~ Conoo,2k(~+), qS'e Conoo,2k+ 2" Applying Proposition 6.7 this 
reduces to the equation 

A TK (o - A T~ ~ I - A T~ v 2 

modulo n(2k+4)a* and Lemma 6.12 shows that such a decomposition is always 
possible (and is unique). Clearly the inductive construction converges in the sense 
of formal power series so, using Lemma 6.5 and the corresponding result for j we 
can sum these series to give the desired factorization with "error" in Con~,~. 

7 .  O n e - S i d e d  F a c t o r i z a t i o n  o n  J 

Recall that Con~,~(lR 2"+ 1, A, 0) is the group of contact diffeomorphisms leaving 
the fold K of A fixed to infinite order, and Con|  Conoo,~(~ +) are the 
stability subgroups of ~r Ref(lR 2"+ 1, A, 0) and ~+. 

(7.1) P r o p o s i t i o n .  For each J e  Ref(lR 2"+ 1, A, 0) 

Con~,oo = Con~o,oo(J) oCon~o,oo(~+). 

The remainder of this section is devoted to the proof of this proposition. First 
we note a simple extension result serving to simplify the analysis. 

(7.2) L e m m a .  Given ~beCon~o,~ o there exists ~peConoo,oo(J) such that, for each 
> O, ~p-a(a extends to a olobal contact diffeomorphism of (IR 2" +1, A, 0) which is the 
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identity outside the region 

G~ = {[Yl < e, [y[ < 5, Iz[ < 5, I~[ < e, t > 0}. 

Proof First we choose ~v. Let ~ be some representative of g, put 

{~ in t__<0 

~'-- J ~ J  in t > 0 ,  

clearly ~ Co n~o ' oo(J) and )~--~p-l~ has the representative X = ~o 1~ which is the 
identity in t__< 0. If 2(Y, t/, t, z, ~) -- (y, ~, t, ~, r so ~ -- z in t_< 0, choose a C ~ function s 

as 
which has the same germ as u at 0, with ~-z ~ 0 everywhere and s--z  outside G~. 

The differential operator A~ (see the appendix), which is such that tA~ is smooth 
and transversal to K, allows one to extend the initial data (y, t/, t, ~, a) on K, using 
the Lagrange bracket conditions, to a global contact transformation on IR 2"§ 
with all the desired properties. 

(7.3) Remark. The construction extends to show that any germ q~eCon which 
leaves K pointwise fixed has a global representative ~ :IR z"§ ~IR 2" + ~ which is a 
contact transformation and reduces to the identity outside J~={lyl <~, Itll<~, 
I~1 <5, I~[ <el,  where e is preassigned. We shall use this observation to note that any 
f ~  Ref has a globally defined representative equal, outside J~, to the simple 
reflection J o  defined in Sect. 6. 

Combining Lemma 7.2 and Remark 7.3 the factorization problem of 
Proposition 7.1 is replaced by a global problem with ~b and j simple outside J~. 
We wish to construct ~p~, ~o 2 in Cono~.| Con~.~(~+) respectively, such that 

(7.4) ~b = ~pt~p2, lpl= Id, ~02 ~ Id on K,  

where we write q~ = q~' on S for the equivalence relation of equality of Taylor series 
on the hypersurface S. Note that N§ is defined, in the coordinates (y, ~/, t, z, if) by 
the singular map 

R+ :f2=(y, rl, t, z,~)--*(y,~l,t +, z +,~+) 

with 12= {(y,q,t,z,~);t=<O} and 

t+ = t - 3 z 2  +3z2+, z+ = 1 / 2 ( - t +  

~+ = ~ + 2 ( ' c s - ' c 3 ) ( t -  3z2)+ is(z5 - 

Now, R+ maps the region z < 0  of K = { t = 0 }  onto the hypersurface S O on which 
t=9z2/4, z > 0  so 

(7.5) tp2-=Id on S0,~pl----~b on S O . 

By assumption t p ~  =J~q~l so from (7.5) 

(7.6) ~ p ~ = ~ q ~  on T o = ~ ( S o ) , q ~ 2 = J f  on T ~ = f ( S o ) ,  

where we have written f for the involution ~0-1~p. Clearly, T O is a smooth 
hypersurface in t<0 ,  tangent to t = z  = 0  and of the form t = - 9z2/4 for large z. We 
shall denote by f2 o the closed region in I2 lying below T o. The R§ image, A 1 of 12 o 
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{ 9z2 } 
lies in D + = (y, q, t, z, ~); 0 < t < ~--,  r ~ 0 , and is bounded above by S o and below 

by a hypersurface S1, it is not immediately clear that S~ =R+(To) is C ~ at its 

So S~ 

2 

\ T, 

To 

boundary t =  z =0, but it is certainly smooth elsewhere and is shown to be C ~, 
below. Inductively, we define the closed regions f2jCf2, AsCD + and their 
boundaries Tj, S s by 

(7.7) As=-R+((2~_I) , R j = J ( A ) ,  Ss=R(Tj_I ) ,  Tj=~(Ss). 

e ! ! ! t Similarly we d fine A j, f2j, S j, T s by replacing the involution J by J ' ,  and initially 
t t T'_ t = T 1, So = So. Now, we choose ~Pz in f2 o 

(7.8) ~ o : = J y ' : ~ o ~  o, 

certainly satisfying the compatibility condition (7.6), on T~. This choice fixes ~p~ in 
~b(f2~) through (7.4), moreover the demand of ~+-invariance fixes ~2 in A' 1 as 
R+~p2RT_ 1, so defining ~p~ in ~b(A'l) through (7.4) and hence fixing ~Pl in ~b(I2'l) 
through the requirement of or Thus, our initial choice (7.8) of ~z fixes 
lpz on each f2), A'~ through the following commutative diagram. 

AS+ 1 ' --~g~ , A~ 

(7.9) ~ 1 ~ I t~ 

AS+ ~ "~V'---+~S---7--~As. 

Note that all the horizontal maps are homomorphisms which are diffeomorphisms 
on the interiors of their domains. 
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We shall see below that, ife >0  is sufficiently small and we put D+(e) = {(y, r/, t, 
r, OED+ ; ~<~} 

(7.10) ~ (A)nD+(e))={(y,  tht, Z,~)~D+(e); t>0} .  

Thus, the diagrams (7.9) serve to define 11/)2 in a dense subset of D+(e). We must 
show that this definition is consistent across the common boundary S~ of A~ and 
A' for each j, and then show that q?z extends smoothly to D+(D. j + l  

The consistency of the definition of ~2 is built into (7.8) and (7.9). By 
construction, v2=R+J~C 'R+I  in A'~ so ~pz-=Id on S 0. Now, in A 2 

( 7 . 1 1 )  , - 1  /pZ = R + J / p 2 a r  R+ 

so has Taylor series on S'~, ~2 = R + J f R +  1 agreeing with the limit from A' v In 
general, the regularity of ~2 across S)+ 1 follows from its regularity across S~ 
because of the recurrence formula (7.11) and the fact that f R  +1(S i, + 1) -- Sj.' 

Thus, ~Pz is smooth in U A~.. To prove (7.10) and the regularity of~2 up to t =0  
3 

it is convenient to introduce new, and singular, coordinates. Consider the mapping 
~c(y, q, t, z, ~)=(y, q, s, z, ~), s = t r  -2 which is a diffeomorphism from {(y, ;7, t, ~, ~); 
z>0} onto the corresponding region ~>0. We shall denote by tildas the 
transforms of objects into the new coordinates. Thus, 

D +(~)={(y, r h S , ~ , ~ ) ; O < z < e , O < s < 9 / 4 } = t c D  +(e). 

(7.12) Proposition. 144th l]) 2 defined by (7.8), (7.9), ~2=K~2~c -1 defines a C ~ map 
/9+(e)--*/}+ for ~ > 0 sufficiently small, with Taylor series the identity on both s = 0 
and z = O. 

The proof of this proposition is based on the following five lemmas which 
analyse the problem in the new coordinates. 

(7.13) Lemma. The map P=~cR+J~c- l :  /)+--*/}+ is C ~~ mappin 9 fls=~cA s into 
As+ 1 for each j. The hypersurfaces S i = xSs, separatin9 fl s and fl~+ 1 are C ~ and of  
the form 

s = aj + ~flj(y, q, ~, 0 

near ~ = O. 

Proof  We shall show that /~+ =~cR+~c -1 and )=~cJ~c  -~ are C ~ on domains 
~',= {(y, r/, s, z, ~); z>O, - r < s < O }  and D+ respectively and that fi(D+)C [/, for 
large r. Both maps are certainly C ~~ away from s=0,  since this is the only 
singularity of K- 1 

Writing ~(y, q, s, z, () =(y, q, g, t, ~--) we know that y - y ,  ~ - q  and 5 - z  are O(t z) 
and 7 = z + V t  so these are C ~176 functions of y, q, s, z, ~, when t = s z  ~, and 

(7.14) u +szp(y,~l,s,z,O).  

Since t ' = - t ( 1  + 6 t ) , ) ( y , q , s , z , O = ( ; , f h ~ , ~ , ' O  with 

(7.15) ~=t'~-2 = -s (1  +'c~s6)(1 +s~z) -2 
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Thus, J is C ~176 and clearly J ( /5+)C ~ for large r. F rom the form of R+,/~+(y,  q, s, 
z, 0 = (Y, t/, s+, z+, ~+) where 

(7.16) ~+ = zl-l(s),  s+ = ( s -  3)/2(s)+ 3, l-  l (s)= - 1 /2+ 1 /2(9-4s )  u2 

and 

~+ = ( + 2 z S [ ( s - 3 ) ( 1 - 1 - 3 ( s ) ) +  9(1 - l -  S(s))] 

Thus, /~+ is also C ~ so it only remains to demonstra te  the form of Sj near z = 0. 
Thus follows from (7.14), (7.15), and (7.16) since, at z = 0 ,  J = ) r  o when ) o  is the 
reflection s ~ -  s; the constants ~j are therefore defined by 

% = 9/4aj + 1 = 3 - (3 + o-j) 12( - o-j). 

For  each j, e > 0  put Aj(e)=A~m/)+(e). 

(7.17) Lemma. Given 6 > 0  there exist constants e o >0,  C1, C 2 such that if e<eo,  
/l j+ l(e) C F(/]j(~)) and 

( 5 _ 6 ) j + C 1 <  ! <(5 +6)J+C2 in Aj(e). 

Proof F r o m  (7.16), (7.17), and ( 7 . 1 8 ) a n d  the Taylor  series expansion 
12(--S)=S - ~ S  2 +0(s  3) it follows that, if F(y, t l, s, z, 0 = ( y ' ,  q', s', z', ~') then 

(7.18) s '=s(1- -Ss+O(sz ) )y ' - -y ,  t f - - r l , ( ' - -~=O(s2z  2) 

~' = z (1 + ~ + O(sz)). 

So, if ~o is small, z < g < %  implies that ' >  z _ z  so certainly ]lj+l(e)CF(Aj(e)). If 
Pk=f~-kp=(Yk, ilk, Sk, Z,, (k) is the sequence of preimage points of po=(y ,  q, s, z, 
()eAr(e), k = 0 ,  . . . , j - 1  then, from (7.18) if %=%(6)  is small 

1 1 
--(95-- + a ) <  --  -- - -  < --(~ --a) Vk. 

Sk Sk- 1 

Summing this inequality over k, and noting that pi_l~ffll(e) implies that sj_ 1 
satisfies a fixed estimate 0 < C'I < 1/s 2_ 1 < C' 2 gives the desired bound on s o =s.  

(7.19) Lemma, There are positive constants ~o, C1, C2, 121 , 122 such that if e < e  o the 
successive preimaoes pg = F -  ap = (Yk, qk, Sk, Zk, (k) of  any point pc ]lj(e), k = 0 , . . . , j -  1 
satisfy estimates 

g.kS~1 ~> C1g. OS~l , TkS~ 2 ~ C2ToS~)  2 

independently of  p, j, and k. 

Proof Lemma 7.17 implies that  for some constants ill, f12 > 0  independent  of k and 
J, fl 1/(J - k) < s k < flz/(J- k). From (7.18) it follows that  

k k 

1-I __< 1-I +a)sp. 
r = 2  Tk r = 2  
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( ) '  / "1 
So, estimating the product on the left by C' 1 ~ j - k ]  ' #1 =fl1(~-6)  from below, 

and that on the right similarly from above it follows from Lemma 7.17 again that 

1 <C~ <r~ <C~ < C 2  
C~ \Sol = = Zk ~ j - k ]  \So/ 

proving the lemma. 

(7.20) Lemma. There exists So>0 such that if 5<50 and Pp, Pq~I)+(e) for 
0 <-r <_ l - 1  then, in terms of the Euclidean norm, 

[~tp _ ~tql <__ glUtp_ ql, 

where K, # > 0  are independent of p, q, l, and 5. 

Proof From (7.18) it is clear that if 5 is small, p, qelO+(s) and s take the values s(p) 
and s(q) at p, q then 

IFp -  lCqt =< (1 + C(s(p) + s(q)))lp - ql 

with C an absolute constant. Lemma 7.17 shows that the assumption Pp~/)+(5) 
implies that s < C'/(r + 1) with C' independent of p and r, so iterating this estimate 

IPlp-F'qI<=[p-q, ~=I (I + 2CC'). 

This product is bounded by Kl u, # = 2CC', proving the lemma. 
The final preparatory result we need concerns the difference between/? and the 

map P ' = x R + J ' x - 1  corresponding to ~ r  Lemmas 7.13, 7.17, 7.19, and 
7.20 apply equally well to F'. Note that _F and F' have the same Taylor series at 
both s = 0  and z=0,  so given l > 0 , / ~ > 0  there exists C~,u>0 such that 

(7.21) IP- PF'-  ~Pl < C,,,(vs") z 

for all p = (y, it, s, z)e F'(D + (s)). 

(7.22) Lemma. There exists s~o >0 and, for each keN,  constants C k, J(k) such that if 
s<e o and p=(y, tl, s, z, ()eAj+ 1(s/2) then PP ' - lpe I )  +(5)Vl<=j, j>=J(k) and 

IP - FJP'- JPl < Ck sk. 

Proof By the triangle inequality, 

l - 1  

Ip-  P'P'-'Pl < ~ IPrPS-rP-- P ( F P -  1)P-rpl 
r=O 

so, assuming P/5'-r for r < l - 1  we deduce from Lemma 7.20 that 

l--1 

(7.23) l p - P F ' - t p [ < K l  u ~ [p , -~p_(pp-1)p-~p[ .  
r = O  

From Lemma 7.19 we know that, at F'-'p, z# '2 is dominated by C 2 s "2 with s 
evaluated at p and C 2 some absolute constant. Using (7.21) with #=/~2 we 
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conclude that 

Ip '-~p_ ( p p -  1)U-rpl <(C'(C~)t)s ~2' 

and inserting this into (7.23) gives 

IP -- ~'l p ' - l p [  ~ C,iC + 1Sit21" 

Since l<j  and j<C" / s  in Aj+l(c) we obtain the desired estimate, for each k, by 
choosing p, l > k + c + 1, 

IP - p i p , -  lpl < Cksk . 

If we choose J(k) so large that CkSk<z/2 for pe/lj+l(~/2 ) it follows that 
P~P'-~pe b+(e) proving the inductive hypothesis and therefore the lemma. 

Proof of Proposition 7.12. We have defined ~2 in/])+ ~(a) from its definition in 
.41(~) by 

q2~p = P~cv2(P')-Jp 

and have already shown that this defines a map C ~ in O+(e) away from s =0. So it 
remains to examine the behavior as s+0: Recall that in A~(e) ~z = Id at r =0. Thus, 
if peftj+ l(e) 

IV - (v 2Pl = IP - FJfv 2( P') - J P[ 

< IF J( p ' -  JP) - ff~q[ + I p i p ' -  ~P- P], 

where q=P'-~pz7t'~(e). From Lemmas 7.20 and 7.22 

IP - (v 2P[ <= gJ"l [:'- jp - ql + Ck sg 

with s evaluated at p. Since [(vzq- ql < Ckzk(q) and from Lemma 7.19 we know that 
z(q) < CsU2(p) (since q = P'-~p) we deduce that 

[p -- t~2p] < C~s k 

uniformly in j. Thus t) 2 is certainly continuous as s~0 in/)§ (e), indeed is equal to 
the identity to all orders there. 

The fact that ~2eC ~ at s = 0  can be proved inductively over the order of 
differentiability. Thus the Jacobian of ~2 at peA j+ ~(e) is 

(7.24) Jr = J~(qo)." "JP(qj)Jcv2(Pj)J{ ' 1(p j_  1)" ' J ,L  1(/30) 
where pl=P'-~p, qj=Cp2pj, p , - F J - ' p j  r<j.  From Lemma 7.19 we note that 
z(pj) < Cs"(p) so that 

(7.25) Jr +Cksk)Id, 

where the inequality between matrices means that the absolute value of each entry 
of the matrix on the left is bounded by the corresponding entry on the right. From 
Lemma 7.22 it follows that IP~-qz[ ~ C~ sk, uniformly in l and j, provided l< j  so 
from Lemma 7.19 and the fact that F, F' have the same Taylor series at s =0  and 
v = 0  

j ~, 1 (Pl) - J {~ '(qt) < Ck Sk Id 
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in the same sense as 7.25. Combining those estimates and estimating each 
conjugation in (7.24) successively we find that 

J ~2(P)- Id < jCCks k Id,  

where C is an absolute constant estimating the norms of J b  Ji ,  and their inverses. 
From Lemma 7.17 we note again that j <  C'/s so this shows that the Jacobian o f ~ 2  

is continuous as s$0. Continuity of higher derivatives follows similarly. Thus 
Proposition 7.12 is proved. 

Proof of Proposition 7.1. Using the global extensions of q~eCon~,oo and 
jeRef(IRZ"+X,A,0) proved by Lemma 7.2 and Remark 7.3 we have, in 
Proposition 7.12, constructed the map ~2 =K- lq~zK :D+(e)--*D, for small e which 
is C ~ and satisfies I~2 ~-~ Id on S o and z = 0. Thus 14)2 = R + I~2R + 1 defined on ~2, near 
0, is C ~ and is the restriction to t <0  of an element of Con~,~. Then ~v I = ~21 in 
t < 0  [recall ~b=Id in t < 0  by (7.8)] extends to an element ~ l ~ C o n  . . . .  ~r 
uniquely, and by the construction of q~2, in particular (7.9), ~ aq~ Con~,~(~+) is 
an extension of ~2, defined near 0 in D+ w~?. This provides the factorization stated 
in the proposition. 

o" 0 

0" 1 

0' 2 

8. Extension Off J 

The principal conclusion of Sects. 6 and 7 is that Proposition 5.12 can be 
strengthened. 

(8.1) Proposition. f ,  J ' ~  Ref(lR 2"+ 1/] ,  0) lie in the same Con(~+)-conjugacy class 
if, and only if, there exists s~Con(L) such that, for each k_>l, the successive 
obstructions O k vanish on the image of J '  in Fk(J,  s). 

Proof The forward implication is already covered by Proposition 5.12. 
Conversely, again by Proposition 5.12 the vanishing of all obstructions implies the 
existence of ~b ~ Con o0,/~ s Con (~+) such that 
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Combining Propositions 6.11 and 7.1 we can decompose 05=q:~, ~ e C o n ~ ( J ) ,  
fie Con ~ (N+) and therefore 

as claimed. 

Proof of Theorem 5.1. As noted earlier, the forward implication is trivial. Given a 
system of oriented-intersection maps with contact structures I*M r = I~M o = A we 
know, following Sects. 2 and 3 that local G-coordinates can be introduced as in 
Sect. 5. Thus, the commutative diagram we must construct, to prove equivalence in 
the sense of Definition 1.12 is (1.13) in G-coordinates. 

Our hypothesis is the existence of ~ such that q:eCon(N+) and ~ p j v = J F , ~  
where f ~ ,  J r '  ~ Ref( IR2"+ 1, :], 0). 

By examining Taylor series on L and K one easily verifies that ~eCon(N+)  
projects under I o -  I G to a smooth map, 05~ on the closure of 

e _ e '  (8.2) B o - B o = { ( y ,  rl, x,~,z);x+3~2>O,~<=O or 

x+3~2>0, ~=>0} 
which has C ~ structure defined by y, r/, x, x~ + ~3, z. Indeed, I~ identifies only those 
points which are ~+-related. Similarly, we need to show that ~ projects onto IF,, 
I F to a diffeomorphism which can be extended to give 05v- The regularity, near the 
image ~p = 0 of the fold, follows easily from the fact that a jv,-invariant function 
vanishing exactly to second order on K is transformed by tp to a jv- invar iant  
function of the same type, and these project under Iv,, I v to give smooth functions 
on By,, B F. Again using Proposition A.16 one can easily extend 05v so defined. 

Thus, the next step is to prove Theorem 1.14 and so finally show that the 
formal equivalence J r ~ J F ' ,  in G-coordinates, implies the equivalence of the 

L 
original system of intersecting hypersurfaces. 

Proof of Theorem 1.14. Starting from the diagram (1.13) we wish to extend ~ to a 
contact diffeomorphism, 05, as required by Definition 1.5. We shall apply 
Proposition A. 16, but not directly, first we must contruct suitable functions which 
will become X1 in the hypotheses of that result. 

In the two manifolds E~, i=  1, 2, choose hypersurfaces 2;~. Through the base 
point and transversal to the bicharacteristic foliation of G~. Since this foliation is 
tangent to K~ at p~ the 2;~ intersect F~, d~, and K~ normally. Now, o n  ~2 we choose a 
function Q2 which is C ~~ vanishes on 2;2c~K 2 but has differential non-zero at Pz in 
~2~J2. Extend Qz as the solution of 

(8.3) v~G =0, 
where g2e C~((M2) *, P2) vanishes simply on G 2. Then, as V:~, where f2 defines F, is 
tangent to Jz but not K2, 

(8.4) V:~Qa~eO at Pa. 

Next, define Q~I J~ ~-ip*(Q 2 ] J2), and note that Qi then projects from Jl  to B~' 
as a C ~ function. In particular, QI extends uniquely to G] ' as a C ~ function 
constant on the bicharacteristics. We choose an arbitrary C ~~ extension of Q~ off 
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G~', so 

(8.5) VolQx=hl, hl=O o n  G]  1 , 

where gl ~ C| *, Pl) defines G r Clearly Q, satisfies the condit ion 

(8.6) VsiQ,#O at p ,  

as Q2 vanishes on K 1 n S ,  and has differential non-zero in S ,  n J  r In particular,  V0 
can be extended to a d i f feomorphism q~o:F,--+F2 by defining q~Q2=Q~ and 
noting that  the surfaces Q~ = c o n s t  in F~ are natural ly  i somorphic  to the projected 
spaces By.  Thus,  the commuta t iv i ty  of  (1.13) allows us to define ~b o as ~b F on each 
such surface, thereby assuring 

~'~M2 = M1, C~ol J1 =lp . 

By Darboux ' s  Theorem each F~ is certainly isomorphic,  with its contact  
structure, to x~ = 0 in (IR E"+ ~, ~]t, 0). So, using Proposi t ion  A.16 twice, for i =  1, 2, 
with XI=Q~ in each case, we can extend ~b o to a contact  d i f feomorphism 
~b:E 1 -+E  2 which certainly maps  F 1 t o  F 2. We must  check that  ~b(G] ~) = G~ ~. This 
follows f rom the fact that  each G7 ' is the Qi-flow out of  Ji because of  (8.3), (8.4), 
(8.5), and (8.6), which build the transversal i ty of  V(Qi, Pi) to F~ and the tangency of 
AQ, to G e' into the definition of Qv Thus, the p roof  of Theorem 1.14 is complete.  

9. A Complete Set of Examples 

In the manifold  IR2.+ ~ with base point  0, coordinates  (x 1 . . . .  ,x. ,  41 . . . . .  ~., z) and 
contact  bundle A4 spanned by (A.11) we consider the hypersurfaces F, defined by 
x 1 =0 ,  and G defined by 

ff = 42 ! x , x .  + x2h(x, 4", z ) -  4. = O, 

where 4 " =  (41 . . . . .  4 . -  ~) and h is a C ~~ function. For  these examples  of  intersecting 
hypersurfaces satisfying (1. i), (1.2), (1.3), and (1.4), J is the manifold x 1 = 0 = 42 - 4 .  

n--1 

with induced folded contact  bundle spanned  by c~ s = ~. 4flxi + 42dx. + dz in the 
j = 2  

coordinates  x 2 . . . . .  x., 4~ . . . . .  4 . -  1, z; K is the submanifold  x~ = 41 = 4. = 0 and L is 
defined by x 1 = {~ = x .  = 4. = 0. The quot ient  manifold  B v = F/V F is i somorphic  to 
x~ = 4t = 0 and  in the coordinates  x 2 . . . . .  x., 41 . . . .  ,4 .  has contact  bundle spanned by 

/ z r=  ~ 4jdxj+dz. The F intersection m a p  I F :J--- ,B F is then always 
2 

(9.1) IF(X2, "",Xn, 41 . . . . .  4 n - I , Z ) = ( X 2  . . . .  ,Xn, 42 . . . . .  4n-1, 42, Z) �9 

Similarly, we can identify B G = G/V G with the surface x ,  = 0  in G, in which the 
n--1 

coordinates  x ,  . . . .  , x , - 1 ,  41 . . . . .  4 , -1 ,  z give the contact  f o r m / ~ a =  ~ 4flxj+dz. 

(9.2) Theorem. Every system of intersecting hypersurfaces ( F, G, E, M, p, e) satisfying 
(1.1), (1.2), (1.3), and (1.4) is equivalent, in the sense of  Definition 1.5, to this standard 
system for some choice of sign and h. 
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To prove Theorem 9.2 it suffices, according to Theorem 1.14, to show that every 
system of oriented-intersection maps (1.11) is isomorphic, in the sense of Definition 
1.12, to that derived from F, G above for some h. According to Theorem 5.1 and 
Proposition 8.1 once the sign (orientation) is correctly chosen this is only a problem in 
formal power series, so our first task is to find the Taylor series of IG:J- -*B G at 
x ,=41  = 0  and to relate it to the Taylor series of h 

x k x P l .  / tt ~'tt h=- L : , n k , p t x , g , z  ) on x l = x . = 0 .  
k,p 

For simplicity we shall assume that the orientation e of F corresponds to the choice, 
" + " ,  of sign above, the other case is very similar. 

Now, I a is defined by flow along V G from J to x,  = 0, so if functions X~, E j, Z of 
x2,... ,  Xn, ~1 . . . . .  4n--1' Z, Q are defined by integration along the vector field Vg,.: 

dX1 dE1 2 ,  ~, t 2 
(9.3) -d-~-Q =2E l  do = - X " - ( X l h ) x ' + ~ l h ' ~ a  

dX  n _ d Z  _ (2E z A-- = " h '  y 2  ~' "1 

dQ 1 do - ~ - g ' "  1 - ~ . ~  

dX" dE" 
2 ,, = _ _ y 2 ( h '  _ _  "~"la' 

do =Xlh~-" do ** 1v'x . . . . .  ZI 

with E. = E 2 + X 1 X  . +XZxh(X, E", Z )  throughout and initial conditions on J , X  1 =0, 
X" = x", X. -- x., E = 4, Z--  z at r = 0 then, 

I 6 ( x  2 . . . .  , X., 41 . . . . .  4n-  1, Z) = ( X l , X "  , El, E", Z)] (Q = x . ) .  

Indeed,X, = x , -  0 soX, = 0 exactly when Q = x,. To determine this map we only need 
to know E 11 (0 = x,) since the other functions and the factor ~, for which 1 ~  G = aes, 
are determined by their Lagrange brackets with E 1 from the initial conditions at 
x , = 0 :  

( X , E , Z , a ) l ( O = x . = O ) = ( x ,  4,z ,  1) (on J). 

Recall the quasi-homogeneous filtration of the formal power series ring 
a = C ~  0)[Ix,,  {1]] where, because of the change of coordinates from Sect. 4, 41 is 
now assigned weight 2 and x, weight 1 ; we shall denote byJ~j etc., the projection of 
Xj](0 =x , )  into a. Directly from (9.3) 

X 3 

)(1 -- 241X, + 2 3  Ea(4 ) 

and 

~ " - x " , E " - U , 2 - z , ~ -  l e a ( 4  ~. 

Integrating the equation for E l gives the Taylor series at 0 = 0  

0 

E1 -- 4t -- x , o  + 02/2-- 5 Z [(k + 2)X] + 1XP, hk, p(X", ~,", Z)  
0 k,p>=O 

~' y k +  2 v P ( l a  ]' I V "  E",Z)]do. 
- - ~ 1 ~  1 ~n~, , , k ,p )Z~X 
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Thus, the projection of 31 into a/a(l+l ) for any 1 depends only on the hk, p with 
3k + p + 4 < 1. Moreover, the choice of each hk, p adds to 31, modulo a(3k+p+ 5) a term 
h~,~(x", ~", z)T~,~(x.,~l) 

Xn 

(9.4) TR,p(X,,~,)= ~ (k + 2)(2~,O-x,oE +o3/3)k+~(x,-Q)PdQeCt3k+p+4 . 
o 

Clearly, 

(9.5) TRp(X,,~,)= ~ ' ,.3k+v+4-2~;:s 
, ~ k , p , s ~ n  '~1 ' 

s<=k+ 1 

where 1 
(9.6) tk,p,k+ 1 = ( k +  1)2 k+a j 0k+X(1-o)Pdo~=O. 

0 

Note that the projection of)~, and theX", S" into a/%+ 1) depends only on the hk, p 
with 3 k + p + 4 < l .  

Now, given an arbitrary oriented-intersection system (1.11) we know that we can 
introduce coordinates so that J '= IR 2"+1 with contact bundle spanned by ~j, 
B G, = B G, B r = B F with their contact structure and IG, as the "standard" G map 
corresponding to h~-0 above. Then J v ,  eRef(IRZ"+l,As, O ) is some contact 
involution and we need to exhibit a formal contact diffeomorphism exp(Vq), where 
qe a [ ~ * ,  such that 

(9.7) exp(Vq)*a(~o) = a(~h), 

(9.8) exp(Vq)*a(JF,)=a(J ). 

Here, we have written a(Mn) for the pull-back to J under lv (defined by h) of the 
ring of formal power series at x I = ~1 = 0 on B G, then a(Mh) is the ring of M;invariants. 
Similarly, a(Jp,) is the ring of j r - inva r i an t s  where or = i F  is the involution defined 
by I v in (9.1). 

Now, (9.7) and (9.8) can be analysed in terms of the quasi-homogeneous filtration 
of a. First, as noted above (9.7) is equivalent to the condition 

~ ~ - e % ~ ( ~ )  =.(~)n%). 

Similarly, if S is the Jr-even part of x. then (9.8) is equivalent to 

(9.10) exp(Vq)*(S)e ace) .  

Thus, we shall show that for arbitrary S with S - x ,e  a(2 ), h and q can be chosen so that 
(9.9) and (9.10) hold. 

Since %)(Mh)=a(Mn)n%) projects into a t onto the subspace, [, spanned, over 
C| 0), by the polynomials 

(9.11) ( ~ x , - x 3 / 3 ) J ( ~ , - x 2 / 2 )  k 3 j + 2 k = l ,  

which is independent of h, we can analyse (9.9) inductively as follows: If 
q = (q5 + q6 +.. .)~*, qje aj and (9.9) is known to hold modulo a(l ) then it holds modulo 
%+ ,) provided 

[ql + 3, ~ l - x~] + Vl -  Pz~al , 
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where V~, Pt E a I are, respectively, the remainder  term determined by the q~,j < l + 3 and 
~ i  modulo  %), and the term in ~1 of homogenei ty  I. F rom (9.4) and the preceding 
remarks this can be written 

(9.12) qt+ 3 ' ~1 -- + V I -  ~ hk, pTk,pEat, 
3 k + p + 4 = t  

where V I is determined by the qj, j < l + 3  and the hk, v 3k+p+4<l .  The second 
equation, (9.10) is even simpler to interpret in terms of the filtration. If it holds modulo  
a(I-1) then, the condit ion that it holds modulo  art ) is simply 

qt+ 3 - -  Wry. a t -  1 ( / )  

that is, it prescribes the ~ 1-~ part  ofqt + 3 in terms of the earlier choices ofqj , j  < I + 3, 
which determine W~. Thus, in solving (9.12) we have the freedom to choose the ~ 1-even 

reg part  of qt+3, subject to qt+36at+3, as well as the hk. p. The problem is therefore 
reduced to linear algebra. 

l - 1  
The subspace, b~ 3 % spanned by the r xt, - 2, with r < T (integral) together with 

ft spanned by the polynomials (9.11), spans % F r o m  (9.5) and (9.6) we conclude that  
the Tk, p, with 3k + p + 4 = 1 are independent  in b t and, together with the element xt,, 
span it. Finally then, we need to use the freedom to choose the even part  ofqt + 3 (that is 
we cannot  choose q = 0 because of the xt, term). Since 

~lx, , ~ 1 -  =(n-1)~lxt ,-Z+2xt,  

and ~lx,~ 2. ~- 1 is independent  of To, t- 3 we conclude that  (9.12) does indeed always have a 
solution 2 t- Cat+3, for an appropria te  choice of h. A similar 
argument  shows that the first step, solution of (9.10) and (9.12) modulo  a(21 and a~3 ) 
(the second of these being trivial) respectively, is possible. 

This completes the proof  of  Theorem 9.2. 

(9.13) Note. The arguments above apply just as well to show that any intersecting 
pair satisfy (1.1)-(1.4) can be t ransformed to the normal  form in (IR 2" + 1,2~, 0) in which 
F is x I = 0  and G is defined by 

x,- Z 
j=2 

Appendix. Contact Transformations 

Recall that  a contact  manifold (P, M) is a (2n + D-manifold, P, with a distinguished, 
oriented, line subbundle M+~ T*P any local, non-vanishing, section # of which 
defines a volume form 

(A.1) /2 ̂  (d/~)" 4= 0. 

Since all our  considerations are local, all structure will be considered at the germ level 
at a base point pc  P. Thus, C~ p) is the space of germs at p of C ~ sections of M. A 
vector field, Ve C~(TP, p), is a contact vector field if for every #e  C~~ p) there exists 
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Ov,.~ C~(P,p) such that 

(A.2) s162 
We shall write cg•(M, p) for the Lie algebra of such fields. 

Interior multiplication defines the Lagrange isomorphism 

(A.3) cg~(M, p)~V~--,i v o# = #(V)~ C~(M *, p) 

onto the space of sections at p of the dual bundle to M. For f e  C~176 *, p) the vector 
field, VI, giving the inverse to (A.3) is determined by (A.2), which can be written 

(A.4) 2d#(V, . )=-df (#)+Qy, ,# ,  

together with 

#(V)=f(#).  

Note in particular that 

(A.5) 0I,,(#/~ (d#)")= df(#)/x (d#)". 

The Lie algebra structure on C~176 *, p) carried from cg~(M, p) by (A.3) is the 
Lagrange bracket, if f ge Coo(M*, p) and #e Coo(M, p) 

(A.6) [ f  g] (#) = Vsg(# ) -  0f,ug(#)- 

Ifs ~ IR let M* be the line bundle with fibre at p' the space of functions Lp,\{0} ~IR, 
homogeneous of degree s. Thus, M* = M*, M~ = P x IR and for each s, t there is a 
product isomorphism 

* * , - ~  * M~ | =Ms+ t. 

Given ge C~~ p) with tt(p) # 0 one can define sections #* e Coo(M*, p), for each s, by 
requiring * #~ (g) = 1. The Lagrange bracket (A.5) extends uniquely to 

[ ,  ] : C~176 *, p) • C~~ *, p )~  C~(M*+t_I, p) 

if we require that [#*, #*] = 0 and that [#*, f ]  be smooth in s. It then satisfies 

[ f  g] = _ [g,f] 

(A.7) [ f ,  g h ] = [ f , g ] h + [ f , h ] g  , 

(A.8) [f, [g, h]] + [g, [h , f ] ]  + [h, [ f  g]] = 0. 

Condition (A.7) shows that every feC~ defines a firstorder differential 
operator 

A f" Coo(M*, p)~  Coo(M*+t_ 1, p) 

for each t, (A.8) is then the Jacobi identity for these operators: 

[A s, A o ] = Atf,o I . 

In particular, if feCoo(M*,p), V I is the operator A s, on Coo(M~,p); whenever 
#cCoo(M,p) with #(p)#O we shall put V~.,u=VI,,,_ . With this notation and 
f e  C~176 *, p), 9e C~ *, p) 

(A,9) [ f  g] (#) = Vf ,ug(# ) -  sof , ug(#) + ( r -  1)Oo,uf (# ) 
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where QI,, is defined by (A.5) or  

(A.10) [ p * , f ] ( # )  = Q~,,. 

Note  that  Vf,u=O at  p precisely when f ( p ) = 0  at p and dpf(p)eMp.  If  
f e  C~ *, p) vanishes at  p but  dpf(p)q~Mp for some #e C~ p) then the line in TpP 
spanned by Vx,, is independent  of#,  we shall denote  it by V(f, p). It is of  course just the 
restriction to p of  the Hami l ton  foliation of f=O.  

The version of Da rboux ' s  theorem given, as Proposi t ion  3.11, in EQ can easily be 
restated in terms of  Lagrange  brackets.  We shall give a somewhat  more  general result 
a long these lines and sketch a p roo f  more  directly in terms of  the contact  structure. 
The basic manifold we use is ]R 2"+1 with coordinates  (x 1 . . . .  ,x, ,  ~t, ..., ~,,z) and 
contact  bundle h)  spanned by 

(A.11) r =  ~ 4jdx j+dz>O.  

- *  I f f e  ~ - *  This choice of  section trivializes all the bundles M s . C (Ms, 0) then 

(A.12) Qf,p = ~zfn(x,~,z) ,  

where ft~ =f( r i ) ,  and 

(A.13) V.r,n= ~ (0J'e0 - {  0fn ,~ 0fn~0 '~ ( ~' " (9f~0 j=l \O4j "" \~Xj --"J OZ ] ~'] + in-- j~-i C j ~ ]  z" 

Thus, if g* = ~/7* then, for i ,j  = 1 . . . .  n ~i b- 

(A. 14) [xi' xj] = [4", 4*] = [z, 4*] = Eft*, xi] = Eft*, 4*] = 0 
[x,, p*] = x,, [~*, x,] = ~ij, [ri*, z] = 1. 

(A. 15) Remark. If(Q, N +) is a second contact  manifold and 4) :P, p ~ Q, q is a contact  
t ransformat ion,  4)*N + = M +, then the induced maps  4)* : C~~ *, p ) ~  C~~ *, p) 
preserve the Lagrange  brackets.  Conversely,  if xi, ze  C~( P, p), 4*, P* e C ~  *, p) for 
i = 1 . . . . .  n satisfy (A. 14), with p replacing/7, and x~ = z = 4" = 0 at p,/7* # 0 at  p then 
4) :p'~+(x, 4*(#), z)(p') is a contact  t ransformat ion  to (IR z"+ t ,h )+)  such that  

r  

(A.16) Proposition. Let (P, M +, p) be a germ of contact structure on the (2n+ 1)- 
manifold P and let A, BC{1 . . . . .  n} be index sets. Given sections X ieC~(M*,p) ,  
~j  e C ~ (M~, p) for i e A, j e B, with X i(p) = ~ i(P) = 0 and s i + t i = 1 if i e A c~ B, together 
with a submanifold ~K:K,p ~P,  p such that 

(A.17) TpK, V(Xi, p) , V(F,j,p) are independent and 

Mpc~N*K = 0  

and an immersion 4) : K, p ~IR 2"+ 1 0 then, in order that there exist a diffeomorphism 

~) :P, polR2"+ I,0 

extending 4) and such that 

(A.18) p=(o*r ieC~(M,p) ,Xi  -~-4)--*(~Xiris,),* '~j-- =~)*(~jri;) 
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it is necessary and sujficient that 

(A.19) [XI, X,, ] =0=[~E] ,~j , ] ,  [Sj, Xi] =6,jVi, i' ~A,j,j' cB 

and that ~*fl~ C~'(t~:M, p) be such that (A.18) holds on K. 

(A.20) Note. It is, of course, possible to remove the restriction s i + t i = 1 but then the 
useful property,  that (A.19) is independent of  the putative section I~, is lost. 

Proof of Proposition A. 16. We follow the p roof  of Darboux ' s  theorem, Proposi t ion 
2.1 in EQ, closely. Choose a manifold K'  3 K, of  maximal dimension 2n + 1 - [A[ - [B[, 
such that (A. 17) still holds. On  K '  choose ~, a section of  M, subject to l~p = q~*fi (on K). 
Then the section #~ C~~ is fixed by the first-order equations 

(A.21) [X~ ,#*]=A~,p*=0 ,  [S j ,#*]  = A z j # * = O  i~A,jEB 

and the initial condit ion # * = ~ *  on K'. The consistency of (A.21) follows from 
Jacobi 's  identity. Then we can replace the Xi, =j- by )~i =X~#*_s,~C~(P,p) and 
~j  = E j#*_ t,e C a~ p). We leave the reader to verify that A and B can be increased, 
by the choice of  extra sectionsX~, ~j so that the meaningful equations in (A.14) hold, 
and (A.17) is still valid, until either A = B = { 1, ..., n} or  d i m K  = 2n + 1 - I A I -  IBI. In 
the latter case (and in the former if dim K = 1), for each point  p' near p there are unique 
constants % bj such that 

rt(p') = H exp(aiVL,,) H exp(bjV~)(p')E K 
i~A j~B 

so we put 

(}(P') = H e x p ( -  bjVr I-[ ( -  a,V~O~ ~ 
jEB i~A 

It is easily verified that q5 is a diffeomorphism, having the desired properties. If 
K = {p} then Zc C~(P, p) is uniquely defined by 

[~?,, z ]  = [-% z ]  = 0, [~*, z ]  = o Z(p)  = o 

and, once again from Jacobi 's  identity, all the Eqs. (A. 14) holds so there is a suitable ~, 
following Remark  A.15. 
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