On Eigenspaces of the Hecke Algebra with Respect to a Good Maximal Compact Subgroup of a p-Adic Reductive Group

Shin-ichi Kato

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan

Introduction

Let $\mathbb G$ be a connected reductive algebraic group defined over a non-archimedean local field k. Denote by K a good maximal compact subgroup of $G = \mathbb{G}(k)$. Then the commutative algebra, what we call Hecke algebra, $H(G, K)$ acts on $C(G/K)$, the space of C-valued functions on G/K , via right convolutions. Let $P_{K,G}(\omega)$ be the ω isotypic subspace of $C(G/K)$ for an algebra homomorphism $\omega : H(G, K) \to \mathbb{C}$. Under left translations by G, $P_{K,G}(\omega)$ is a G-module. This is a p-adic analogue of an eigenspace of invariant differential operators on a symmetric space. The aim of this paper is to show some of the properties of the G-module $P_{K,G}(\omega)$:

(1) We prove that $P_{K,G}(\omega)^\infty$, the subspace of smooth vectors in $P_{K,G}(\omega)$, is admissible. See Sect. 2.

(2) In Sect. 3, we define the Poisson integral which is an intertwining operator between E' , the dual space of an unramified principal series representation E , and $P_{K,G}(\omega)$. There necessary and sufficient conditions for the bijectivity of the Poisson integral are given in terms of the cyclicity of a K -fixed vector in E plus something more. (See also Addendum.)

Here (2) is a p-adic analogue of the Helgason's conjecture for real groups proved in [3]. For the proof of the above results, we essentially use Borel-Matsumoto theory on representations with vectors fixed under an Iwahori subgroup (see $[1, 5]$; note that the arguements in $[5]$ can be easily generalized to the case of reductive groups).

1. Difference Equations Invariant Under Finite Reflection Groups

Let V be a finite dimensional vector space over $\mathbb R$. We denote by W a finite subgroup of $GL(V)$. Choose a W-invariant lattice L of V. By $C(L)$, $\mathbb{C}[L]$ and $\mathbb{C}[L]^W$, we denote the algebra of C-valued functions on L, the group algebra of L over C, and the subalgebra of $\mathbb{C}[L]$ which consists of W-invariants, respectively. For $v \in L$, we define a difference operator T_v on $C(L)$ by $(T_v f)(x) := f(x+v)$ $(x \in L; f \in C(L)$). By linearity, this map $v \mapsto T_v$ extends to an algebra homomorphism of $\mathbb{C}[L]$ into the algebra of difference operators with constant coefficients $\phi \mapsto T_{\phi}(\phi \in \mathbb{C}[L])$. Set $X(L) = \text{Hom}(L, \mathbb{C}^{\times})$. Then $X(L)$ is identified with the set of algebra homomorphisms of $\mathbb{C}[L]$ to $\mathbb C$ and W acts on $X(L)$. Consider the following system of difference equations Σ _s for every $s \in X(L)$.

$$
\Sigma_s: \qquad \sum_{w \in W} T_{w \cdot v} f = (\Sigma_{w \in W} s(w \cdot v)) f \qquad (\forall v \in L).
$$

Note that the above system is equivalent to

$$
\Sigma'_s: \qquad T_\phi f = s(\phi) f \qquad (\forall \phi \in \mathbb{C}[L]^W).
$$

We denote the space of the solutions of Σ_s by $H_s(W)$ or simply by H_s .

Now we are ready to state the next proposition, which is an analogue of Steinberg's theorem [7].

Proposition 1.1. *For all s* \in *X*(*L*), $\dim H_s = |W/W_s| \dim H_1(W_s)$ and ∞ > $\dim H_s \ge |W|$. *The equality* $\dim H_s = |W|$ *holds if and only if* $W_s \subset GL(V)$ *is a reflection group.*

Here W_s is the stabilizer of s in W and $1 \in X(L)$ denotes the trivial character. The proof of this proposition goes along somewhat same lines as Steinberg's.

Proof. Let us call $f \in C(L)$ a polynomial if f can be written as $f = g|_{L}$ for some $g \in S(V^*)$ (the algebra of polynomial functions on V). It is obvious that the above $g \in S(V^*)$ is uniquely determined. Now let f be an element of H_n. Then the same argument as in [7] shows that f can be written in the form,

$$
f = \sum_{w \in W/W_s} (w \cdot s) \cdot f_{w \cdot s}
$$

where $f_{w,s}$ is a polynomial for every $w \in W/W_s$. Moreover, the linear independence of characters over polynomials (see [5; (3.4.3)]) shows that $f_{w,s}$ belongs to $H_1(W_{w,s})$ for each $w \in W/W_s$. This implies $\dim H_s = |W/W_s| \dim H_s(W_s)$. Hence it suffices to consider the case $s = 1$. But we have already seen that all the elements of H_1 are polynomials. Therefore the subspace of $S(V^*)$ which corresponds to H_1 is the space of harmonic polynomials on V and Steinberg's theorem assures our proposition.

Remark 1.2. For a vector space *E* and its subset *S*, we denote by $\langle S \rangle$ the subspace of E generated by S. Then we can regard H_s as the dual space of $\mathbb{C}[L]/\langle f\phi - s^{-1}(\phi)f(f \in \mathbb{C}[L]; \phi \in \mathbb{C}[L]^W) \rangle$ since $C(L) \simeq \mathbb{C}[L]' = \text{Hom}(\mathbb{C}[L], \mathbb{C})$ canonically.

2. Eigenspaces of the Hecke Algebra with Respect to a Good Maximal Compact Subgroup

From now on, **let**

 $k = a$ non-archimedean local field

 \mathbb{G} = a connected reductive algebraic group defined over k^1

 $\mathbb{P} =$ a minimal k-parabolic subgroup of G

¹ Algebraic groups over k will usually be denoted by Special Roman, and the groups of their krational points by ordinary types, e.g. G and G

 $\mathbb{A} =$ a maximal k-split torus of \mathbb{G} in \mathbb{P}

 IM = the centralizer of \mathbb{A}

 $N =$ the unipotent radical of P

 N^- = the opposite of N

 $\Phi = k$ -roots of G with respect to A

 Σ = the affine root system of G

 v_{Σ} = the reduced root system associated with Σ

W= the Weyl group of (\mathbb{G}, \mathbb{A}) .

2.1. Let K be a good maximal compact subgroup of G with Iwasawa decomposition $G = KP$. We denote by $C_c(K\backslash G/K)$ the space of compactly supported Kbiinvariant C-valued functions on $G²$ We shall fix dg the Haar measure of G with vol(K) = 1. Then $C_{\lambda}(K\backslash G/K)$ is an algebra under convolution products, which we call the Hecke algebra of G with respect to K to be denoted $H(G, K)$. It is known that $H(G, K)$ is semisimple and commutative.

Put $X_{nr}(M) = \{\lambda \in \text{Hom}(M, \mathbb{C}^{\times}) | \lambda \text{ is trivial on } M \cap K\}$ (the group of unramified characters on M). We may choose representatives of W in K . The group W stabilizes $M \cap K$ and hence acts on $X_{rr}(M)$ canonically. For $\lambda \in X_{rr}(M)$, we denote by E_{λ} the space of the unramified principal series representation associated with λ :

 $E_i = \{f: G \rightarrow \mathbb{C} | (i) \text{ } f \text{ is locally constant};$ (ii) $f(gmn) = (\lambda \delta^{1/2})(m) f(g)$ for $g \in G$, $m \in M$ and $n \in N$. Here δ is the modulus character of P. The space E_i is an admissible G-module

under left translations by G. Let 1, be the K-fixed vector of E_{λ} with $1_{\lambda}(e) = 1$. Then there exists an algebra homomorphism ω_{λ} : $H(G, K) \to \mathbb{C}$ such that $\phi * 1_{\lambda} = \omega_{\lambda}(\phi) 1_{\lambda}$ for all $\phi \in H(G, K)$, where $*$ denotes the convolution product. The following fact is well known :

(i) $\omega_{\lambda} = \omega_{\lambda'}$ iff $\lambda' = w \cdot \lambda$ for some we W.

(ii) $\omega_{\lambda}^{\sim} = \omega_{\lambda^{-1}}$ where ω_{λ}^{\sim} is the contragredient of ω_{λ} .

(iii) Every algebra homomorphism of $H(G, K)$ into $\mathbb C$ is equal to ω_1 for some $\lambda \in X_{n}(M)$.

See $[4, 5]$ or $[6]$ for details.

We may view $C(G/K)$ and $C(G/K)$ as $H(G, K)$ -modules under right convolutions. Let \mathbb{C}_1 be the 1-dimensional $H(G, K)$ -module corresponding to $\omega_{\lambda}(\lambda \in X_{nr}(M)).$

Definition 2.2. (cf. [1; (2.3)].)

$$
I_{K,G}(\omega_{\lambda}) := C_c(G/K) \otimes_{H(G,K)} \mathbb{C}_{\lambda}.
$$

\n
$$
P_{K,G}(\omega_{\lambda}) := \{ f \in C(G/K) | f * \phi = \omega_{\lambda}(\phi) f \ (\phi \in H(G,K)) \}.
$$

² For a totally disconnected space X, $C(X)$ and $C(X)$ denote the space of C-valued functions on X, and the space of compactly supported ones, respectively

The space $P_{K,G}(\omega_\lambda)$ is the eigenspace of $H(G, K)$ under ω_λ . Both of $I_{K,G}(\omega_\lambda)$ and $P_{K,G}(\omega_\lambda)$ are G-modules via left translations by G. In particular $I_{K,G}(\omega_\lambda)$ is smooth. We can see easily that $P_{K,G}(\omega_\lambda)$ is naturally isomorphic to $I_{K,G}(\omega_{\lambda^{-1}})'$, the dual space of $I_{K,G}(\omega_{\lambda^{-1}})$, and

$$
I_{K,G}(\omega_{\lambda}) \simeq C_c(G/K)/\langle f*\phi - \omega_{\lambda}(\phi)f \quad (f \in C_c(G/K); \phi \in H(G,K)) \rangle.
$$

See [1; Sect. 2] for other properties of $I_{K,G}(\omega_1)$ and $P_{K,G}(\omega_1)$.

2.3. Now we shall investigate $P_{K,G}(\omega_\lambda)$ and $I_{K,G}(\omega_\lambda)$ together. Let B be an Iwahori subgroup of G contained in K with an Iwahori factorization $B = N_0 (M \cap K)N_0$ with respect to P. Here $N_0 \subset N$ and $N_0 \subset N$. Define a linear map α : $C_c(B\backslash G/K) \rightarrow C_c(M/M\cap K)$ by

$$
\alpha(f)(m) = \delta^{-1/2}(m) \int_N f(mn) \, dn \qquad (m \in M; f \in C_c(B \setminus G/K))
$$

where *dn* denotes the Haar measure of N with $\int_{N \cap K} dn = 1$. Set $T := M/M \cap K$. Then T is a free Z-module of rank equal to rk_kG . Note that $C_k(M/M\cap K)$ is isomorphic to $\mathbb{C}[T]$ in obvious manner. Hence the map α induces β : $C_{\alpha}(\beta \backslash G/K) \rightarrow \mathbb{C}[T]$ by $f(x) = \sum_{t \in T} \alpha(f)(t)$ t for $f \in C_c(B \setminus G/K)$. Here i denotes a representative element of t in M. We call β the Satake map. Set β_0 : = $\beta|_{H(G,K)}$. It is well known that the map β_0 is what is called the Satake isomorphism which satisfies $\beta_0: H(G,K) \to \mathbb{C}[T]^W$ (algebra isomorphism) and $\omega_{\lambda}(\phi) = \lambda^{-1}(\beta_0(\phi))$ ($\lambda \in X_{nr}(M) = X(T)$; $\phi \in H(G, K)$). But as in the case of β_0 , we can check similar results for β .

Lemma 2.4. Let $\lambda \in X_{n}(M)$, $f \in C_{n}(B \backslash G / K)$ and $\phi \in H(G, K)$. Then we have

(i)
$$
f * 1_{\lambda}(e) = \lambda^{-1}(\beta(f));
$$

(ii)
$$
\beta(f * \phi) = \beta(f)\beta(\phi)
$$
.

Proof. It can be checked straightforwardly thanks to Iwasawa decomposition $G = KMN$ and the expression $dq = \delta^{-1}(m)dkdmdn$ where dk (resp. dm) denotes the Haar measure of K (resp. M) with $\int_K dk = 1$ (resp. $\int_{M \cap K} dm = 1$). cf. [4; (3.3)].

Proposition 2.5. *The map* β : $C_{\alpha}(B\backslash G/K) \rightarrow \mathbb{C}[T]$ is an isomorphism as a linear map.

Proof. For $t \in T$, set e, the characteristic function of the double coset *BiK*. Owing to the decomposition $G = \bigcup_{t \in T} B i K$ (disjoint union), it suffices to show that $\{\beta(e_i)|t \in T\}$ is a basis of $\mathbb{C}[T]$. By (2.4),

$$
\lambda^{-1}(\beta(e_i)) = e_i * 1_{\lambda}(e)
$$

= $\int_{Ki^{-1}B} 1_{\lambda}(g) dg$
= $\sum_{t' \in T} (\lambda \delta^{1/2})(t') \text{vol}(Ki^{-1}B \cap Ki'N)$
= $\sum_{t' \in T} (\lambda^{-1} \delta^{-1/2})(t') \text{vol}(Ki^{-1}B \cap Ki'^{-1}N),$

which implies

$$
\beta(e_t) = \sum_{t' \in T} \delta^{-1/2}(\dot{t}') \operatorname{vol}(K \dot{t}^{-1} B \cap K \dot{t}'^{-1} N) t'.
$$

As in [5; (3.2.1)], let T^{++} and T^{+} be the subsemigroup of T associated with 'dominant coweights' and 'positive coroots' of ${}^{\nu}\Sigma$, respectively. Here the positive

roots of $\sqrt[p]{\Sigma}$ or Φ are determined by the choice of **P**. We denote $t \le t'$ if $t^{-1}t' \in T^+$. The relation \leq is a partial order on T. Let t_a be the unique element of T^{++} , Wconjugate to t and f, the characteristic function of $KtK = Kt_AK$. As $Kt^{-1}BCKt^{-1}K$, we have $\text{supp}\beta(e_t) \subset \text{supp}\beta(f_t)$ since

$$
\beta(f_t) = \sum_{t' \in T} \delta^{-1/2}(t') \operatorname{vol}(K t_d^{-1} K \cap K t'^{-1} N) t'.
$$

Note that $\beta(f_i) \in \mathbb{C}[T]^n$. Thus [2; (4.4.4)(i)] shows that $w(t') \leq t_d$ for all $w \in W$, provided $Kt^{-1}B\cap Kt^{-1}N = \emptyset$. On the other hand, we have

Lemma 2.6. *If* $Ki^{-1}B \cap Ki'^{-1}N + \emptyset$, then $t \leq t'$.

Assume this for a moment. Then we have finally

$$
\operatorname{supp} \beta(e_i) \subset \{w(t)|w \in W, t \leq w(t) \leq t_d\} \cup \{t'|t < t', w(t') < t_d \quad \text{for all} \quad w \in W\}.
$$

Hence our assertion clearly follows since supp $\beta(e_i)$ obviously contains t.

Proof of Lemma 2.6. Note that $Ki^{-1}B = Ki^{-1}N_0N_0$. Therefore $Ki^{-1}B \cap Ki^{-1}N + \emptyset \Leftrightarrow i^{-1}N_0^{-}i \cap Ki^{-1}N + \emptyset$.

But the calculation of c-functions (see e.g. $[5; (5.5.9)]$) shows that the case of the right hand side occurs only if $t't^{-1} \in (T^+)^{-1}$.

Now we can prove the following which is analogous to $[1; (4.4)]$.

Theorem 2.7. *The G-modules* $I_{K,G}(\omega_\lambda)$ *and* $P_{K,G}(\omega_\lambda)^\infty$ (the subspace of the smooth *vectors in* $P_{K,G}(\omega_\lambda)$ *are admissible.*

Proof. As $I_{K,G}(\omega_\lambda)^B = C_c(B\backslash G/K) \otimes_{H(G,K)} \mathbb{C}_{\lambda}$ by definition, the Satake map β induces an isomorphism

$$
I_{K,G}(\omega_{\lambda})^B \rightarrow \mathbb{C}[T]/\langle f\phi - \lambda^{-1}(\phi)f(f \in \mathbb{C}[T]; \phi \in \mathbb{C}[T]^W) \rangle
$$

by (2.4) and (2.5). Taking the dual of the both sides, we have

$$
P_{K,G}(\omega_{\lambda^{-1}})^B \cong \{ f \in C(T) | T_{\phi} f = \lambda(\phi) f \ (\phi \in \mathbb{C}[T]^W) \} .
$$

Therefore (1.1) shows that $\dim P_{K,G}(\omega_{\lambda-1})^B = \dim I_{K,G}(\omega_{\lambda})^B < \infty$ and this implies that $I_{K,G}(\omega_{\lambda})$ is admissible since $I_{K,G}(\omega_{\lambda})$ is generated by $I_{K,G}(\omega_{\lambda})^B$ (see [5;(5.5.6)]). Recall that $P_{K,G}(\omega_{\lambda^{-1}})^\infty$ is the contragredient G-module of $I_{K,G}(\omega_\lambda)$. Hence this module is also admissible.

Corollary 2.8. *For every* $\lambda \in X_{nr}(M)$,

$$
\dim I_{K,G}(\omega_{\lambda})^B = \dim P_{K,G}(\omega_{\lambda})^B
$$

= |W/W_{\lambda}| \dim H_1(W_{\lambda})

$$
\geq |W|,
$$

and the equality holds iff W_{λ} *is a reflection group in* $GL(T \otimes \mathbb{R})$ *.*

3. The Poisson Integrals

3.1. Define a G-homomorphism $\mathscr{F}_\lambda: C(G/K) \to E_{\lambda^{-1}}$ by $\mathscr{F}_\lambda(f) = f \ast 1_{\lambda^{-1}}$ for $f \in C_c(G/K)$. Then we can see easily that

$$
\operatorname{Ker} \mathscr{F}_{\lambda} \supset \{ f * \phi - \omega_{\lambda^{-1}}(\phi) f \ (f \in C_c G/K) ; \phi \in H(G, K)) \} .
$$

Hence \mathscr{F}_{λ} induces a G-homomorphism $\mathscr{R}_{\lambda}: I_{K,G}(\omega_{\lambda^{-1}}) \to E_{\lambda^{-1}}$. If we take the dual of \mathcal{R}_λ , we obtain a G-homomorphism $\mathcal{P}_\lambda: E'_{\lambda^{-1}} \to P_{K,G}(\omega_\lambda)$, which we call the Poisson *integral* (of E'_{1-1}). Note that $(E'_{1-1})^{\infty} = E_2$. It is easily seen that the restriction of \mathcal{P}_{λ} to E_1 , \mathscr{P}_1^{∞} : $E_1 \rightarrow P_{K,G}(\omega_1)^{\infty}$ is given by

$$
(\mathscr{P}_{\lambda}^{\infty}f)(x) = \int_{K} f(xk)dk \qquad (f \in E_{\lambda}),
$$

and this is the reason we call \mathcal{P}_λ the Poisson 'integral'.

Clearly the bijectivity of \mathscr{P}_1 is equivalent to the bijectivity of $\mathscr{R}_1 \Leftrightarrow$ the bijectivity of $\mathcal{P}_{\lambda}^{\infty}$). But by the definition of \mathcal{R}_{λ} , \mathcal{R}_{λ} is surjective iff $1_{\lambda^{-1}} \in E_{\lambda^{-1}}$ is a cyclic vector. Assume $1_{\lambda^{-1}}$ is cyclic. Then \mathcal{R}_{λ} is injective iff cyclic vector. Assume $1_{\lambda^{-1}}$ is cyclic. Then \mathscr{R}_λ is injective iff $\dim E_{\lambda-1}^B = \dim I_{K, G}(\omega_{\lambda-1})^B$ since $\text{Ker} \mathscr{R}_{\lambda}^B = 0 \Leftrightarrow \text{Ker} \mathscr{R}_{\lambda}^B = 0$ by [1, 5]. Thus the equality dim $E_{\text{2--1}}^B = |W|$ and (2.8) show

Theorem 3.2. *The Poisson integral* \mathcal{P}_{λ} *is bijective if and only if the following conditions* (i) *and* (ii) *are satisfied:*

(i) 1_{4-1} is a cyclic vector of E_{4-1} .

(ii) W_1 *is a reflection group in* $GL(T\otimes \mathbb{R})$.

Remark 3.3. It is obvious that our theorem has a close resemblance to $\lceil 3 \rceil$; 5. Theorem]. There, the cyclicity of $1_{\lambda^{-1}}$ is expressed in terms of the c-function and W_{λ} is always a reflection group. In our case, for the condition (i), we can see easily that $1_{i=1}$ *is cyclic iff* $c(\lambda^{-1})+0$ *when* $\lambda \in X_{n}(\mathcal{M})$ *is regular* (i.e. $W_{\lambda} = \{e\}$). Here **c** is the c-function. But the general criterion for the cyclicity of 1_{4-1} seems unknown. As for the condition (ii), it can be proved that *the condition* (i) *implies the condition* (ii) *for all* $\lambda \in X_{nr}(M)$ *under the assumption* $q_a = q'_a$ *for all* $\alpha \in {}^v\Sigma$ (see [5] for the notation). In particular, the condition (ii) is superfluous (at least) for split groups.

Addendum

As for (3.3), we can prove the following:

Proposition A.1. If 1, is a cyclic vector of E_{λ} , then W_{λ} (= $W_{\lambda-1}$) is a reflection *subgroup of GL(T* \otimes **R**).

Here we shall give a proof of $(A.1)$ by using results of $[5]$.

Let $H(G, B)$ be the Hecke algebra of G with respect to B. Let

 $A(w, \lambda) \in \text{Hom}_{H(G, B)}(E_{\lambda}^{B}, E_{w, \lambda}^{B})$ (we W)

be the intertwining operator defined in [5;(4.3.4)]. For $\alpha \in {}^{\nu}\Sigma$, we denote by \mathbf{d}_{α} (resp. \mathbf{e}_{α}) the denominator (resp. numerator) of the c-function ${\bf c}_{\sigma}[5;(4.3.1)]$; i.e. ${\bf e}_{\sigma}$ and ${\bf d}_{\sigma}$ are relatively prime, and ${\bf c}_{\sigma}(\lambda)={\bf e}_{\sigma}(\lambda)/{\bf d}_{\sigma}(\lambda)$ for $\lambda \in X_{nr}(M)$. Then, for $w \in W$, $A^0(w, \lambda) := (I_{\alpha > 0, w(\alpha) < 0} d_{\alpha}(\lambda)) A(w, \lambda)$ gives a normalization of $A(w, \lambda)$, hence $\lambda \mapsto A^0(w, \lambda)$ is a (matrix-valued) everywhere-defined rational function on $X_{nr}(M)$. Put $W_{(\lambda)} = \langle w_{\alpha} | \mathbf{d}_{\alpha}(\lambda) = 0 \rangle$. Here w_{α} denotes the reflection of W associated with $\alpha \in \Sigma$. Therefore $W_{(\lambda)}$ is a normal subgroup of W_{λ} generated by

reflections. Let W^{λ} be the representative set of $W_{\lambda}/W_{(\lambda)}$ such that $l(w) \le l(w')(w \in W^{\lambda}; w' \in wW_{(\lambda)}).$ Then $(A.1)$ is a consequence of

Proposition A.2. *The elements of*

$$
\{A^0(w,\lambda)|w\in W^{\lambda}\}\subset \text{End}_{H(G,B)}E_{\lambda}^B
$$

are linearly independent.

In fact, the cyclicity of 1_{λ} implies that dim End_{H(G, B)} $E_{\lambda}^{B} = 1$. So we have $W_{\lambda} = W_{(\lambda)}$ by (A.2).

But in view of the following claim (its proof is easy and omitted)

$$
\Pi_{\alpha>0, w(\alpha)<0} \mathbf{d}_{\alpha}(\lambda) \neq 0 \quad \text{for} \quad w \in W^{\lambda}, \tag{A.3}
$$

the linearly independence of $\{A(w, \lambda) | w \in W^{\lambda}\}\$ is readily seen from

$$
(A^{0}(w, \lambda)f_{B})(\dot{w}) = \begin{cases} \Pi_{\alpha > 0, w(\alpha) < 0} d_{\alpha}(\lambda) & (w^{-1} = w') \\ 0 & (l(w') \ge l(w); w^{-1} \ne \dot{w}') \end{cases}
$$
 (A.4)

where $f_{\bf{B}}$ is the unique element of $E^{\bf{B}}$ such that

$$
f_B(k) = \begin{cases} 1 & (k \in B) \\ 0 & (k \in K \backslash B), \end{cases}
$$

and w' is a representative element of w' \in *W in K.* For the proof of $(A.4)$, see $[5; (4.3.4)$ (ii)].

References

- 1. Borel, A. : Admissible representations of a semi-simple group over a local field with vectors fixed under an lwahori subgroup. Invent. Math. 35, 223-259 (1976)
- 2. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Chap. I. Publ. Math. I.H.E.S. 41, 1-251 (1972)
- 3. Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima, T., Tanaka, M.: Eigenfunctions of invariant differential operators on a symmetric space. Ann. Math. 107, 1-39 (1978)
- 4. Macdonald, I.G. : Spherical functions on a group of p-adic type. Publ. Ramanujan Institute. No. 2. Madras (1971)
- 5. Matsumoto, H.: Analyse harmonique dans les systèmes de Tits bornologiques de type affine. Lecture Notes in Mathematics, Vol. 590. Berlin, Heidelberg, New York: Springer 1977
- 6. Satake, I. : Theory of spherical functions on reductive algebraic groups over p-adic fields. Publ. Math. I.H.E.S. 18, 5-69 (1963)
- 7. Steinberg, R. : Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc. 112, 392-400 (1964)

Received January 8, 1980

Note added in proof. We can now give the necessary and sufficient conditions for the cyclicity of 1_{λ} in E_{λ} . To be more precise, we can prove:

$$
1_{\lambda}
$$
 is cyclic \Leftrightarrow (i) $\mathbf{d}_{\alpha}(\lambda) \neq 0$ for $\alpha \in {}^{\nu}\Sigma^{+}$; and
(ii) $W_{\lambda} = W_{(\lambda)}$.

Details will appear elsewhere.