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Introduction 

Let ~ be a connected reductive algebraic group defined over a non-archimedean 
local field k. Denote by K a good maximal compact subgroup of G = r Then 
the commutative algebra, what we call Hecke algebra, H(G, K) acts on C(G/K), the 
space of C-valued functions on G/K, via right convolutions. Let PK,~(co) be the co- 
isotypic subspace of C(G/K) for an algebra homomorphism co :H(G, K)-->C. Under 
left translations by G, PK,G(co) is a G-module. This is a p-adic analogue of an 
eigenspace of invariant differential operators on a symmetric space. The aim of this 
paper is to show some of the properties of the G-module Px, a(co) : 
(1) We prove that Pr, a(co) ~176 the subspace of smooth vectors in PK,a(co), is 
admissible. See Sect. 2. 
(2) In Sect. 3, we define the Poisson integral which is an intertwining operator 
between E', the dual space of an unramified principal series representation E, and 
Pr, G(co). There necessary and sufficient conditions for the bijectivity of the Poisson 
integral are given in terms of the cyclicity of a K-fixed vector in E plus something 
more. (See also Addendum.) 

Here (2) is a p-adic analogue of the Helgason's conjecture for real groups 
proved in [3]. For  the proof of the above results, we essentially use Borel- 
Matsumoto theory on representations with vectors fixed under an Iwahori 
subgroup (see [1, 5] ; note that the arguements in [5] can be easily generalized to 
the case of reductive groups). 

1. Difference Equations Invariant Under Finite Reflection Groups 

Let V be a finite dimensional vector space over IR. We denote by W a finite 
subgroup of GL(V). Choose a W-invariant lattice L of V. By C(L), C[L]  and 
C[L] w, we denote the algebra of C-valued functions on L, the group algebra of L 
over C, and the subalgebra of C[L]  which consists of W-invariants, respectively. 
For wL,  we define a difference operator T~ on C(L) by (Tj ) (x) :  =f(x+v) 
(xe L ;f~ C(L)). By linearity, this map v ~ T  v extends to an algebra homomorphism 
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of IE[L] into the algebra of difference operators with constant coefficients 
#~T~(q~e~[L]) .  Set X(L)=  Hom(L, II~• Then X(L) is identified with the set of 
algebra homomorphisms of~2[L] to I1~ and W acts onX(L). Consider the following 
system of difference equations Z~ for every seX(L). 

Z~: ~,w~w Tw.vf =(Z,w~wS(W'v)) f (VveL). 

Note that the above system is equivalent to 

Z's: T4,f= s(e~)f (v ~be GEL] w). 

We denote the space of the solutions of X s by Hs(W) or simply by Hs. 
Now we are ready to state the next proposition, which is an analogue of 

Steinberg's theorem [7]. 

Proposition 1.1. For all seX(L), dimH~ = I W/W~ldimHx(W~) and oo > d imH s => I Wl. 
The equality dimHs= [W[ holds if and only if W~cGL(V) is a reflection 9roup. 

Here W~ is the stabilizer of s in W and 1 eX(L) denotes the trivial character. The 
proof of this proposition goes along somewhat same lines as Steinberg's. 

Proof Let us call f e  C(L) a polynomial if f can be written as f=olL for some 
9eS(V*) (the algebra of polynomial functions on V). It is obvious that the above 
9eS(V*) is uniquely determined. Now let f be an element of H e. Then the same 
argument as in [7] shows that f can be written in the form, 

f = ~w~W/w,(W" S)"f~,.~ 

where fw.~ is a polynomial for every we W/W~. Moreover, the linear independence 
of characters over polynomials (see [5 ; (3.4.3)]) shows that fw.~ belongs to H~(Ww.~) 
for each we W/W~. This implies dimH~=lW/W~ldimHl(W~). Hence it suffices to 
consider the case s = 1. But we have already seen that all the elements of H~ are 
polynomials. Therefore the subspace of S(V*) which corresponds to H~ is the space 
of harmonic polynomials on V and Steinberg's theorem assures our proposition. 

Remark 1.2. For  a vector space E and its subset S, we denote by (S )  the sub- 
space of E generated by S. Then we can regard Hs as the dual space of 
IE[L]/<f c~-s-l(r ( f  elE[L]; ~be(E[L]W)> since C(L)~- II~[L]'= Hom(tE[L], ~) 
canonically. 

2. Eigenspaces of the Hecke Algebra with Respect to a Good Maximal Compact 
Subgroup 

From now on, let 

k = a non-archimedean local field 

~ =  a connected reductive algebraic group defined over k 1 

IP = a minimal k-parabolic subgroup of 

1 Algebraic groups over k will usually be denoted by Special Roman, and the groups of their k- 
rational points by ordinary types, e.g. ~3 and G 
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= a maximal k-split torus of ~; in 1P 

lt~= the centralizer o f / k  

IN = the unipotent radical of IP 

IN- = the opposite of IN 

= k-roots of G with respect to 

2; = the affine root system of G 

~2 = the reduced root  system associated with 2; 

W= the Weyl group of (113, ~). 

2.1. Let K be a good maximal compact subgroup of G with Iwasawa decom- 
position G = KP. We denote by Cc(K\G/K) the space of compactly supported K- 
biinvariant r functions on G. 2 We shall fix dg the Haar  measure of G with 
vol(K) = 1. Then C~(K\G/K) is an algebra under convolution products, which we 
call the Hecke algebra of G with respect to K to be denoted H(G, K). It is known 
that H(G, K) is semisimple and commutative. 

Put  X,r(M ) = {2~ Hom(M, �9 • is trivial on MnK} (the group of unramified 
characters on M). We may choose representatives of W in K. The group W 
stabilizes M n K  and hence acts on X,,(M) canonically. For  2eX,r(M), we denote 
by E 4 the space of the unramified principal series representation associated with 2: 

E~ = { f : G ~ r  (i) f is locally constant; 
(ii) f(gmn)= (261/2) (re)f (g) for g~ G, me M and n~ N}. 

Here 6 is the modulus character of P. The space E 4 is an admissible G-module 
under left translations by G. Let 14 be the K-fixed vector o f E  4 with 14(e ) = 1. Then 
there exists an algebra homomorphism co~ :H(G, K)~IE such that q~, 14 = o~4(q~ ) 14 
for all ~be H(G, K), where �9 denotes the convolution product. The following fact is 
well known : 

(i) ~o4=o~ ~, i f f 2 ' = w . 2  for some weW. 
(ii) e~" = ~oz_~ where co z is the contragredient of 094. 

(iii) Every algebra homomorphism of H(G, K) into C is equal to 09 4 for some 
2~X,r(M). 
See [4, 5] or [6] for details. 

We may view C(G/K) and C~(G/K) as H(G,K)-modules under right con- 
volutions. Let r be the 1-dimensional H(G,K)-module corresponding to 
coa(2~X,,(M)). 

Definition 2.2. (cf. [1 ; (2.3)].) 

It, ~(~~ : = Cc(G/K) | m~,r)C4 �9 

PK,a(og4): = {fe  C(6/K)If* ~b = co4(r f (q~e H(G, K))}. 

2 For a totally disconnected space X, COt') and Co(X) denote the space of C-valued functions on X, 
and the space of compactly supported ones, respectively 
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The space Px.o(coa) is the eigenspace of H(G, K) under to~. Both of Ix, a(cox) and 
PK,o(co~) are G-modules via left translations by G. In particular Ix,~(ogx) is smooth. 
We can see easily that Pr,~(co~) is naturally isomorphic to Ir, a(oz_,)', the dual 
space of lx,a(co a_ ,), and 

IK,~(OO ~) ~-- C~(G/K)/(f* c~ - coa(qS)f ( fe C~(G/K) ; ~ e H(G, K))). 

See [1 ; Sect. 2] for other properties of Ir, a(coa) and Px,a(ogx). 

2.3. Now we shall investigate PK,~(COX) and Ix,~(ogx) together. Let B be an Iwahori 
subgroup of G contained in K with an Iwahori factorization B = N o ( M n K ) N  o 
with respect to P. Here No CN and No CN. Define a linear map 
~:C~(B\G/K)~C~(M/Mc~K) by 

o~(f)(m) = 6- 1/2(m) ~Nf(mn)dn (me M; f~  Cc(B\G/K)) 

where dn denotes the Haar measure of N with ~N~rdn = 1. Set T: = M/MnK.  Then 
T is a free Z-module of rank equal to rkkG. Note that Cc(M/M~K ) is isomorphic 
to ~[T'J in obvious manner. Hence the map ~ induces fl:C~(B\G/K)~C1-T] by 
fl(f) = Z,~ro~(f)(i)t for f ~  Cc(B\G/K). Here i denotes a representative element of t in 
M. We call fl the Satake map. Set flo: =fllHtG, rr It is well known that the map flo is 
what is called the Satake isomorphism which satisfies flo:H(G,K)5.r w 
(algebra isomorphism) and cox(0) = 2- l(flo(tb))(2e Xn~(M) = X(T); ~b ~ H(G, K)). But 
as in the case of flo, we can check similar results for ft. 

Lemma 2.4. Let 2~Xn~(M), f~ Cr(B\G/K ) and dpEH(G, K). Then we have 

(i) f ,  lz(e ) = 2- l(fl(f)); 
(ii) fl(f .(b)= fl(f)fl(qb) . 

Proof. It can be checked straightforwardly thanks to Iwasawa decomposition 
G = KMN and the expression dg = 6-l(m)dkdmdn where dk (resp. din) denotes the 
Haar measure of K (resp. M) with Sxdk = 1 (resp. SMnrdm = 1). cf. I-4 ; (3.3)]. 

Proposition 2.5. The map fl : Cc(B\G/K)~[T]  is an isomorphism as a linear map. 

Proof. For te T, set e t the characteristic function of the double coset BiK. Owing to 
the decomposition G=Ut~TBiK (disjoint union), it suffices to show that 
{fl(et)]tE T} is a basis of IE1-T]. By (2.4), 

2-1 (fl(e~)) = e,* 1 ~(e) 

= l (g)dg 

= EC~T(261/2)(t ') VoI(Ki- 1Bc~Ki'N) 

= ~t'~r( )~- 16-1/2)(i')vol(K i- 1Bc~Ki'- 1N), 

which implies 

fl(et ) = ~,,~r6-1/2(i,) vol(K/-  1Bc~Ki'- 1N)t' . 

As in [5; (3.2.1)I, let T § § and T § be the subsemigroup of T associated with 
'dominant coweights' and 'positive coroots' of ~ respectively. Here the positive 
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roots of oN or q~ are determined by the choice of 1P. We denote t =< t' if t -~t 'e  T +. 
The relation =< is a partial order on T. Let t a be the unique element of T + +, W- 
conjugate to t and f the characteristic function of K t K = K i ~ K .  As 
K i - ~ B C K i - ~ K ,  we have suppfl(et)C suppfl(f~) since 

f l(f)  = ~t,~rfi- ~/:(i') vol(Ki~- I K ~ K  i '-  ~ N)t ' .  

Note that fl(f)etr[T-] w. Thus [2; (4.4.4)(i)] shows that w(t ')<t a for all weW, 
provided K i - ~ B ~ K i ' - ~ N #  0. On the other hand, we have 

Lemma 2.6. I f  K i - ~ B ~ K i ' - a N # O ,  then t<t ' .  

Assume this for a moment. Then we have finally 

supp ~(e,) C {w(t)lwe W, t < w(t) = ta} w {t It < t ,  w(t ) < t a for all we W}. 

Hence our assertion clearly follows since supp fl(e,) obviously contains t, 

Proof of Lemma 2.6. Note that K i -~B = K i - ~ N o  N o. Therefore 

K i - ~ B ~ K i ' - ~ N # O  r i - l N o i n K i ' - ~ N # : O .  

But the calculation of c-functions (see e.g. I-5 ; (5.5.9)]) shows that the case of the 
right hand side occurs only if t ' t -  1 e (T § 1. 

Now we can prove the following which is analogous to [1 ; (4.4)]. 

Theorem 2.7. The G-modules Ir, G(e)a) and PK,~(~a) ~ (the subspace of the smooth 
vectors in PK.~(O)X)) are admissible. 

Proof As IK,~(O)Z)B = Cc(B\G/K)QmG,K)~ a by definition, the Satake map fl induces 
an isomorphism 

IK,~(og~) B-~l~[T]/<f(o -- 2 -  l((o)f ( f  e r ;q~e I~1-T] w)> 
by (2.4) and (2.5). Taking the dual of the both sides, we have 

pK,o(ooz - ,)B~_ { f e  C(T)[Tef= 2(~b)f (dpe 1E[T]W)}. 

Therefore (1.1) shows that dimP~.~(e~_~)tJ=dimIK,~(og,)n< oo and this implies 
that IK,~(ma) is admissible since IK,G(O~a) is generated by IK,G(COa) B (see [5 ;(5.5.6)]). 
Recall that P~,~(coa_,) '~ is the contragredient G-module of IK,~(oa). Hence this 
module is also admissible. 

Corollary 2.8. For every ~eXnr(M), 

dim Ix,6(m2)B = dim Pr,~(o~) a 

= I W/W~ldimHl(W~) 

>__lw~, 

and the equality holds iff Wx is a reflection group in GL(T|  
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3. The Poisson Integrals 

3.1. Define a G-homomorphism ~a:C~(G/K)~E4-~ by ~ ( f ) = f * 1 4 - 1  for 
f~  C~(G/K). Then we can see easily that 

Ker ~,~ 3 {f*~b - 094- ,(~) f ( f  s C~G/K); c~s H(G, K))}. 

Hence ~a induces a G-homomorphism ~4 : IK,~(c0~-~)~E a_ ~. If we take the dual of 
t ~4, we obtain a G-homomorphism ~ x ' E  4_~ Px,o(co~), which we call the Poisson 

integral (of El_ ~). Note that (E~_ ~)oo = E4" It is easily seen that the restriction of ~x 
g o .  go  to Ea, ~ .E4~PK.G(ah) is given by 

( ~ f )  (x) = ~Kf(xk)dk ( f e  Ex), 

and this is the reason we call ~x the Poisson 'integral'. 
Clearly the bijectivity of ~x is equivalent to the bijectivity of ~4 (~" the 

bijectivity of ~]o). But by the definition of ~4, ~z  is surjective iff la_,~E4_~ is a 
cyclic vector. Assume 14_, is cyclic. Then ~4 is injective iff 
dim E~ _ 1 = dim I~. ~(o~ _ ~)~ since Ker~4 =~ 0 ~ K e r ~  =~ 0 by [1,5]. Thus the equa- 
lity dimE~_~ = I wl and (2.8) show 

Theorem 3.2. The Poisson integral ~ is bijective if and only if the following 
conditions (i) and (ii) are satisfied: 

O) 1~_~ is a cyclic vector of E4-~. 
(ii) W~ is a reflection group in GL(T| 

Remark 3.3. It is obvious that our theorem has a close resemblance to [3;5. 
Theorem]. There, the cyclicity of 14-, is expressed in terms of the c-function and 
W~ is always a reflection group. In our case, for the condition (i), we can see easily 
that 14_ 1 is cyclic iff c(2- t )4 :0  when 2~ X,,(M) is regular (i.e. W~= {e}). Here 
e is the e-function. But the general criterion for the cyclicity of 14-~ seems unknown. 
As for the condition (ii), it can be proved that the condition (i) implies the condition 
(ii) for all 2~ X,,(M) under the assumption q, = q', for all ~ vS (see [5] for the 
notation). In particular, the condition (ii) is superfluous (at least) for split groups. 

Addendum 

As for (3.3), we can prove the following: 

Proposition A.1. I f  14 is a cyclic vector of E 4, then W a (=  W4-1) is a reflection 
subgroup of GL(T|  

Here we shall give a proof of (A.I) by using results of [5]. 
Let H(G, B) be the Hecke algebra of G with respect to B. Let 

A(w, 2)e Homn(~,B)(E ~, ~ Ew.x) (weW) 

be the intertwining operator defined in [5;(4.3.4)]. For ~EvE, we de- 
note by d~ (resp. e~) the denominator (resp. numerator) of the c-function 
e~[5 ; (4.3.1)] ; i.e. e~ and d~ are relatively prime, and c~(2)= e~(2)/d~(2) for 2~X,,(M). 
Then, for w~W, A~ gives a normalization of 
A(w, 2), hence 2~A~ 2) is a (matrix-valued) everywhere-defined rational func- 
tion on X,,(M). Put W~a~= (wJd~(2)=0).  Here w~ denotes the reflection of W 
associated with cc~E. Therefore W~4 ~ is a normal subgroup of W~ generated by 
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reflections. Let  W a be the  represen ta t ive  set of  Wz/W~ ~ such tha t  
l(w) < l(w') (we W ~ ; w' E wW~a)). T h e n  (A.1) is a consequence  of  

Propos i t ion  A.2.  The elements of 

{A~ 2)]wE W "~} C E n d i n g ,m E ~ 

are linearly independent. 

In  fact, the cyclicity of  1 a implies  tha t  d im EndmG,mEa ~ = 1. S o w e  have W a = Wta ) by  
(A.2). 

But  in view of  the fo l lowing c la im (its p r o o f  is easy a n d  omit ted)  

//~ > 0,w(~ < 0 d~(2) # 0 for we WZ, (A.3) 

the l inear ly  i n d e p e n d e n c e  of  {A(w, 2)lwE W z} is readi ly  seen f rom 

(AO(w,2)fs)(v~,)={~>o,w(~)<od~(2) (w-a  = w  ' ) 
(l(w') > l(w); w -  1 # if,) (A.4) 

where fn is the unique element of E B such that 

{10 (kE B) 
fB(k) = (kE K\B),  

and w' is a representative element of w' E W in K. 
F o r  the p roo f  of  (A.4), see [5 ; (4.3.4) (ii)]. 
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Note added in proof. We can now give the necessary and sufficient conditions for the cyclicity of la 
in E a. To be more precise, we can prove: 

l~ iscycl ico  (i)d~(2)#0 for ~v Z §  and 

(ii) W~ = ~ ) .  

Details will appear elsewhere. 


