On Eigenspaces of the Hecke Algebra with Respect to a Good Maximal Compact Subgroup of a *p*-Adic Reductive Group

Shin-ichi Kato

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan

Introduction

Let G be a connected reductive algebraic group defined over a non-archimedean local field k. Denote by K a good maximal compact subgroup of G = G(k). Then the commutative algebra, what we call Hecke algebra, H(G, K) acts on C(G/K), the space of C-valued functions on G/K, via right convolutions. Let $P_{K,G}(\omega)$ be the ω isotypic subspace of C(G/K) for an algebra homomorphism $\omega : H(G, K) \to \mathbb{C}$. Under left translations by G, $P_{K,G}(\omega)$ is a G-module. This is a p-adic analogue of an eigenspace of invariant differential operators on a symmetric space. The aim of this paper is to show some of the properties of the G-module $P_{K,G}(\omega)$:

(1) We prove that $P_{K,G}(\omega)^{\infty}$, the subspace of smooth vectors in $P_{K,G}(\omega)$, is admissible. See Sect. 2.

(2) In Sect. 3, we define the Poisson integral which is an intertwining operator between E', the dual space of an unramified principal series representation E, and $P_{K,G}(\omega)$. There necessary and sufficient conditions for the bijectivity of the Poisson integral are given in terms of the cyclicity of a K-fixed vector in E plus something more. (See also Addendum.)

Here (2) is a p-adic analogue of the Helgason's conjecture for real groups proved in [3]. For the proof of the above results, we essentially use Borel-Matsumoto theory on representations with vectors fixed under an Iwahori subgroup (see [1, 5]; note that the arguments in [5] can be easily generalized to the case of reductive groups).

1. Difference Equations Invariant Under Finite Reflection Groups

Let V be a finite dimensional vector space over \mathbb{R} . We denote by W a finite subgroup of GL(V). Choose a W-invariant lattice L of V. By C(L), $\mathbb{C}[L]$ and $\mathbb{C}[L]^W$, we denote the algebra of \mathbb{C} -valued functions on L, the group algebra of L over \mathbb{C} , and the subalgebra of $\mathbb{C}[L]$ which consists of W-invariants, respectively. For $v \in L$, we define a difference operator T_v on C(L) by $(T_v f)(x) := f(x+v)$ $(x \in L; f \in C(L))$. By linearity, this map $v \mapsto T_v$ extends to an algebra homomorphism

of $\mathbb{C}[L]$ into the algebra of difference operators with constant coefficients $\phi \mapsto T_{\phi}(\phi \in \mathbb{C}[L])$. Set $X(L) = \operatorname{Hom}(L, \mathbb{C}^{\times})$. Then X(L) is identified with the set of algebra homomorphisms of $\mathbb{C}[L]$ to \mathbb{C} and W acts on X(L). Consider the following system of difference equations Σ_s for every $s \in X(L)$.

$$\Sigma_{s}: \qquad \sum_{w \in W} T_{w \cdot v} f = (\Sigma_{w \in W} s(w \cdot v)) f \qquad (^{\forall} v \in L)$$

Note that the above system is equivalent to

 $\Sigma'_{\phi} : \qquad \qquad T_{\phi} f = s(\phi) f \qquad \qquad ({}^{\forall} \phi \in \mathbb{C}[L]^{W}) \,.$

We denote the space of the solutions of Σ_s by $H_s(W)$ or simply by H_s .

Now we are ready to state the next proposition, which is an analogue of Steinberg's theorem [7].

Proposition 1.1. For all $s \in X(L)$, dim $H_s = |W/W_s| \dim H_1(W_s)$ and $\infty > \dim H_s \ge |W|$. The equality dim $H_s = |W|$ holds if and only if $W_s \subset GL(V)$ is a reflection group.

Here W_s is the stabilizer of s in W and $1 \in X(L)$ denotes the trivial character. The proof of this proposition goes along somewhat same lines as Steinberg's.

Proof. Let us call $f \in C(L)$ a polynomial if f can be written as $f = g|_L$ for some $g \in S(V^*)$ (the algebra of polynomial functions on V). It is obvious that the above $g \in S(V^*)$ is uniquely determined. Now let f be an element of H_s . Then the same argument as in [7] shows that f can be written in the form,

$$f = \sum_{w \in W/W_s} (w \cdot s) \cdot f_{w \cdot s}$$

where $f_{w\cdot s}$ is a polynomial for every $w \in W/W_s$. Moreover, the linear independence of characters over polynomials (see [5; (3.4.3)]) shows that $f_{w\cdot s}$ belongs to $H_1(W_{w\cdot s})$ for each $w \in W/W_s$. This implies dim $H_s = |W/W_s| \dim H_1(W_s)$. Hence it suffices to consider the case s = 1. But we have already seen that all the elements of H_1 are polynomials. Therefore the subspace of $S(V^*)$ which corresponds to H_1 is the space of harmonic polynomials on V and Steinberg's theorem assures our proposition.

Remark 1.2. For a vector space E and its subset S, we denote by $\langle S \rangle$ the subspace of E generated by S. Then we can regard H_s as the dual space of $\mathbb{C}[L]/\langle f\phi - s^{-1}(\phi)f(f \in \mathbb{C}[L]; \phi \in \mathbb{C}[L]^{W}) \rangle$ since $C(L) \simeq \mathbb{C}[L]' = \text{Hom}(\mathbb{C}[L], \mathbb{C})$ canonically.

2. Eigenspaces of the Hecke Algebra with Respect to a Good Maximal Compact Subgroup

From now on, let

k = a non-archimedean local field

G=a connected reductive algebraic group defined over k^1

 $\mathbf{P} = \mathbf{a}$ minimal k-parabolic subgroup of \mathbf{G}

¹ Algebraic groups over k will usually be denoted by Special Roman, and the groups of their k-rational points by ordinary types, e.g. G and G

 \mathbb{A} = a maximal k-split torus of **G** in **P**

 \mathbb{M} = the centralizer of \mathbb{A}

 \mathbb{N} = the unipotent radical of \mathbb{P}

 \mathbb{N}^- = the opposite of \mathbb{N}

 $\Phi = k$ -roots of **G** with respect to **A**

 Σ = the affine root system of G

 ${}^{v}\Sigma$ = the reduced root system associated with Σ

W = the Weyl group of (**G**, **A**).

2.1. Let K be a good maximal compact subgroup of G with Iwasawa decomposition G = KP. We denote by $C_c(K \setminus G/K)$ the space of compactly supported K-biinvariant \mathbb{C} -valued functions on G.² We shall fix dg the Haar measure of G with vol(K) = 1. Then $C_c(K \setminus G/K)$ is an algebra under convolution products, which we call the Hecke algebra of G with respect to K to be denoted H(G, K). It is known that H(G, K) is semisimple and commutative.

Put $X_{nr}(M) = \{\lambda \in \text{Hom}(M, \mathbb{C}^{\times}) | \lambda \text{ is trivial on } M \cap K\}$ (the group of unramified characters on M). We may choose representatives of W in K. The group W stabilizes $M \cap K$ and hence acts on $X_{nr}(M)$ canonically. For $\lambda \in X_{nr}(M)$, we denote by E_{λ} the space of the unramified principal series representation associated with λ :

 $E_{\lambda} = \{ f: G \to \mathbb{C} | (i) f \text{ is locally constant}; \\ (ii) f(gmn) = (\lambda \delta^{1/2})(m) f(g) \text{ for } g \in G, m \in M \text{ and } n \in N \}.$ Here δ is the modulus character of P. The space E_{λ} is an admissible G-module

Here δ is the modulus character of P. The space E_{λ} is an admissible G-module under left translations by G. Let 1_{λ} be the K-fixed vector of E_{λ} with $1_{\lambda}(e) = 1$. Then there exists an algebra homomorphism $\omega_{\lambda}: H(G, K) \to \mathbb{C}$ such that $\phi * 1_{\lambda} = \omega_{\lambda}(\phi) 1_{\lambda}$ for all $\phi \in H(G, K)$, where * denotes the convolution product. The following fact is well known:

(i) $\omega_{\lambda} = \omega_{\lambda'}$ iff $\lambda' = w \cdot \lambda$ for some $w \in W$.

(ii) $\omega_{\lambda} = \omega_{\lambda^{-1}}$ where ω_{λ} is the contragredient of ω_{λ} .

(iii) Every algebra homomorphism of H(G, K) into \mathbb{C} is equal to ω_{λ} for some $\lambda \in X_{nr}(M)$.

See [4, 5] or [6] for details.

We may view C(G/K) and $C_c(G/K)$ as H(G, K)-modules under right convolutions. Let \mathbb{C}_{λ} be the 1-dimensional H(G, K)-module corresponding to $\omega_{\lambda}(\lambda \in X_{nr}(M))$.

Definition 2.2. (cf. [1; (2.3)].)

$$I_{K,G}(\omega_{\lambda}) := C_{c}(G/K) \otimes_{H(G,K)} \mathbb{C}_{\lambda}.$$

$$P_{K,G}(\omega_{\lambda}) := \{ f \in C(G/K) | f * \phi = \omega_{\lambda}(\phi) f \ (\phi \in H(G,K)) \}.$$

² For a totally disconnected space X, C(X) and $C_c(X)$ denote the space of \mathbb{C} -valued functions on X, and the space of compactly supported ones, respectively

The space $P_{K,G}(\omega_{\lambda})$ is the eigenspace of H(G, K) under ω_{λ} . Both of $I_{K,G}(\omega_{\lambda})$ and $P_{K,G}(\omega_{\lambda})$ are G-modules via left translations by G. In particular $I_{K,G}(\omega_{\lambda})$ is smooth. We can see easily that $P_{K,G}(\omega_{\lambda})$ is naturally isomorphic to $I_{K,G}(\omega_{\lambda-1})'$, the dual space of $I_{K,G}(\omega_{\lambda-1})$, and

$$I_{K,G}(\omega_{\lambda}) \simeq C_{c}(G/K) / \langle f \ast \phi - \omega_{\lambda}(\phi) f \ (f \in C_{c}(G/K); \phi \in H(G,K)) \rangle.$$

See [1; Sect. 2] for other properties of $I_{K,G}(\omega_{\lambda})$ and $P_{K,G}(\omega_{\lambda})$.

2.3. Now we shall investigate $P_{K,G}(\omega_{\lambda})$ and $I_{K,G}(\omega_{\lambda})$ together. Let B be an Iwahori subgroup of G contained in K with an Iwahori factorization $B = N_0^-(M \cap K)N_0$ with respect to P. Here $N_0 \in N$ and $N_0^- \in N$. Define a linear map $\alpha : C_c(B \setminus G/K) \to C_c(M/M \cap K)$ by

$$\alpha(f)(m) = \delta^{-1/2}(m) \int_N f(mn) dn \qquad (m \in M; f \in C_c(B \setminus G/K))$$

where dn denotes the Haar measure of N with $\int_{N \cap K} dn = 1$. Set $T := M/M \cap K$. Then T is a free \mathbb{Z} -module of rank equal to rk_kG . Note that $C_c(M/M \cap K)$ is isomorphic to $\mathbb{C}[T]$ in obvious manner. Hence the map α induces $\beta : C_c(B \setminus G/K) \to \mathbb{C}[T]$ by $\beta(f) = \sum_{t \in T} \alpha(f)(t) t$ for $f \in C_c(B \setminus G/K)$. Here t denotes a representative element of t in M. We call β the Satake map. Set $\beta_0 := \beta|_{H(G,K)}$. It is well known that the map β_0 is what is called the Satake isomorphism which satisfies $\beta_0 : H(G,K) \to \mathbb{C}[T]^W$ (algebra isomorphism) and $\omega_{\lambda}(\phi) = \lambda^{-1}(\beta_0(\phi))(\lambda \in X_{nr}(M) = X(T); \phi \in H(G,K))$. But as in the case of β_0 , we can check similar results for β .

Lemma 2.4. Let $\lambda \in X_{nr}(M)$, $f \in C_c(B \setminus G/K)$ and $\phi \in H(G, K)$. Then we have

(i) $f * 1_{\lambda}(e) = \lambda^{-1}(\beta(f));$

(ii)
$$\beta(f * \phi) = \beta(f)\beta(\phi)$$
.

Proof. It can be checked straightforwardly thanks to Iwasawa decomposition G = KMN and the expression $dg = \delta^{-1}(m)dkdmdn$ where dk (resp. dm) denotes the Haar measure of K (resp. M) with $\int_{K} dk = 1$ (resp. $\int_{M \cap K} dm = 1$). cf. [4; (3.3)].

Proposition 2.5. The map $\beta: C_c(B \setminus G/K) \to \mathbb{C}[T]$ is an isomorphism as a linear map.

Proof. For $t \in T$, set e_t the characteristic function of the double coset BiK. Owing to the decomposition $G = \bigcup_{t \in T} BiK$ (disjoint union), it suffices to show that $\{\beta(e_t) | t \in T\}$ is a basis of $\mathbb{C}[T]$. By (2.4),

$$\begin{split} \lambda^{-1}(\beta(e_t)) &= e_t * \mathbf{1}_{\lambda}(e) \\ &= \int_{Ki^{-1}B} \mathbf{1}_{\lambda}(g) dg \\ &= \sum_{t' \in T} (\lambda \delta^{1/2})(i') \operatorname{vol}(Ki^{-1}B \cap Ki'N) \\ &= \sum_{t' \in T} (\lambda^{-1} \delta^{-1/2})(i') \operatorname{vol}(Ki^{-1}B \cap Ki'^{-1}N), \end{split}$$

which implies

$$\beta(e_t) = \sum_{t' \in T} \delta^{-1/2}(\dot{t}') \operatorname{vol}(K\dot{t}^{-1}B \cap K\dot{t}'^{-1}N)t'.$$

As in [5; (3.2.1)], let T^{++} and T^{+} be the subsemigroup of T associated with 'dominant coweights' and 'positive coroots' of " Σ , respectively. Here the positive

roots of ${}^{v}\Sigma$ or Φ are determined by the choice of \mathbb{P} . We denote $t \leq t'$ if $t^{-1}t' \in T^+$. The relation \leq is a partial order on T. Let t_d be the unique element of T^{++} , Wconjugate to t and f_t the characteristic function of $KtK = Kt_dK$. As $Kt^{-1}B \in Kt^{-1}K$, we have $\operatorname{supp}\beta(e_t) \subset \operatorname{supp}\beta(f_t)$ since

$$\beta(f_t) = \sum_{t' \in T} \delta^{-1/2}(t') \operatorname{vol}(Kt_d^{-1}K \cap Kt'^{-1}N)t'.$$

Note that $\beta(f_t) \in \mathbb{C}[T]^W$. Thus [2; (4.4.4)(i)] shows that $w(t') \leq t_d$ for all $w \in W$, provided $K\dot{t}^{-1}B \cap K\dot{t}'^{-1}N \neq \emptyset$. On the other hand, we have

Lemma 2.6. If $K\dot{t}^{-1}B \cap K\dot{t}^{\prime-1}N \neq \emptyset$, then $t \leq t'$.

Assume this for a moment. Then we have finally

$$\operatorname{supp} \beta(e_t) \subset \{w(t) | w \in W, t \leq w(t) \leq t_d\} \cup \{t' | t < t', w(t') < t_d \quad \text{for all} \quad w \in W\}.$$

Hence our assertion clearly follows since supp $\beta(e_t)$ obviously contains t.

Proof of Lemma 2.6. Note that $K\dot{t}^{-1}B = K\dot{t}^{-1}N_0 N_0$. Therefore $K\dot{t}^{-1}B \cap K\dot{t}^{'-1}N \neq \emptyset \iff \dot{t}^{-1}N_0 \dot{t} \cap K\dot{t}^{'-1}N \neq \emptyset$.

But the calculation of **c**-functions (see e.g. [5; (5.5.9)]) shows that the case of the right hand side occurs only if $t't^{-1} \in (T^+)^{-1}$.

Now we can prove the following which is analogous to [1; (4.4)].

Theorem 2.7. The G-modules $I_{K,G}(\omega_{\lambda})$ and $P_{K,G}(\omega_{\lambda})^{\infty}$ (the subspace of the smooth vectors in $P_{K,G}(\omega_{\lambda})$) are admissible.

Proof. As $I_{K,G}(\omega_{\lambda})^{B} = C_{c}(B \setminus G/K) \otimes_{H(G,K)} \mathbb{C}_{\lambda}$ by definition, the Satake map β induces an isomorphism

$$I_{K,G}(\omega_{\lambda})^{B} \cong \mathbb{C}[T]/\langle f\phi - \lambda^{-1}(\phi)f(f \in \mathbb{C}[T]; \phi \in \mathbb{C}[T]^{W}) \rangle$$

by (2.4) and (2.5). Taking the dual of the both sides, we have

$$P_{K,G}(\omega_{\lambda^{-1}})^{B} \leftarrow \{f \in C(T) | T_{\phi}f = \lambda(\phi)f \ (\phi \in \mathbb{C}[T]^{W})\}.$$

Therefore (1.1) shows that dim $P_{K,G}(\omega_{\lambda^{-1}})^B = \dim I_{K,G}(\omega_{\lambda})^B < \infty$ and this implies that $I_{K,G}(\omega_{\lambda})$ is admissible since $I_{K,G}(\omega_{\lambda})$ is generated by $I_{K,G}(\omega_{\lambda})^B$ (see [5;(5.5.6)]). Recall that $P_{K,G}(\omega_{\lambda^{-1}})^{\infty}$ is the contragredient G-module of $I_{K,G}(\omega_{\lambda})$. Hence this module is also admissible.

Corollary 2.8. For every $\lambda \in X_{nr}(M)$,

$$\dim I_{K,G}(\omega_{\lambda})^{B} = \dim P_{K,G}(\omega_{\lambda})^{B}$$
$$= |W/W_{\lambda}| \dim H_{1}(W_{\lambda})$$
$$\geq |W|,$$

and the equality holds iff W_{λ} is a reflection group in $GL(T \otimes \mathbb{R})$.

3. The Poisson Integrals

3.1. Define a G-homomorphism $\mathscr{F}_{\lambda}: C_c(G/K) \to E_{\lambda^{-1}}$ by $\mathscr{F}_{\lambda}(f) = f * 1_{\lambda^{-1}}$ for $f \in C_c(G/K)$. Then we can see easily that

$$\operatorname{Ker} \mathscr{F}_{\lambda} \supset \{f \ast \phi - \omega_{\lambda^{-1}}(\phi) f \ (f \in C_c G/K); \phi \in H(G, K))\}.$$

Hence \mathscr{F}_{λ} induces a *G*-homomorphism $\mathscr{R}_{\lambda}: I_{K,G}(\omega_{\lambda^{-1}}) \to E_{\lambda^{-1}}$. If we take the dual of \mathscr{R}_{λ} , we obtain a *G*-homomorphism $\mathscr{P}_{\lambda}: E'_{\lambda^{-1}} \to P_{K,G}(\omega_{\lambda})$, which we call the Poisson integral (of $E'_{\lambda^{-1}}$). Note that $(E'_{\lambda^{-1}})^{\infty} = E_{\lambda}$. It is easily seen that the restriction of \mathscr{P}_{λ} to $E_{\lambda}, \mathscr{P}_{\lambda}^{\infty}: E_{\lambda} \to P_{K,G}(\omega_{\lambda})^{\infty}$ is given by

$$(\mathscr{P}^{\infty}_{\lambda}f)(x) = \int_{K} f(xk) dk \qquad (f \in E_{\lambda}),$$

and this is the reason we call \mathscr{P}_{λ} the Poisson 'integral'.

Clearly the bijectivity of \mathscr{P}_{λ} is equivalent to the bijectivity of \mathscr{R}_{λ} (\Leftrightarrow the bijectivity of $\mathscr{P}_{\lambda}^{\infty}$). But by the definition of \mathscr{R}_{λ} , \mathscr{R}_{λ} is surjective iff $1_{\lambda^{-1}} \in E_{\lambda^{-1}}$ is a cyclic vector. Assume $1_{\lambda^{-1}}$ is cyclic. Then \mathscr{R}_{λ} is injective iff dim $E_{\lambda^{-1}}^{B} = \dim I_{K,G}(\omega_{\lambda^{-1}})^{B}$ since Ker $\mathscr{R}_{\lambda}^{\pm} = 0 \Leftrightarrow \operatorname{Ker} \mathscr{R}_{\lambda}^{B} = 0$ by [1, 5]. Thus the equality dim $E_{\lambda^{-1}}^{B} = |W|$ and (2.8) show

Theorem 3.2. The Poisson integral \mathcal{P}_{λ} is bijective if and only if the following conditions (i) and (ii) are satisfied:

(i) $1_{\lambda^{-1}}$ is a cyclic vector of $E_{\lambda^{-1}}$.

(ii) W_1 is a reflection group in $GL(T \otimes \mathbb{R})$.

Remark 3.3. It is obvious that our theorem has a close resemblance to [3;5]. Theorem]. There, the cyclicity of $1_{\lambda^{-1}}$ is expressed in terms of the c-function and W_{λ} is always a reflection group. In our case, for the condition (i), we can see easily that $1_{\lambda^{-1}}$ is cyclic iff $\mathbf{c}(\lambda^{-1}) \neq 0$ when $\lambda \in X_{nr}(M)$ is regular (i.e. $W_{\lambda} = \{e\}$). Here **c** is the **c**-function. But the general criterion for the cyclicity of $1_{\lambda^{-1}}$ seems unknown. As for the condition (ii), it can be proved that the condition (i) implies the condition (ii) for all $\lambda \in X_{nr}(M)$ under the assumption $q_{\alpha} = q'_{\alpha}$ for all $\alpha \in {}^{\circ}\Sigma$ (see [5] for the notation). In particular, the condition (ii) is superfluous (at least) for split groups.

Addendum

As for (3.3), we can prove the following:

Proposition A.1. If 1_{λ} is a cyclic vector of E_{λ} , then W_{λ} (= $W_{\lambda^{-1}}$) is a reflection subgroup of $GL(T \otimes \mathbb{R})$.

Here we shall give a proof of (A.1) by using results of [5].

Let H(G, B) be the Hecke algebra of G with respect to B. Let

 $A(w, \lambda) \in \operatorname{Hom}_{H(G, B)}(E^B_{\lambda}, E^B_{w, \lambda}) \quad (w \in W)$

be the intertwining operator defined in [5; (4.3.4)]. For $\alpha \in {}^{\upsilon}\Sigma$, we denote by \mathbf{d}_{α} (resp. \mathbf{e}_{α}) the denominator (resp. numerator) of the c-function $\mathbf{c}_{\alpha}[5; (4.3.1)]$; i.e. \mathbf{e}_{α} and \mathbf{d}_{α} are relatively prime, and $\mathbf{c}_{\alpha}(\lambda) = \mathbf{e}_{\alpha}(\lambda)/\mathbf{d}_{\alpha}(\lambda)$ for $\lambda \in X_{nr}(M)$. Then, for $w \in W$, $A^{0}(w, \lambda) := (\Pi_{\alpha > 0, w(\alpha) < 0} \mathbf{d}_{\alpha}(\lambda)) A(w, \lambda)$ gives a normalization of $A(w, \lambda)$, hence $\lambda \mapsto A^{0}(w, \lambda)$ is a (matrix-valued) everywhere-defined rational function on $X_{nr}(M)$. Put $W_{(\lambda)} = \langle w_{\alpha} | \mathbf{d}_{\alpha}(\lambda) = 0 \rangle$. Here w_{α} denotes the reflection of W associated with $\alpha \in {}^{\upsilon}\Sigma$. Therefore $W_{(\lambda)}$ is a normal subgroup of W_{λ} generated by reflections. Let W^{λ} be the representative set of $W_{\lambda}/W_{(\lambda)}$ such that $l(w) \leq l(w') (w \in W^{\lambda}; w' \in wW_{(\lambda)})$. Then (A.1) is a consequence of

Proposition A.2. The elements of

$$\{A^{0}(w,\lambda)|w\in W^{\lambda}\}\subset \operatorname{End}_{H(G,B)}E^{B}_{\lambda}$$

are linearly independent.

In fact, the cyclicity of 1_{λ} implies that dim $\operatorname{End}_{H(G,B)}E_{\lambda}^{B} = 1$. So we have $W_{\lambda} = W_{(\lambda)}$ by (A.2).

But in view of the following claim (its proof is easy and omitted)

$$\Pi_{\alpha>0,w(\alpha)<0}\mathbf{d}_{\alpha}(\lambda) \neq 0 \quad for \quad w \in W^{\lambda}, \tag{A.3}$$

the linearly independence of $\{A(w, \lambda) | w \in W^{\lambda}\}$ is readily seen from

$$(A^{0}(w,\lambda)f_{B})(\dot{w}') = \begin{cases} \Pi_{\alpha>0,w(\alpha)<0} \mathbf{d}_{\alpha}(\lambda) & (w^{-1}=w') \\ 0 & (l(w') \ge l(w); w^{-1} \neq \dot{w}') \end{cases}$$
(A.4)

where $f_{\mathbf{B}}$ is the unique element of $E^{\mathbf{B}}$ such that

$$f_{\boldsymbol{B}}(k) = \begin{cases} 1 & (k \in \boldsymbol{B}) \\ 0 & (k \in \boldsymbol{K} \backslash \boldsymbol{B}), \end{cases}$$

and \dot{w}' is a representative element of $w' \in W$ in K. For the proof of (A.4), see [5; (4.3.4) (ii)].

References

- 1. Borel, A.: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Invent. Math. **35**, 223-259 (1976)
- Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Chap. I. Publ. Math. I.H.E.S. 41, 1–251 (1972)
- 3. Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima, T., Tanaka, M.: Eigenfunctions of invariant differential operators on a symmetric space. Ann. Math. 107, 1–39 (1978)
- Macdonald, I.G.: Spherical functions on a group of p-adic type. Publ. Ramanujan Institute. No. 2. Madras (1971)
- 5. Matsumoto, H.: Analyse harmonique dans les systèmes de Tits bornologiques de type affine. Lecture Notes in Mathematics, Vol. 590. Berlin, Heidelberg, New York: Springer 1977
- Satake, I.: Theory of spherical functions on reductive algebraic groups over p-adic fields. Publ. Math. I.H.E.S. 18, 5-69 (1963)
- Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc. 112, 392-400 (1964)

Received January 8, 1980

Note added in proof. We can now give the necessary and sufficient conditions for the cyclicity of 1_{λ} in E_{λ} . To be more precise, we can prove:

1_{$$\lambda$$} is cyclic \Leftrightarrow (i) $\mathbf{d}_{\mathbf{x}}(\lambda) \neq 0$ for $\alpha \in {}^{v}\Sigma^{+}$; and
(ii) $W_{\lambda} = W_{(\lambda)}$.

Details will appear elsewhere.