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Introduction 

If  X is a Calabi-Yau threefold with an elliptic fibre space structure 47 : X ~ S 
over a surface S, there exists on X a nef integral divisor D on X with D 3 = 0, 

D 2 -~ 0 and D-c2 > 0. As a partial converse, given a divisor on a Calabi-Yau 
threefold X with D 3 = 0, D z N 0 and D. c2 > 0, there exists an elliptic fibre 
space structure on X determined by D ([17], (3.2)~). 

This paper considers the case when a Calabi-Yau threefold X contains a 
nef  integral divisor D with D 2 ~ 0 and D.cz = 0. Assuming X is not the 
6tale quotient o f  a toms, we know that D is not ample. If  however D 3 > 0,  

then 4,,o for suitable large n > 0 defines a birational morphism q5 �9 X --+ .g 
to a Calabi-Yau model X with e2(X) = 0, and this in m m  implies that lg is 
the quotient o f  a torus by a finite group acting freely in codimension 2 [161. 
We therefore investigate in this paper the case D 3 = 0; by Riemann-Roch 
we then have that )2(Cx(nD)) = 0 for all n, and so new ideas are needed to 
prove effectivity o f  the divisor riD. The main theorem o f  this paper proves this 
effectivity except when the Euler characteristic o f  X takes a specified value. 

Theorem. Suppose that X is a Calabi-t2tu threefold and D a rational nef  
divisor on X with D 3 = O, D.e2 = 0 and D 2 g~ O. Let El . . . . .  Er denote the 
(necessarily finitely many) surfiwes E on X with Die ~ O, Except possibly Jor 
the case when the Euler characteristic e(X)  = 2r and each Ei is a rational 
surface, some positive multiple o f  D will determine an elliptic fibre space 
structure on X. 

I f  we can show that some positive multiple o f  D is effective, then the 
argument from (3.2)' o f  [17] shows that ~b,D : X o-~ S is an elliptic fibre space 
over a surface S for an appropriate choice on n (cf. also [14, 13] ). Moreover, 
the condition that D.c2 = 0 says that this fibre space is very special; such 
special fibre spaces have been studied by Oguiso [14, 15]. In particular, it 
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follows that X is a smooth model o f  a finite quotient o f  either an abelian 
threefold or a product E • Y for E an elliptic curve and Y a K3 surface. This 
may be compared with the result proved in [16] for the case when D.c2 = 0 for 
a nef  class D with D 3 > 0. As in the case from [16], we should in principle be 
able to classify the quotients which arise in this way, and Oguiso has already 
made a start here [15]. The author is informed by Mark Gross that for an 
elliptic Calabi-Yau threefold X of  the above type, a direct calculation on a 
suitable minimal model shows that e(X)  > 0; this would also follow from the 
conjectured formula o f  Vafa for the Euler number o f  an orbifold resolution with 
trivial canonical bundle [1], known to be true when the group is abelian. As a 
Corollary o f  our Theorem, we deduce therefore that no Calabi-Yau threefold 
with e(X)  < 0 can contain a rational nef divisor D with D.c2 = 0 and D 2 ~ 0. 

The proof of  the Theorem proceeds by three stages. First we show that 
by flopping curves C with D - C  = 0, we may assume that the surfaces E i 

are simultaneously contractable by a birational morphism ~b : X  ~ X. Letting 

~q  denote the sheaf on k o f  q-forms regular in codimension 1, we show that, 
unless all the Ei are rational and e(X)  = 2r, there are necessarily global sections 

o f  H~163 or H~ for n sufficiently large. Stability arguments are 
then employed in Sect. 3 to show that in these cases, some multiple of  D must 
be effective. 

1 Contraction of the surfaces Ei 

We wish now to contract the surfaces Ei simultaneously to curves or points, but 
in order to do this we may have to flop to a different model. Since D : .  H > 0 
for H a general hyperplane o f  X, it follows that D.  C = 0 for only finitely 
many curves C on H,  and hence there are only finitely many surfaces E with 
DIE ~ 0. The notation is the same as in the statement o f  the main Theorem. 

Proposition 1.1. (a) I f  X '  is a birationally equivalent Calabi-Yau threefold 
and D' the divisor on X '  corresponding to D on X, then some positive multiple 
of  D is effective on X i f  and only i f  the same statement holds for D' on X'.  
(b) Changing X birationally by means of  a finite number of  flops in curves 
C with D. C = O, we may reduce the Theorem down to the case when there 
exists a birational morphism g : X ~ )( to a Q-factorial Calabi- Yau model 

R with g contracting all the surfaces Ei down to points or curves. We may 
also assume that D determines a Cartier divisor on X. 
(c) I f  g : X ~ k is a birational morphism to a Calabi-Yau model k on 
which D is Cartier and which contracts all the surfaces Ei on X for which 
D[t, =_ O, then there exists a very ample linear system ]LI on R such that the 
restriction DIL of  the Cartier divisor D to the general element of  the linear 
system is ample. 

Proof  (a) is obvious once we have observed that X and X ~ are isomorphic 
in codimension one, and in fact must be related by means o f  a finite sequence 
o f  flops [6]. 
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(b) For any surface E with DIE ~ 0, the Hodge Index Theorem implies that 

(D2.H)(E2.H) < 0 

with equality if  and only if E[H ~ 0, i.e. E = 0. Thus E] . H  < 0 for all i. 
We now invoke the theory of directed flops as developed in [6], and eluci- 

dated further in [8, 9]; the procedure following should be viewed in the context 
of  the general Log Minimal Model Programme as described in [5, 7]. Fixing 
H,  the surface E gives rise to a contraction on X (determined by E + 2H for 
some 2 C Q; cf. [17, 18]). If  this morphism does not contract all of  E, it is 
a small contraction of some curves Z C E with E . Z  < 0. We therefore make 
the corresponding E-flop on X. Continuing in this way, we will eventually 
terminate and reach a stage where the corresponding surface E '  on X '  can be 
contracted. We never reach the stage of  U being nef on X ~ since the divisor 
D on X ~ (corresponding to D on X)  continues to have the numerical property 
that DIE, -- 0, and hence as argued above that (Et)Z.H t < 0 for H ~ ample 
on X t. We therefore contract U ,  obtaining a Calabi-Yau model XI with only 
Q-factorial canonical singularities. We continue this process with the other Ei, 
eventually finding a model Xr with all the surfaces El . . . . .  Er contracted to 
smaller dimensions (we have of course made a number of  choices in achieving 
this). 

We now set )~ = X,. and let X / be any crepant resolution of the singularities 
of  X. By the theory of  [6], X ~ will be related to our original X by a finite 
sequence of flops. Since the singularities and Betti numbers are unchanged 
under flops [8], we deduce that X r is again a smooth Calabi-Yau threefold 
with e(X ~) = e(X); moreover the birational properties of  the Ei are unchanged. 
Furthermore, since we have only flopped curves C for which D.  C = 0, the 
relevant numerical properties of  D are unchanged, i.e. D represents a rational 
nef divisor on X ~ with D 3 = 0, D.c2 = 0, D 2 ~ 0 and DI~, -= 0 for the 
corresponding surfaces E: on X' .  In the light of  (a) therefore, for the purposes 
of  proving the main Theorem, we may replace X by X~; i.e. we now assume 
X = X t and that there exists a simultaneous contraction 9 : X ~ )(  of  the 
Ei. Replacing D by a multiple if necessary, we may consider D (by abuse of 
notation) as a Cartier divisor on )(. 

(c) Let ILl denote a very ample linear system on X and consider the countable 
number of  families of  curves C on 3~ with D- C = 0 (parametrized by various 
Hilbert schemes). Suppose first there is a covering family; the parameter space 
for this family will have to be of  dimension two and the family unique, since 
otherwise it is possible to find a big divisor M on X with D 2.M = 0. By 
taking a multiple of  L if necessary and choosing L general, we can assume 
that L contains no curves from this family. 

The other families either cover surfaces in ,Y or are isolated curves. I f  a 
surface F C )(  only contains a 1-dimensional family of  curves C with D.  C = 
0, then by choosing L general, we may, assume that L contains no curve of  
the family. I f  however F contains a family of  dimension > 1, then we can 



696 P.M.H. Wilson 

consider the corresponding surface E on X. Taking a resolution of  singularities 
f :  Y --~ X of the embedded surface E, we obtain a corresponding family of  
curves on the proper transform E'  of  E with D.  C = 0 for all curves C in 
the family (where D is also used to denote f*D on Y). Since this family has 
dimension > t, we can take A a sum of  such curves on E' ,  a divisor which 
is nef with A 2 > 0. Since however D-A = 0, and D is nef, the Hodge Index 
Theorem implies that D 2 .E r = 0 and DiE, =-- 0. Thus Die -- 0 and so E is 
one of  the surfaces contracted by g, a contradiction. It follows therefore that 
by taking L general in its linear system (i.e. in the complement of  countably 
many proper subvarieties of  ILl), we may assume that L contains no curves C 
with D.  C = 0, and hence that Die is ample, 

2 Calculations for H~ 

In this section, X will denote a Calabi-Yau threefold containing a divisor D 
and surfaces El . . . . .  E,. with the properties as given in the statement of  our 
main Theorem, and g : X ~ )(  a morphism to a Calabi-Yau model )? which 
contracts all the Ei and for which D is Q-Cartier on )(; we shall furthermore 
assume without loss of  generality that D is in fact Cartier on )?. By (1.1)(iii), 
we can choose a very ample linear system JLI on )? for which the restriction 
DIL is ample for L general in its linear system. Mainly we shall be interested 
in the case when )? is Q-factorial, but at one stage in the proof of  (2.3)(iii) 
we shall need the slightly more general case. 

We shall resolve the exceptional locus of  g : X ~ 37 into a divisor with 
smooth normal crossings d' on a smooth threefold )(. Thus we have f : k --, k 
with ~ = f - l ( S i n g  X).  To fix notation, we suppose that the components of  
E are smooth surfaces Ft . . . . .  FN, where F j is a resolution of Ei for i < r. 
We consider the sheaf O~(log ~). Since L is ample on )(,  it follows from 

Corollary 6.7 of  [2] that Hl(f2~?(log r  = 0. The Leray spectral se- 

quence then implies that H 1 ( f ,  f2~ (log r ) ( -  L)) = 0. We may however assume 

that L has been chosen such that H~ = 0, where as before ~ )  de- 
notes the reflexive sheaf of  1-forms regular in codimension one. We have an 
exact sequence of sheaves 

0 ~ f ,  f2~(tog •) ---+ ~ -  ~ Q --+ 0 

where the sheaf Q is concentrated in dimension zero (since the 1-dimensional 
singular locus o f )?  consists of  quotient singularities). Thus tensoring the above 
exact sequence by ~O,q(-L) and considering the corresponding long exact se- 

~1 
quence on cohomology, we deduce that Q = 0, i.e. that f ,  f2~(log g)  = f2s 

Proposition 2.1. With notation as above, H l ( f ~ ( l o g  ~ ) ( - n D ) )  = 0 for all n 
sufficiently large. 
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Proof. Since L is ample on )(, we saw above that Hl(f2~,(log 8 ( - f ' L ) )  = O. 

Let S be a general element of ]f*L I and 5 E ILl the corresponding element of 
ILl. The surface 5 has rational double point singularities, and S is a desingu- 
tarization. We have an exact sequence from page 13 of  [2] 

0--~ f2x(log 8)--~ f2~(log(8 + S))~-~ ~:~s -~ 0 .  

Tensoring by C ( - n D ) ,  we deduce using the Kawamata-Viehweg form of 
Kodaira vanishing that 

Hl(f2~?(log S ) ( - n D ) )  ~ Hl(f2~?(log (8  + S ) ) ( - n D ) ) .  

From the second exact sequence on page 13 of [2], we have 

0 ~ f2~(log(8 + S ) ) ( - S  - nD) ~ f2:~(log (8  + S ) ) ( - n D )  

O~s(log (81s) ) ( -nD)  -~ 0 .  

We know that Hl(f2~c-(log(8 + S ) ) ( - S -  n D ) ) =  0 by (6.7) from [2], so the 

Proposition follows if we show that h l(f2~(log (8 [ s ) ) ( -n D ) )  = 0. Let M be the 
number of curves Ci in 8Is, i.e. the number of exceptional curves of S ~ S. 
Thus we have an exact sequence 

0 ~ O~s(-nD) ~ O~s(log(8]s))(-nD) ~ | ~ 0 

and hence an exact sequence of spaces 

0 ~ C M -~ H 1 (f21s(-nD)) --+ H 1 (f2s~ (log ( r  --+ H 1 (| = 0 .  

Now D is by assumption ample on S, and so 

Ht( f21s (_nD) )~  1 1 , - ~  = R f ,  f2 s = C M, 

this latter isomorphism holding for any rational surface singularity. The result 
therefore follows. 

Lemma 2.2. The skeaf  Rt f , f2~(log 8 )  has at most zero dimensional support. 

Proof. On )(, we have 

where the sum is take over all components Fi of  8. Thus 

f , (21  ~ f.f2J?(log 8)---~ of . ( .gF,  ~ RIf.f2J? 

---~Rl f .OJ?(log 8 )  --+ |  , CF, . 

Restricting to S, and letting Zi = Fits (where a non-zero Zi is either a single p1, 
or two disjoint such curves corresponding to a line pair in the corresponding 
fibre of  Ei), we obtain: 
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cM ~ OH~ --~ R~f'*E2~t~, -+ RIf*Q~(l~ g)Lq -+ | = O. 

But H~ "~ Hl(f2~ls | (;(nL)) for n sufficiently large. From the 
exact sequence 

0 -~ e s ( ( n  - I )L)  -+ nJ~Is | e ( n L )  -+ ~ | ~9(nL) - ,  O, 

the above group is the same as Hl(f2}(nL)) ~ Rlf.f2~ ~ C M, Thus from the 
previous displayed exact sequence, it follows that Rlf.f2~7(tog E)I ~ = O, and 
hence the Lemma is proved. 

Observe now that X(~x(nD)) = )~(~)) for any n E Z (by Riemann-Roch 

and the Leray spectral sequence), and that h3([l~(nD)) = h ~  for 
any n E Z (cf. [4], page 131). 

Theorem 2.3. With the notation as above, assume that h~ = 0 for 
infinitely man2}' n > O, for both q = 1,2. Then 

(i)  z ( f i~ )  = 0 
(ii) Rl/.g2)(log g ) =  0 

(iii) El,...,E~ are rational surfaces and X(f~)(log g) )  = 0 
(iv) The Euler characteristic e (X)= 2r. 

Proof (i) We have seen that Hl(~9~,(log g)(-nD))  = 0 for n sufficiently 

Iarge, and hence by Leray that Hi(f2)(-nD)) = 0. Since, by assumption, 

h3(~2~(-nD)) = h~ = 0 for some large n, it follows that ;~(f)~-) = 

h2(~2x(-nD)) > 0. A standard argument however shows that Hz(~f(nD)) = 0 
for n sufficiently large (since DI~ is ample), and hence Z(~))) = Z(g)~-(nD)) = 

-hl((2)(nD)) < 0 for some large n. Thus Z(~=) = 0 as claimed. 

(ii) The tSct that h2(~2]~(-nD)) = 0 and hl(f2)(log g)(-nD)) = 0 for some 
large n, implies by Leray that h~ g)(-nD))  = 0. Since the sheaf 
has support in dimension zero (2.2), this gives R~f ,  f2)(log g)(-nD) = O. 
(iii) We observe that the tangent space to the deformation space at 2? is 
Extt(g2},(g2), which by Serre duality is dual to H2(QI,). But f~} is reflexive 

~1 
except at the finitely many dissident points; i.e. the cokernel of f~- r247 f2r has 

support only at these points. Thus H2(f21f) ~ H 2 ( ~  - ). Since R l f ,  fl],(log g )  = 

0, it follows from the Leray spectral sequence that h2(~]-) < hZ(Q}(log g)).  
However, from the exact sequence 

0 -+ f~} --+ f2}(log 8)  --~ | --~ 0 

we deduce that 

0 --+ ~H~ --* H ' ( f2 ) )  ~ H~(f2}(log C)) 

is exact. Here g1(f2~-) ~ H2(.Y,C) ~ PiCr ~) = Pic (A?)|  C and 
H l ( ~ ( l o g  ~))  ~ H2(X \ ~, C), the latter since H~ g) )  = 0 = H2(02) .  
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Moreover, the natural map H 2 0 ( \  8 , C )  ---+ H2()7 " \ 8,(97) factors through 
H2(~2~ 8 ) ) =  H2((5~s 0, and hence is itself zero (cf. [3, p. 146]). Us- 

ing the fact that the singularities o f ) (  are Cohen-Macaulay and rational, it also 
follows that H1()2 \ 8,6)2) = H1()7 " \ Sing (X),C2) = H1()(,(92) = 0. This 
then gives a natural isomorphism Picc(A~ \ 8 )  ~ H 2 0  ~ \ 8, C). Since the map 
Picc()7") ---+ Picc(X \ ~)  is surjective, the previously displayed exact sequence 
is also exact on the right. This then yields an exact sequence of vector spaces 

0 ---+ @HI((-0F,) --+ O2(~"~ 1 )  ----+ H2(~]}(log 8) )  --~ 0 ,  

exact on the right since HZ((OF, ) = 0 for all i. 
As k is obtained from X by blowing up points or smooth curves, we know 

that Hz(QI~) ~ H2(QIx) @ (~i>rHI(CF~); from this and the above displayed 

sequence it follows that h2(Q~-(log 8 ) )  < h2(~2}), with equality if and only if 
the surfaces FI . . . . .  Fr are rational (recall that these are desingularizations of 

Et . . . . .  Er). Thus h 2 ( ~  -) < h2(t;2)c), where the two numbers can be interpreted 
as the dimensions of tangent spaces to the deformation spaces. 

However, any small deformation of X wilt blow down to give a small de- 
formation of 3(, and hence induces a map on tangent spaces (to the spaces 

of deformations) H2(~21) v - - +  H2(~5)  v. The Kuranishi space of X is smooth 
(since by the theorem of Bogomolov-Tian-Todorov, the deformations of a 
Calabi-Yau threefold are unobstructed), and the map of  (germs of) deforma- 
tion spaces Def(X) + Def(X) has only finite fibres (the crepant resolution is 
determined canonically up to a finite number of choices and so there cannot be 
a positive dimensional family of deformations within the fibres of this map). 
Thus, if X is general in moduli, we will know that the corresponding map on 

tangent spaces tt2(Q~) v --+ tt2(~l~)v is injective (i.e. we are at a point for 
which the map Def(X) -+ Def(A?) is unramified), and hence the dimensions of 

the two tangent spaces are equal, i.e. h2(s~lq) = h2((2~.). In the case when X 
is rigid, this equality is trivial as both dimensions are zero. 

To deal with the case when X is not necessarily general in moduli, we 
consider a general 1-parameter small deformation rt : Y" ---+ A of X. The con- 
traction g : X -~ X is detemfined by some nef and big divisor on X, and 
we may assume that this defines a contraction of the whole family (vanish- 
ing theorems ensuring that the cohomology does not jump in the family). We 
therefore obtain a small deformation of )(, say ~ : ~" ---+ A. Letting Xl be 
a general fibre of the family ~ : Y" -+ A, we obtain a map gl : X1 ---+ )71 
which satisfies the conditions stated at the beginning of the Section (we are 
only contracting curves C with D - C  = 0); here 3~1 is not a priori Q-factorial 
even if 2( is taken to be a Q-factorial model. By considering the reflexive 

~1 
sheaf Y2~,/a, which is flat over A, and applying standard semicontinuity theo- 

rems, we may assume that h~ = 0 for infinitely many n > 0 (for 
both q = 1 and 2). Our previous argument may then be applied to the con- 
traction gl : )(l -+ )(l ,  and since Xi has been chosen to be general in moduli, 

we deduce that h2(~ t ,  ) = h2(Q~., ). 
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2 ~1 Semicontinuity however also implies that h2(O~) > h (~y~); since h2(~)c) 

= h2((2~,) and h 2 ( ~  -) < h2(~J(), we deduce the equality h 2 ( ~  -) = h2(~)~.) 
on X; this we saw above could only happen if F~ . . . . .  Fr were all rational 

and h2(O~x) = hzO~,Q~(log ~))  = h2(O~-). The Leray spectral sequence then 

implies (in the light of (ii)) that RZf.O)(log ~)  = 0 and that/+(g2~(log ~))  

= z ( f i ~ )  = o.  
(iv) We have seen in the argument of  (iii) that h l ( ~ ( l o g  .~)) = h l ( ~ ) - N  

= ht(~2~)--r and that h 2 ( ~ ( t o g  g) )  = h2(~)v), given our initial assumptions. 

Since hi(Q~(log g) )  = 0 for i = 0 or 3, we deduce that 0 = Z(Q~?(log g ) )  = 

Z(~2~) + r, and hence e(X) = 2r as claimed. 
The main conclusion from this section is therefore (with notation as before) 

that, unless the surfaces El . . . .  ,Er are rational surfaces and e(X) = 2r, either 

H ~  or H~ has sections for all n sufficiently large. In the 
next section, we show by means of stability considerations that this implies 
that mD is effective for some m > 0. 

3 Proof of the main theorem 

In this section, we follow previous notation, but with X now assumed to be 
the Q-factorial Calabi-Yau model of X constructed in Proposition 1.1. We saw 

in (2.3) that unless e(X) = 2r and each E; is rational, either h~ or 

h~ is positive for all n sufficiently large. We show that in either case 
mD is effective for some m > 0. We assume for simplicity that we are in the 
former case; the proof for the other case is entirely analogous. We may also 
assume (replacing D by a multiple) that D is Cartier. 

0 ~1 We assume that for some no, H (~g(nD))#O for n > no, and suppose first 
that all the sections obtained (for different n) are dependent when considered as 
rational forms at the generic point of  A?. Thus we have the inclusion of  a rank 

1 saturated divisorial sheaf LP ~ ~}:(noD) (corresponding to a Q-Cartier Weil 
divisor L) such that L + rD >_ 0 for all r ~ 0. We observe that semistability 

~1 
of the sheaf ~2~ (see [11]) implies that D2.L = 0+ Now set L = M + F 
where F is fixed in IL + rD t for all r > 0 and is maximal with respect to this 
property (i.e. it is the h.c.f, of  the fixed parts of the linear systems). Note that 
D 2 .M = D 2 . F  = 0, and that M + rD > 0 for all r ~ 0. If M = 0, we have 
the required conclusion; therefore we assume M # 0. Thus for any component 
Mi of M, there exists an integer r; > 0 such that Mi is not a fixed component 
of Im+ riD[. 

The Hodge Index Theorem (with respect to the hypersurthce mD + H for 
m >> 0) shows that ' 

{M 2 .(mD + H)}{D 2 .H} __< {M.D.( roD + H)} 2 
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where now the righthand side is bounded, and therefore D . M  2 < O. Given a 
component Mi of  M, we know that [M+riD I does not have Mi as a fixed com- 
ponent, and hence D . ( M + r i D ) . M i  > O. But D 2.Mi = 0 and so D . M . M i  > 0 
for all i. Therefore D . M  2 = 0 = D . M . M i  for all i. 

Suppose now that C is a curve with M .  C < 0; then C C Mi for some 
component M / o f M .  Since Mi is not a fixed component o f  [M+riD[, we know 
however that (M § riD). C >- 0 unless C is in the intersection (M + riD)NMi, 
where divisors here are chosen to be general in their linear systems. In this 
way, we produce an integer r > 0 with the property that M § rD is negative 
on only finitely many curves C, and these all have D~ C = 0. 

We now make flops directed by the effective divisor M + rD on )? (cf. 
[6, 8, 9]); as shown above, we may always assume that only curves C with 
D .  C = 0 are flopped. Eventually, we reach a model on which M § rD is also 
nef (we cannot reach a model for which some component Mj is contracted, 

since then the corresponding surface M j  on  )(  is necessarily fixed in ]M + rD[ 
f o r r  > 0 ) .  

With g : X  t ~ 3?/ -~ a resolution o f  singularities for the flopped model X ,  

2' we have divisors M v and D t on with g*(M ~ § rD ~) nef and effective on 
X ~ for r>>0. Thus some multiple o f  it will move without fixed points by [14]. 
The Calabi-Yau threefold X ~ can be obtained from X by means o f  flops in 
curves C with D . C  = 0. The fact that DZ.(M § rD) = 0 on .~ implies that 
(D~) 2 .g*(M ~ + rD ~) = 0 on X ~ and hence that the morphism 05 corresponding 
to an appropriate multiple of  g*(M~§ rD ~) cannot be birational. Moreover, if 
the image is one-dimensional, then (M ~ § rD~).(M ~ § rD ~) =- 0 for all r>>0, 
and hence that (Dr )  2 " H  t = 0 for H t ample on X p. Hence D 2 "Htt  = 0 for some 
big divisor H "  on X, which is a contradiction. 

Thus 05 : X ~ -+ S with g*(M ~ + rD ~) = 05*Ar for some Ar ample on the 
surface S. Moreover, S has only quotient singularities, and so is in particular 
Q-factorial (cf. (0.4) of  [12] and (3.1) o f  [14]). Also 9*(M' + ( r §  1)D')  > 0 
with 

(M' + rD') . (M'  + rD') . (M'  + (r + 1)D')  = 0 .  

This implies that 9*(M'+ (r + 1)D ~) is of  the form 05"A for some Q-Cartier 
divisor A on S. Thus D ~ = 05"A0 for some nef  Q-Cartier divisor A0 on S with 
Ag > 0 (since D 2 ~ 0 implies that (D~) 2 ~ 0). It follows therefore (from 
Riemann-Roch on a smooth model o f  S) that some positive integer multiple 
of  A0 on S is effective, and hence that mD ~ > 0 on X t for some m > 0; i.e. 
mD >- 0 on X as claimed. 

We may reduce consideration therefore to the case when there is no integer 

no for which the sections of  H~ are dependent for n > no, when 
considered as rational forms at the genetic point o f  )(. Thus we obtain non-zero 

sections o f  H~ for infinitely many n. I f  these are not all dependent 

at the genetic point, then we know that there are sections a E H~ 

and ~o E H~ with a/~ ~o:~0 as a 3-form at the generic point of~- .  
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Thus 

a A oJ E H ~  + n2)D))  ~ H~176 + n2)D))  

is a non-zero section, and hence (nl + n2)D > O. 
0 ~ 2  

Finally we deal with the case o f  an infinite sequence r E H (122(niD)) of  
dependent sections; specifically that there exist generically independent o~ C 

0 ~1 0 ~1 
H (Q2(mlD) ) ,a2  E H (Qy(m2D)) ,  with al  A r,D i : 0" 2 /~ (-D i ~--- 0 for all i. We 
now proceed in an analogous way to our previous argument (which works also 

0 ~1 
in the case of  only an infinite sequence of  dependent sections in H (~2(n iD) ) ) ,  

~ 2  
obtaining an inclusion of  a rank 1 saturated divisorial sheaf  5 p ~ ~2(noD),  
and a corresponding Q-Cart ier  Weil  divisor L > 0 with L + nD > 0 for 
n = O, nl,n2 . . . . .  Writing L = M + F as before, with F fixed in IL + n i D  I for 
all i > 0 and maximal  with respect to this property, we follow the earlier 
argument. I f  M = 0, we obtain hiD >: 0 for i >= 0. I f  not, we deduce that for 
some r > 0, the divisor M + rD is negative on only finitely many curves C, 
and these all have D .  C = 0. With  D assumed Cartier, the previous argument 
(modified in obvious ways)  yields the fact that mD > 0 for some m > 0. 

We have therefore demonstrated the following result. 

Proposition 3,1. I f  g : X ~ X as in (1.1)(b) and there are non-zero sections 

o f  H~ fo r  all n sufficiently large, then mD > 0 Jor some m > O. 

A similar result holds i f  there are non-zero sections o f H ~  all n 
sufficiently large. 

This together with (1.1) and (2.3) provides a proof  o f  our main Theorem 
as stated in the Introduction. 

Acknowledyement. The author wishes to thank Nick Shepherd-Barron for the benefit of 
several conversations on the material below, in particular on some of the arguments contained 
in Section 2. 
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