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Let X be a normal projective variety defined over the complex field. The 
homology class of  a curve d on X will be denoted by [d]. Let 

NE ( X ) =  { ~-~ai[ci]lci is an irreducible pr~ curve ~ X'ai E IR'a~ >= O 

N E ( X )  is the cone of  curves of X.  The closed cone of curves o f X  - denoted 
by N E ( X )  - is the closure of  N E ( X )  in H2(X, IR). NE(X)  ~ and c~NE(X) 
denote the interior and the boundary of NE(X) in the vector space it spans in 
H2(X, JR). 

The aim of this article is to prove the following: 

Theorem 1. Let X be a smooth algebraic K3 surface with Picard number at 
least three. Then one of the following conditions is satisfied: 
(*) X does not contain any curve of negative se~;intersection. 

(**) N E ( X ) =  ~ I R + V ]  where the sum runs over all smooth rational curves 
on X. 

In the next section after introducing the necessary notations, a complete 
classification of the possible cases will be given. 

1 Notations and statement of the main results 

Let X be a projective surface and h be an ample class on X. Let 

~ ( X )  = {~ E H2(X, IR) ] (~.~) = 0 , (~.h)  => 0}. 

A Q-divisor on X is a •-linear combination of divisors on X. NS(X)  denotes 
the Ndron-Severi group, that is, the image of Pic(X) in H2(X, Z). The Picard 
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number of  X,  denoted by p(X), is the rank of NS(X), i.e. the dimension of 
NS(X)  | Q. 

A homology class that can be represented by an effective (resp. irreducible, 
ample) divisor is called effeetive (resp. irreducible, ample). An effective class 
is indecomposable if it is not the sum of two other effective classes. Note, 
that by definition an indecomposable class can be represented by an effective 
divisor, h will always mean an ample class. 

A K3 surface is a two-dimensional compact complex K~hler manifold with 
trivial canonical class and such that its first Betti number is zero. 

An algebraic' K3 surJhce is a normal algebraic surface such that its minimal 
smooth resolution is a K3 surface. 

Let X be a smooth algebraic K3 surface. The classes of  the ( -2) -curves  - 
smooth rational curves of  self-intersection - 2  - are called the nodal classes, 
The set of  ( -2) -curves  is denoted by ,A~(X) and the set of  irreducible rational 
curves of  self-intersection zero is denoted by g(X).  

Now with these definitions and notations the main result can be stated. 

Theorem 2. Let X be a smooth algebraic K3 surface. Then 
2.1 One of  the Jblh~wing statements holds: 

(i) p(X)  = 1 and NE(X) = IR+h, where h is an ample class. 
(ii) p(X)  = 2 and NE(X) = lR+[e] + tR+[(], where e E o~(X) and f E ~U(X). 

(iii) 2 ~ p(X) < 4, NE(X) --'= Conv(~(Y)))  and ~NE(X) does not contain 
any effective class, L e. X contains neither smooth rational nor smooth elliptic 
curves. 
(iv) 2 < p(X) < I 1, NE(X) = Conv(~(X))) = ~E~(X)  IR+[e] in particular 

X does not contain a smooth rational curve. 
(v) 2 < p(X) < 20 and ffl~(X) = ~ / ~  l(x) IR+V] 

2.2 All of  these cases do occur for every indicated value of p(X). 

Corollary 1, Let X be a smooth algebraic K3 surface. Then NE(X) is either 
circular or has no circular part at all. 

Corollary 2. Let X be a smooth algebraic K3 surface such that p(X)  > 2. 
Then either O ~ ( X )  does not contain any ~-divisor class (i.e. there are no 
rational curves of  self-intersection 0 or - 2 )  or NE(X)  is generated by the 
homoloyy classes o f  rational curves o f  self-intersection 0 or -2 .  

Corollary 3. Let Y be a singular a~lebraic K3 smJbce, then NE(Y)  is gener- 
ated by rational curves. 

Throughout file article X will denote a smooth algebraic K3 surface, 
X will be called o f  type ( i ) - (v )  according to which case occurs for it in 

Theorem 2. 
The rest of  this section is devoted to fixing some notation and recalling an 

important result. 
The rank of  a cone is the dimension of  the vector space it spans. A cone 

of rank 1 is called a ray. A vector of  a convex cone v E C is extremal i f  
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u + w  E lR+v and u, w E C imply, that u, w E IR+v. Extremal ray is a ray 
generated by an extremal vector. Let C C lRf' be a closed convex cone. Let 
c3C denote the boundary of  C in IRP and let v E ?C. C is locally .[initely 
generated at v if there exists a closed subcone B of  C and finitely many 
vectors vl . . . .  v, E C such that v ~ B and C is generated by B and {vl . . . . .  v,,}. 
Let U be a nonempty open subset o f  ~C. IR+U is a circular part o f  C, if 
C is not locally finitely generated at any point of  U. C is circular if ?C is a 
circular part of  C. By abuse of  language, a cone will be said to be contained 
in an open hall" space if the cone minus the origin is contained in an open 
half space given by a hyperplane, that contains the origin. If A is a subset of  
a real vector space, Cony(A) will denote the convex hull of  A. 

A lattice (A, < ,  > )  is a free 7/-module of  finite rank equipped with a ~-  
valued symmetric bilinear form < ,  > .  The discriminant o f  A, denoted discr(A) 
is the determinant of  the matrix of  its bilinear form. A is non-degenerate 
if discr(A)=l=0. A is unh,lodular if d i s c r ( A ) =  •  A is even if for every 
x C A,(x,x)  C 22~ and it is odd otherwise. Let (A, < ,  > )  be a lattice. - A  
shall mean the same module A, equipped with a bilinear form that is - 1  times 
the one of  A. 

An embedding Z ~ A of  lattices is primitive if A / S  is free. A sublattice 
is called primitive if it is the image of  a primitive embedding. 

Example, 1.1 U denotes the hyperbolic plane, that is U is a free 2~-module of  
rank 2 whose bilinear form has matrix 

'0) 
Example 1.2. E8 denotes the unique even unimodular positive definite lattice 
o f  rank 8. For the explicit description o f  its bilinear form see [BPV, 1.2.7] or 
[Ser, V. 1.4.2]. 

From standard results it is easy to see, that H2(X, ~ )  is torsion-free o f  rank 
22 and, when equipped with the cupproduct pairing, isometric to U 3 (~'~ ( -Es )2 ,  
which is a unimodular lattice o f  signature (3, 19) and p(X)  ranges from 1 to 
20. 

The transcendental lattice o f  X ,  denoted by Tx, is the orthogonal com- 
plement o f  NS(X)  in H2(X,Z).  Then the Hodge Index Theorem implies, that 
NS(X)  and Tx has signature ( 1 , p ( X ) -  1) and ( 2 , 2 0 -  p(X))  respectively. 

To prove the existence of  certain K3 surfaces the following result o f  
D. Morrison will be needed. 

Theorem 1.3 [Mor, 1.9]. Suppose S is a primitive sublattice o f  L = U 3 �9 
( -E8)2  o f  signature (1, p - 1). Then there exists an algebraic' K3 surface X 
such that NS(X)  = S. 

Corollary 1.4 [Mor, 2.9(i), 2.11]. I f  p < 11, then every even lattice S o f  
signature ( l , p -  1) occurs as the NOron-Severi group o f  some algebraic K3 
surJace. 
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2 Convex cones and sets 

Lemma 2.1. 2.1.1 I f  C is a closed convex cone in IRP, then every vector in 
C is the sum of  vectors which are extremal in C. 

2.1.2 I f  A is a cone in IRP such that Cony(A) is contained in an open half 
space, then Cony(A)= Conv(~l ) 

2.1.3 Every effective class can be written as a sum of  indecomposable 
classes. 

2.1.4 I r A  and B are subcones o f  NE(X),  C = A + B and fl,B C C, then 
C is closed 

Proof  (i) and (ii) are easy exercises. For (iii) and (iv) one can use Kleiman's 
criterion for ampleness which guarantees the necessary compactness of a cross 
section of the cone. Q.E.D. 

Lemma 2.2. 2.2.1 Let fn E ~U(X),2, E IR+,~ E NE(X)  such that 2,fn --+ 3. 
Assume that{fnln E IN} is an infinite set, then 

(~.~)=o.  

2.2.2 

IR+V] c ~ IR+V] + Conv(~(X)) 
re, ~ (x ) t ~, t~(x) 

Proof Let f be an arbitrary nodal class. For infinitely many n, fn + f ,  so 
( f n . f )  ~ 0 and then ( ~ . f )  > 0. Apply this for every G to see, that in fact 
(~.~)  > 0, but it is also < 0, since (2 , fn '2~fn)  < 0. This proves 2.2.1 and 
that 

Lemma 2.1(ii) finishes the proof. 

c U 
~A~(x) 

Q.E.D. 

Corollary 2.3. 2.3.1 NE(X)  = ~fE.~(x)  IR+V] + Conv(~(X)) 

2.3.2 NE(X)  N {r E H2(X, IR)[(~. 3) < 0} is locally finitely generated 
2.3.3 I f  ~ is extremal in NE(X),  but it is not a multiple o f  a nodal class, 

then (3" r = O. 

Proof By [BPV, VIII.3.6] and [CKM, (4.4), (4.5)] 

NE(X)  C ~ IR+[f] -1- C o n v ( ~ ( X ) ) .  
rex(x)  

Then Lemma 2.2 and Lemma 2.1(iv) implies 2.3.1. 
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Let h be a fixed ample class and e > 0. By 2.2.1 there are only finitely 
many nodal classes that are not contained in Conv(~(X)), where ~  
{~ E Hz(X, IR)](~,~) > - t : (~ .h)Z,(~.h)  > 0}. Then by 2.3.1 

~ ( X )  = ~ IR+Vi ] + N'E(X) n Conv(~e(X)). Q.E.D. 
i==1 

I f  an effective class is extremal, then it is clearly indecomposable, but not vice 
versa. However if  it is indecomposable and of  negative self-intersection, then 
it is a nodal class, so it is extremal, too. The next result shows that the same 
happens if it is of  self-intersection zero. 

Proposition 2.4. Let e be an eff'ective divisor class of  self-intersection zero. 
Then e is indecomposable if" and only ~f it is extremat. 

,Proof Let e be an indecomposable divisor class of  self-intersection zero. let 
defines an elliptic pencil that covers X, so if d is any other irreducible class, 
(e.d) will be positive, which means that e is mmaerically effective and an 
effective Q-divisor class can have zero intersection product with e if and only if  
it is a multiple of  it. Let (e = 0) = {r E H2(X,R)I(e.r 0}. Now (e = 0) is 
a supporting hypevplane that contains no other effective class than the multiples 
of  e. Then (e = 0) N '~(X) : ]R+e. 

Suppose now that e = ~in~=l ai, ai extrernal. Since (e = 0) is a supporting 
hyperplane, ai E (e = 0). (e = 0) contains no other effective class than the 
multiples of e, so by Corollary 2.3 cri E ~(X).  Then ai E (e = O)N ~ ( X ) =  
lR+e and e is extremal. Q.E.D. 

Corollary 2.5. Let a E ~3~(X)  be indecomposable. Then a is extremal. 

The next lemma is true in some greater generality, but this is the form that 
will be needed later. 

Lemma 2.6. Let Q c IRP be a smooth compact quadratic hypersurface and 
C c IR p be a compact convex set. Assume, that Q ~ C, then there e.xists a 
U nonempty subset of Q such that U c ~Conv(Q u C). 

Proof Let q E Q~\C and L be a hyperplane in IRP, that separates q mad C. 
There exists a u E Q\C such that the tangent hyperptane of  Q at u is parallel 
to L and then it is disjoint from C, so u E ~Conv(Q u C). tt is easy to see, 
that there is a neighborhood U of  u such that the tangent hyperptane of  any 
point of  U is disjoint from C, so U C OConv(Q U C). Q.E.D. 

3 Subcones of NE (X) of rank 2 

The following lemma will play a very important role. Among other conse- 
quences it implies, that if the Picard number is two, then either none of the 
rays on the boundary or both of them can be generated by effective classes. It 
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also implies that if NE(X)  has a circular part and X contains a-2-curve, then 
it contains an effective divisor of self-intersection zero. 

Lemma 3.1. Let e,d be effective classes such that e E O-fq--ff~(X) and ( d . d )  > O. 
Let 7~ be the plane generated by e and d in H2(X, IR). 

3.1,1 I f  ( e . e ) =  O, then there exists an f E rcANE(X),  such that f is 
effective o f  self-intersection 0 and e and f are on opposite sides o f  d. 

3.1.2 I f  (e .e)  = - 2 ,  then there exists an f E rcNNE(X),  such that f is" 
effective o f  self- intersection 0 or - 2  and e and f are on opposite sides o f  d. 

Proof  Let a,b,c be ( d . d ) , ( d . e ) , ( e . e )  respectively and let x = ~d + qe. Since 
e C ONE(X), if  r/ < 0, then x ([ NE(X)  and 

(x .x )  = a~ z + 2b~l + e~l 2 . 

If  (e -e)  = 0, then 
(X'X) = a~ z + 2b~t l = 0 

has two rational solutions and since ( d . d )  > 0, they must be different, on 
different sides of  d. 

I f  (e .e )  = - 2 ,  then 

(x .x )  = a~ 2 + 2b~q - 2~I z = - 2  b z - ~l - (2a + b 2) 

Now if (2a + b z) is not a square, then this equation has infinitely many 
integral solutions for ( x . x ) = - 2  [IR, PeWs equation 17.5.2]. So there exist 
positive integers u, v such that 

u 2 - (2a + b2)v 2 = 1. 

Since a = ( d . d )  > 0,u z > bZv 2, so u > by. Set ~ = 2v and rt = b y - u  and 
let f = Cd + qe. Then ( f .  f )  = - 2  and by Riemann-Roch either f or - f  is 
effective, e E t3N--E(X) and by construction ~ > 0 and r/ < 0, so - f  cannot be 
effective and e and f are on opposite sides of d. 

If (2a + b 2) is a square, then it has two rational solutions for ( x . x )  = 0 
and they are on different sides of d. Q.E.D. 

Remark 3.2. 3.1.t implies, that if NS(X)  represents zero, then the q-divisors 
in ~(X)  form a dense subset of ~(X). 

4 K3 surfaces with a circular cone 

If  X does not contain a smooth rational curve, then the cone will be generated 
by .~(X) and it will be circular. This section is devoted to the investigation of  
the circumstances uhder which this situation may take place. 

The following result is an easy consequence of Nikulin's work on integral 
symmetric bilinear forms. 
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L e m m a  4.1. Let p (X)  > 12, then X contains a smooth rational curve. 

Proof  Let t ( + ) = 2 , t ( _ ) = 2 0 - p ( X )  < 8, l ( + ) = 2  and l ( _ ) =  18, then the 
conditions of  [Nik 1, 1.12.4] are satisfied. By [Ser, V.2.2] u z Q ( - E s )  2 is 
the only unimodular lattice of  signature (2, 18), so Tx admits an embedding 
q~0 into U 2 | ( - E 8 )  2. 

Let ~b = 0 | q~0 be the embedding of  Tx into L = U 3 | ( -E8)2  that is the 
extension of  r by zero to U. By [Ser, V.2.2] and [Nik 1, 1.14.4] the embed- 
ding of  Tx into L is unique, so ~b is isomorphic to the canonical embedding, 
in particular 

U r Tx ~ = NS(X)  = P ic (X) .  

Thus there is a divisor class of  self-intersection - 2  and that implies the exis- 
tence of  a nodal class. Q.E.D. 

Theorem 4.2. 4.2.1 I f  p (X)  > 5 and X does not contain any (-2)-curve i.e. 
ONE(X) = ~(X) ,  then the lI)-divisor classes o f  self-intersection zero form a 
dense subset o f  ONE(X). 

4.2.2 I f  ONE(X)=  ~ (Y ) ,  then p(X)  < 11 
4.2.3 I f  p E {2,3,4}, then there exists a K3 surface with p(X)  = p and 

such that ONE(X) =- ~ ( X )  does not contain any Q-divisor class. 
4.2.4 I f  p E {2,3 . . . . .  11}, then there exists a K3 surface with p ( X ) =  p 

and such that ONE(X) = ~ ( X )  and the ffJ-divisor classes o f  self-intersection 
zero form a dense subset o f  ONE(X). 

Proof  I f  p(X)  > 5, then the Hasse-Minkowski Theorem [Ser, IV.3.2] implies 
that there are effective classes of  self-intersection zero and then Remark 3.2 
proves 4.2.1. 

4.2.2 follows directly from Lemma 4.1. 
Let p E {2,3,4}. It is easy to see - looking at it modulo 8 - that 

q(x l , . . . , x  o) = 7x~ - ~ - 2  xZi does not represent zero, so 4q is an even quadratic 
form of  rank p and of  signature ( 1 , p -  1), that represents neither 0 nor - 2 .  
By Corollary 1.4 this implies 4.2.3. 

To prove 4.2.4, take 4(x~ V'P x2~ 
- -  Z-.~i=2 i / and use Corollary 1.4, Corollary 2.3 

and Remark 3.2. Q.E.D. 

5 K3 surfaces with Picard number two 

Theorem 5.1. Let p (X)  = 2 and let NE(X)  = 1R+~ + R+r/. Then one o f  the 
following statements holds: 

(a) Neither IR+~ nor IR+q contains any effective classes. 
(b) Both IR+~ and lR+q contains an effective class o f  O or - 2  self- 

intersection. 
Furthermore, all o f  these eases do occur. 
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Proof By Lemma 3.1 it is easy to see, that there is no other possibility. By 
Theorem 4.2 there are K3 surfaces of  type (a) and type (b) of  both self- 
intersection being zero. Now take the following two quadratic forms: -2x~ + 
8XlX2 - 2x 2 and -2x~ + 6XlX2. By Corollary 1.4 they give rise to K3 surfaces 
of  type (b) of  both self-intersection being - 2  and of self-intersection 0 and 
- 2  respectively. Q.E.D. 

The two quadratic forms and corresponding cones, mentioned in the proof 
can be realized easily. For the first one take a general degree four surface in 
IP 3 containing a smooth conic. The second one is the cone of a general degree 
four surface in IP 3 containing a line. 

6 K3 surfaces containing a --2 curve 

In this section p(X)  will be assumed to be at least three and ,~U(X) to be not 
empty i.e. X contains a smooth rational curve #. This will imply the existence 
of several other smooth rational curves. 

Theorem 6.1. Let p(X)  > 3, suppose X contains a smooth rational curve and 
let ~ be extremal in NE(X). Then 

6.1.1 NE(X)  has no circular part. 
6.1.2 There exists a sequence {{,} C At(X)  such that IR+[E,] ~ IR+~. 
6.1.3 N-E(X) = ~/~..~oCx) ~+V] .  

Proof Let E denote the class of  the smooth rational curve, that is guaranteed 
by the assumption. Let a : X - - - .  X0 be the map that contracts E to a point 
P. Since p(X)  > 3,p(X0) > 2. Let h be ample on X0 and d be a divisor on 
X0, independent from h. Replacing d with d + nh d may be assumed to be 
base point free. So h and d can be represented in Xo\{P} ~- X \ f .  Then they 
give two divisors dl,d2 on X such that ( ( . d l )  = ({ .d2)  = 0 and d l ,d2 , (  are 
independent in Pie(X). 

Suppose U is a nonempty open subset of  ONE(X) such that N.+U is a 
circular part of  NE(X).  By Corollary 2.3 U C ~(X).  Then in a neighborhood 
of any point of  IR+ U every effective class is of  nonnegative self-intersection. 

By Lemma 3.1 find an effective divisor e E IR+U N .~(X). e is extremal and 
as in the proof of  Proposition 2.4, (e = 0) contains no other effective classes 
than the multiples of  e, in particular ( f . e ) 4 : 0 .  

Let d be dl or d 2 such that e,d,E be independent. Let fi = (d.d),ct = (d .e )  
and fl = (•.e), then ~ + 0 , f l + 0  and ( d . g )  = 0. 

Suppose 2~ 2 - aft 2 = 0. Let f = ~ f l e -  o~fld + ~2E. Then ( f . f )  = 
0C2(6fl 2 -  2~ 2) = 0 and ( f . e ) =  0. By Riemann-Roch f or - f  is effective 
and then since (e = 0) contains no other effective classes than the multiples of  
e,o~fl = ~2 ~__ 0 SO ( d .  e )  ~--- 0~ = 0 which is impossible. So 2cx 2 - 0fl 240 .  

Let n E IN and 'let 

+dn = (2(2~ 2 - Ofl2)fln 2 - 4~n)e + (2fl2n)d + (1 - 2~fln)f . 



The cone of curves of a K3 surface 689 

Easy computation shows that (dn" d,,) = - 2 ,  so by Riemann-Roch either dn 
or -d , ,  is effective. Let d,  be effective. Since (2~ 2 -6fl2)fl4=0,1R+dn ~ IR+e. 

Since in a neighborhood of lR+e every effective class is of nonnegative 
self-intersection, this is a contradiction and 6.1.1 is proven. 

Let ~ E ~(X)  be extremal and H = {q E Hz(X, IR)](q.h) = (~.h)}, where 
h is an ample class. Q = H n ~ (X)  is a smooth compact quadratic hypersurface 
and ~ E Q .  Let N = { v E H ] 3 f E J ~ 7 " ( X ) , v E I R + [ f ] }  and C = C o n v ( N ) =  
Cony(N). 

It is easy to see, that if  there were a U C Q nonempty open subset such 
that U C OConv(Q u C), then IR+U would be a circular part of  NE(X), so by 
6.1.1 and Lemma 2.6 Q is a subset of  C. Then ~ E C = Cony(IV) and since 
is extremal, ~ E N. This implies 6.1.2. 

If  t /E NE(X) arbitrary, let q : ~ i n l  qi, t/i extremal. Then 

r/E ~ IR+[(]. Q.E.D. 
IE. I (x) 

Corollary 6.2. Theorem t holds true. 

7 Proof of Theorem 2 

Lemma 7.1. Let e E ~ be an indecomposable class. 
irreducible rational curve on X that represents e. 

Then there is an 

Proof e defines an elliptic fibration ofX, O :X --~ IW. I f  this fibration had only 
non-singular fibres then e(X) would be zero by the formula [BPV, III.11.4]. 
Since it is 24 ([BPV, VIII.3.1]), there must be a singular fibre, too. Its arith- 
metic genus is one and it is singular, so it must be rational and since e is 
indecomposable, it must be irreducible. Q.E.D. 

Proof of Theorem 2. 2.1 I f  p(X) = 1 then X is of  type (i). I f  p(X) = 2, 
then by Theorem 5.1 X is of  type (ii), (iii), (iv) or (v). I f  p(X) > 3 and X 
contains a smooth rational curve, then by Theorem 6.1 it is of  type (v). If 
p(X) > 3 and X does not contain a smooth rational curve, then by Theorem 
4.2 and Lemma 7.1 it is of  type (iii) or (iv). 

2.2 By the Noether-Lefschetz Theorem a general degree four surface in IP 3 
is of type (i). By Theorem 4.2 and Theorem 5.1 types (ii), (iii), (iv) and (v) 
with p(X) = 2 do occur. 

I f  3 < p < 11 let M be any primitive sublattice of  ( - E s )  2 of  rank p - 2 .  
Then U (9 M and Lemma 4.1 shows that for any 3 _-< p < 20 there exists 
a primitive sublattice of  L of signature ( 1 , p -  l )  containing a vector x with 
(x.  x) = - 2 .  Then by Corollary 1.4 there exists a K3 surface with p(X) = p 
containing a divisor of  self-intersection - 2  and then X contains a smooth 
rational curve. Therefore by the first part of  the Theorem it is of  type (v). 

Q.E.D. 



690 S.J. Kovfics 

Proof of Corollary 1. Assume, that p(X) > 3. I f  X is of  type (iii) or (iv), 
then NE(X) is circular. I f X  is o f  type (v), then it follows from 6.1.1. Q.E.D. 

Proof of Corollary 2. If  X is o f  type (ii) or (iii), then the statement is true. 
I f  X is o f  type (iv) or (v), then 

NE(X) = ~ l R + [ f ] .  
fE.~(X)ug(X) 

Now let d be an effective class. It can be written as a sum of  indecomposable 
classes and by Riemann-Roch they are o f  self-intersection at least - 2 .  So 
d = dl + d 2  such that (dl .dl)  > 0 and 

E Z IR+[f] . d2 
f E,,V(X )Ug/(X) 

Then by [CKM, (4.4), (4.5)] d~ E NE(X) ~ 

IR+[f]~ ~ lR+[f]ca( ~ lR+[f]) , 
fE, U(X)Ug(X) f E..V'(X)Ug(X) f E. U(X)u~(X) 

so dl E ~fE,~.(x)u~(x)IR+[f] since if C is a convex set, then ~3C = 0C. 
Q.E.D. 

Proof of Corollary 3. Let X be the minimal smooth resolution of  Y. Then it 
contains a smooth rational curve so NE(X) is generated by rational 
curves. Q.E.D. 

Remark 7.2. It is well known, that for p(X) > 3, NE(X) is polyhedral if and 
only if  Aut(X) is finite ([PS-S, Ste]). Nikulin has classified the lattices that 
occur as the Picard group of  a K3 surface that has finite automorphism group 
([Nik 2, Nik 3, Nik 4]). Shioda and Inose proved that a K3 surface o f  Picard 
number 20 has an infinite automorphism group ([Sh-In]). 

Using these facts one can see easily, that there exists a K3 surface X such 
that p(X) = p and X contains finitely many -2-curves  i.e. NE(X) is a closed 
polyhedral cone if  and only if  1 < p < 19 and for every p, 3 < p < 20 there 
exists a K3 surface X such that p(X) = p and X contains infinitely many - 2 -  
curves i.e. NE(X) is non-polyhedral of  type (v). In particular every Kummer 
surface gives such an example. 
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