
Math. Ann. 300, 649-667 (1994) Ilst  
A m  
�9 Springer-Verlag 1994 

Branched  IPl-structures on surfaces 
with prescribed real holonomy 

Ser  P e o w  T a n  

Department of Mathematics, University of Singapore, 10 Kent Ridge Crescent, 
Singapore 0511, Singapore 

Received: 22 October 1993 

Mathematics" Subject Classification (1991)." 53C 

1 Introduct ion 

Let Fy be a closed oriented surface of genus g > 2 with fundamental group 
:r. Let p E Hom(~, PSL(2, R))  be a representation of 7z into PSL(2, R). If 
e(p)  E 2g is the Euler class of  the representation p, we have the Milnor-Wood 
inequality: 

le(p)l < [z(Fg)[ = 2 g -  2 .  

In [8] (see also [5]) Goldman showed that the following are equivalent: 

(i) le(p)l = 2g  - 2 

(ii) p is an isomorphism of ~ into a discrete subgroup of PSL(2,R) .  
(iii) p is the holonomy representation of a (possible orientation-reversing) hy- 
perbolic structure on Fy. 

Consider now the class of  CP I-structures instead of hyperbolic structures on 
F o. The topological invariant of the representation is now the Stiefel-Whitney 
class which in the case when the representation is in PSL(2, R) is just the 
congruence class of e(p)  modulo 2. In [2], Gallo et al. gave necessary and 
sufficient conditions for a representation p E Horn (n, PSL(2, R))  to occur as 
the holonomy representation of a CP~-structure: 

T h e o r e m  [Gallo-Goldman-Porter] p E Hom(n, PSL(2,R)) occurs as the holo- 
nomy representation o f  a CPl-structure on Fq if  and only i f  
(1) e(p) - 0 (mod2) and 
(2) p(n) is not an elementary subgroup ofPSL(2 ,  R). 

Condition (1) in the theorem above is equivalent to saying that p admits a lift 
to SL(2, R). Gallo [3] and Kapovich [12] have generalised the theorem to the 
case when p E Hom(~, PSL(2, C)) is non-elementary and has Stiefel-Whitney 
class 0. 
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From the above theorem, we see that if e(p) ~ 1 (mod 2) or equivalently, 
p does not admit a lift to SL(2, R), then p cannot occur as the holonomy rep- 
resentation of  a CP~-stmcture. The main aim of  this paper is to show that such 
representations nonetheless occur as the holonomy representations of  branched 
CPf-structures with one branch point of  degree 2. A branched CPt-structm-e 
is one where the coordinate patches are modelled on CP t or branched covers 
of  CP  ~ with transition functions in PSL(2, C). The degree of  a branch point 
is defined to be the degree of  the branched cover of  the coordinate chart at 
that point. Alternatively, a branched CP ~-structure can be thought of  as a cone 
CP~-structure where the cone points have cone angles which are multiples of  
2re. A branch point of  degree n is then a cone point with cone angle 2ng. We 
have the following theorem: 

Theorem 1 Let Fy be a closed oriented surface of genus g with fundamental 
9roup re. Suppose p c Hom(~,PSL(2,R)) and e(p) .~ 1 (rood2). Then p 
occurs as the holonomy representation of a branched CPl.strueture on Fg 
with one branch point of degree 2. 

Remark 1 A representation p whose image is an elementary subgroup of 
PSL(2, R) can be deformed to the trivial representation and hence must have 
Euler class zero (see [8]). The condition e(p) ~ 1 (rood2) therefore implies 
that p is non-elementary. 

Remark 2 Theorem 1, together with the theorem of Gallo, Goldman and Porter 
shows that every non-elementary representation of rc into PSL(2, R)  occurs as 
the holonomy representation of  either a regular CP ~-structure or a branched 
CP~-structure with one branch point of  degree two on Fq, thus answering the 
question of  minimising the number (and degree) of the branch points. 

Remark 3 It seems likely that using GaUo's methods [3], Theorem 1 should 
generalise to cover all representations p E Hom(r~, PSL(2, C))  with Sfiefet- 
Whitney class I f 

Another very natural question which arises is whether representations p 
of  ~ into PSL(2, R)  with intermediate Euter classes necessarily occur as the 
holonomy of  branched hyperbolic structures on F.q. Regarding the Euler class 
as a volume form, one sees that the holonomy representation of a branched 
hyperbolic structure on F~ with n branch points {xl,x2,...,xn} of  degrees 

n {~l,a2,...,~n} has Euler class 2 -  2 g +  ~ i = l ( i - 1 ) .  We have the following 
question: 

Question. Let p E Horn(n, PSL(2, R))  such that e(p) = 2 ~ 2g + k, 0 < k < 
2g - 1, Does p occur as the holonomy representation of  a branched hyperbolic 
structure with k branch points of degree 2 each. 

When k = I, Goldman and Neumann have shown that the answer is yes 
(unpublished). In general, however, the answer is no, in Sect. 7 we give an ex- 
ample of  a representation p which cannot occur as the holonomy of a branched 
hyperbolic structure. If  we allow grafts of  CPI-tori (which are generalisations 
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of  'bending', see [6, 11, 13] for example) or equivalently, fold singularities 
along curves, we do get a partially affirmative answer as follows: 

Associated to a branched CP~-structure on F.0 with real holonomy and a 
fixed developing map is the decomposition of F,q into the three following types: 

F + = dev - l (H+) ,  

Fff = dev- l (R U c~),  

F~- = dev-I ( H - ) ,  

where H + and H -  are the upper and lower half planes and H+UH - URU~v = 
CP 1. Each component of F~- and F~- inherits a complete (possibly branched) 
hyperbolic metric from the hyperbolic metrics of H + and H - .  Suppose all 
the components of F~  are complete hyperbolic annuti. Then all the topolog- 
ical information is encoded in the F,q + components and we can associate to 
such structures corresponding singular hyperbolic structures on F,q with cone 
and fold singularities where the folding occurs along curves homotopic to the 
components of Fff and the components of Fq with negative signed area are all 
regular hyperbolic annuli. We have the following theorem: 

Theorem 2 Let p E Hom(~,PSL(2,R)) and e(p) = z(Fg)+k,  where 0 < k < 

2g - 2. Then there exists a branched CP 1-structure on F,q with holonomy p 
such that there are k branch points Xl . . . . .  xk of  degree 2 each, {xl . . . . .  xk } C 
F +, and F~ has at most k components, each o f  which is a complete hyperbolic 
annulus. Equivalently, there exists a singular hyperbolic structure on F:j with 
holonomy p and with k cone singularities o f  cone angles 4~ each and at most 
2k fold components where the folding occurs along invariant curves o f  some 
hyperbolic transJbrmations. The components o f  Fy with negative signed area 
are annuli with a regular (orientation reversing) hyperbolic structure bounded 
by invariant curves o[" P(7) where 7 is the non-trivial curve in the annulus. 

Remark. In [8] Goldman showed that the connected components of Hom(7~, 
PSL(2,R)) are e- l (k ) ,  2 -  2g < k < 2 g -  2 and in [10], using gauge 
theory techniques, Hitchin showed that the components e - l ( z ( F g ) +  k) of 
Hom(rt, PSL(2,R))/PSL(2,R) are homotopic to Zk (the k-th symmetric prod- 
uct of F,q) for 0 < k < 2 g -  2. It seems possible that Theorem 2 can be 
used to try to recover Hitchin's theorem using a more elementary geometric 
approach. 

This paper is organised as follows: In Sect. 2, the basic definitions and 
geometric notions associated with branched CP~-structures as well as some 
examples are given. Section 3 is technical and mostly adapted from [2] and 
[8]. The main technical results of the section, Lemmas 2 and 3 states that 
given a non-elementary representation p of the fundamental group rc of F q into 
PSL(2, R), there exists a decomposition of Fg into pairs of pants such that p is 
hyperbolic on the boundary curves of the pairs of pants and the relative Euler 
class of the pairs of pants have certain nice properties. In Sect. 4, we show 
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how to construct regular or branched hyperbolic structures on pairs of pants 
with prescribed holonomy p when p is hyperbolic on the boundary. In Sect. 5, 
we show how to glue together the structures constructed in Sect. 4 to obtain 
the required branched CPl-structures on F q with the prescribed holonomy. 
Combined with the results of Sect. 3 and Sect. 4, this gives Theorems 1 and 
2. In Sect. 6, we construct local deformations of  the branched structures that 
leave the hotonomy representation invariant. From a simple dimension count, 
we see that locally, these are all the deformations that can occur. Finally, in 
Sect. 7, we give an example of  a representation of the fundamental group of  a 
genus 3 surface that cannot occur as the representation of  a branched hyperbolic 
structure. However, we show that by deforming the representation slightly, we 
can make the defon~qed representation the holonomy of a branched hyperbolic 
structure. 

2 Branched CPi-structures 

Let F o be a closed oriented surface as above, n its fundamental group and /~0 
its universal covering space. 

Definition, A (marked) branched CPI-structure on F o is a covering o f  Fg by 
open sets {U~}scA and maps q/s : Us ~-~ CP ~ such that 
(1) ff~ is either a homeomorphism from U~ onto its image or O s is' a branched 
coverin 9 map from U~ onto its image, and 
(2) for all pairs e, fl E A with U~ fq U~#:(~, i f  V is a connected component 
o f  Us N Ut~, then ~ o ~b ~lt%(v) is the restriction o f  some g E PSL(2,C). 

Two marked branched CP~-structures on Fo are equivalent if there exists a 
map from Fo to itself which takes one structure to the other and is isotopic to 
the identity. The space of equivalence classes of  structures is the deformation 
space. Alternatively, we can think of  branched CP~-structures as cone CP ~- 
structures with cone angles which are multiples of  2n (of. [18, 19]). 

Associated to each branched CPl-structure is the pair (dev, p) where 

dev : P,0 ~-~ CP1 

the developing map is a branched projective immersion and 

p : nl(Fg) ~ PSL(2,C) 

the holonomy representation is a homomorphism that is equivariant with respect 
to dev. dev is defined up to composition with elements of PSL(2, C) and p up 
to conjugation by elements of PSL(2,C). 

Note that even in the case of  branched constant curvature metric structures 
(spherical, euclidean' or hyperbolic), the image of the holonomy representation 
p may not be a discrete subgroup of the group of isometries of  the model 
space and we therefore do not generally get a tessellation of the model space. 
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Definition. Let x E F,~ and .~ E P~j be a lift o f  x. x is regular i f  the developing 
map is a projective immersion on some neighbourhood o f  2 into CP 1, other- 
wise, x is singular, l f  x is singular, the developing map about a nei.qhbourhood 
o f  2 is a branched covering map of  degree n with Y mapped to the branch 
point. The integer n is' independent o f  the lift o f  x chosen and x is called a 
branch point of degree n. 

The singular points are isolated and since Fq is compact, there are only a finite 
number of  them. Troyanov [19, 20] has worked with branched metric structures 
in a different context where he defines the order of the branch point to be n -  I. 

We now define a fundamental membrane for a branched CP 1-structure on 
F~ following Hejhal [9]. This is the generalisation of  a fundamental domain 
for a metric structure on F q. 

Let F = {),ill <_ i <_ s} be a set of  simple curves on Fq such that: 
(a) F q -  F is simply connected. F g -  F is topologically a polygon whose sides 
occurs in pairs, each pair of  sides corresponding to a curve ~,~ ~ F. 
(b) The curves 3;~ do not intersect except perhaps at the endpoints. 
(c) The set of  endpoints of  the curves ~ in F contain the set of singular points 
of  F.q. 

Such a set of  curves F can always be found, for example we may take a 
standard set of  curves {a~,/%I 1 _< i _< g} based at a regular point xo dissecting 
F~ into a 4g-gon and add curves 6j going from x0 to each singular point xj. 
If there are n singular points, the construction gives a (49 + 2n)-gon. 

We denote the polygon F,j - F by 3 ~. A fundamental membrane for the 
CPl-structure on F o is just the developing image of a connected component 
of the lift of  ~ to the universal cover. Note that the fundamental membrane 
ties on CP 1 and may well be multi-sheeted. However there is no ramification 
over the points of .Y~ since all points on o.f are regular. Furthermore, we 
may make the sides of  g piece-wise circular arcs. The transformations that 
map the pairs of sides of ~ that arise from the same curve ;~i to each other 
tie in PSL(2,C). Theorems t and 2 are proven by constructing the required 
fundamental membranes. 

Another interpretation of branched CP 1-structures is as cone CP ~-structures 
with cone singularities with cone angles of the form 2nrc, n > 2. In this sense, 
cone-Euclidean (or spherical or hyperbolic) structures with cone angles of  the 
form 2n~ are examples of branched CP|-structures. We give some examples 
below: 

Example 1 Take two closed surfaces SI and S~ admitting metric structures of  
the same type (spherical, euclidean or hyperbolic). Make isometric slits l~ and 
12 respectively on the two surfaces and glue S~ to $2 along the slits, Since lx 
and 12 are isometric, the resulting surface has only two singular points at the 
end of  the slits, these are branch points of  degree 2 each. See Fig. 1. 

Example 2 Take the regular Euclidean octagon with area one and identify 
the sides in the standard manner to obtain a genus two surface. Since the 
identifications are by means of  Euclidean isometries, the resulting surface has 
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branch points 
of degree 2 

Fig. 1. Glueing two Euclidean tori along isometric slits 

a Euclidean structure except at the vertex of the octagon which is a cone point 
with cone angle 6n (i.e. a branch point of  degree 3). The octagon is then a 
fundamental membrane for the cone-Euclidean structure, see Fig. 2a. 

Example 3 Take the regular hyperbolic octagon with interior angles n/2 and 
identify the sides as in Example 2 above. This gives a fundamental membrane 
for a branched hyperbolic structure on a genus 2 surface with one branch point 
of  degree 2; see Fig. 2b. Note that in general, to create a branched hyperbolic 
structure on F2 with one branch point of  degree 2, we only require that the 
sides to be identified have equal hyperbolic lengths and that the sum of the 
interior angles is 4n. A simple parameter count (see [16]) shows that the space 
of such octagons has real dimension 8. 

Example 4 Take any branched cover of  S 2 (say, some Riemann surface) 
and pull-back the S2-structure to obtain a branched spherical structure on the 
Riemann surface. Note that in this case, the holonomy representation may be 
trivial. 

3 The relative Euler class and decomposition of Fg into pairs of pants 

This section is mostly based on results in [2] and [8] and provides the technical 
tools for the proofs of  our theorems. The reader is referred to [2, 5, 8] for a 
more detailed discussion. 
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Fig, 2. Fundamental membranes for branched Euclidean and branched hyperbolic structures 
on a genus two surface 

Let p E Hom(Tr, PSL(2,R))  where n is the fundamental group of  F q as 
above. Associated to p is a hyperbolic plane bundle Ep over F:r 

Definition. The Euler class of p, denoted by e(p) is defined to be the Euler 
class of the underlying oriented disk bundle. 

The Milnor-Wood inequality states that e(p) lies in the finite range of  values 

2 - 2 g  < e(p) < 2 g - 2 .  

Considering the Euler class as a volume form and applying the Gauss- 
Bonnet theorem, we see that if p is the holonomy representation of a branched 
hyperbolic structure on b~j with singularities xl . . . . .  xn of degrees ~1 . . . . .  an 
respectively, then 

n 

e(p) = 2 - 2g + ~ ( e i  - 1), 
i=1 

By modifying Example 3 in the previous section, for every Fg with fixed 
g > 1, we can produce exmnples of  representations with Euler class from 
( 2 - 2 g )  to - 1 .  Conjugating with the map z ~-+ :?, we also obtain representations 
with Euler class from 1 to ( 2 ( / -  2). To obtain a representation with Euler 
class 0, we can use the trivial representation. Thus all integer values k between 
the bounds of  the Milnor-Wood inequality are attained. In fact the topological 
components of  Hom(rc, PSL(2,R)) are e -1(k)  (see [8]). 

Definition. A pair of pants is a topolo(/ical surface with three boundary com- 
ponents homeomorphic to the sphere S 2 with three disks removed. By abuse 
of notation, we will also call the interior of the surface a pair of pants. 

Definition, A maximal cut ~ of F q is defined to be a collection of disjoint, 
non-trivial simple closed curves {7i} in F q such that 
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20--2 

F q--*~'= U Si 
i=1 

where all the Si's are pair-of-pants. 

Our method for constructing the required branch structures consists of finding 
a nice maximal cut ~/J and then constructing regular or branched hyperbolic 
structures on each of the pair-of-pants components of Kq - ~//" with either ideal 
or totally geodesic boundaries and then glueing them together. To do this, we 
first define a relative Euler class for surfaces with boundaries: 

Definition. Let S be a surfitce with boundary aS and fundamental group 
and let p be a representation o f  ~ into PSL(2,R), Let E~, be the oriented 
hyperbolic" plane bundle over the surfitce S associated with p and let c~ be an 
ideal section over aS, Le. a section o f  OS into R*,_Joo ~ RP J. The relative Euler 
class o f  p with respect to e which lies in H2(S, aS) ~ Z is the obstruction 
for extending e : aS --+ RP 1 to an ideal section S --+ RP 1. We denote it by 
e(p, S; a ). 

The following lemma was proved in [8]: 

Lemma 1 Let E~, be the hyperbolic plane bundle over F~ associated to the 
representation p, W" a collection o f  disjoint simple closed curves in F o and 6 
a special ideal section over W'. Then 

k 
e(p) = ~e(p t s  r 

i=t 

where &, 1 ~ i ~ k are the components o f  Kq - ~/~ (with boundary compo- 
nents attached) and P[s, is the restriction of  p to the components Si. 

Note that the above lemma holds irrespective of the special ideal sections 
chosen but by defining special ideal sections for various cases when p[~ is 
the identity, elliptic, parabolic or hyperbolic, Goldman was able to show that 
e(p,S; a)  = 0 or :k 1 when S is a pair of pants and ~ is a special ideal section. 
This gives an independent proof of the Milnor-Wood inequality. 

We will be mostly interested in the case where the hotonomy is hyperbolic 
on the boundary components of the Si so we will just define the special ideal 
section in this case, the interested reader is referred to [5] or [8] for the other 
c a s e s .  

Definition. Let S be a surface with boundary and let 7 be a component o f  aS 
such that 0 = p(7) is hyperbolic. Let t --+ exp(t(log 0)) be the one parameter 
subgroup o f  PSL(2, R) containing 0. This is just the one parameter subgroup 
of  PSL(2, R) consisting of  hyperbolic elements with the same &variant axis as 
O. We identify 7 with R / Z  so that ~ is identified with R and we also identify 
0H + = RUcx~ with RP i. The developing map dev(t) = exp(- t ( log O))y where 
y E RP ~ is not a f ixed poOtt o f  0 gives rise to a special ideal section o f  the 
RP l-bundle over ~,. We choose this as the special ideal section o f  ~. 
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We now return to the surface F~. ~ and p will be as defined at the beginning 
of the paper. The following two propositions were proven in [2]: 

Proposition 1 If  p E Horn(g, PSL(2, R)) is non-elementatT, then there exists 
a maximal cut "~" oJ'l~)j such that p is" hyperbolic on the components of  "~'~. 

We call this a hyperbolic maximal cut. 

Proposition 2 Let ~ be a hyperbolic maximal cut o f  Fa and ~r the special 
ideal section over ~t "~ as defined above. Let Si and S~ be components ofF,1 - ~ "  
sharing a common boundary curve 7 and sati~]),ing one of  the three conditions 
below: 
(a) e(pls,,Si;~r) = O, e(pls~,Sj;a) = +l ,  or 
(b) e(p[Si, Si;a) = e(p[s,,Sj; c~) = o, or 
(c) e(pts,,Si; ~) and e(pls,,Sj; a) are non-zero and have opposite signs. 

Then we can lind a new hyperbolic maximal cut ~ t  where all the compo- 
nents o f  ~'~ are the same as those o f  "f~ except that ), is replaced by 7 ~ and 
such that the components S[ and S~ separated by 7 r satisfy the corresponding 
three conditions below." 
( d )  e(pls,,S[; ~ ) = zkl, e(p]s;,Sj; a) = 0, or 

(b') e(p[s,,S[; a) and e(p]s,,Sj; c~) are non-zero and have opposite signs, or 

(c') e(pts,,S~(; ~r) = e(pts~,S~; ~) = O, respectively. 

We are now ready to state our two main technical lemmas concerning the 
decomposition of  F~ into pairs of  pants: 

Lemma 2 I f  e(p) ~- 1 (mod2) then there exists a hyperbolic maximal cut ~F" 
of  Fg such that 

o V i = l  
e(p ls"S i ;a)= +1 9"1 < i  < 2 g - 2  

where Si, 1 <_ i <_ 2g - 2 are the components o f  F~ f - "~. 

Lemma 3 I f e ( p )  = 2 - 2 g + k ,  0 < k < 2 g - 2  then there exists a hyperbo#c 
maximal cut ~ of  Fg such that 

0 ~fl  <_i<_k 
e (p l s"S i ;a)= - 1  i f  k < i <= 2 9 - 2  

where Si, 1 <_ i < 2g - 2 are the components o f  Fg - ~t/-. 

Proof o f  Lemmas 2 and 3 The Euler class of  the representation p in both lem- 
mas is non-zero so p is non-elementary (see [8]). By Proposition 1, there exists 
a hyperbolic maximal cut U of Fq. By repeated applications of Proposition 2 
(using conditions (a) and (b)) we are left with one component of F~ - '~'~ with 
relative Euler class zero. Renaming if necessary, we get Lemma 1. Lemma 2 
is proved similarly by repeated applications of  conditions (a) and (c) of  
Proposition 2. 
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4 Branched hyperbolic structures on a pair of  pants 

In this section we show how, given a representation of the fundamental group 
of a pair-of-pants S to PSL(2,R) which is hyperbolic on the boundary curves 
and has relative Euler class 0 with respect to the special ideal section, we can 
construct a complete branched hyperbolic structure on S with one branch point 
of degree two such that the holonomy representation of the branched structure 
is the original representation and the developing map restricts to the special 
ideal section on the boundary curves. We first state a result of Goldman [8] 
and give a brief sketch of the proof: 

Lemma 4 Let S be a pair-of-pants with fundamental group rc and let p E 
Hom(rc, PSL(2,R)) such that p is' hyperbolic on the components o f  aS. I f  
e (p ,S;a)  = - 1  (resp. + 1) where a is the special ideal section over aS as 
defined in Sect. 3, then there exists a complete orientation-preserving (resp. 
reversing) hyperbolic structure on S with holonomy p and with aS develop- 
ing to the ideal sections defined by a. Moreover, the boundary components 
can be retracted to geodesic sections, i.e. special interior sections in the H + 
bundle over the boundary components which are geodesic with respect to the 
hyperbolic metric on H § 

Proof o f  Lemma 4 (sketch) Let A, B and C be the oriented components of 
aS and let 1A, I8 and lc be the directed axes of the hyperbolic transformations 
p(A), p(B) and p(C) respectively in the upper half plane H +. If e(p ,S;a)  = 
- 1  (resp. + 1), then the li's (i = A,B or C) are pairwise disjoint, furthermore, 
no one of them seperates the other two in H + and the directed axes has an 
anti-clockwise (resp. clockwise) direction. For each pair of li and lj, there is 
a unique geodesic mij in H + perpendicular to l i and lj; together with the axes 
li's, they form a hyperbolic fight angled hexagon. Take two copies of this 
hexagon and glue them along the mij's, this gives a hyperbolic structure on 
a pair of pants with geodesic boundaries and with holonomy p. The structure 
is orientation-preserving (resp. reversing) when (e,p;tz) = -1  (resp. + 1). 
The complete structure can be obtained by glueing hyperbolic annuli which 
extend to infinity at each of the boundary components. See Fig. 3 where H + 
is represented by the disc D 2. 

We now state and prove the analogous result for the case when the relative 
Euler class is zero: 

Lemma 5 Suppose S and p are as in Lemma 4 above except that the relative 
Euler class e(p,S; a) = O. Then S admits a complete branched hyperbolic 
structure (with one branch point o f  degree 2) with holonomy representation 
p and with aS developing to the ideal sections defined by a. Furthermore, we 
can choose the structure to be orientation-preserving or reversing and two o f  
the boundary components can be retracted to special interior sections which 
are geodesic with respect to the hyperbolic metric on H +. 
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Fig. 3. Right angled hexagon associated to an Euler class- 1 representation on a pair-of pants 

Before proceeding with the proof of  Lemma 5, we give three examples of 
branched Euclidean structures on a pair-of-pants S with certain prescribed 
holonomy representations which will give an idea of the proof of  Lemma 5. 

Example 5 Let S be a pair-of-pants with fundamemal group 7z and A, B and 
C be the oriented boundary curves. Suppose that p is a representation of n into 
Isom(E 2) such that p takes A, B and C into parallel Euclidean translations. 
Without loss of generality, we may assume that the translation length of p(A) 
is greater than the translation length of p(B) and p(C). Consider the infinite 
Euclidean cylinder EZ/(p(A)). Make two semi-infinite slits tl and 12 on the 
cylinder starting from pi and P2 such that p(B)ll = 12. Identify t + to l~ and 
l~- to I f  via p(B). This gives a complete branched Euclidean structure with 
one branch point of  degree 2 (where Pl is identified to P2) on S - (?S with 
holonomy p. Clearly, by cutting off the infinite ends, we can get a structure 
on S with totally geodesic boundaries and in fact, we can make the area of  S 
as small as we like. See Fig. 4. 

Example 6 Using the notation above, if p takes A, B and C to non-parallel 
translations, we can still obtain a branched Euclidean structure with holonomy 
p as follows: Fix a point x in E 2. The points x, p(A)(x) and p(B)p(A)(x) form 
the vertices of  a triangle where the sides of the triangle give the translation 
length and direction of p(A), p(B) and p(C) respectively, (note that CBA is 
homotopie to the trivial curve in S). Call the sides IA, 18 and lc respectively 
and without loss of generality, assume that the angles between lA and le and 
lA and lc are acute. Take a fundamental domain for the infinite Euclidean 
cylinder EZ/(p(A)). Again we can find infinite slits Ii and 12 lying on the 
same fundamental domain such that p(B)(ll) = 12. Identifying the slits l~ and 
12 as before, we obtain a complete branched Euclidean structure on S with 
holonomy p. Again, we can retract the boundary curves to totally geodesic 
curves but in this case, the area of the branched structure with totally geodesic 
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Fig. 4. Branched Euclidean structure on a pair-of-pants 

boundary has minimum area A where A is the area o f  the triangle with vertices 
x, p(A)(x) and p(C)-l(x). Figure 5 gives the fundamental membrane o f  the 
structure. 

Example 7 Again, using the notation above, i f  p(A) is a translation and p(B) 
and p(C) are rotations we can still obtain a branched Euclidean structure on 
S with holonomy p. The method is similar to Example 6 above, we again 
make slits ll  and 12 such that p(B)ll = I2 (note that now p(B) is a rotation). 
Making the usual identifications we obtain a branched Euclidean structure on 
S with holonomy p. Note that in this case, we cannot get a complete branched 
Euclidean structure. However,  we can make the boundary curve A geodesic 
while the boundary curves for B and C can be made arbitrarily small invariant 
curves o f  p(B) and p(C) respectively. See Fig. 6. 

Proof of Lemma 5 There are three possibil i t ies i f  p satisfies the conditions of  
the lemma, namely,  

Case 1 p(A), p(B) and p(C) have the same invariant axis, or 

Fig. 5. Fundamental domain for branched Euclidean structure on a p.o.p with holonomy 
representation into non-parallel translations on the boundary curves 
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F 

t 
Fig. 6. Fundamental domain for branched Euclidean structure on a pair-of pants with holo- 
nomy representation into translation and rotations on the boundary curves 

Case 2 The invariant axes o f  p(A), p(B) and p(C) intersect pairwise, or 

Case 3 The invariant axes of  p(A), p(B) and p(C)  do not intersect and one 
o f  them seperates the other two in H +. 

Case 1 This case is very similar to Example 5 above. Without loss of  general- 
ity, suppose that the translation length o f  p(A) is greater than that for p(B) and 
p(C). Take the complete hyperbolic cylinder H2/(p(A)) and make semi-infinite 
geodesic slits II and 12 starting from the invariant axis such that p(B)ll :--- 12. 
Identify 1 + to l~- and l~- to l + via p(B) to obtain a complete branched hyper- 
bolic structure on S with holonomy p and ideal boundary. By shifting the end 
point o f  the slits (which gives the branch point) beyond the invariant axis, we 
can retract the two boundary components B and C to geodesic boundaries. In 
this case, A can also be retracted to a special interior section that is arbitrarily 
close but not equal to the geodesic boundary. See Fig. 7. 

Case 2 This is similar to Example 6 above. The invariant axes  1A, IB and 
lc of  p(A), p(B) and p(C) respectively form a hyperbolic triangle since they 
intersect pairwise. Assume, without loss o f  generality that the angle between 

Fig. 7. Fundamental domain for complete branched hyperbolic structure on a pair-of-pants 
with hyperbolic holonomy on boundary curves all having the same invariant axis 
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Fig. 8. Fundamental domain for complete branched hyperbolic structure on a pair-oJ:pants 
with hyperbolic holonomy on boundary curves having intersecting invariant axes 

1A and 18 and that between IA and lc are both acute. Note that the lengths 
of the sides of the triangle are half the translation lengths of  the respective 
transformations. Using the Poineare disc model for hyperbolic space, we may 
for convenience assume that 1 A and 18 are straight lines through the origin. 
Take the fundamental domain for the complete hyperbolic annulus Hz/(p(A)) 
and we can make semi-infinite slits I I and 12 lying on the same fundamental 
domain such that p(B)ll = 12. Identify the slits in the usual way to obtain 
a branched complete hyperbolic structure on S with holonomy p. Shifting the 
branch point if necessary, it is possible to retract the two boundary components 
B and C to geodesic boundaries. In this case, the third boundary A cannot be 
retracted to be arbitrarily close to the geodesic boundary, see Fig. 8. 

Case 3 Without loss of generality, assume that the invariant axis lA for p(A) 
separates the invariant axes 18 and lc of p(B) and p(C) respectively. Take a 
fundamental domain for the infinite hyperbolic cylinder HZ/(p(A)) and once 
again, we can find semi-infinite slits 11 and 12 lying on the same fundamental 
domain such that p(B)ll = 12. Identify the sides of  the slits as in Case 2 
above to obtain a complete branched hyperbolic structure on S with holonomy 
p. Again, by shifting the branch point if  necessary,we can retract the boundaries 
B and C to geodesic boundaries. However, A cannot then be retracted arbitrarily 
close to the geodesic boundary, see Fig. 9. 

Note that in all three cases, depending on the direction (upwards or down- 
wards) of  the slits chosen, we either get an orientation-preserving or an 
orientation-reversing structure. This completes the proof of the lemma. [] 

We remark that' following Example 7 above, we can also form branched 
hyperbolic structures when some of the boundary components have parabolic 
or elliptic holonomy, see [15] for details. 
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Fig. 9. Fundamental domain for complete branched hyperbolic structure on a pair-of-pants 
with hyperbolic holonomy on boundary curves having non-intersecting invariant axes 

5 The glueing process 

In this section, we describe how to glue the structures on the various pairs of  
pants components together to obtain the structure on the whole surfhce F q with 
the prescribed holonomy. 

Let p E PSL(2,R), ~F' a hyperbolic maximal cut of Fg such that both p 
and # '  satisfy the conditions of  Lemma 2 or Lemma 3. We have seen how 
to construct orientation-preserving (resp. reversing) complete hyperbolic struc- 
tures on the components of  F y -  ~ with relative Euler class - 1 (resp. + 1 ) and 
complete orientation-preserving branched hyperbolic structures on the compo- 
nents with relative Euler class 0 such that the holonomy representation on each 
component agrees with the restriction of p on the component (Lemmas 4 and 
5). By composing the developing maps of the orientation-reversing structures 
with the map z ~ Y, we get orientation-preserving developing maps into H - .  
We shall always think of orientation-reversing hyperbolic structures then as 
orientation preserving structures modelled on H - .  

Let ~ be a curve bounding two (not necessarily distinct) pair-of-pants com- 
ponents of  Fg - ~U. We have the following possibilities: 

I f  the relative Euler class of  the two components are both equal to +1 
or - 1 ,  then we can retract the complete hyperbolic structure of these two 
components along ? to the totally geodesic curves and glue them along these 
totally geodesic curves, giving a complete hyperbolic structure on the union of  
the two components along 7- 

I f  the relative Euler class of  the two components are non-zero and of  op- 
posite signs, then we just glue the two structures along the ideal boundary 
corresponding to 7. 

If  one of the components has relative Euler class 0 and the other 1, we 
glue along an ideal boundary. 

I f  the relative Euler classes are 0 and - t  respectively, we glue along the 
retract to the totally geodesic curve i f  possible, (recall that we can retract 
two of  the boundary curves to totally geodesic curves for the Euler class zero 
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component), otherwise, we add on a complete hyperbolic cylinder developing 
onto H -  and glue the ideal boundaries of the two components corresponding 
to y to the ideal boundaries of  the hyperbolic cylinder. 

I f  p and U satisfies the conditions of Lemma 2, proceeding inductively, we 
can construct a fundamental membrane for a branched CP 1-structure on F o with 
one branch point of  degree two and holonomy representation p, thus proving 
Theorem 1. To see Theorem 2, we use p and ~ satisfying the conditions of  
Lemma 3. In this case, for each of the branched structures on the components 
with relative Euler class zero, we can retract any two of the boundaries to 
totally geodesic curves. It follows that we need to add at most k complete 
hyperbolic cylinders developing to H - .  

6 The fibre of the holonomy map 

Suppose p ~ Hom(1t, PSL(2,R)) with e(p) = 2 - 2 9 + k ,  1 < k < 2 9 -  1. 
By Theorem 2, F~ has a branched CP 1-structure with holonomy p with branch 
points {Xl . . . . .  xk} all of  degree 2. In this section we show that there is a k- 
complex dimensional family of branched CP l-structures on F~ with k branched 
points all of degree 2 having the same holonomy representation. We also show 
that the generic branch point has degree two. 

We start by showing that for 
complex one-dimensional family 
the branch point around. 

Let x be a branch point of  

each branch point of  degree two, there is a 
of  deformations which arise from "moving" 

degree two for some fixed branched CP 1- 
structure on F:j. Choose a small neighbourhood U of x such that U is con- 
tractible and U is mapped by the developing map onto a geometric disc D in 
CP l and U = dev- l (D) ,  locally. Remove U from Fg and attach a new 'disc' 
as follows: 

Choose any point y in D distinct from dev(x) and join x to y by a line l 
lying completely in D. l lifts to two distinct lines It and 12 in U both ending 

in x. Slit U along these two lines and reglue, matching 7 + to 72 and 7~ to 

l f .  The two lifts of  y are now identified and becomes a branch point, x is 
now split to two regular points. It is easy to see that the new disc Uy depends 
only on y and not on the choice of  l and also that the boundary of Uy is 
isomorphic to that of U so that we can attach Uy back to Fg - U, resulting in 

a different branched CP t structure on F o with the same holonomy. Since the 
structures are parametrised by y, we obtain a one complex parameter family of  
branched structures for each branch point all sitting over the same holonomy 
representation, see Fig. 10. 

The above construction can be applied to branch points with degree d > 2, 
in this case, there are more than two lifts of  l to choose from. I f  we choose 
the lifts to differ by 'an angle of  2~ at x, then we create two branch points with 
degrees 2 and d -  1. Continuing this inductively, we can reduce all branch 
points to degree 2 which is the generic case. 
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Fig. 10. Moving the position of the branch point by slitting and reglueing 
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Fig. 11. Genus three surface M obtained by attaching a handle to a genus two surface 

7 An example 

Example 8 Let M be a genus 3 surface, obtained by attaching a handle to 
a genus 2 surface (Fig. 11) and let n = nj(M). We define a representation 
p E Hom(n, PSL(2 ,R))  as follows: 
(i) p is a discrete, faithful representation on the original genus two surface. 

(ii) p is trivial on the attached handle. 
p(n) is thus a discrete subgroup F of  PSL(2, R) and H/F is a genus two 

surface. 

Proposition 3 M does not admit a branched hyperbolic structure with holo- 
nomy representation p. 

Proof Suppose not, i.e. suppose that M has a branched hyperbolic structure 
with holonomy p. 

Then dev : / ~  ~-~ H passes down to a branched map 

dev : M  H H/F . 

The induced map on the fundamental group is just that o f  the pinching map 
where the handle is pinched to a point, hence the above map is homotopic to 
a pinch map o f  degree 1, implying that dev is a homeomorphism from M to 
H/F, a contradiction. [] 
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Fig. 12. Attaching a branched hyperbolic structure on a handle to H/F - ~:-disc 

Although M does not admit a branched hyperbolic structure with holonomy 
p in the above example, we shall see that by perturbing the representation 
slightly, we will be able to construct a branched hyperbolic structure with 
holonomy close to that above. 

Let e and ]~ be curves on the attached handle as in Fig. 11. Note that p(c~) = 
p(/3) = Id. Construct a hyperbolic structure on the original genus 2 surface 
using H/F and remove an e-disc about a base point x to obtain a hyperbolic 
surface with boundary, the holonomy about the boundary curve is trivial. We 
will attach a branched structure on a handle to the boundary as follows: Start 
with a hyperbolic e-disc D,: and make two geodesic slits Ii and 12 lying in D~ 
having the same length. There exists some 9 C PSL(2 ,R)  mapping li to 12. 
Identify l~- to l 2 and t 7 to l + via the hyperbolic isometry g. Topologically, 
we obtain a torus with a disc removed, i.e., a handle, geometrically we obtain a 
branched hyperbolic structure on the handle with two branch points o f  degree 
two each and with the boundary isometric to an e-circle. Attaching this to 
the original structure, we obtain a branched hyperbolic structure on M whose 
holonomy representation f is the same as p on a standard set o f  generators 
for rc except that p(a)  = 9. Clearly, 9 can be chosen to be arbitrarily close 
to the identity by making It and 12 close, so f can be made arbitrarily close 
to p. Note also that y can approach the identity from the elliptic, parabolic or 
hyperbolic directions. By a slight modification, we can also construct branched 
hyperbolic structures with holonomy f such that f = p on a standard set o f  
generators except that f ( e )  = f ( /~)  = 9 for some 9 close to the identity. See 
Fig. 12. 

In view of  the above example, we conclude by posing the following 
question. 

Question. For 2 - 20 < k < - 1 ,  consider the component e-l(k)  of  Hom(~t, 
PSL(2,R)) .  Is the subset of  e-l(k)  consisting of  all the representations that 
occur as the holonomy of  branched hyperbolic structures on the surface F q 
dense in e - l ( k ) ?  
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