Remark on Herz-Schur Multipliers on Free Groups

Marek Bożejko

Institute of Mathematics, Wroclaw Uniwersity, Plac Grunwaldzki 2/4, Wroclaw, Polen

Introduction

Let G be a discrete group, and $A(G) = A_2(G) = l^2(G) * l^2(G)$ be the Fourier algebra of G introduced and studied by Eymard [2]. Herz considered the interesting algebra $B_2(G)$ of multipliers on G and he observed that

$$
FS(G) \subseteq B_2(G) \subseteq M(A(G)), \tag{1}
$$

where $M(A(G)) = \{ \varphi : \varphi \cdot A(G) \subseteq A(G) \}$ and FS (G) is the Fourier-Stieltjes algebra of G defined as the linear space generated by positive definite functions on G.

If G is an amenable group, then all the spaces in (1) are equal.

It was shown by Figa-Talamanca and Picardello [8] that for a noncommutative free group F

$$
FS(F) \not\equiv M(A(F))
$$
 (2)

and Leinert [6] proved that for a free group F

$$
FS(F) \not\equiv B_2(F). \tag{3}
$$

In this note we show that

$$
B_2(F) \nsubseteq M(A(F))
$$
\n⁽⁴⁾

and even more, namely for $1 < p < \infty$

$$
B_p(F) \nsubseteq M(A_p(F)). \tag{5}
$$

2. Preliminaries

Let $1 < p < \infty$, and X be an arbitrary set. The function u on X belongs to $l_p(X)$ if

$$
|u|_p = \left(\sum_{x \in X} |u(x)|^p\right)^{1/p} < \infty.
$$

The Banach algebra of bounded linear operators on $l_p(X)$ will be denoted by $END_p(X)$.

Every element $k \in END_p(X)$ can be considered as a mapping

$$
k: X \times X \to \mathbb{C} \quad \text{such that} \quad \|k\|_p < \infty,
$$
\n
$$
\text{where} \quad \|k\|_p = \inf \left\{ C : \left| \sum_{x, y \in X} k(x, y) u(y) v(x) \right| \leq C \|u\|_p \|v\|_p \right\}.
$$

The algebra of Schur multipliers $V_p(X)$ is defined as follows: $\varphi \in V_p(X)$ if $\varphi: X \times X \rightarrow \mathbb{C}$ and

$$
\|\varphi \cdot k\|_p \leqq \|\|\varphi\|\|_p \cdot \|k\|_p
$$

for every $k \in END_n(X)$ with finite support in $X \times X$. $\varphi \cdot k$ is the pointwise multiplication.

Now let G be a discrete group, and $M\varphi(g, h) = \varphi(gh^{-1})$ for a function $\varphi: G \to \mathbb{C}$.

The algebra of Herz multipliers $B_n(G)$ is obtained as the space of functions φ on G such that $M\varphi \in V_p(G)$ and

$$
\|\varphi\|_{B_{\alpha}}=\|M\varphi\|_{p}.
$$

Let $P: l_p \otimes l_p(G) \rightarrow c_0(G)$, $[-+,-,-]$, be defined on simple tensors in the following way:

$$
P(f \otimes g) = \check{g} * f, \qquad \text{for} \qquad f \in l_p(G), \ g \in l_{p'}(G).
$$

Let the Herz algebra $A_p(G) = P(l_p \hat{\otimes} l_{p'}(G))$ have the quotient norm.

It was proved by Herz [4] for an arbitrary group G, that $A_p(G)$ is a Banach algebra and

$$
B_p(G) \subseteq M(A_p(G)) = \{u: u A_p(G) \subset A_p(G)\}.
$$

If the group G is amenable, then

$$
B_p(G) = M(A_p(G)).
$$
 (see [3]),

We show now that for a noncommutative free group F

$$
B_p(F)\nsubseteq M(A_p(F)).
$$

3. Leinert and Strong Leinert Sets

We recall that the set $E \subseteq G$ is called *Leinert set* if there exists $C > 0$ such that for every function $f \in l_2(E)$

$$
||f||_{VN} \leq C |f|_2,\tag{6}
$$

where
$$
||f||_{V_N} = ||Mf||_2 = \sup \{|f * g|_2 : |g|_2 = 1\}
$$

or equivalent by a duality

$$
\chi_E \cdot A(G) = l_2(E),\tag{7}
$$

where χ_E is the characteristic function of E.

Herz-Schur Multipliers 13

By the classical argument, (7) is equivalent to the following statement: There exists $C > 0$ such that

 $|\gamma_F \cdot f|_2 \le C \|f\|_{A(G)}$ for supp $f \subset E$. (8)

Now we introduce the following

Definition. Let $1 < p < \infty$. A set $E \subseteq G$ is called *p-Leinert set* ($E \in L(p)$) if

$$
l_{\infty}(E)\subset M(A_p(G)).
$$

A set $E \subset G$ is called *strong p-Leinert set* ($E \in L^*(p)$) if

$$
l_{\infty}(E)\subset B_{p}(G).
$$

The existence of an infinite Leinert set and a strong p-Leinert set in free noncommutative groups was proved by M. Leinert in his papers [5, 6].

Note that the existence of an infinite Leinert set in the group G implies that G is not amenable.

Proposition 1. (a) *A set* $E \subseteq G$ *is a Leinert set if and only if E is a 2-Leinert set.* (b) *For* $1 \subseteq p \leq 2$, $L(2) \subseteq L(p)$.

For the proof we use the following generalization of the Khinčin inequality given by M. Picardello [7].

Lemma (Picardello). *If* suppf *is finite in a discrete group G, then there exists a function* $r = r(f)$, $|r(x)| = 1$ *such that*

$$
|f|_2 \le 2\sqrt{3} \|f \cdot r\|_{A(G)}.\tag{9}
$$

Proof of Proposition 1. (a) If the set E is a Leinert set, then χ_F $\colon A(G) = l_2(E)$. Hence by (8) $l_{\infty}(E) \cdot A(G) = l_2(E)$, but $l_2(G) \subseteq A(G)$ so $l_{\infty}(E) \subset M(A(G))$ and this means that E is a 2-Leinert set.

Conversely, let E be a 2-Leinert set and take $f \in A(G)$ with finite support in G then by the Lemma we obtain:

$$
|f \cdot \chi_E|_2 \le 2 \sqrt{3} \|f \chi_E \cdot r\|_{A(G)} \le 2 \sqrt{3} \| \chi_E \cdot r\|_{M(A)} \|f\|_{A(G)}.
$$
 (10)

But from the assumption

$$
\|\chi_E \cdot r\|_{M(A)} \le D \|\chi_E \cdot r\|_{\infty} = D \quad \text{for fixed} \quad D = D(E),
$$

follows now

$$
|f \cdot \chi_E|_2 \leq 2 \sqrt{3} D ||f||_{A(G)}.
$$

So E is a Leinert set.

(b) If E is a Leinert set, then for $1 < p \le 2$ by the interpolation theorem, we have the following inequality

$$
|f \ast g|_{p} \leq C_{p} |f|_{p} |g|_{p}
$$

for every $f \in l_n(E)$ and $g \in l_n(G)$. Moreover, using a simple duality argument we get

for $\varphi \in l_{\infty}(E)$ $a \in l_{\infty}(G)$, $b \in l_{\infty}(G)$

 $\|\varphi(a*b)\|_{A_{\infty}} \leq C_n |\varphi|_{\infty} |a|_{n} |b|_{n'},$ hence $\|\varphi\|_{M(A)} \leq C_p |\varphi|_{\infty}$, therefore $E \in L(p)$.

4. Construction

Let F be a noncommutative free group with free generators $\{x_1, x_2, ...\} = E$. Let $E^k = \{a_1 a_2 \ldots a_k : a_i \in E\}.$

In our construction we apply the following nice theorem of Haagerup [9]:

Theorem (Haagerup). E^k is a Leinert set, $(k = 1, 2, ...)$

The main results of this note are the following:

Theorem 1. *If* $E = \{x_1, x_2, ...\}$ *is the set of free generators in a free group F and* $1 < p < \infty$, then E^2 is not a strong p-Leinert set.

Theorem 2. If F is a noncommutative free group and $1 < p < \infty$, then $B_n(F) \nsubseteq M(A_n(F)).$

Proof of Theorem 1. It is enough to construct a sequence of functions φ_n such that:

- (a) supp $\varphi_n \subseteq E^2$
- (b) $\|\varphi_n\|_{B_*} \geq n^{1-1/p} |\varphi_n|_{\infty}$.

For this we produce a special unitary matrix as follows: Let $\mathbb{Z}_n = \{g_1, g_2, \ldots, g_n\}$ be the finite cyclic abelian group of order n, let $\hat{\mathbb{Z}}_n = \{y_1, y_2, \ldots, y_n\}$ be the dual group and $a_{ii} = \gamma_i(g_i)$, $1 \leq i, j \leq n$.

Denote the matrix $(a_{ij})_{i,j \leq n}$ by $A = A_n$, and $B = n^{-1/2}A$. One can verify the following facts:

(x) *B* is the unitary matrix on \mathbb{C}^n

 (xx) $||A||_2 = \sqrt{n}$ (xxx) $\| |A| \|_2 = n$, where $|A| = (|a_{ii}|)$ (xxxx) For $1 < p \le 2$ $||B||_p \leq n^{1/p-1/2}$

 (XV) $||A||_p = ||\overline{A}||_p \leq n^{1/p}$, $||A||_p > n^{1-1/p}$ $(x \vee y)$ $||A||_p \leq \frac{1}{||A||_p}$ where $\bar{A} = (\bar{a}_{ij})$

Now we can obtain our "bad" multipliers on a free group F with free generators x_1, x_2, \ldots in the following manner:

For fixed $n=1,2,3,...$, let φ_n be a function, supported by the set $E_n = \{x_i, x_i, 1 \leq i, j \leq n\} \subset E^2$, which is defined in the following way:

$$
\varphi_n(x_i x_j) = a_{ij}
$$

We show that $||M\varphi_n||_p \geq n^{1-1/p}$, $(1 < p \leq 2)$. Let consider the matrix A_n as the matrix of the operator on $l_2(F)$ with respect to the orthonormal basis $\{\delta_x\}_{x \in G}$

$$
\langle A_n(\delta_x), \delta_y \rangle = \begin{cases} a_{ij} & x = x_i, y = x_j, i, j \le n \\ 0 & \text{otherwise} \end{cases}
$$

then $(M\varphi_n)$. $A_n = |A_n|$ and by (xvv) we have

$$
\|M\varphi_n\|_{p}=\|\varphi_n\|_{B_p}\geq n^{1-1/p}.
$$

Hence we get (b) for $1 < p \leq 2$. Since $\check{A}_p(G) = A_{p'}(G)$, $\check{B}_p(G) = B_{p'}(G)$ and $M(A_p) = M(A_{p'}(G)).$

The Theorem 1 is also true for $p > 2$.

The Theorem2 follows directly if we apply the theorem of Haagerup, the theorem 1 and the Proposition 1.

References

- 1. Bennett, G.: Schur multipliers. Duke Math. J. 44, 603-639 (1977)
- 2. Eymard, P.: L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92, 181-236 (1964)
- 3. Eymard, P.: Algèbres A_n et convoluteurs de L^p . Séminaire Bourbaki 367 (1969/1970)
- 4. Herz, C.: Une généralization de la notion de transformée de Fourier-Stieltjes. Ann. Inst. Fourier, Grenoble 24, 145-157 (1974)
- 5. Leinert, M.: Faltungsoperatoren auf gewissen diskreten Gruppen. Studia Math. 52, 149-158 (1974)
- 6. Leinert, M.: Abschätzung von Normen gewisser Matrizen und eine Anwendung. Math. Ann. 240, 13-19 (1979)
- 7. Picardello, M.A.: Lacunary sets in discrete noncommutative groups. Boll. Un. Math. Ital. 4, 494-508 (1973)
- 8. Figà-Talamanca, A., Picardello, M.A.: Les multipliers de $A(G)$ qui ne sónt pas dans $B(G)$. C.R. Acad. Sci. Paris Ser. A 277, 117-119 (1973)
- 9. Haagerup, U.: An example of a non nuclear C^* -algebra which has the metric approximation property. Invent. Math. 50, 279-293 (1979)

Received December 4, 1980