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1. Introduction 

Let X be a complex manifold of dimension n and E be a holomorphic vector bundle 
on X. It is well-known [2] that to each hermitian metric on E there is a unique 
hermitian connection inducing the ~--operator on E; the curvature F of this 
connection is an anti-self-adjoint section ofA 1'1 |  Ifho, h: are metrics on E, 
then the resulting curvatures are related by F1 =Fo +~o(U-18oU), where u is the 
positive self-adjoint endomorphism u=holhl. Conversely, a unitary bundle with 
smooth unitary connection having curvature of type (1,1) inherits a unique 
holomorphic structure by the Newlander-Nirenberg theorem. 

If X has a Kfihler metric and co is the K/ihler form, then the Yang- 
Mills equations for connections of this type reduce to alP=0, where 

p : _ ,  1 (F A co"-1). In this case, the bundle and connection split up into 
( n - l ) !  

the eigenspaces of the endomorphism ~, so if the connection is irreducible or 
if E is simple, then F=i21 for some 2 ~ .  Such a connection, introduced 
by Kobayashi and by Hitchin, is called Hermitian-Einstein (H-E).  The constant 

2~ 
is determined by c l ( E ) : 2 = 2 E = -  "#(E), where V--Vol(X) and 

( n - 1 ) ! V  
~(E) : = (cl(E) u co"- 1) [X]/rank(E). 

The quantity # (E) also features in the algebro-geometric notion of stability: E is 
(semi-)stable in the sense of Mumford and Takemoto if every coherent subsheaf 
S ~ • (E) with 0 < rank S < rank E satisfies # (S) < # (E) (# (S) <-- # (E)). (The defi- 
nition of # for sheaves is given in Sect. 3 below.) 

In [17], Narasimhan and Seshadri proved that an indecomposable holomorphic 
bundle on a Riemann surface is stable iffit admits an irreducible H - E  connection; 
(their theorem is expressed in terms of projective unitary representations of the 
fundamental group). This result was later reproved by Donaldson [4] by a different 
method. About the same time, Kobayashi [14] and Liibke [16] showed that if a 
bundle on an arbitrary compact K~ihler manifold admits an irreducible H - E  
Connection, then it is stable. In [5], Donaldson showed that in the case when Xis an 
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algebraic surface X ~..~n and o9 is cohomologous to the restriction of the Fubini- 
Study form, the converse is also true. Recently, Uhlenbeck and Yau [23] have 
proved the general n-dimensional K~ihler version of  this theorem. 

In [11 ], Hitchin observed that the notion of stability can be extended to bundles 
on an arbitrary hermitian n-manifold X: a theorem of Gauduchon [7] states that 
any hermitian metric on X has a conformal rescaling (unique up to a positive 
constant) so that the associated K/ihler form co of the rescaled metric satisfies 
~yao9 n- 1 = 0. If L is a holomorphic line bundle on X, the degree of L (with respect 

i ~x f ^ con-1, where f is the to co) can then be defined by deg(L)=deg(L, o9) : =~n-n 

curvature of any hermitian connection on L compatible with ~YL. Since any two 
such forms differ by a Ja-exact form, deg(L) is independent of the choice of connec- 
tion. If do9 = 0, then deg(L, to) is the usual topological degree cl (L). [co n- 1 ], but in 
general, deg( - ,  co) is not a topological invariant (cf. Proposition 2 below). Having 
defined the degree of holomorphic line bundles, the definition of stability can be 
repeated verbatim, and the definition of Hermitian-Einstein connection remains 
unaltered. Hitchin suggested that there should be a relationship between H - E  
connections and stable bundles in this general setting. 

The case when X is a compact complex surface is perhaps the most interesting, 
for it is in this case that the differential topology of the underlying 4-manifold is 
intricately connected with this problem. For example, using a deep application of 
his results in [5], Donaldson has given a counterexample to the 5-dimensional 
h-cobordism conjecture [6]. The interaction between the complex and real analysis 
stems from the fact that H - E  connections on bundles with # = 0 are precisely the 
anti-self-dual Yang-Mills connections. [It should be noted however that if do9 # 0, 
an H - E  connection on E is a Yang-Mills connection compatible with ~-E iff 
deg(E, co) = 0. ] 
The main result to be proved here is (cf.[5]). 

Theorem 1. Let X be a complex surface with an hermitian metric whose Kdhler form is 
~a-closed. Then an indecomposable holomorphic bundle on .Y is stable iff it admits an 
irreducible Hermitian-Einstein connection. This connection is unique. 

("Stability" and "Hermitian-Einstein" are, of course, with respect to the given 
~-0-closed K~ihler form.) 

The proof of Theorem 1 is by induction on the rank of the bundle, and is based 
on Donaldson's proof [4] of the theorem of Narasimhan and Seshadri. In brief 
outline this runs as follows: given the stable bundle E on the Riemann surface X, a 
functional J(A) is constructed on the space of hermitian connections A on E 
compatible with/)-n, essentially equivalent to the L 2 norm ofF(A)  - i2E1. Choosing 
a minimizing sequence As for J and employing Uhlenbeck's weak compactness 
theorem [22] for connections on bundles, a limit connection A'  is obtained with 
J(A ')~_ infJ(Al). Now A'  might define a different holomorphic structure E'  on the 
smooth underlying bundle, but in any case, by a semi-continuity of cohomology 
argument, Donaldson shows that there is a non-zero holomorphic ~:E~E' .  
If ~b is not an isomorphism, he shows that J(A')~4nV-l/2vE(kerq~), where 
vE(S):--(rankS)( l t (E)-#(S))  for S e E  and V=Vol(X). On the other hand, 
using the canonical filtrations of  Harder and Narasimhan [12] and the induc- 
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tive hypothesis, he can construct a connection A on E (compatible with 0-~) with 
J(A) < 4~z V-~/2v~(ker~b). This contradiction means that A' is compatible with 0-E 
and minimizes J. A simple argument then shows that for A' to minimize J, 
necessarily J(A ')= 0, giving ae(A ' )= i2E1. The "only if" part of the argument is 
more straightforward. 

The main features of Donaldson's proof also appear here, the biggest strategic 
difference being that the Harder-Narasimhan filtrations are avoided by reversing 
the order of his arguments. However, the technical differences are somewhat more 
significant, owing to the appearance of singularities of  one sort or another: torsion- 
free sheaves are no longer locally free, and sequences of connections only converge 
off finite sets of points. These difficulties are resolved generally by blowing-up and 
by appealing to the appropriate removability of singularities theorem of Hartogs, 
Serre or Uhlenbeck. Moreover, some of the techniques used by Donaldson in [5] 
can still be employed and indeed, these too play an essential role in the proof to be 
given here. The introduction and first section of [5] also contains more background 
material, and in particular, a clear description of the two equivalent formulations of 
the problem; namely, finding a certain connection on a fixed U(r)-bundle, or 
finding a certain hermitian metric on a fixed holomorphic r-bundle. 

2. Hermitian Geometry 

Let X be a compact complex surface and h be an hermitian metric on X. In local 
i 

holomorphic coordinates z a, the associated K[ihler form is co: =~  hogdz ~ ̂  dz~; (all 

conventions here follow those in [10]). The volume form is dV=~o9 ^ co, and if 
, : A p , ~ A  2-q,2-p is the Hodge ,-operator, then with respect to the inner product 
(f,g) ~--, �9 ( ] '^  �9 g), the adjoint of AP'q~ g~-*gA og~A p+1'~+1 is denoted by f~--*Af 
On (1,1)-forms f = f ~ d z a ^  dz ~, A f=-2 ih*Of f f ,  frequently denoted by f. Note 
that Ao9 = 2. 

The ,-operator on 2-forrns satisfies ,2 =1, and the decomposition into 
+ eigenspaces is A2+ = A 2'~ ~ A o,2 ~ span (co), A z_ = kerA :A x' 1 ~ A  o. 

With respect to the inner product 0q, g)~--~f^ * g, a straightforward calcula- 
tion gives x 

O'g= - , ~ , g = i A ~ g + i * ( ~ o g A g )  , g ~ A  ~'~ , (2.1a) 

O'f= - , J , f = i ( a ~ - ~ A ) f  - ( , J o g ) A f  , f e A  ~'x . (2.1b) 

Let P be the second-order real elliptic operator on functions P:  = iAJO, (so if 
h is flat, P=�89 A where A is the usual Laplacian having negative symbol). Then 
P ' f =  * ii~O (ogf) = iAS8f + i * (t~o9 ̂  Of) - i * (ao9 ^ 8f) + i(* 8aog) f That is, 

P * = P + i * J o 9  ^ O-i*ao9 ^ ~+i*JOo9 . (2.2) 

From (2.1a) and its complex conjugate, it follows easily that 

d ' = O * d = P + i *  6o9 ̂  t3 , (2.3a) 

A "= ~*~'= P - iA(O~+ ~a) - i  �9 OogA~, (2.3b) 

d =A ' + A " = 2 A " + i A ( O ~ + ~ ) + i , d o 9  A d .  (2.3c) 
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[Of course,/~0 + ~ 7 =  0 on functions, but (2.3) is valid for an arbitrary hermitian 
connection on a bundle, in which case ~-+~-a is the (1,1) component of the 
curvature.] Adding (2.3a) and (2.3b) and using (2.2) also gives 

A = P + P* - i A ( d ~ +  ~ )  - i  �9 JOto . (2.4) 

Now suppose that the metric h has been conformally scaled according to the 
theorem of Gauduchon [7] so that Jdto = 0. Then a number of easy but important 
consequences follow from these equations. The first of these is the existence of 
H - E  connections on holomorphic line bundles. For if L is a line bundle with 
hermitian connection compatible with ~-L and curvature f e  A ~'1 (X), any other such 
curvature form has curvature f +  ~-dlogu for some positive function u. Thus the 
equation to be solved is P logu=  - / f - 2  where ~ (/f+A)dV=0. From (2.4), A =P 

x 
+ P* on functions, so ker P * =  IR. By standard linear elliptic theory on compact 
manifolds, there exists a smooth solution u to P l o g u = - / f - A ,  unique up to 
multiplication by a positive constant. 

Next suppose that E is a holomorphic bundle with H -  E connection: ~=  AF 
= iA1 for 2 = -2rrV-~#(E,  to). Ifs is a global holomorphic section, then from (2.3) 
(c), Ildsll = <s, = Ilsll z + < s , ,  idto ^ ds), (ds denoting the covariant deriva- 
tive of s). But (s, *dto ^ ds) = (s, �9 ~to ^ Os) = (s, �9 [ -a(~-tos) + O~-ogs]) = 

- < ,  s, a (~tos)> = - <d * �9 s, J tos> -- < ,  gs, ~tos> -- 0, so  I[dsN z = - 2  I[s l[ z. Thus, just 
as in the K/ihler case, one has the result of Kobayashi [13]: 

Proposition 1. Let X be a compact surface with a metric whose Kiihler form is ~ -  
closed. I f  E is a holomorphic bundle on X which admits an H -  E connection, then if 
It ( E) < 0 it follows that H~ X, t~ ( E) ) = O, and if  g ( E) = O, every holomorphic section is 
covariantly constant. [] 

Corollary 1. I f  L is a holomorphic line bundle on the compact surface X such that 
H~ X, L) ~ O, then deg(L, to) _>_ O for any positive ~O-closed (1,1)-form to, with equality 
iff  L is trivial. [] 

Ifs  is a holomorphic section of L, it follows from the Poincar6-Lelong theorem 
[10] that deg(L, to) = Vol(s-~(0), co). 

Corollary 2. Let to be a positive $O-closed (1,1)-form on the compact surface X, and let 
{et . . . . .  era} be an integral basis for H2(X, Z)/torsion. Then there exists ~ =e(to) > 0 
such that any holomorphic line bundle L on X with c l ( L ) -  ~'n~e~mod torsion and 
H~ L) 4= 0 satisfies deg(L, to) ~ e ~ In% 

Proof. Let e,'ea =q,p be the intersection matrix on H2(X, Z)/torsion, q'a the 
inverse. If f~ is a closed 2-form representing e,, the (1, l)-component ~, of f,  is 
~-a-closed. If e > 0 is sufficiently small, to + 8m ~ q~Ojr is positive for any 0c = 1, ..., m. 
By Corollary 1, 0 ~ deg (L, to _ ~m ~ q'aj?a) = deg (L, 09) +_ emn ~, [for if f e  A 1. i repre- 
sents c1 (L), ~ f ^ fp = j f ^ jrp]. Thus (leg (L, co) ~ ~ In~l for all ~, and summing over 
gives the desired conclusion. [] 

Corollary 3. A n H -  E connection on an indecomposable bundle is unique i f  one exists. 
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Proof. (cf. [4]). If E is a smooth unitary bundle with two integrable unitary 
connections Ao, A1 inducing isomorphic holomorphic structures Eo, Et then, by 
definition, there is a complex automorphism g of E such that 3-1 = g o ao ~ g-  1 and al 
= g.  - t o 8o ~ 0". After a unitary change of gauge of one of them [g (0"0) - t/2 ], g can 
be assumed positive self-adjoint. If Ao,At are H - E  connections, then the 
(holomorphic) isomorphism g : E o ~ E  1 is covariantly constant by Proposition 1, 
implying O=~o(g*g)=~o(g2), and 3.o(g2)=0. Since Eo is indecomposable, 
g2= const 1 and since g is positive self-adjoint, g = const 1. [] 

The next corollary is taken verbatim from [5]. For the proof(which is short), see 
that reference. 

Corollary 4. Suppose that the main theorem has been proved for bundles of  rank less 
than r. Then any r-bundle which admits an Hermitian-Einstein connection is a direct 
sum ~ E i of  stable bundles Ei with # (E~)= I~(E). In particular, it is semi-stable. I f  E 
admits an irreducible such connection, it is stable. [] 

A slightly different version of (2.3) (c) will be of use subsequently. Suppose 
that E is a bundle with integrable hermitian connecting having curvature F. 
Then (2.3c) gives d =2A "+ iF+ i*dto ^ d for the full covariant Laplacian on sec- 
tions. So if s is a local holomorphic section, Alsl 2 =A <s,s>=2<s, As>-2ldsl 2 
=2(s,  iPs) +2i(s ,  �9 ^ ds) -2tdsl 2. Using the same manipulations as before, 
together with 3.s = 0 = 3.&o, one computes (s, �9 ^ ds) = - ,  ~(Is123.to). Thus A Isl 2 
+ 2i �9 ~(Is123.to) = 2 (s, i~s) - 2  Idsl 2. Since iF is a real operator, taking the complex 
conjugate of this last equation and adding gives 

,t Isl 2 + i ,  0 (Isl2 3.to) - i  �9 3.(Isl2Oto) = 2 <s, iPs> - 2  Idsl 2 , 

(s holomorphic) , (2.5) 

which is the unintegrated version of the equation used for Proposition 1. Note that 
since 3.Ow = 0, the operator on the left of (2.5) satisfies the maximum principle, by 
Theorem 3.1 of [8]�9 

The last application of (2. I)-(2.4) is the result mentioned in the introduction on 
the topological invariance of deg( - ,  to). 

Proposition 2. I f  to is a positive 3.O-closed (1,1)-form on the compact surface X, then 
i 

deg(L, co)= ~-~ ~ FL ^ co depends only on the image of  cl( L ) in H2 ( X, IR ) i f f  bl ( X) is 
e p e / ~ .  X 

Remark. bt(X) even is equivalent to the existence ofa  K/ihler metric on Xby results 
of Kodaira, Siu. 

�9 1 1 * Proof o f  Proposition. Suppose bt(X) is even. Under the map H (X, d~)~H (X, d~ ) 
induced by 0 ~ Z  2~t!,d)oxP;d)*--~0, a representative 3.-closed (0,1)-form 0 is 

i mapped to ~ ~ (~g-3.8) ^ co by d e g ( - ,  to), and of course, this map annihilates 
x 

the image of Ht  (X, Z) in Ht (x ,  t~). Since bl is even, Hi(X, r has real dimension bt 
[3], and since Ht(X,  Z)~Ht (X ,  d~) is always injective, deg : Hi (x ,  r must be 
zero, otherwise the kernel would contain a lattice of rank greater than its dimen- 
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sion. Thus deg(L, co) depends only on ct(L)eH2(X,Z) in this ease. Since 
S ( S g - ~ # ) ^  co=0 for all ~--closed (0,1)-forms g, replacing g by ig shows that 

ag A CO=0 for all sich g, and similarly J ~-h ^ co = 0  for all a-closed (1,0)-forms h. 
Thus if fo,fl  are (1,1)-forms such that fo-f~=dh for some heA ~, then 
~ho,1 =0=~hl ,o  giving J ( f o - f l )  A co=~'(aho,l+~-hl,o) ^ co=0. Thus deg(L, og) 
depends only on the image of cl(L) in H2(X, R). 

Now suppose that  ~(~g-~#)  A CO=0 for all a-closed (0,1)-forms g. Then as 
above, j ~g ^ o~ = 0 for all ~-closed g e A 1'~ Given such g, the equation Pu = iA~g 
has a solution u since ~ A~gdV= ~ ~g ^ co = 0, and moreover u is unique up to the 
addition of  a constant. But this is just Aa9 = 0, where 9 : =  g + Ju. From (3.1) (b) it 
now follows that (ag,  dg) = (9, a*dg) = (9,  [ ( A J -  ~-A) + �9 3-coA ] dg) = 0, so g gives 
the unique 3--closed (1,0)-form g ' : =  ~ Conversely, every holomorphic l-form on a 
compact surface is closed [3], so that the map Ht(X, (9)~H~ 121) defined this 
way is invertible. Thus hl '~176 and bt(X ) =ht '~176  is even. [] 

Remark. An easy continuation of  this argument shows that when bl(X) is even, 
any real ig-~-closed (1,1)-form co is cohomologous mod im d + J to a d-closed real 
(1,1)-form, and any two such (cohomologous) d-closed (1,1)-forms differ by a d- 
exact term, so 09 defines a unique element of H 2 (X, R). 

In order to use the inductive hypothesis to prove Theorem 1, it is necessary to 
find sub-bundles o f  a given bundle. However, in general one can expect to find at 
most  subsheaves which are sub-bundles o f f a  finite set of points. To get sub-bundles 
therefore, these singular points have to be blown-up, and then appropriate metrics 
must be constructed on the blown-up space. For details of  what follows, see [10, 
pp. 182-187]. 

Let x be a point on the surface X and let ~'-~ X be the blow-up of  X at x. Given 
the positive (1,1)-form co on X, n'co is degenerate on the exceptional divisor 
L = n - t ( x ) ,  but it can be modified as follows. If  U is a sufficiently small 
neighbourhood of  x and U : =  n- t (U) ,  then there is a holomorphic projection 
lr2 : •--, F l .  Now L is the zero set of a section s ~ F (~', $ ( - 1)), so let ho be the metric 
on d~ ( - 1) (: = d9 (L)) over . ~ L  such that Isl - 1 ,  and let hi be the standard metric on 
d~( - 1) over F t .  Let Q be any cut-off function with support in U such that  O = 1 on a 
neighbourhood of  x. Then h : = (1 -0)ho  + 0n*ht is a metric on d9 ( - 1) and and the 

i /~dlogh~At,t(.~.). a is identically zero outside of resulting Chern form is ~: = 

and is negative definite in directions tangent to L in a neighbourhood of  L. Thus, for 
sufficiently small ~, c3, :=  n ' c o -  ea is positive. 

If  co is ~a-closed, resp. d-closed, then so too is o3~, and if co is rational (dco = 0 and 
[co] e H2(X, ~)), so too is o3 if e is rational. These are the metrics used for the 
Kodaira embedding theorem. 

If co is/9"~-closed, then in a neighbourhood W of x, co = au + ~-V for some u ~ A ~ 
v ~ A t'~ Since ~ n 'co ^ o" does not  depend on the choice of o', it can be supposed 

that  supp ~ l~, from which it follows that ]" rr*co ̂  a=O. Similarly, d e g ( - ,  &,) 

does not depend on the choice of  ~r, only on e. Note also that since L has self- 
intersection -1,  ~ o- ̂  or= - I  and Vol($', o~,)=~-S ~ =VoI(X)-~-~.  
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Finally, note that i f f  is a l-form on X, then lim In*fl < n*lfl, where the norm on 
~"*O 

the left (resp. right) is with respect to 03~ (resp. co). This is easily checked by using 
coordinates for which co(x) is standard; (equality holds at any point off L). 

3. Desingularization of Sheaves 

It is well-known that singularities on surfaces can be resolved by blowing-up [3], 
and the same is true for coherent analytic sheaves. This will be indicated shortly, but 
first a number of basic facts about sheaves will be recalled, taken directly from [18, 
pp. 139-160] (see also [9]). 

Let B be a coherent analytic sheaf on a complex manifold X. The singularity set 
of B is S(B)={xeX:Bx is not a free 0x-module} and is an analytic set in X of 
codimension > 1. Thus B has a well-defined rank, b say. The torsion subsheaf z(B) is 
defined by z (B)~ = torsion submodule of B~, and T(B) is coherent. If z(B) = 0, then 
B is torsion-free and codim S(B) > 2. Thus if X is compact and B is torsion-free, B 
has a well-defined first Chern class. An equivalent definition of torsion-free is that 
the canonical homomorphism B~B** is injective, where B * : = H o m ( B ,  tg). If 
B = B **, then B is reflexive and codim S(B)> 3. In general, B is reflexive iff it is 
torsion-free and normal, where normal means that F(U, B)~F(U\A, B) is injective 
for any analytic set A of codim_>_2 in an open set UcX. Thus for arbitrary B, it 
follows B* is reflexive. In general, a reflexive sheaf of rank 1 is a line bundle, so the 
determinant of  a coherent analytic sheafB of rank b is det B: = (AbB) **. I f B o  C is a 
rnonomorphism of torsion-free sheaves of ranks b<c, then AbB~AbC is also a 
raonomorphism since the kernel is a torsion subsheaf; thus if b = c, detB--*det C is 
also a mouomorphism. 

If O~A~BoC~O is an exact sequence of sheaves with B reflexive, then 
Lemma 1.1.16 of  [18] states that A is normal if C is torsion-free. If C is not tor- 
sion-free, then the maximal normal extension -~B of A in B is given by 
,4B:=ker[B---~C/T(C)]; thus there is a monomorphism A~,~B and in this way it 
generally suffices to deal with reflexive subsheaves of bundles in questions related to 
stability. 

In the case when Xis a compact surface, torsion-free sheaves are singular only at 
finitely many points and reflexive sheaves are locally free. If co is a positive/)'~-closed 
(1,1)-form on X, the degree of a coherent analytic sheaf B of rank b on X is deg(B) 
--- deg(B, co) : = deg(detB, co), and / t (B)  = #(B, co) : = deg(B, co)lb. It follows from 
Corollary 1 that if B~C is a monomorphism of torsion-free sheaves of 
the same rank, then #(B)<#(C). Also, despite its possibly non-topological 
nature, deg( - , co )  behaves well with respect to exact sequences O~A--*B~C 
~0 of torsion-free sheaves, for since detB~-(detA)| off a finite 
set of  points, this isomorphism extends by Hartogs' theorem to all of X, giving 
deg(B) = deg(A) + deg(C). 

With these preliminaries out of the way, the desingularization of  torsion-free 
sheaves on surfaces can now be described. 

2 Let B be a torsion-free sheaf in a neighbourhood of 0 e IE, singular only at 0. 
Then in a neighbourhood of 0, B is given by an exact sequence 0 ~ r  tgn~B~0,  
where f(x) is an n x m matrix of holomorphic functions which has rank m for x 4= 0. 
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A measure of the degree of the singularity at 0 is given by rank f(0). If this is zero, a 
second measure is given by the smallest integer p such that r is contained in the 
ideal I(f)o generated by the germs of the m x m subdeterminants of f,  where m0 is 
the maximal ideal of  d~r 

By elementary row and column operations, f is equivalent to a matrix of the 

(1 ~)where  l istheunitkxkmatrix(k=rankf(O))andg(O)=O. Blowing- form 0 

up the origin gives ~*g=~s where s=diag(t  ~ . . . . .  ta--~), ai>0, teF(d~(-1)) 
defining the exceptional divisor L, with ~ nonsingular and having a non-zero entry 
in each column. In terms of diagrams, this is 

0 ..,x*B ~0 

0 , B , 0  . 

~ k  ~ k  

~ r a  - k ~ ) n  - k 

$ 

Ok ~k 
, 

Y~(-aO fl ~n-k 

Here B is defined by the lower row. 
Now let B~ :=B/z(B), ,4 :=ker[t~n~B,],  so .4 is locally free and the map 

~: ,4--, t~ n is of rank __> k + rank ~ at each point. In particular, ~ has rank m off L and 
rank > k at generic points of L. I lk  = 0, then at every point x e L, the smallestp such 
that ~n~ c I(~)x is clearly less than that for I(f)o. In this case, the procedure can be 
repeated at each of the singular points of B1 until eventually the rank of the derived 
map .~ is positive at every point. Thus in either case, the rank o f ~  can be increased 
by blowing-up, and after finitely many such blow-ups a diagram of the form 

0 ,6" "V',on ' ',n*B .... ~0 

0 , .~ ,0" , ~ ..DO 

is arrived at, where the lower row is an exact sequence of bundles. 
It follows from the above that i f 0 ~ A - ~ E o B ~ 0  is an exact sequence of sheaves 

on a compact surface X with E locally free and B torsion-free, then there is a 
modification X" & Xconsisting of finitely many blow-ups and vector bundles A, ~ on 
.~" such that 

0 .... ~g*A 

I 
0 -, 2 

n * E  ..... , ~ * B  

....... ~ ~*E .~ J~ 

, ,,1, 0 

,0 

(3.~) 
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has exact rows, commutes, and has the lower row an exact sequence of  bundles. 
Moreover, off  the exceptional divisor, the vertical arrows are isomorphisms. This 
will be referred to as a desineularization of B. 

Remarks. (a) Since A is locally free, so too is n 'A,  so n*A~n*E is is a 
monomorphism of  sheaves even though n is not flat. Moreover,  since r~,t~7= 0x 
and rc~ O j7 = 0 [3, Theorem 1.9.1] it follows that r~,n*A = A and rc~n*A = 0. Applying 
n,  to the top row of  (3.1) then gives n , n * B = B  and since k e r ( n , r c * B ~ , B )  is a 
torsion sheaf and B is torsion-free, it follows B ~ r c , ~  is injective; this implies 
1r,,4 =A.  

(b) In general, i f 0 ~ A  '--,r~*E~B'~O is exact with B '  torsion-free, then u , B '  is 
torsion-free so K: = ker [ u , B ' ~ u , A  '] is also; this implies n , A '  is locally-free. I f L  is 
any component  of  the exception divisor and A 'lz = ~ d~(at), then necessarily at < 0 
for all i because A 'IL-"rc*EIL is injective off a finite set and n*EIL is trivial. (If all at 
vanish it is easy to show A ' =  ~*~,A ', where ~ is the blowing-down map for L.) 

(c) If X is compact with positive ~O-closed (1,1)-form ~o and X" ~ X is the blow- 
up of  X at x e X, let 03~ = ~*o~ - ~tr be one of the forms constructed in Sect. 2. If  ~ is 
a line bundle on ~', then by [3, Theorem 1.9.1 ], ~ = u*C | d~ (k) for some C e Pic (X). 
Since re, dJ (k) = d~x if k ~ 0 and re, d~ (k) = ca k for k > 0, ~ ,  C = C or C | k .  In either 
case, d e t ( n , C ) = C ,  so it follows that deg(C, cS~)=deg(C,o~)-ea'cl(~) 
=deg(rc,~,  09) - so ' .  q ( ~ ) .  If  now ~' is an arbitrary torsion-free sheaf on X', then 
i t ,~  is a torsion-free sheaf on X and the isomorphism d e t n , ( 7 = n ,  d e t ~  of f  a 
finite subset extends to an isomorphism de tu ,  C =  det [n, dett~] over X by Har- 
togs' theorem. Thus deg (t~, a3~) = deg (det ~7, @) = deg(n ,  det C, 09) - err. ct(det t~) 
= deg (det ~ ,  t~, ~)  - err. c~ (det C) = deg (r~, ~7, ~o) - err. c, (C). 

(d) With X, Xis in (c), suppose that L = r~- ~ (x) is the exceptional line and C on,~" 
is locally free of  rank n. Suppose, moreover, that t~lt. = ~ d~ ( - a0 for some a~ > 0 and 
that C : =  ~ , C  is locally free. 

By the Riemann-Roch theorem, the holomorphic Euler characteristic for ~ is 
given by X(~)=~p,(~)+~2q(7~)" c~(~) +nx((P~), where p~ = c  2 -2c~  and Z(~7) 
is the birational invariant ~ (ct(~) 2 +c~(70) = ~  (ct(X) 2 +c2(X)). Moreover,  
ct(70=c,(X ) + t, where t =c,(tP(1)). On the other hand, using the Leray spectral 
sequence, Z ( ~ ) = z ( C ) - x ( n ~ t ~  ). Now, r ~  is supported at x and thus is 

~+~ for sufficiently large p (by the Rtickert Nullstellensatz [9]), annihilated by r 
and it follows that r~, C = nt, C I L~ where L t~) is the p-th formal neighbourhood of  
L in ~'. F rom the exact sequences 0 -* t~ t . ( q )~d~v ,~ r  it follows that if  
a,, say, is the largest at, then t~(a~)[z has a non-vanishing section extending 
to all orders. By induction, C i r , ,  can be expressed in terms of extensions by 
line bundles d~( - a 0 ,  so for purposes of  computing Z(n~,~) it can be supposed that 
(7 = ~ d~ ( - at). Since re, ~ ( - ai) = d9~7, the Riemann-Rbch formula gives Z(n~, ~') 
= Z(n~* X r  = z (Z  ~)x) - z ( X  0(-at))  = nx(~)x) - ~  X(~)(-a,)) = nZ(r 
-[~'~a,(1-at)+X(O~)]=~Xa,(at-1). Substituting this into X(~7)=x(C) 
-Z (x t ,~ )  and using ct (~)=ct(C)-at  for a = X a  , gives Pt(C)=pt(~)+Xa2. In 
particular, pt(C) >px(~). 

(e) I f  E is a holomorphic bundle on the compact  surface X, then the Chern 
classes of  holomorphic subbundles E' c E must satisfy certain restrictions. To see 
this, f ix an hermitian metric on E, so E' and the quotient E" have induced hermitian 
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metrics. In a unitary frame, the induced connection A on E has the form 

A = _/~. , , 

where A ', A" are the induced connections on E', E" and fle A~ ", E')) 
is a ~--closed form representing the extension O~E'~E~E"~O, (cf. e.g. [4]). 
(Conversely, A ', A", fl gives E as smooth bundle a holomorphic structure, and any 
of the form tfl + ~ for t ~ C\0 gives an isomorphic structure.) The curvature of this 
connection is 

F=F(A)=[F' - f l  A fl* Vfl 1 (3.2) 
-Vfl* F"-fl* A fl " 

- 1  
The characteristic class p l ( E ) = ( ~ - 2 c 2 ) ( E  ) is given by pl(E)=~--~ x~ t r F ^  F, 
so if oJ is a positive (1,1)-form on X, 

2 1 (liE+ [12-IIF_ II { IIP[12-11F_ II 2) . ( 3 . 3 )  

i 1 
The first and second Chern forms are cl =~-n trF and c2 = 8--~-n2 [trF 2 -(trF)2], 

(where F 2 : = F ^ F). With G : = F '  - fl ^ fl* and B : = fl ^ fl*, one calculates 

(c2 - ~ ) ( F ' )  = 8 - ~  [trG2 + (trG)2 +2tr (G ^ B)+2( t rG ^ trB)] - (2n )  -2 try ^ ~*, 

where y is the component of fl | in A ~ | ' | "* (cf. [10, pp. 416-418] 
for similar calculations). It follows that there are constants Ct, C2 > 0 depending 
only on the sup norm of  F(A), and thus only on E and ~o, such that 
*(c2-~)(F')~Cl+C21fll 2. Furthermore, since fl is a (0,1)-form, I/~12 
=--i trAf lAf l*=itrd-i tr l  r so if to is ga-closed, it follows that Slfll2dV 

- 2 n  deg(E', to) +const. Thus there are constants C4, Cs > 0 depending only on 
E and to such that (c2 - ~ ) ( E ' ) ~  C4 -C5 deg(E', co). 

Now suppose that A c E  only has torsion-free quotient. Let ~'-~X be a 
desingularizing space for E/A and .4 be the "desingularization" of A. For the 
metrics ~ on X" constructed as in Sect. 2, In*fl compares uniformly with Ifl for 
a two-form f on X by choosing the scaling factors e appropriately. By remarks 
(d), (c) above, (c2 -~-~)(A) ~(c2 - ~ ) ( , ~ )  < Ca - C5 deg(,~, o3) +~r c1(-4) 2 < C4 

- Cs deg(A, to) + ~- c1(A)2, so the inequality 

(c2 - ~ ) ( A )  =< (?4 -C5 deg(A, 09) (3.4) 

is valid for any A c E  with torsion-free quotient, with (?4, C5 >0  constants 
depending only on E, to. 

(f) The last observation is the following: by definition, d e g ( - ,  to) ignores the 
singularities of torsion-free sheaves. However, this is also true on the level of forms 
in the following sense: if Q is a torsion-free quotient of a bundle E and the latter is 
given an hermitian connection as above, then off S(Q) the bundle Q inherits an 
hermitian connection and thus gives a curvature form FQ on X~S(Q). The claim is 
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that trlVQ is integrable and indeed ~ S trFQdV=deg(Q, 09), where the right-hand 

side is defined in the usual way. To see this, it suffices to assume that rankQ--1 
(otherwise replace E, Q by A~E, AqQ), and then Q is the image in detQ of a 
holomorphic map E-*detQ which is surjective outside S(Q). Locally, the singular 
part of FQ is then ~ log[  f]2, where f is a rankE-tuple of holomorphic functions 
whose only common zero is the singular point. Pulling back to the desingularization 
space ,~'~, X, •*loglf[ 2 =loglf l  2 + ~ajloglsj[ 2 where ~ is non-vanishing, s~ is the 
holomorphic function defining the exceptional line L j, and aj ~ 7.. By the Poincar6- 
Lelong lemma [10, p. 388], loglsjl 2 is integrable and n*FQ =F~+2ni~a~TL~ in the 
sense of currents. Since ~ r~*o9 =0, this gives ~ FQ ̂  09= $ n*(FQ ̂  09)= ~ F~ ^ rc*o~, 

and since Q = (~* det Q) Lj x ~ | K for some line bundle K with curvature ~ njtrj, it follows 
i 

that ~ S FQ ̂  to = deg(Q, to), as claimed. 

In fact, since the curvature forms a constructed in the last section lie in LP(X) for 
allp < 2 (when pushed down to X~{blown-up points}), the same is true of ~-~loglfl 2 
and F~. 

4. Construction of Subsheaves 

Let Xbe a compact surface and to be a fixed positive •a-closed (1,1)-form on X. I fB 
is a torsion-free sheaf on X, a subsheaf A c B will be called admissible ifA is coherent 
and 0<rankA<rankB.  Then B can be one of two types; namely, B has an 
admissible subsheaf (type I) or, B has no admissible subsheaves (type II). All of  the 
analysis in this section will deal exclusively with a bundle E of type I. 

The following fact will be used frequently (cf. [5, p. 3]): if E is a bundle which is 
not stable, then there exists a stable admissible A c E with E/A torsion-free and 
~(A)>#(E).  

Lemma 1. I f  E is a bundle on X, then {deg((A) : A c E is admissible} is bounded above. 

Proof. If not, there exists a sequence A i c E  with #(A0~oo. Without loss of 
generality, E/Ai is torsion-flee, and passing to a subsequence, rankAi=a  is 
constant. Then de tA i~AaE is injective, and deg(detAOT oo. Fix a connection on 
A"E, and on (detA0* put the H-Econnec t ion .  Then (2.5) applied to the non-zero 
section of (detA0* |  yields a contradiction for i large enough. [] 

If A ~ E is admissible of rank a, let rE(A): = a(l~(E)-  la(A)). By Lemma 1, the 
possible values of vv. are bounded below, and indeed, if E is stable, then v~(A)> 0 
for all admissible A. 

l.emma 2. I f  E is a stable bundle on X and i f  there exists an admissible A ~ E o f  rank a 
such that vE(A )=in f  { vn(A') : A '  c E  is admissible}, then 

(a) A is stable; and 
(b) B: = E/A is torsion-free and stable. 

Proof. (a) If C c A  is admissible of rank c, a( l~(E)-~(A))~c(l~(E)-I~(C))  
<a(/~(E) Z/~(C)) since c < a and/~(E) > #(C). 
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(b) If :] is the maximal normal extension of A in E, then a(l~(E)-#(A)) 
< a(Iz(E) - # (.~)), so #(.4) < #(A). On the other hand, A ~,4 is a monomorphism so 
/t(A ) N #(4). Thus u(A) = #(:]), giving vE(A) = vg(A ). By (a), ~] is stable, so A ~:] 
must be an isomorphism. Thus B = E/A is torsion-free. 

If C c B is admissible with torsion-free quotient, let K: = ker(E~B/C).  A quick 
calculation gives 

/~(C)=#(E) -1- (vE(K)-vE(A))<#(E)<#(B)  , c = r a n k C  . [] 
c 

The strategy of this section is to produce subsheaves A c E with this infimum 
property, to desingularize these, and show that (eventually) such A can be assumed 
to be subbundles; this process commences with the next lemma. 

Lemma 3. Let S be a torsion-free sheaf on X and let {Li}•=l be a sequence of  line 
bundles such that [#(L0[ < const and F ( X, L* | S) 4= O. Then there is a subsequenee 
with ex(Li) constant. 

Proof By replacing S with S** if necessary, it can be assumed that S is locally free. If 
r a n k S = l ,  the result follows from Corollary 2. If r a n k S > l ,  pick a non-zero 
homomorphism L1 ~ S  and let S t : =  S/Lt,  S~:= Sx/~ (St), s  := kerS--*S~. From 
the exact sequence O~L* | |  |  it follows that the sequences 
F(X, L* |163 and F(X, L* | cannot both be almost always zero, so the result 
follows by induction on rankS. [] 

The next lemma is the key lemma of this section even though its proof is trivial 
when (X, co) is algebraic and straightforward when X is K/ihler. 

Lemma 4. Let E be a bundle of  rank r on X and suppose that the main theorem has been 
proved for bundles of  rank less than r. Then 

(a) I rE  is of  type I, then there exists a stable admissible A c E  with torsion-free 
quotient such that/~(A) = sup {#(A ') : A ' c E is admissible}. 

(b) If, moreover, E is semi-stable, then there exists an admissible B ~ E such that 
v~(B) = inf {v~(B') : B' c E is admissible}. 

Proof (a) Choose a sequence of admissible A i c E  with #(Ai)]'M: = sup{p(A') 
: A ' c  E}, and without loss of generality, each Ai is stable and has torsion-free 
quotient. If p(A~) is eventually constant, then At satisfies the requirements of the 
lemma for large enough i, so suppose that this is not the case. By passing to a 
subsequence it can be supposed that rankAi=a is constant and #(A~) is strictly 
increasing. 

Since I~(detAO=a#(AO and detAt~A~E is non-zero, Lemma 3 implies that 
there is a subsequence with c~(AO constant. By Proposition 2 therefore, it must be 
the case that b~(X) is odd. Since each A~ is stable, it admits an H - E  connection by 
the inductive hypothesis, so by (3.3), {(~-2c2)(A~)} is bounded above. On the 
other hand, by (3.4), {(~-c2)(A0} is bounded below, so it follows that a 
subsequence has c2 (,40 constant. By passing to yet another subsequence, it can be 
assumed that {Ai} is topologically constant. 

Now recall that deg : Pic (X)--* R induces deg : H I(X, d~)~ ]R and this annihilates 
the rank ba(X) lattice H I(X, Z)C-~HI(X, ~). Since bl(X) is odd by assumption, 
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Proposition 2 implies that deg:HX(X, 0)- - ,R is not identically zero, so 
ker(deg)/Ha(X, Z)=  T, a torus, and Pico(X) =Hi(X, tP)/HI(X, Z )=  Tx  R. After 
picking a basis for HI(X,~) as R-vector space and setting Li :=detAi ,  the 
component ofL~ | Li in Tcan be assumed to converge to some element of T, and on 
the other hand, the component in ~, also converges since it is measured by deg and 
deg(Li)TaM. Thus (a subsequence of the) Li converges to some L~o ePic(X) with 
#(Loo)=aM. 

Now let L e Pico (X) be a line bundle with/l(L) = 1, and set -4i : = Ai | L -  ~ta,), so 
#(-4i) = 0, {.4i} is topologically constant, and of course, ,4i is stable. By the inductive 
hypothesis, .4i admits a (unique) H - E  connection, and this is moreover an anti- 
self-dual Yang-Mills connection. The curvature F~ of these connections satisfy 
[IFi [[25 = 4 ~z2pl (.~i) = constant, so by Uhlenbeck's weak compactness theorem [22], 
[19, 5], there is a finite set S =  {xl . . . . .  xN} c X  such that a subsequence of these 
connections (on the same underlying smooth bundle) converges weakly in 
L(ao~(X~S ) for any p to an anti-self-dual connection over X~S. By the removable 
singularities theorem [21], this connection extends across S to a smooth ASD 
connection on a (possibly topologically different) bundle ,4oo, This ASD connection 
gives J ~  a unique holomorphic structure. 

Since detA~=L~ |  -a~a') and this converges to L~ |  -~ it follows that 
d e t , ~ = L ~ |  -aM and #(.4~)=0. Setting Aoo:=.4|174 ~, it follows that 
#( ,4~)=M and Ai---*A~o weakly in Lf, Ior for any p (in the sense of 
connections). 

It suffices now to produce a non-zero holomorphic map A~ ~E,  for ifA~ is one 
of the stable components of A~ whose existence is asserted by Corollary 4, and if 
A ~ ~ E  is non-zero, then A ~ ~ E  must be a sheaf inclusion else the image I satisfies 
M=/z(A~o) </~(I). Moreover, A& must be equal to its maximal normal extension 
A~ in E (since the latter must have # = M and is therefore semi-stable), so Aoo has 
torsion-free quotient. 

The existence of a non-zero holomorphic map A ~ ~ Eis proved by repetition of 
Donaldson's argument [5, pp. 22-23], and will be an argument appearing here 
subsequently also. 

For each j, there is a non-zero holomorphic map sj:Af-*E. Fix an hermitian 
connection on E compatible with ~E and, as before, Aj is equipped with its 
H - E  connection. From (2.5), A Isjl ~ + i*O(Isjl2Jo~) -i*~(Is~12Oo~) -<__ (IP~I + I~e~.l)lsjl ~ 
-<__constlsjl 2, so by Theorem 9.20 [8] it follows that sup Isjl2-< C I]s j Choose 

X 

balls B, about the points x, e S such that A~, E are holomorphically trivial on them 
and such that C 4 EVoI(B,)=�89 and normalize sj so that Since the 
connection connections converge weakly in L(.Ioo(X~S) for any p and ~1sj=0, it 
follows that s~ t~(r~ < const(llsj + a ) -  const for K: = X~ w B,, (using also the 

0 . . . . .  - -  - -  �9 " 8 C bound on s~). Thus {s~} has a subsequence converging weakly m L~(K) and 
strongly in C~ to a limit s| which satisfies ~oos~ =0. Since for an j, 
the limit is non-zero, and by Hartogs' theorem, it extends to X to give a non-zero 
holomorphic map A~ ~E .  This completes the proof of (a). 

The proof of  (b) is essentially identical. If B=E is not stable, then there exists 
stable B ' =  B which has E/B' torsion-free and v~(B')< vn(B). The proof of (a) can 
then be repeated by choosing a minimizing sequence for vn and passing to a 
subsequence of constant rank. [] 
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Let ,~'2~ X be a modification of  X consisting of  N blow-ups, and let co be a 
positive ~0-closed (1,1)-form on X. Let a l ,  .. . ,  aN be forms constructed as in Sect. 2, 
one for each component  of  the exceptional divisor and all pulled-back to.~'. Suppose 
~q . . . .  , atN > 0 are such that, if Q : = ~ ~qat, then rt*co - Q  is positive. Then o3~ : = n*~o 
- e~ is positive for any 6 e (0,1 ] since 7t*o9 is positive semi-definite. If  Eis  an r-bundle 
on X, then by Lemma 4 (a), there is for each 6 a subsheaf A ( 6 ) c n * E  maximizing 
/~(A, o3,) over all admissible A c rc*E. This can be strengthened as follows: 

Lemma 5. There exists e o > 0 and a stable admissible A o c n* E such that #(Ao, ~ )  
= sup {/~(A, f5~) : A c rc*E is admissible} for all 6 ~ (0, 60]. 

Proof. Take 61 = 1 and choose A1 c n*E according to Lemma 4 (a). Suppose that 
there exists 62 <6a and A2 c n * E  with /~(A2,03~2) > ;t(A1, o3~2). Without loss of 
generality, A2 has torsion-free quotient so by remark (b) of  Sect. 3, O'ca(A2)< O. 
Moreover, using remark (c); I~l(Al,~'o~,)=#(~,A1)-610"cl(AO/al>~(z,A2) 
-61 Q" el (A2)/a2 =/~(A2,09~ 1) and /z(A1,03e2) = #0z,A) -62 Q "cl(A1)/aa < #(rt,A2) 
-62 Q "c1 (A2)/a2 = #(A2, 09~2). These imply (61 -62) [Q "cl (A1)/al - ~  " c: (A2)/a21 < O, 

so Q. c a (AO/al < Q" cl (A2)/a2. Here a i = rankAi. 
N o w  replace (ca, Aa) by (62, Az). This process must terminate after finitely many 

steps because Q- ca (A j) is bounded above by zero, all the ~t~'s are positive, and the 
coefficients ot the tr~'s in cl(A~) are all non-negative integers. [] 

Corollary 5. I f  E is o9-stable, then 
(a) rc*E is thrstable for all 6 sufficiently small, and 
(b) there exists Co>0 and admissible Bocn*E such that v,.~(Bo,&~) 

=inf{v, .e(B, o3,) : B~Tt*E is admissible} for all 6e(O, %]. 

Proof (a) Let M :  = sup {/~(A, 09) : A c E is admissible}. Since M is realized by some 
A c E by Lemma 4(a) and E is stable, it follows M < #(E). Let Ao c n*E be the A0 
given by Lemma 5. Then #(Ao, ~5~) =# (~ ,Ao ,  09) -60 "ca (Ao)/ao ~_ M - 6 0  "cl (Ao)/ao 
</~(E, co)=/~(n*E, th,) if 6 is small enough. 

(b) Take 6a small enough so that rt*E is oS,-stable for 6 < 61. Choose B: ~ n*E 
according to Lemma 4(b) and repeat the argument of  Lemma 5. [] 

Thus stability is preserved under pull-backs to blow-ups (in the above sense). 
[Semi-stability is not preserved t]. The following lemma shows that this is also true 
of  the desingularization process: 

Lemma 6. With X, ~(, o9, ~ as in Lemma 5, let B be a torsion-free sheaf of  rank < r on X 
and suppose that ]J on �9 is a desinoularization of  B accordin9 to Sect. 3. Then 

(a) I f  B is o9-stable, it follows that ~ is ~-stable for 6 > 0  sufficiently small; 
(b) I f  B is oiven by an exact sequence O--*A~E--*B~O with rankA<r and 

0~.4-~ ~t* E ~ ~ O  is the desinoularization sequence, it follows that A is ~-stable for 
sufficiently small 6 > 0  i f  A is og-stable. 

Proof (a) There is nothing to prove if/~ has no admissible subsheaves, so suppose 
that it has such subsheaves. By the Remark (a) of  Sect. 3, there is an exact sequence 
0 ~B--* r ~ * ~  Q ~ 0, where Q : = quotient is supported on S(B). If follows that det B 
= det (r~*J~), so #(B)=/~(n.J~).  Now, n . / ]  is also stable: i fA ~ n . B  is admissible, let 
Ibe the image of  A in Q under the composition A ~n , / ] - - , ,  Q. Then A ': = ker(A ~ I )  
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is an admissible subsheaf of  B, and since B is stable it follows #(A ') < p(B).  But as 
above, A ' = A  off a finite subset, so # ( A ) = # ( A ' ) < # ( B ) = I x ( r r , B ) .  

By Lemma 5, there exists A o ~ B such that/~(Ao, 03~) = sup{#(A, e3~) :A ~ B }  
for all e small enough. So if a= rankAo ,  b = r a n k B  and ~ : = p 0 r , ~ ) - # ( r c , A o ) ,  
then ~ > 0 and #(Ao, o5~) = #(rr,A0, to) - eQ . c 1 (Ao)/ a = #Or,~, co) - 6 - eQ . c 1 (Ao)/a 
= # (B ,  c5~) - ~ + ~(0.  c~ (1])/b - O" c~ (Ao)/a)  < # ( B ,  a3~) i f  ~ is small enough. 

(b) The same proof  as (a) works (and is simpler since ~r,g = A is stable by 
hypothesis). [] 

The next lemma is somewhat technical and is required for the proof  of the main 
result of  this section which follows it. 

L e m m a  6. Let 0~ = (0s 0s .... ) be an element o f  12 all o f  whose entries 0s are positive, and 
let {aJ}~=l be a sequence in 12 such that all entries a[ in aJ=(a~,a~ . . . .  ) are non- 
negaitve integers (so almost all ai are zero for  f ixed j ) .  Suppose that A~ : = (a,  a ~) 

= ~ ~ia] is strictly increasing. Then {[laJ]]b} is unbounded. 
i=q 

Proof  Suppose on the contrary that Ha j [I < B for allj. If, for each i, {a,/}T= , is almost 
always zero, choose ko such that ~ 0s z < (A2/B) 2, and choose N so large that 

i ~ ko ( )1/2 
a~=0 for all i<=ko if j > N .  Then for j > N ,  A2<A~= ~ o~,aj<= ~ r 
"(~ (a])2) z/2 < (A2/B) �9 B = A 2 , a contradiction. ~_~ko \i~_ko 

So there exists k such that {a~}~~ 1 is not almost zero, and let ko be the first such k. 
Since ][aJ[I <B,  {a~o} is bounded, there is a subsequence which has a~o=ako4=O 
constant, with a~ . . . . .  a~o_ 1 = 0 for all j .  

Since {A~} is strictly increasing, there exists M such that A u  > ~koako. If every 
entry after the k0-th in the subsequence is almost always zero, choose kl so that 
~. ~ < ( A u  --0s 1 and N >  M so large that al=O for all i with ko < i~_kl 

i~_kl 

ifj ~ N. Then for j  >_ N, the same contradiction as above ensues, giving another entry 
which is not almost always zero. Repeating this argument B 2 + 1 times gives the 
desired conclusion. [] 

Proposition 3. Let X be a compact surface with positive ~-c losed  (1,1)-form to, and 
suppose that the main theorem has been proved for  bundles o f  rank less than r. I f  E is an 
o~-stable r.bundle on X which has an admissible subsheaf, then there exist 

O) a modificatkm ~(-~ X consisting o f  N blow-ups; 
(ii) 0s . . . . .  0s > 0 such that , / fa l ,  . . . ,  aN are forms constructed as in Section 2 and 

Q : -- ~ 0s al, the form it*to - Q is positive; 
(iii) eo > 0 and a subbundle A c ~* E such that v~,E(A, c~) = inf{v~,~(A ', a3~) : A'  

n*E is admissible} for  all 6 ~ (0, co], where ~ : = 7t'to - ~ .  

Proof By Lemma 4(b) there exists A o c E  satisfying v r ( A o ) = i n f { v E ( A ' ) : A ' c E  
admissible}, and the quotient Bo : = E/Ao is automatically torsion-free and  stable by 
Lemma 2. 

If Bo is locally free, then there is nothing more to do, so suppose this is not  the 
ease. Desingularize Bo to get ~'o -~ X together with n*Bo-'-~Bo, n*Ao~--*Ao. Let {as} 
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be any of the forms of Sect. 2 (one for each exceptional line), and choose ~i > 0 so 
that 0o:= ~ ct~tr~ has n 'co-0o  positive. 

By Corollary 5(b), there exists A1 c n*E satisfying (iii), except that it may not be 
a subbundle. If not, for any positive e sufficiently small one has v~(n,.41) 
+ e~o" cl (A1) = v,,,E(A1, ~ )  <-- v~,~(,4o, 03~) = vE(n,.4o) + e0" cl ('4o). Since n ,~  0 = A 0 
letting e~0  gives vE(n,AI)< vE(Ao), and by definition of Ao, the reverse inequality 
holds also. So vE(n,A1) = vt(Ao), giving 0o "el(A1) < 0o" cl (-'io). If equality holds 
here, then -4o satisfies the requirements of the proposition. 

Suppose then that Oo'cl(A1)< Qo" c1(-4o). Desingularize the torsion-free sheaf 
B1 :=n*E/A1 to get ~'1-~.~o, n*B1-'-*BI, n*A1C-~.711. Choose more a's and s so 
that ~1 :=ni~Qo+~Cqal has n'co-Q1 positive, where n denotes ~'I~X. Now 
choose A2 according to Corollary 5(b) so that v~,E(A2, ~)=inf{v~,E(A', o3~) :A' 
on*E}, where a3~=n*co-e01. [It is important to use n:.~l---*X rather than 
nl :-~1~.~o at this point.] Again one obtains vg(zc,Az)<VE(n,A1), and since 
n,.711=no,nl,.711=no,Al, it follows as before that vn(zc,A2)=vF.(Ao), and 
01 "cl (A2)-< QI "q (.,i:). If equality holds here, then "41 satisfies the requirements of 
the proposition; otherwise, repeat the process again. 

If this procedure fails to terminate, then there is an infinite sequence of 
modifications . . .  ~ '~+1  ~ - ~ ' ~ .  �9 �9 ~ X  with A j+l, .71~c n*E on 2)+1 satisfying 
vE (n,A j + 1) = v~ (n,Aj) = VE (Ao) and Oj + 1" cl (A j + 1) < 0~ + 1" c~ (.4~), where n denotes 
f ( j + ~ X .  Here O~+~n*+lOj+~,,otia~ for some ~i>0 and ai belonging to the 
modification -~'~+ 1 ~ X .  

Since Aj results from the desingularization of the torsion-free sheafBj = n*E/Aj 
on ~'~, 0~+1 "c1(.4~)~0~'c1(A1); (indeed, this is strict). Thus {0~+1 "c1(.4j)} is a 
strictly decreasing sequence. By passing to a subsequence, it can be assumed that 
ranlt Aj = a is constant, and then the equation vE(n,~tj) = v~(Ao) implies/~(n,.4j) is 
constant. Since n , .~  is contained in E and has torsion-free quotient, it follows from 
Lemma 3 that there is a subsequence with c1(n,.4~) constant. Since Oon,.71~--,E 
~ n , B ~ 0  is exact off a finite subset, cl(n,~j) is also constant. Thus if c~(n,Jj) 
= fl e H ~ (X, ~) and c 1 ( n . ~ )  = y e H 2 (X, ~), then it follows that cl (.4~) = fl + ~ aio, 
and c l ( B ~ ) = r - ~  ala~ for some non-negative integers al. If a~+ 1 = ~ ~a~, then 
aa+l.cl(A~)=-2~ai.~ is strictly decreasing with j, and since Vol(~'~+~, 
n * o ~ - 0 ~ + l ) = V o l ( X ) - � 8 9  the infinite sequence of s  is in/2. By Lemma 7, 
I1  11 = := E (al) 2 is an unbounded sequence. 

Now, by Lemma 2, A and B~ on ~" are stable with respect to n*co-e0~ for J ~J ~ ~ 
e sufficiently small. So by Lemma 6, A~ and B~ on X~+~ are stable with respect 
to some positive ~d-closed (1,1)-form on ,~'~+1 (not necessarily n'to-e0~+l). By 
the inductive hypothesis, they admit H - E  connections and therefore satisfy 
Liibke's inequality [15]: with A=A~, B=BI, rankA=a ,  rankB=b,  this states 

( ~ a l C ~ - c 2 ) ( A ) ~ 0  and ( - ~ - c ~ ) ( B ) < 0 .  Adding these together and 

substituting ct (.4) =/~ + ~ a! a,, ct (B) = ~, - Y' al try, ca (E) = c~ (A) + c: (B) 
a - 1  ~ _  r +cl(a).cl(S) gives after 

a short calculation with some fortuitous cancellations; (r = a + b of course). Since all 
terms except the last on the right are independent of j  in this inequality, the desired 
contradiction has been achieved because Itaal[ is unbounded. [] 
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5. Proof of Theorem 1 

In order to prove the main theorem, a certain functional, to be given shortly, must 
be minimized. The set over which this minimization is performed is the set of  all 
integrable Lf  connections on a fixed U(r)-bundle, each connection inducing the 
same holomorphic structure. By the Newlander-Nirenberg theorem, a smooth 
integrable connection induces a holomorphic structure, but it is not immediately 
clear that the same is true of  general L[ connections. However, the following result 
shows that i fp is large enough, this is indeed the case. The proof  was suggested by 
the proof for the case n = 1 in [1]. 

Lemma 8. Let Bt denote the open unit polydisc in IE" centred at the origin. Let A be an 
r x r matrix of  (0, l)-forms with coefficients in L~. ~o~ (B~) satisfying ~A + A ^ A = O, 
where p>=2n. Then locally in B~, A=u-~Ou  for some u ~L [ .  

Proof. Consider first the following: let q/denote the Banach manifold of invertible 
r x r matrices on P ,  with coefficients in L~, Jg denote the Banach space o f  r x r 
matrices on P,  with coefficients in L p, and ~r denote the Banach space of  r x r 
matrices of (0, l)-forms on P~ with coefficients in L~. Let ~t' • be the subspace of M 
perpendicular in L 2 to the constant matrices. 

Since p > n, the Sobolev embedding theorem shows that the map r given by 

ql • d ~ (u, A ) ~-~i~ *(u- ~ Ju + u -  l Au) = - i A d ( u -  l Ju + u-  l Au) ~ ~g • 

is a smooth map of Banach manifolds q/•  ~r162162177 where the adjoint is with 
respect to the Fubini-Study metric on P,.  The partial derivative of  r in the q/- 
direction at (1,0) is Tq/9 v ~-* A "v e Jr '  l ,  which is surjective with kernel the constants. 
By the implicit function theorem, the equation J * ( u - ~ u + u - ~ A u ) = O  has a 
solution u ~ q / fo r  all A ~ ~r sufficiently small. 

Now suppose that A is simply a matrix of (0,1)-forms with coefficients in 
L~,xoc(B1) satisfying/3A +A ^ A = 0. Pull-back A [B, to B1 by the holomorphic map 
B1 ~ z~--~rz ~ B, to give ,4re Lf(B1). Then II ,][Lr(s,)=<constr [Ia L e t  r/ 
be a cutoff function with support in B1 and with t /= 1 on Bx/2. Then if A, : = r/A,, 
IIA, and the last term on the right 
can be made arbitrarily small by shrinking r since p > 2 n  and A ~Lf(BI/2). 

The matrices A, can now be regarded as defined on P, ,  so if r is small enough, 
there exists u such that ~ * ( u - t J u + u - ~ A , u ) = O .  If  A ' : = u - l ~ u + u + l A , u ,  then 
JA" + A" ^ A;  = u -  1 (SA, + A r ̂  A,) u = u-  1 [3-(r/J,) + (r/A,) ^ (r/J,)] u. Thus near 0, 

r $ P A, satisfies the (overdetermined in general) elliptic system J A, =0,  i)-A;= 
- A "  ^ A ;  and is therefore smooth there. By the usual Newlander-Nirenberg 
theorem A; = v- t ~'v for some smooth v defined near 0, and if  ff : = vu-  t e L~ then 

-1 tTff =,~, near 0. Reverting to the original coordinates gives A = w- * ~'w for some 
w e L~ defined near 0, and the conclusion of  the lemma follows by applying this 
result at each point of B,. [] 

Remark. With simple alterations the above proof can be sharpened to p > n. 

The functional to be minimized can now be given - it is almost identical to 
Donaldson's [4], so the same notation will be used. 



642 N.P. Buchdahl 

For hermitian r • r matrices M, the trace norm is v(M) := tr(M*M) 1/2 = ~ lad 
i = 1  

where {;q.} are the eigenvalues of M repeated according to multiplicity. As explained 

in [4], it defines a norm, and if M =  ( A  B )  B* then v(M)>=ltrAl+ltrDI. I f s  is a 

section of the endomorphisms of a U(r)-bundle E on the compact surface X, set 
N ( s ) :  = IIv(s)lt, ,x,, and for a connection A on E with curvature F in  ALI(EndE), 

the functional is J(A) : = N(iP+ 2 1), where 2 = 2e = 1--- j" trPdV. Herep will be some 
irVx 

fixed number greater that 4. 
The following lemma corresponds to Lemma 3 of [4]. 

Lemma 9. Suppose that Theorem 1 has been proved for bundles of  rank less than r. I f  E 
is a stable holomorphic r-bundle on X which can be expressed as an extension 
0-~ B ~ E-~ C ~  0 with B, C stable, then there is a smooth hermitian connection A on E 
compatible with ~F. such that J(A) < 4nV 1/p-1 v~(B). 

Proof. On B, C, fix the H - E  connections which exist by the inductive hypothesis, 
and let f leA~ B)) be a/3--closed (0,1)-form representing the extension 
O-~ B--+ E ~ C  ~O. 

If Q is the operator Q" = - iAdJ, then Q = iA~d - iA (a~+ Jd) = P - i~ [cf. (2.2), 
(2.3)], so from (2.4) it follows that Q +  Q* = P + P *  - 2 i P = A  - iP.  For the induced 
H-Econnec t ion  on Hom (C, B), F =  i(2a -2c )  1, and since Eis stable, 2e > 2c. Thus 
Q* has no kernel and Q is surjective; in particular, there exists ~ e Horn(C, B) such 
that A~(fl+ig'~) = 0. 

If fl is thus modified so that Adfl = 0, now rescale it so that sup Ifll = 1 ; (fl 4:0 since 
X 

E is stable). Using tfl in place of fl for t = t4: 0, (3.2) shows that the curvature of the 
induced connection on E has 

i ~ ( t )  + 2~1 =[(~ '~-2B) 1 - i t2Af l^  fl* 0 ] 
0 (2e -2c)  1 -it2Afl * ^ fl " 

Since 2a > 2~ > 2c, when t is small enough all of the eigenvalues of the top term 
are negative and all those of the bottom are positive. For such such t, it follows 
that v(ilee(t)+Ael)= - t r  [(2E-2~) 1 --it2Afl^fl*]+tr[(AE-2c)l -i t2Afl * Aft] 
=4nV-lvE(B) -2t2lfll 2. Since I/~l ~_< 1, taking t sufficiently small gives N(iF~(t) 

1 

+2E1)<4nV-d-tv~(B). [] 

The next step is the equivalent of Lemma 1 of [4], but in the current setting, it is 
made considerably more complicated by the presence of singularities of one sort or 
another. 

Suppose, as usual, that E is a stable r-bundle on the compact surface X, where 
stability is with respect to a fixed positive tTa-closed (1,1)-form ~o. If E has an 
admissible subsheaf, pull-back E to the modification ~ ' ~  Xgiven by Proposition 3 
and fix one of the forms 038 described there. By Proposition 3 and I_emma 9, n*E 
admits a smooth connection A with J(A) < 4~ pllp- tm, where ~'= Vol(,~, o3,) and 
m : =  inf{v~e(S, 03~): S c n*E is admissible}. IfE has no admissable subsheaves, no 
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blowing-up is required what follows. To simplify notation, (~', rr*E, o3~) will 
temporarily be denoted by (X, E, 09) when E is of type I. 

Now choose a sequence A~ of smooth connections on E which minimize the 
functional J. Since line bundles admit H - E connections, it can be assumed that the 
induced connections on detE are all the same; namely, the H - E  connection. 

Since J(Ai) is comparable with the usual L p norm of the self-dual component of 
the curvature F(A,), IIF(A,)IIL2 is bounded. By the weak compactness theorem of 
Uhlenbeck [22], ([19, 5]), there is a finite subset S = {xl, ..., xN} c Xand local gauge 
transformations such that the gauge-transformed connections converge weakly in 
L~,~oc(X~S). In fact, an inspection of the proof of Corollary 23 [5] shows that the 
sequence can be assumed to converge weakly in L[,~oc (X~S), for all that is required 
in the proof of that corollary is a uniform bound on the L p norm of the self-dual 
component of the curvatures. The transition functions of the resulting "bundle" on 
X~S are then continuous, and (as in [5]), Sect. 3 of [22] applies to construct global 
gauge transformations from the local ones. Thus, after suitable bundle automor- 
phisms of the underlying U(r)-bundle, (a subsequence of) the gauge-transformed 
sequence, also denoted by Ai, converges weakly in L(,aoc(X~S) to a connection A' 
with F(A ') ~ L 2 (X) and P(A ') e LP(X). By semi-continuity, J(A ') < infJ(At). 

The connection A' has curvature of type (1,1), so by Lemma 8 it induces a 
holomorphic structure; denote this holomorphic bundle on X~S by E'. Since 
the connections on detE do not change in the sequence, d e t E ' = d e t E  and 
trF(A ') = trF(Ao). 

Following Donaldson [5] again, a non-zero holophorphic map E ~ E '  will now 
be constructed, as in the proof of Lemma 4. Let 9j be the complex automorphism 
intertwining Ao and A j, with det 9i= 1 for all j ;  (that is, Or is the map which gives the 
isomorphism between the holomorphic structure Eo defined by Ao and that which is 
defined by A j). 

By (2.5), Alojl2+i*O(IojlZgoJ)-i*g(tojl2Oo~)<2(lFol+l-~jI)lojl 2, so by 
Theorem 9.20 [8] there is a constant C, independent of j,  such that sup 10jl 2 

X 

---_ctllgJll =,x,+ tl(l eol § 2 L,r By Htlder's inequality, it follows that 
sup for q=8p/ (p -4)  and some new constant C, using the 

X 

uniform bound on II;J I1,  Since {Ai} converges weakly in L[,ior andp > 4, the 
A/s are bounded in C~ for any compact K=X~S. Repeating the argument of 
Lemma 4, after rescaling 0r to ~j satisfying [I gJ IIL,r = 1 and choosing small balls B, 
about the points x, e S, a subsequence of the ~j's can be found which converges 
weakly in L~(Ko) and strongly in Lq(Ko) to a non-zero limit ~ representing a 
holomorphic map Eo--*E', where Ko=X~UB,. Since OKo is pseudo-concave, 
extends to X~S, and by diagonalization ([19]) it can be assumed that ~j is converging 
weakly to ~ in L[,Ior 

Since the connections on detE, detE'  are the same, det~ is a holomorphic 
function on X~S, and therefore constant by Hartogs' theorem. Suppose that det~ 
=0. Then ~ has non-zero kernel at every point, giving a diagram on X~S 

O----~K , E-----~Q ,0  

#& ~ (5.1) 

O~ C~ E'~ I~  0 . 
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where K =  kernel, Q = quotient, I =  image, C = cokernel. If  tP (E)~ is generated by 
sections el, . . . ,  e~ ~ F(B~, r as r for each x ~ B~, then the images of 
e l , . . . , e ,  in F(B~\{x~}, Q) generate Qr as dP~-module for each y eB~\{x~}. By a 
theorem of Serre [20], i.Q is a coherent analytic sheaf on X, where i: X~S~X is 
inclusion. [Indeed i.Q is locally free in a neighbourhood of  x,  ~ S, being torsion-free 
and normal there; E ~ i . Q  need not be surjective at x~ though.] It follows that i .Kis 
coherent, so in particular, E has an admissible subsheaf and is therefore of  type I. 

Off  a codimension > 1 analytic subset T of  X~S, (5.1) is a diagram of  bundles. In 
a unitary frame for E', the curvature F(A ') has the form 

]-F,-fl Aft* ] F(A ') =L -Vf l*  Fc- f l*  AflJ ' 

where fle A ~ (Hom (C, / ) )  is a J-closed form representing the extension O~I~E '  
--* C ~ 0 .  Moreover, ir2e = tr/~(Ao) = tr/~(A ') = trPx + tr/~c, and it follows from the 
property of  v stated earlier in this section that v(iP(A')+2nl)>ltr(iae~-iAfl 
^ fl* + h E 1)1 + I tr (iPc - IAfl ^ fl * + 2 E 1)1 = 2 I tr iPl + ]fl 12 + q2~], where q = rank a 
= r a n k /  and Ifl] 2 = - triAfl  ^ fl*. Thus J(A ') = II v(iF(A ' )+  hE 1)llt.y,x, 

2 V'/p- 'l[ v (i~(A ') + hE 1)]l z,tx) > 2 V'/p-1 ~ [(tri/~1 + qh e + I fl 12) + q (hE -- hQ)]dV. => 

If  it could be shown that S ( tr iPx+qha + lfll2) dV were non-negative, then a 
x 

contradiction (to det~ = 0) would be obtained at this point. For since E is stable, 2e 
> he, and therefore J(A ') ~ 2 V 1/pq (h E - hQ) = 4 zt V 1/9-1 VE (K) ; this contradicts 
Lemma 9 and J(A ')< infJ(Ai). 

Were it not  for the singularities arising from the Uhlenbeck-Sedlacek- 
Donaldson technique, the non-negativity of  the above integral would be im- 
mediate: S (triP~+qha)dV is the volume of  the zero set of  d e t Q ~ d e t L  

x 
To see that the above integral is always non-negative, note first that on 

X~(SuT), trFl=trFQ+i~dlogl~ql 2, where ~ is the induced map AqE--.AqE '. 
Although ~-Dlogl~ql 2 may not  be integrable, it can be assumed that ~1~1  z is in 
LI(X). For 

~-~910jl 2 = (~0j, ~gj) + ( g  j, Fjg~ -gjFo) �9 (5.2) 

(where ( , )  involves only the inner product on E n d E  and not that on AI'~ 
Resealing gj to ~j, applying iA to (5.2) and integrating gives [10 j[l  _<__const, 
so {d~j} can be assumed to converge weakly in L2(X) and ~ g l # l = = ( ~ # , 0 # >  
+ (#,F(A ')# -#Fo) e LI(X). The same conclusion applies if ~ is replaced by ~ .  

If  s is the composition AqE--.AqQC, detQ and detQ is equipped with its H - E  
metric, then with the induced metric on Hom(AqE, detQ)  it follows trFQ=Fd,te 
- ~  log Isl 2 where/~a~ta = i2dctO = iq2o. Thus 

triPl + qhe + Ifl 12 = elogl~ql 2 - Ploglsl 2 + Ifll 2 , (5.3) 

where P = iA~d is the operator  of  Sect. 2. 
Although triP~ and [fl 12 need not be integrable, the sum on the left of  (5.3) is in 

L~(X) since z~(A ' )e  L~(X) and hermitian projection has constant norm. Thus if 
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(triPx + q).Q + IPl2)dV= a, then there exists ~b ~ D](X) such that P~b = triPz +q,;t 0 

+ Ipl ~ -a/V. Hence 

elog(l~al2e -~) + I/~l 2 - a / V =  eloglsl  2 , (5.4) 

If (fl  . . . .  ,f ,)  is an n-tuple ofholomorphic functions which is not  identically zero and 
[ f [z=~lf j l2 ,  then loglfl  2 is plurisubharmonie; ie. i501oglflz<0.  Therefore 
Plogls[ z is bounded above, and a smooth function ~k can be chosen so that Plog[sl 2 
+ P ~  is negative in a neighbourhood of each of the zeroes ofs. [Since AqQ is torsion- 
free, s has only finitely many isolated zeroes.] Thus 

Plog(l~a[2 e ~'-*) + Ifl[ 2 - a / V =  Plog([sl2e r , (5.5) 

with the right hand side negative in a neighbourhood of  each of  the zeroes of  s. 
Suppose now that a = - b  2 < 0. By the last remark of  Sect. 2, the right-hand side 

of (5.5) is integrable, so a smooth bump function r/=>0 can be found which is 
identically equal to 1 in neighbourhoods of  the zeroes of  s and is supported in the 
neighbourhoods where Plog(N2e *) <0  such that S qPlog([sl2eq')dV=-c 2 with 

X 

c 2 __< �89 b 2 . Then ~ (1 - I/) P (log [sl 2 e ~') dV= c 2 , so there exists a smooth function Z such 
X 

that P Z = ( I  -rl)Plog([sl2e ~) -c2/g. Thus Plog([sl2e *) =rlPlog([sl2e *) 
+(1 -rl)Plog([sl2er so (5.5) gives 

P log  (I gal 2 e~'-*-x) + ]fl 12 < (c 2 _ b2)/V < 0 , (5.6) 

But since P l o g f = f - t p f + l d l o g f l  2 for any positive function f, (5.6) implies 
P(l~al2e*-*-x)<0. This gives the desired contradiction, for J01~I2eLI(X) ,  

~ L~(X) ~ C I(X) and ~, X are smooth, so 5d (I #ale*-*- x) e L 1 (X), and a sequence 
of smooth function f j  such that 50fj converges to 50(l~qle ~'-*-z) in LI(X) 
[8, Theorem 7.4] yields 0 = l im S i/9-3j~ ̂  o9 < 0. This means that a is, in fact, non- 
negative, and consequently d e t ~ # 0  by the earlier argument. 

Thus when E is o f  either type, ~ : E E is an isomorphism. Unfortunately, a 
priori this is only an isomorphism outside S and it must be shown that ~e  L~(X). 
By emulating part of  Donaldson's argument in [5], it will be be shown that S in fact 
is empty. 

Recall that the unsealed gj's had d e t g i = l  and that  i--gJIIgJIl,:  for 
q = 8p/(4 -p ) .  From the preceeding arguments, sup Igil--<coast II gi II- is uniformly 
bounded and therefore, so too is sup Igj-ll. 

X 

If  h i : = g~ g~, then Fj = gi (Fo + 50 (hf ~ O0 hi)) g f  1, giving 

50dohj = g* F lg ~ -h1F 0 + tTohj ̂  h f x Ooh J . 

Since {hi} , {hi 1} are uniformly bounded, [00hi[ 2 = -itrA/3-0h i ^ 00hj compares 
uniformly with - itr ASohj ̂  h~ ldoh~ ' and after applying triA to the above equation 
and integrating, it follows that {Oohj}, and hence {hi- 1Oohj}, is bounded in L 2 (X). By 
eUipticity of  50, {hf~dohi} is bounded in L~(X), implying that {hi} is bounded in 
L~ (X). Thus a subsequence converges weakly in L22 (X), and by compactness of  the 
embedding rZr-,rq/2 ,_,2--~ , strongly in Lq/Z(X). 
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For any j .k,  set gjk:=gkgf 1 and hjk:=Y~gjk. Then iA~j~jhj~g~kiPkgij 
--hgkiP+ iAJjhjk ^ h~ 10jhjk, and taking the trace gives Ptrhjk < tr [iFkgkh~ 10" 
-iFjo*-ahkO~-x]=tr[i~(gkh~-lOt - 1 )  --i~(o*-lhko~ -1 -- 1)]__<const ([Fkl 
+ [~[)]h~ - hkl, using here the uniform bounds on sup Ih~[, sup [hj- x[ and the fact that 
trPk=trPj. Interchanging j, k and adding gives Pa(hj, h~)<const(IPjl+[Pkl)[hj 
--hk[, where a(hj, hk)" = t r h i l h k + t r h k l h j - 2 r  (cf. [5, Sect. 2]). By Theorem 9.20 
of [8] and H61der's inequality, sup a(hj, hk) < const (llh~ - hk II z," + II a (hi, hk)[I zl) 

X 

~const  Hhj-hk ILL'. Since {h~} is converging strongly in L ~/2 (X), it follows that the 
sequence is uniformly Cauchy and therefore converges in C~ By (the proof of) 
Lemma 19 of [5], it follows that {h~} is in fact bounded in L~(X), and by making the 
unitary change of gauge 0 ~--~h~/2, j a weak limit g ~ L~(X) is obtained such that the 
associated connection A'  minimizes the functional J. 

The next task is to show that in f J=  0; the argument follows closely that in [4]. 
Recall the operators P=iA~O and Q=- iAO~.  Since P + P * = A + i P  and 

Q + Q* = A - iP, R : = P + Q satisfies R + R * = 2 A. Any solution s E L~(End E) of 
R s = 0  is necessarily of the form s = const 1 ; this is true even though R may not have 
smooth coefficients, because a sequence of smooth connections Aj can be chosen 
converging strongly in Lf to A'  and the corresponding operators R i have the same 
second order term, first order terms converging in Lf and zeroth order terms 
converging in L p. Thus 0 = (s, Rs)  = lim (s, R~s) = lim (dais, da~s) = (das, dAs), 
implying s = const 1. 

The same type of elementary approximation argument shows that there is a 
unique solution s ~ L~(EndE) c~ (kerR) J- to Rs = iP(A ') + 2El [since iP(A ') + 2e I is 
orthogonal to kerR*], and s is self-adjoint since (Rs)* = Rs*. If 9 t :=  1 - t s ,  then Ot 
is invertible for small t, and Ft:=F(g~A')=F(A')-t(JO-Oi)-)s+O(t2). Thus 
iaCt + 2n 1 = (1 - t) (il~(A ') + 2E 1) + O (t 2 ) implying iP(A ') + 2e 1 = 0 else J is not mini- 
mized at t = 0. 

In the case when E has no admissible subsheaves, it has now been shown that E 
admits an H - E  connection. In the case that E does have admissible subsheaves, it 
has been shown that n*E admits an H - E  connection for each of the forms o3~ of 
Proposition 3, where ,t'-~ X is the modification described in that proposition. The 
final task is to push these down to X. 

Recall that the forms a~ of  Proposition 3 could have support in arbitrarily small 
neighbourhoods of the exceptional lines they represent, so 03,-~r*to can have 
support in an arbitrarily small neighbourhood of the exceptional divisor D. 
Shrinking these supports (and necessarily, the coefficients e~ at the same time) gives 
a sequence of forms {o3j}, say, and corresponding connections "41 on n*E such that 
"41 is an H - E  connection for oSj. Thus if {xl . . . . .  xu} = n(D), then off each fixed 
(but arbitrarily small neighbourhood) of n(D) the sequence AI can be viewed as 
a sequence of connections At on E, which for j large enough, are all H - E  
connections for to. The constants 2e in this sequence are of course changing: 
(2E)~ = --2r~#(E)/Vol(,~', o3~), with VoI(X, o31)~VoI(X). 

Applying the argument of  Uhlenbeck-Sedlacek-Donaldson once again, there 
exist x~ + a . . . . .  xs e X such that, if S : = {x~,..., XN}, then after suitable gauge 
transformations the A~ converge weakly in L~,~or to an H - E  connection A 
with finite Yang-Mills action over X~S. (The U - S -  D argument is still applicable 
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even though it is being applied over X~ U Bd with B~{x~}, as an inspection of  [19] 

quickly shows.) By ellipticity, A is smooth, and since, in a neighbourhood of any 
point of Xthe connection A can be twisted by an H - E  connection on a trivial line 
bundle so that the resulting connection has 2 = 0, it follows from the removable 
singularities theorem [21] that A extends across S to an H - E  connection on a 
(possibly topologically different) bundle E'. The new holomorphic bundle E'  is 
automatically semistable by Corollary 4. If U is any neighbourhood of S, then for 
sufficiently large j, 5 trP(A~)dV= ir(2r)jVol(X~U), so #(E') =/~(E). 

x~v 
It remains therefore to construct a non-zero holomorphic map E~E'  or E'~E. 

Choose a small ball B, about x, and set U: = U B,, gr: _. n- l (U).  The balls B~ are 

chosen small enough that E has a connection Ao (compatible with Oe) which is 
smooth and moreover is flat in all B,. Pull Ao back to .~" and let g~ be the 
endomorphism intertwining n*Ao with ,4j. Using the Laplacian Aj on ~" deter- 
mined by 03p as well as the * and A operators for 03j, (2.5) gives 

Ajloi12 +i*O(lgj12ff~j)-i*U(loi12O03j)<=2(gj, iP(~4j)gi-OjiPo) , (5.7) 

where iP(Jj) = 2 re# (E)/Vol (X, 03j) 1. If/~(E) > 0, replace Oj by O j- 1 ; otherwise leave 
9j as it is. Then in gr, Po =0 and the right-side of (5.7) is <0. Since 0-003i= 0, Theo- 
rem 3.1 of [8] (the maximum principle) gives sup [ Oj [2 _<_ sup [g~l 2. On the other 

0 ~0 
hand, outside U the forms 03j all agree for large enough j, and in ft~U one has the 
usual bound PIgjl2<const [Oj[ z, where P is simply determined by co. By Theo- 
rem 9.20 of [8] it now follows that sup ]gjl2__< C [I Oj I1 ~,(~C,',n*o,), where U ' =  = U is 
slightly smaller. $" 

Now choose U"~ U' such that C4VoI(U ") <�89 and fix a non-singular metric 
03 on ~" such that supp(o3-n*o~)~ '" .  Normalize g~ so that 
[here it is assumed #(E)<0,  otherwise use #_1 as above]. Then since 

J 
8 ~ 1 Vol(U", 03) < Vol (U", co), the usual calculation gives II II ~-, ~.~-~ ~. 

Now regard gj as defined on X~S. Then IIg, and exactly the same 
argument as in proof of Lemma 4 (i.e. [5, p. 23]) shows that the gls have a 

8 tt subsequence weakly convergent in L~ (X~U) and strongly convergent in C~ ") 
to a limit # representing a non-zero holomorphic map E E (or E'~E)  over X~U", 
and by Hartogs' theorem, this extends to X. This map must be an isomorphism since 
E is stable, E '  is semi-stable and t t (E)=#(E') .  This completes the proof of the 
theorem. 
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