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The objective of this note is devoted to two particular questions arising in the theory
of analytic semigroups. Let (X, || - ||) be a (real or complex) Banach space and let 4
be the infinitesimal generator of a linear Cy-semigroup on X. Then it is well-known
([1-2] for instance) that A4 is closed and hence its domain D(A4) equipped with the
graph norm

xla=[x]+ [ ax]

becomes a Banach space, which we shall denote by X 4. If 4 generates an analytic
semigroup, then a theorem, due to Hille [5], asserts that this property remains valid
under specific perturbations:

Theorem. Let A be the infinitesimal generator of an analytic semigroup on X and let
F be a linear operator X ,— X such that
there exist constants o and f§ so that

|Fx

If acan be chosen sufficiently small then (A + F) generates an analytic semigroup on X.

§ocHAx||+B||xH forall xeX, . )

This result fits well to perturbation problems for parabolic partial differential
equations. The restriction on the size of « is not as severe at it looks at first glance.
For instance, if Fis compact from X, into X and X is reflexive, the estimate (1) can
be achieved for arbitrarily small >0 by choosing § sufficiently large [3].

It is a folk-theorem that reflexivity of X is not needed to prove that (4 + F)isa
generator if 4 is one and Fis compact from X 4 into X. In this general case, however,
the argument above does not work as there are compact linear operators X, into X
such that the o in (1) cannot be chosen arbitrarily small (see {4]). As we are not aware
of any reference for this perturbation result, we state it with a proof:

Theorem 1. Let A be the infinitesimal generator of an analytic semigroup on X and let
F be a compact linear operator from X, into X. Then (A + F) generates an analytic
semigroup too.
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Proof. We choose a sector X = {,1 eC|—-0=<argA=<0},0>n/2, and a constant M so
that X is contained in the resolvent set of 4 and for all AeX

1
(VIR Erey

[If the semigroup generated by A4 is unbounded, we replace 4 by (4 —wl) with
some w >0 to get the above assertion.]
Now

4G —A) "' x| =|A(A—4) 'x—x|| (M +2) x|

and since for all xe X,

[AA—A) 'x —x|=|[2(2A—A4)"? Ax convergesto 0 as Jl—oo0 ,

we conclude by the uniform boundedness of |(A—A4) " |x-x, that for cach xe X
[(A—4)"'x]4,>0 as |i|-oo0, AeX.

As F is compact from X, into X, we infer that ||(A—4) 'Fx|,—0 uniformly
for all xeX, with ||xHA§1. Select some v>0 such that for AeX, |A|=v
the norm of (41— A)*lF regarded as an operator from X, into X, satisfies
l(A—A4)""F|x,.x <% For these 4, we can set up the Neumann series

A=A—F) '=(A—A) '"+(A—A)'F i (A—A) 'FY(A—A4)!

i=0

and conclude that

jG-a-p) ln_mww [Flesx 3 21G=0" e,

1§>

(M+2MHF|{XA (M +2)=:

Iil 1

Choosing w > 0 sufficiently large, so that for A€ X we have |1+ w| = v, we infer that
clearly A+ we X, and for 1€ X we have

1
<M -(sin@)~!
e =M GmO™ 5

Hence (A4 F—wl) — and thus also 4+ F - is the infinitesimal generator of an
analytic semigroup on X. 0O

[A—(A+F-wl) Y=

Remark. Note that is essential that 4 isa generator. In fact, [6] gives anexample of a
strongly elliptic operator which is not densely defined and a relatively compact
perturbation such that the spectrum of the perturbed operator is the whole complex
plane.

Our second goatl is to verify that if (4 + F) is the generator of a semigroup for all
linear operators F satisfying (1) with a sufficiently small and having finite
dimensional range then A4 generates an analytic semigroup.
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Theorem 2. Let X be a (complex) Banach space. Suppose that A is a linear operator in
X so that there exists some € >0 such that for each ac X, b* e X* with Ha H <, Hb* H
<e, A+ab*A is the infinitesimal generator of a Cy-semigroup in X. Then A generates
an analytic semigroup.

(Here ab* is the operator defined by ab*(x)=b*(x)a).

Proof. We set R(1)=(Al — A) ! whenever it exists. Suppose that for some complex 4
both R(4) and (A — A4 —ab*A)~ ! exist. Then we obtain

(Ml—A—ab*AYR(A)a=(1 —b*AR(N)a)a
and thus
R(Da=(1 —b*AR(A)a) (Al — A —ab*4) 'a .
Consequently

RG]

1 ~b*AR(D)al2
| ( )a|ZH(M_A—ab*A)_1H HaH

and therefore b*AR(Aya+1.

Next, we set for any integer n
K,={(a,b*)e Xx X*|for Reizn (AI—A4—ab*A4)™" exists
and |(Al—4—ab*4)™'||<n} .

By hypothesis A+ab*A4 is the infinitesimal generator of a Cgy-semigroup for
sufficiently small ||a| and |5*|| and hence the e-ball centered in (0,0) in X x X* is

covered by () K,. Let n be chosen sufficiently large, so that (0,0)e K,,. To begin
nelN

with, we shall verify that K, is closed:
Assume that (a,,, b)) is a sequence in K, such that a,,—»a and b¥—>b* as m— 0.
By the above consideration, we get the estimate

|R(A)an|
1 —bmAR(A)an 2
ara
and the right hand side converges to Mj%)f“ >0 as m— 0.

Now, fix some ye X and set x,,=(A/—A4 —a,bxA) 'y, i.e.

M —A)x, —apbtAx,=y .
Hence
bXAx,=(1 —b*AR(V)a,) 'brAR(A)y

converges to (1 —b*AR(A)a) 'b*AR(4)y. On the other hand, x,,= R(1)a,b} Ax,,
+ R(4)y converges to x:=R(4)y+(1 —b*AR(1)a) ' R(A)ab* AR(A)y. From this
equation, we infer that x is a solution of (Al —4 —ab*A)x=y and moreover
[x]| = lim ||| <nl|y|. If (1 — 4 —ab* A) is not one-to-one then there exists some
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z+0 so that (A —A)z=ab*Az, i.e.
b*Az=b*AR(1)ab* Az .

As b*AR(A)a=+1 this implies that b* Az=0, and hence, in turn, (1/—A4)z=0
which clearly contradicts the assumption that (AJ—A)~' exists. Therefore,
(M — A —ab*4) is one-to-one and ||(AI —4 —ab*A)~'|| <n. As this holds for all 1
with Re A=n, we deduce that (a,b*)e K, as claimed.

Let X° be the closure of D(4*)in X *. By Baire’s Theorem, we infer that for some
sufficiently large n K, n X x X° contains an open ball in X x X°. We choose pe X,
§*eX° and n>0 such that |a—p| <27y, [[b*—¢*|<2n and b*eX® implies
(a,b*)eK,. Since D(A) is dense in X and D(A*) is dense in X°, we may select
peD(A) with ||p—p||<n and g* e D(4*) with [g* —G*| <n so that |la—p| =7,
‘b* —g*| <1, b*e X° implies (a,b*)eK,. Our goal is to derive an estimate for
AR

Suppose that for some xe X with |x||=1 and some A with Re A1=n, we have

1 1 1 1
4RG> sup L LRGP+ sup (3 [RGA%e*] 7RG AP )+
Rep2n 1 Repzn \N n i
and denote the right hand side of this inequality by M.
Note that each supremum is finite since we chose pe D(4), g* e D(A*) and R(u)
is bounded for Reuz=n.

Then
JAR(A) (p+nx)|| 20| ARM)x| — | AR(M)p||
1 1
> sup <~ lq*R(u)Apl+\IR(u)*A*q*H)+~
Reuzn \N n
1 1 1
éﬁ Iq*R(i)APHE |g* AR(4) (nX)I+E
;% Ig* AR(L) (p+n) —1] .
i.e.
|
IAR) (p+nx)| > |g* AR(A) (p+nx) — 1| R
Since
ARG (p+4x)| = sup V*AR(A) (p+nx)

yrex*, |+|s1

=  sup  J*AR(A)(p+nx) (as X° is w*-dense in X'*)
yexe, |1

there exists a * € X° with ||7*[| <1 so that
nP*AR(A) (p+nx) > |g* AR(A) (p+nx) —1] .
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Setting

o A -CARD (p+1x)
J*AR(A) (p+nx)
we obtain ||y*| <1 and ny*AR() (p+4x)=1—g*AR(1) (p +nx).
Consequently

(g*+ny*)AR(A) (p+nx)=1 . (2)

On the other hand
Iny*l<n . lnx|<n and y*ex®,

imply that (p +#5x, ¢* +ny*) lies in K, which, in turn, implies that

(g*+my*)AR(D)(p+nx)*1

contradicting (2).
Thus we have proven that |AR(1)|| <M for Rei=n. For A=n+g+ic with
020, we have

12 —nl|R(D] <

We want to extend this estimate to the sector

1
2 {n+g+zalg_—2—(—m| l}

To this end, we rewrite (n+g9+ic —A)x=y as (n+ic —A)x+ox=y, i.c.
x+9oR(n+ic)x=R(n+ic)y

and assume that ¢ <0.

|GI M :17, it follows from the Neumann series that

M+1) o] 2
1+9oR(n+io) is invertible and that

As HQR(n+ta)H _2(

, 2(M+1
2R+ <2 E D ]
14+4(M +1))!7?
e e
since
1
|/1_nl2=Q2+0'2§ W+1)02

Therefore, |2 —n| | R(A)| S (1 +4(M +1)?)'? on the whole sector Z, and hence 4
is the infinitesimal generator of an analytic semigroup as claimed. O
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