Some Perturbation Results for Analytic Semigroups

W. Desch¹ and W. Schappacher²

¹ Institut für Mathematik, Universität Graz, Brandhofgasse 18, A-8010 Graz, Austria
² Institut für Mathematik, Universität Graz, Elisabethstrasse 16, A-8010 Graz, Austria

The objective of this note is devoted to two particular questions arising in the theory of analytic semigroups. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space and let A be the infinitesimal generator of a linear C_0 -semigroup on X. Then it is well-known ([1-2] for instance) that A is closed and hence its domain D(A) equipped with the graph norm

$$||x||_{A} = ||x|| + ||Ax||$$

becomes a Banach space, which we shall denote by X_A . If A generates an analytic semigroup, then a theorem, due to Hille [5], asserts that this property remains valid under specific perturbations:

Theorem. Let A be the infinitesimal generator of an analytic semigroup on X and let F be a linear operator $X_A \rightarrow X$ such that

there exist constants α and β so that

$$|Fx|| \leq \alpha ||Ax|| + \beta ||x|| \quad for \ all \quad x \in X_A \ . \tag{1}$$

If α can be chosen sufficiently small then (A + F) generates an analytic semigroup on X.

This result fits well to perturbation problems for parabolic partial differential equations. The restriction on the size of α is not as severe at it looks at first glance. For instance, if F is compact from X_A into X and X is reflexive, the estimate (1) can be achieved for arbitrarily small $\alpha > 0$ by choosing β sufficiently large [3].

It is a folk-theorem that reflexivity of X is not needed to prove that (A + F) is a generator if A is one and F is compact from X_A into X. In this general case, however, the argument above does not work as there are compact linear operators X_A into X such that the α in (1) cannot be chosen arbitrarily small (see [4]). As we are not aware of any reference for this perturbation result, we state it with a proof:

Theorem 1. Let A be the infinitesimal generator of an analytic semigroup on X and let F be a compact linear operator from X_A into X. Then (A + F) generates an analytic semigroup too.

Proof. We choose a sector $\Sigma = \{\lambda \in \mathbb{C} \mid -\theta \leq \arg \lambda \leq \theta\}, \theta > \pi/2$, and a constant M so that Σ is contained in the resolvent set of A and for all $\lambda \in \Sigma$

$$\left\| (\lambda - A)^{-1} \right\| \leq \frac{M}{|\lambda|} .$$

[If the semigroup generated by A is unbounded, we replace A by $(A - \omega I)$ with some $\omega > 0$ to get the above assertion.]

Now

$$||A(\lambda - A)^{-1}x|| = ||\lambda(\lambda - A)^{-1}x - x|| \le (M+2)||x||$$

and since for all $x \in X_A$,

$$\|\lambda(\lambda-A)^{-1}x-x\| = \|\lambda(\lambda-A)^{-1}\frac{1}{\lambda}Ax\|$$
 converges to 0 as $\lambda \to \infty$,

we conclude by the uniform boundedness of $\|(\lambda - A)^{-1}\|_{X \to X_A}$ that for each $x \in X$

$$\|(\lambda - A)^{-1}x\|_A \rightarrow 0$$
 as $|\lambda| \rightarrow \infty$, $\lambda \in \Sigma$.

As *F* is compact from X_A into *X*, we infer that $\|(\lambda - A)^{-1}F_X\|_A \to 0$ uniformly for all $x \in X_A$ with $\|x\|_A \leq 1$. Select some v > 0 such that for $\lambda \in \Sigma$, $|\lambda| \geq v$ the norm of $(\lambda - A)^{-1}F$ regarded as an operator from X_A into X_A satisfies $\|(\lambda - A)^{-1}F\|_{X_A, X_A} \leq \frac{1}{2}$. For these λ , we can set up the Neumann series

$$(\lambda - A - F)^{-1} = (\lambda - A)^{-1} + (\lambda - A)^{-1} F \sum_{j=0}^{\infty} ((\lambda - A)^{-1} F)^{j} (\lambda - A)^{-1}$$

and conclude that

$$\begin{aligned} \|(\lambda - A - F)^{-1}\| &\leq \frac{M}{|\lambda|} + M \frac{1}{|\lambda|} \|F\|_{X_A, X} \sum_{j=0}^{\infty} 2^{-j} \|(\lambda - A)^{-1}\|_{X, X_A} \\ &\leq \frac{1}{|\lambda|} \left(M + 2M \|F\|_{X_A, X} (M + 2)\right) = : \frac{\hat{M}}{|\lambda|} . \end{aligned}$$

Choosing $\omega > 0$ sufficiently large, so that for $\lambda \in \Sigma$ we have $|\lambda + \omega| \ge \nu$, we infer that clearly $\lambda + \omega \in \Sigma$, and for $\lambda \in \Sigma$ we have

$$\left\| (\lambda - (A + F - \omega I))^{-1} \right\| \leq \frac{\hat{M}}{|\lambda + \omega|} \leq \hat{M} \cdot (\sin \theta)^{-1} \frac{1}{|\lambda|}$$

Hence $(A + F - \omega I)$ – and thus also A + F – is the infinitesimal generator of an analytic semigroup on X. \Box

Remark. Note that is essential that *A* is a generator. In fact, [6] gives an example of a strongly elliptic operator which is not densely defined and a relatively compact perturbation such that the spectrum of the perturbed operator is the whole complex plane.

Our second goal is to verify that if (A + F) is the generator of a semigroup for all linear operators F satisfying (1) with α sufficiently small and having finite dimensional range then A generates an analytic semigroup.

Theorem 2. Let X be a (complex) Banach space. Suppose that A is a linear operator in X so that there exists some $\varepsilon > 0$ such that for each $a \in X$, $b^* \in X^*$ with $||a|| \leq \varepsilon$, $||b^*|| \leq \varepsilon$, $A + ab^*A$ is the infinitesimal generator of a C_0 -semigroup in X. Then A generates an analytic semigroup.

(Here ab^* is the operator defined by $ab^*(x) = b^*(x)a$).

Proof. We set $R(\lambda) = (\lambda I - A)^{-1}$ whenever it exists. Suppose that for some complex λ both $R(\lambda)$ and $(\lambda I - A - ab^*A)^{-1}$ exist. Then we obtain

$$(\lambda I - A - ab^*A)R(\lambda)a = (1 - b^*AR(\lambda)a)a$$

and thus

$$R(\lambda)a = (1 - b^*AR(\lambda)a)(\lambda I - A - ab^*A)^{-1}a .$$

Consequently

$$|1-b^*AR(\lambda)a| \ge \frac{\|R(\lambda)a\|}{\|(\lambda I - A - ab^*A)^{-1}\|\|a\|}$$

and therefore $b^*AR(\lambda)a \neq 1$.

Next, we set for any integer n

$$K_n = \{(a, b^*) \in X \times X^* \mid \text{for} \quad \text{Re } \lambda \ge n \ (\lambda I - A - ab^*A)^{-1} \text{ exists} \\ \text{and } \|(\lambda I - A - ab^*A)^{-1}\| \le n\} .$$

By hypothesis $A + ab^*A$ is the infinitesimal generator of a C_0 -semigroup for sufficiently small ||a|| and $||b^*||$ and hence the ε -ball centered in (0,0) in $X \times X^*$ is covered by $\bigcup_{n \in \mathbb{N}} K_n$. Let *n* be chosen sufficiently large, so that $(0,0) \in K_n$. To begin

with, we shall verify that K_n is closed:

Assume that (a_m, b_m^*) is a sequence in K_n such that $a_m \to a$ and $b_m^* \to b^*$ as $m \to \infty$. By the above consideration, we get the estimate

$$|1-b_m^*AR(\lambda)a_m| \ge \frac{\|R(\lambda)a_m\|}{n\|a_m\|}$$

and the right hand side converges to $\frac{\|R(\lambda)a\|}{n\|a\|} > 0$ as $m \to \infty$.

Now, fix some $y \in X$ and set $x_m = (\lambda I - A - a_m b_m^* A)^{-1} y$, i.e.

$$(\lambda I - A)x_m - a_m b_m^* A x_m = y \; .$$

Hence

$$b_m^*Ax_m = (1 - b_m^*AR(\lambda)a_m)^{-1}b_m^*AR(\lambda)y$$

converges to $(1 - b^*AR(\lambda)a)^{-1}b^*AR(\lambda)y$. On the other hand, $x_m = R(\lambda)a_mb_m^*Ax_m + R(\lambda)y$ converges to $x := R(\lambda)y + (1 - b^*AR(\lambda)a)^{-1}R(\lambda)ab^*AR(\lambda)y$. From this equation, we infer that x is a solution of $(\lambda I - A - ab^*A)x = y$ and moreover $||x|| = \lim_{m \to \infty} ||x_m|| \le n ||y||$. If $(\lambda I - A - ab^*A)$ is not one-to-one then there exists some

 $z \neq 0$ so that $(\lambda I - A)z = ab^*Az$, i.e.

$$b^*Az = b^*AR(\lambda)ab^*Az$$
.

As $b^*AR(\lambda)a \neq 1$ this implies that $b^*Az = 0$, and hence, in turn, $(\lambda I - A)z = 0$ which clearly contradicts the assumption that $(\lambda I - A)^{-1}$ exists. Therefore, $(\lambda I - A - ab^*A)$ is one-to-one and $\|(\lambda I - A - ab^*A)^{-1}\| \leq n$. As this holds for all λ with $\operatorname{Re} \lambda \geq n$, we deduce that $(a, b^*) \in K_n$ as claimed.

Let X^0 be the closure of $D(A^*)$ in X^* . By Baire's Theorem, we infer that for some sufficiently large $n K_n \cap X \times X^0$ contains an open ball in $X \times X^0$. We choose $\tilde{p} \in X$, $\tilde{q}^* \in X^0$ and $\eta > 0$ such that $||a - \tilde{p}|| \leq 2\eta$, $||b^* - q^*|| \leq 2\eta$ and $b^* \in X^0$ implies $(a, b^*) \in K_n$. Since D(A) is dense in X and $D(A^*)$ is dense in X^0 , we may select $p \in D(A)$ with $||p - \tilde{p}|| \leq \eta$ and $q^* \in D(A^*)$ with $||q^* - \tilde{q}^*|| \leq \eta$ so that $||a - p|| \leq \eta$, $||b^* - q^*|| \leq \eta$, $b^* \in X^0$ implies $(a, b^*) \in K_n$. Our goal is to derive an estimate for $||AR(\lambda)||$:

Suppose that for some $x \in X$ with ||x|| = 1 and some λ with $\operatorname{Re} \lambda \ge n$, we have

$$\|AR(\lambda)x\| > \sup_{\mathbf{R}\in\mu\geq n} \frac{1}{\eta} \|AR(\mu)p\| + \sup_{\mathbf{R}\in\mu\geq n} \left(\frac{1}{\eta} \|R(\mu)^*A^*q^*\| + \frac{1}{\eta^2} |q^*R(\mu)Ap|\right) + \frac{1}{\eta^2}$$

and denote the right hand side of this inequality by M.

Note that each supremum is finite since we chose $p \in D(A)$, $q^* \in D(A^*)$ and $R(\mu)$ is bounded for Re $\mu \ge n$.

Then

$$\begin{split} \|AR(\lambda)(p+\eta x)\| &\geq \eta \|AR(\lambda)x\| - \|AR(\lambda)p\| \\ &> \sup_{\mathsf{Re}\,\mu \geq n} \left(\frac{1}{\eta} |q^*R(\mu)Ap| + \|R(\mu)^*A^*q^*\|\right) + \frac{1}{\eta} \\ &\geq \frac{1}{\eta} |q^*R(\lambda)Ap| + \frac{1}{\eta} |q^*AR(\lambda)(\eta x)| + \frac{1}{\eta} \\ &\geq \frac{1}{\eta} |q^*AR(\lambda)(p+\eta x)-1| , \end{split}$$

i.e.

$$\|AR(\lambda)(p+\eta x)\| > |q^*AR(\lambda)(p+\eta x)-1| \cdot \frac{1}{\eta}$$

Since

$$\begin{aligned} \|AR(\lambda)(p+\eta x)\| &= \sup_{\tilde{y}^* \in X^*, \|\tilde{y}^*\| \le 1} \tilde{y}^* AR(\lambda)(p+\eta x) \\ &= \sup_{\tilde{y} \in X^0, \|\tilde{y}^*\| \le 1} \tilde{y}^* AR(\lambda)(p+\eta x) \text{ (as } X^0 \text{ is } w^*\text{-dense in } X^*) \end{aligned}$$

there exists a $\tilde{y}^* \in X^0$ with $\|\tilde{y}^*\| \leq 1$ so that

$$\eta \tilde{y}^* AR(\lambda) (p + \eta x) > |q^* AR(\lambda) (p + \eta x) - 1| .$$

Some Perturbation Results for Analytic Semigroups

Setting

$$y^* := \frac{1 - q^* A R(\lambda) (p + \eta x)}{\tilde{y}^* A R(\lambda) (p + \eta x)} \tilde{y}^*$$

we obtain $||y^*|| \leq 1$ and $\eta y^* AR(\lambda)(p+\eta x) = 1 - q^* AR(\lambda)(p+\eta x)$.

Consequently

$$(q^* + \eta y^*)AR(\lambda)(p + \eta x) = 1 \quad . \tag{2}$$

On the other hand

$$\|\eta y^*\| \leq \eta$$
, $\|\eta x\| \leq \eta$ and $y^* \in X^0$

imply that $(p + \eta x, q^* + \eta y^*)$ lies in K_n which, in turn, implies that

 $(q^* + \eta y^*)AR(\lambda)(p + \eta x) \neq 1$

contradicting (2).

Thus we have proven that $||AR(\lambda)|| \leq M$ for $\operatorname{Re} \lambda \geq n$. For $\lambda = n + \rho + i\sigma$ with $\rho \geq 0$, we have

$$|\lambda - n| \|R(\lambda)\| \leq \|\lambda R(\lambda)\| = \|AR(\lambda) - I\| \leq M + 1$$

We want to extend this estimate to the sector

$$\Sigma := \left\{ n + \varrho + i\sigma | \varrho \ge -\frac{1}{2(M+1)} |\sigma| \right\} .$$

To this end, we rewrite $(n+\varrho+i\sigma-A)x = y$ as $(n+i\sigma-A)x + \varrho x = y$, i.e.

$$x + \varrho R(n + i\sigma) x = R(n + i\sigma) y$$

and assume that $\varrho \leq 0$.

As $\|\varrho R(n+i\sigma)\| \leq \frac{|\sigma|}{2(M+1)} \cdot \frac{M+1}{|\sigma|} = \frac{1}{2}$, it follows from the Neumann series that $1 + \varrho R(n+i\sigma)$ is invertible and that

$$||x|| \leq 2 ||R(n+i\sigma)y|| \leq \frac{2(M+1)}{|\sigma|} ||y||$$
$$\leq \frac{(1+4(M+1)^2)^{1/2}}{|\lambda - n|} ||y||$$

since

$$|\lambda - n|^2 = \varrho^2 + \sigma^2 \leq \left(\frac{1}{4(M+1)^2} + 1\right)\sigma^2$$

Therefore, $|\lambda - n| \| R(\lambda) \| \le (1 + 4(M+1)^2)^{1/2}$ on the whole sector Σ , and hence A is the infinitesimal generator of an analytic semigroup as claimed. \Box

Acknowledgements. This work was partially supported by "Fonds zur Förderung der wissenschaftlichen Forschung", Austria, S3206. Moreover, the authors thank Profs. H. Amann and P. Hess for stimulating discussions.

References

- 1. Butzer, P., Behrens, H.: Semigroups of operators and approximation. Berlin Heidelberg New York: Springer 1967
- 2. Goldstein, J.A.: Semigroups of linear operators and applications. Oxford : Oxford University Press 1985
- 3. Hess, P.: Zur Störungstheorie linearer Operatoren: Relative Beschränktheit und relative Kompaktheit von Operatoren in Banachräumen. Comment. Math. Helv. 44, 245–248 (1969)
- Hess, P.: Zur Störungstheorie linearer Operatoren in Banachräumen. Comment. Math. Helv. 45, 229–235 (1970)
- 5. Hille, E., Phillips, R.: Functional analysis and semigroups. AMS, 1968
- 6. Van Harten, A.: On the spectral properties of a class of elliptic functional differential operators arising in feedback control theory for diffusion processes. SIAM J. Math. Anal. 17, 352–382 (1986)

Received September 22, 1987; in revised form November 11, 1987