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Abstract. In this paper we establish that some nonlinear elliptic (and 
parabolic) problems are well posed in all of R N without prescribing the 
behavior at infinity. A typical example is the following: Let 1 < p < oo. For  
every f ~ Laloc(R N) there is a unique u ~ L~o~(R N) satisfying 

- Au + lulP-Xu = f ( x )  on R N. 

1. Introduction 

The purpose of this paper is to point out that some nonlinear elliptic (and 
parabolic) problems are well-posed in all of R N without conditions at infinity. A 
typical example is the following: 

Theorem 1. Let 1 < p < oo. For every f ~ Lloc(R N) there exists a unique 
u ~ L~o~(R N) satisfying 

- Au + lulp- lu  = f ( x )  in ~ ' ( R N ) .  

Moreover, if f >1 0 a.e. then u >1 0 a.e. 

(1) 

Remark 1. It was previously known that for every f ~ L I ( R  N) there exists a 
unique u ~ LP(R N) satisfying (1) (see [3], Theorem 5.11). However, we emphasize 
that in Theorem 1 there is no limitation on the growth at infinity of the data f and 
the solution u is unique without prescribing its behavior at infinity. 
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2. Proof  of  Theorem 1 

Existence 

Let B R = (X E R N ;  Ix[ < R}. We start with some local estimate: 

Lemma 1. Let R < R' and assume u ~ L Po~( BR ,) satisfies 

-- AU + ] u I P - l u  = f ( x )  in ~'(BR, ) 

with f ~ LI( Bm). Then 

:, 
where C depends only on p, R and R'. 

(2) 

(3) 

Remark  2. The conclusion of Lemma 1 is a rather unusual localization property. 
Indeed, let f~ and ~ '  be bounded open sets in R N such that ~ ~ f~' = ~ and let u 
be the solution of (1). On the one hand the values of f in ~ '  "affect" the solution 
u in f~: for example, if f > 0 in ~ '  and f - 0 outside f]' it follows from the strong 
max imum principle that u > 0 in f~. On the other hand the values of f in ~2' affect 
only "mi ld ly"  u in ~2: in view of (3) u l ,  may be estimated independently of f] ~,; 

even if f ~ ov on f]', f l u [  p still remains bounded. 
J~ 

Proof of Lemma 1. We use a device introduced by P. Baras and M. Pierre [2]. By 
Kato ' s  inequality (see [10]) and (2) we have 

- Alul + [nl p ~ If[ in ~ ' (BR,  ). (4) 

Let ~ ~ ~(BR,  ) be such that 0 ~< ~ ~<1 and ~ - 1  on B R. Multiplying (4) through 
by  ~ where a is an integer, and integrating we find 

flulp  ° fl:l + c flul¢ <- fill + c flul¢ ° ' ,  (5) 

provided a -  2 >i a / p ,  i.e., a >1 2 p / ( p  -1 )  and we fix any such a. The conclusion 
of Lemma I follows easily from (5). 

Proof of Theorem 1. Existence 

Let 

fn(X ) = { f ( x )  if Ixl < n 
0 if Ixl > /n .  
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Let u n ~ L P ( R  N) be the unique solution of 

- mun + [UnlP-lUn = fn in ~ ' ( a  N) (6) 

(see [3], Theorem 5.11). 
We deduce from Lemma 1 that there is a constant C such that 

IlunlIL~(BR) --< C 

where C depends only on p, R and f ,  and thus we also have 

IIAunlILI(BR) ~< C. 

It follows that (for some subsequence still denoted by un) we have 

un -~ u in LLc(R N) 

u n ~ u a.e. onRN. 

We claim that 

lunlP-lun --" [uIP-lu in Lloc(•N). 

It suffices to verify that [Un I p -  l U n is a Cauchy sequence in L I ( B n )  for any R. By 
Kato's inequality and (6) we have 

- A lun  - Uml + [ l u n l P - l u n -  l U m f - l u m [  <~ Ifn -- f,~l" 

Let ~ ~ ~ ( R  s )  be such that 0 ~< ~ ~< 1 and ~ = 1 on B R. We have 

fllunlP-lun--tU,.IP-XUmlff <" ftfn-- fmlff +finn-umlAff 
and the R H S  tend to zero as m,  n ~ oo. Passing to the limit in (6) we obtain (1). 

Uniqueness 

We shall need the following: 

P N Lemma 2. A s s u m e  u E Lloc(R ) satisfies 

- A u  + [ u [ p - l u  <~ 0 in ~'(RN). (7) 

Then u <~ 0 a.e. on R N., 

Remark 3. Lemma 2 is closely related to the results of J. Keller [11] and R. 
Osserman [13] (see also the earlier works quoted in these papers). 
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Proof. We use a comparison function of the same type as in Osserman [13] (see 
also C. Loewner  and L. Nirenberg [12]). Set 

CR ~ 
U ( x )  = in B R 

( R 2 -  Ix12) ~ 

where R > 0, a = 2 / ( p  - 1) and C e 1 = 2a  max(  N, a + 1). A direct computa t ion  
shows that  

- A U  + U v >1 0 i n B  R (8) 

and  thus 

- A ( u - U ) + I u ] P - l u - U  p <~ 0 i n ~ ' ( B R ) .  (9) 

Us ing  a var iant  of Kato ' s  inequality (see Lemma A.1 in the Appendix)  we deduce 
f rom (9) that  

- A ( u - - f ) +  + ( l u l P - l u - U P ) s i g n + ( u - U )  <~ 0 in ~ ' ( B R )  (10) 

and  therefore 

- A ( u - U )  +~< 0 in~'(BR). (11) 

F r o m  L e m m a  A.1 and (7) we deduce that 

- A u + + ( u + )  p <~ 0 i n ~ ' ( n  N) 

and  therefore 

- A u  + <~ 0 i n ~ ' ( R N ) ,  

i.e., u + is subharmonic  and in particular u + ~ L~e(RN).  It  follows that for some 
> 0 we have 

( u - U )  + =  0 f o r R - 8  < Ixl < R (12) 

(since U(x)  ~ + co as Ixl ~ R, x ~ BR). Combining (11) and (12) we obtain that 
(u - U)  ÷ = 0 a.e. on  BR, i.e., u ~< U a.e. on B R. 

Keeping  x fixed and letting R ~ oo we see that u ~< 0 a.e. on  R N. 
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Proof of Theorem 1. Uniqueness 

Le t  u 1 and  u 2 be  two solut ions of  (1) and  let  u = u 1 - u 2. By K a t o ' s  inequa l i ty  we 
have  

- Alul + I l u l l p - l u x - l u 2 1 P - l u a ]  < 0 in ~'(RN). (13) 

O n  the  o the r  hand ,  there is a cons tan t  8 > 0 - - d e p e n d i n g  only  on p - -  such tha t  

[]alp-la -]b[p-lb[>~ 8 l a - b ]  p Va, b ~ R. (14) 

F r o m  (13) a n d  (14) we deduce  that  

- • l u l  + ~lul p <~ 0 in ~ ' ( R N ) .  

U s i n g  L e m m a  2 we conclude that  u = 0. 

3. Miscellaneous Remarks and Generalizations 

A. Monotone Nonlinearities 

The  p r o o f  of  T h e o r e m  1 extends easily to the case where  [ulp-lu is r ep laced  b y  a 
m o r e  genera l  funct ion  g(u). Assume  g : R ~ R is a C ~ funct ion  such tha t  

g'(u) ~ a[u[ p-1 Vu ~ R, 

for  some cons tan t s  a > 0 and 1 < p < oo (for example ,  g(u) = sinh u, etc . . . .  ). 

Theorem 1'. For every f ~L~o~(R N) there exists a unique u~  LPoc(R N) with 
g( u ) ~ L~oc(R N) satisfying 

-- Au + g ( u )  = f ( x )  in ~ ' (RN).  (16) 

B. Nonmonotone g's 

Le t  g(x, u ) : R N  × R be measurab le  in x and  cont inuous  in u. W e  assume that :  

g(x ,u ) s ignu>~a lu lP-o~(x )  f o r a . e . x ~ R  ~v, f o r a l l u ~ R  (17) 

where  ~o ~ L~o~(R N) and a > 0, 1 < p < oo and  also 

hM(x ) = sup Ig(x ,u) l  ~ L~o~(n u) f o r a l l  M > 0. (18) 
luL~<M 

Theorem 2. There exists u ~ L ~oc(R N) such that g( . , u) ~ Lloc (R N) satisfying 

-- Au + g (  x ,  u) = 0 i n ~ ' ( R N ) .  (19) 
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Sketch of the Proof. First we consider the case of  a smooth  bounded domain  
f ~ c R  u. 

Claim. There  exists u ~ Wol'l(f~) such that  g ( . ,  u) ~ LI (~ ) ,  satisfying 

--Au+g(x,u) = 0 o n a .  ( 2 0 )  

This  type of result is closely r e l a t e d - - b u t  not  quite conta ined in [6]. Here  it 
suffices to assume (17) with a = 0. 

Fo r  r ~ • and n E N we set 

,mr 
r if Ir[<~n 
n ifr>~n. 
- n  i f r~<  - n .  

By the Schauder  fixed point  theorem there exists u, ~ W~'1(~2) satisfying 

--Au n + g ( x , % u . )  = 0 on a .  (21) 

Us ing  the fact  that  - f a A u n s i g n  u~ >i 0 we find 

< 

Therefore  

L lAun[ < 2Ll ,o  I. (22) 

Af te r  extract ing a subsequence we m a y  assume that  

u .  ~ u in Wol,l(g) 

u n -~ u a.e.  

g(x, ~-nu,) ~ g(x, u) a.e. 

To  show that  g (x ,  "rnu,) ~ g(x, u) in L1(~2) we use a new device in t roduced 
in [8] by  Th. Gal louet  and J. M. Morel  (with an observat ion of L. Boccardo).  

Set 

pM(r) = 
1 i f r > M  
0 i f - M < r < ~ M  

- 1  if r <  - M  

where  r ~ R and M > 0. I t  is well known that  

-- f AU'pM(U ) ~ 0 ~U ~ W1'1(~-]), Au ~ L I ( ~ ) .  
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Therefore we have 

fag(x,'~nUn)pM(un) <. O, 

That is, 

f g(x,'r.Un)Sign(Un) <~ 0 
"l" nl>.M 

and hence 

flu ,I >MIg(x'  "rnU")l <~ 211".1 > MI~°I" (23) 

From (22) we see that Ilu.llL1 ~ C and thus M meas [lunl > M] ~ C. 

e > O w e m a y f i x M  large enough so that 2 f  I~01 < e. Given 
Next, for any measurable A c f~, we have I-, I > M 

fJg(X,.n.n)l <-- fA Ig(X,' nun)l + f .g(x. "o"n)l 
[u.I > M 

lu.I  ~< M 

<~ f4hM(x) + e <~ 2e 

provided meas A < 3 and 3 is small enough. In other words, we have established 
that 

V e >  0 33 > 0 s.t. fAlg(x,$.u.)  I < 2e whenmeasA < 3. 

We conclude that g(x, %u,) --* g(x, u) in Ll(fl). 
We turn now to problem (19). For each n let 

a.  = { x ~ R N ;  Ix l<n} .  

By the previous step there exists u n ~ Wol'l(~-~n) such that g(-, u . ) ~  La(~.)  
satisfying 

-Au.+g(x,u.) = 0 onlY. .  (24) 

From Kato's inequality and (24) we obtain 

-AlUnl + g(X, Un)signu n <~ 0 in ~ '(~2.) .  
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And therefore we also have 

- A l u . I  + alunl  p <~ ~ in ~'(a.) (25) 
- A l u . I  + Ig(x, u . ) l  ~< 21~ol in ~t(an). (26)  

Using the same device as in the proof of Theorem 1 we deduce from (25) that 

u n is bounded in L~oc(Ru). 

It follows from (26) that 

g(':, Un) is bounded in Llo~(R N) 

and thus 

Au n is bounded in L]oc(R N). 

Hence we may assume that 

u,  ~ u in L~oc(R N) 
u n ---, u a.e. on ~ N 

g(x, u,,) ~ g(x, u) a.e. on R N. 

Finally we prove that g(x, u,,) ~ g,(x, u) in Lloc(RN). By a variant of Kato's 
inequality (see Lemma A.2) we have 

- APM(U ) + g(x,  un)PM(Un) <~ 0 in ~ ' ( ~ n )  

where 

 M(t) = fo'pM(,) ds. 

Therefore we have 

f] Un[ > Mlg(X'Un)l~ ~ 2Slun] > M[ £0 [ ~ -~- f] Un[ > MlUn[ A~ V~ E ~+ (an) .  

It follows easily that g(x, u,) is equi-integrable on bounded sets of R N and thus 
g(x, UN) -+ g(x, U) in Llo~(R N). 

C. Measures or More General Distributions as Rigkt Hand Side Data 

Let T be a distribution of the form 
q~ ~ L~oc(R U). Then the problem 

- -  A u  + ]u[P-au = T i n ~ ' ( R  N) 

has a unique solution u ~ L~'o~(R U). 

T = f + A¢ where f ~ L]oc(~l N) and 

(27) 
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Indeed it suffices to consider the new unknown v = u + q~ and to apply the 
result of Section B to v (see also [8] for similar questions on bounded domains). 

Suppose now that T is a measure on ~ U  (not necessarily a bounded 
measure). Suppose 1 < p < N / ( N -  2) (no restriction when N = 1,2). Then there 
exists a unique solution u ~ L~oe(R N) for (27). Related questions for bounded 
measures are considered in [5] and [8]. 

D. Nonlinearities with Growth Close to Linear 

Suppose g: R ~ R is continuous and g(u)  behaves like u I log u I k as I u l ~ ~ with 
k > 2 .  Then for every f ~ L ] o c ( R  N) there exists u~L~oc(R N) with g ( u ) ~  
Llo~(R N) satisfying 

- A u +  g ( u )  = f i n ~ ' ( R N ) .  

As before, we use Kato's inequality to find 

-z~lu I + g(u)s ignu <~ Ifl- 

We multiply (28) through by ~ = e z/f~ where/3 > 2 / ( k  - 2). Then we estimate 

f l u l I A~ I help Young's inequality. Recently with the of Gallouet and Morel have 

proved the following result. Suppose g: R ~ R is continuous, nondecreasing, odd, 

convex, and [G(x)]-Z/2dx < oe where G is a primitive of g. Then for every 

f ~ Llo~(R N) there exists a unique function u ~ L]oc(N ~) with g(u) ~ L]oc(N N) 
satisfying - Au + g(u) = f in N'(RN). 

E. Unbounded Domains 

Let f~ c R N be any domain (bounded or unbounded) with smooth boundary. 
Using the same principles as in the proof of Theorem 1 one can show that for 
every f ~ Lloc(O) and ~ ~ L]o~(O~ ) there exists a unique u ~ L{'o~(~ ) satisfying 

- Au + lulP-lu= f i n f t  

u=ck on Of~. 

where 1 < p < oe and the boundary condition is understood in some appropriate 
sense. 

F. Local Regularity 

Let f~ c R N be any domain. Let g :R  --* R be a continuous and nondecreasing 
function. 

Theorem 3. Suppose u ~ Llo~(~) is such that g(u) ~ L]oc(f~ ) and satisfies 

- Au + g ( u )  = f ( x )  in ~'(~2) (29) 
where f ~ Lqoc(~) and 1 < q < ~ .  

Then u ~ w(&q(f~). 

Proof. We may assume that g(0) = 0. We have 

- Alu I + g(u)s ignu ~ Ifl in N ' ( f l )  
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and thus 

- Alul  ~< Ifl in ~ ' ( f ~ ) .  

It follows that u ~ Lqoc(f~). Set 

gn(r) = g('cnr) and Pn(r )=s ignr fo ign(s ) lq -xds  

so that 

IPn(r)l ~ Irl Ign(r)[ q-1 Vr ~ R. 

By Lemma A.2 and (29) we have 

Aen(u )  >/ [ g . ( u ) l q - l s i g n u [ g ( u ) - f ]  >~ Ig~(u)l q - I f ]  [gn(U)l q-x" (30) 

Let f E N ( ~ )  with 0 ~< f ~1;  from (30) we see that 

flg.(u)lq~ ~ ~ C flP.(u)lf  ~-2 + flfl Ign(U)l q l~a 

C flu[ Ign(u)lq-l~ a-2 "~- flfl Ig.(u)lq-lff a 

where C is independent of u. 
Fix any integer a >/2q; by HOlder's inequality we have 

flg.(u)lq~ ° <~ Cfs" (I ulq + Iflq). 
pp~  

As n ---> oo we see that g(u) ~ L~o~(f~ ). 

G. Parabolic Equations 

Consider the problem 

u t - A u - [ - I u I p - l u = O  °n NN × (0'  + °°) with 1 < P < °° (31) 

u ( x , 0 )  = Uo(X ) on R N 

Using the same principles as in the proof of Theorem 1 one can show that for 
every u o ~ L]oc(R N) there is a unique function u ~ C2(R N ×(0,  + oo))A 
C([0, + oo); L]o~(R N)) satisfying (31). 
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Results of the same nature for the problem 
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have been obtained by M. Herrero-M. Pierre [9] when 0 < m < 1. When m > 1 the 
situation is totally different; see [1, 4, 7]. 

Appendix: Some Variants of Kato's Inequality 

Then 

The proofs are easy modifications of Kato's original argument in [10], and we 
shall omit them. 
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