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1. Introduction. 

There exist continuous functions for which, at some points of the 
interval of orthogonality the classical Fourier series fails to converge�9 The 
analogous expansions in orthogonal functions arising from the simpler 
boundary value problems seem to share this property with the Fourier 
expansion1). This led A. ttaar to ask if the property was common to all 
sets of orthogonal functions. He showed that  it was not by exhibiting 
a set of orthogonal functions giving, as the expansion of any continuous 
function, a series converging oniformly to the function throughout the 
fundamental interval. The individual functions of his set, however, are 
discontinuous, so that his example does not exclude the possibility of the 
property being common to all sets of continuous orthogonal functions. In 
this paper we construct a set of continuous orthogonal functions similar 
to ttaar's set in that the expansion of any continuous function represents 
the function everywhere. 

(1) 

2. Definition of the functions. 

Oonsider the set of functions defined for 0 ~ x ~ 1 by 

VO --- 1 , Vl~---~g , 

1 and x ~> 1 

v.~O, x ~ a .  and v~,~x--a.,  x~a,~ 

where a s ~ (2 n -- 1 -- 2~)/2 ~, k integral and such that the highest power 
of 2 contained in 2 n -  1 is 2 ~. 

I) A. Ham', Math. Ann~lea 69 (1910), pp. 331--37I. 
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Thus a~ is the n tn term of the series 

1 3 1 3 5 7 1 
u ,  ~ ,  ~ ,  4 ~ 8 '  8 "  8 '  8 ~ 1 6 '  " ' "  

and all the a.  are distinct. 
Each of these functions v~ is continuous for 0 ~ x ~ 1, which we take 

as our fundamental interval. Furthermore, these functions are linearly 
independent, since the first two obviously are so, and if any v~ (n ~ 2) 
were linearly dependent on a finite number of functions of the set not 
including v,, it could not have a discontinuity in its derivative at a~. Thus 
we may apply the process of orthogonalization ~") to this set and so obtain 
the normal and orthogonal set f~, where 

(2) 
fo ~--~- 1 ~ 

. / r r ,~Zfhf fh(t)v.+~(t)dt ] + v.+~(t)~dt" 
f . §  - = o 

We find, for example 

to= i, fl = ~ ( 1  - 2~), 

~ =  ~ ( i - 4 ~ ) ,  ~=<~ and ~ ( ~ - 8 ) ,  

= r  i0 - 76 ~)/ i~ �9 < 

]/-3 (52 x 22)/19 

1 

The sign of these functions is not determined by (2), we take that sign 
before the radical which makes the first sign change of each T~ one from 
plus to minus. This defines in a unique way a set of continuous functions 
normal and orthogonal on the unit interval. 

3. Convergence  Properties .  

The series expansion of a given function F ( x )  in terms of the func- 
tions f~ is 

1 

(4) ,2~ , f , (~ ) ,  where A , =  f ~(t)  r,(t)dt. 
0 

As we shall derive the convergence properties from approximation con- 
siderations, we recall that, for any !i_near combination of the first (n + 1) fi, 

T ~ ~ C ~ 5 ,  we have: 
i=~O 

8) cf. e. g. Couraut-Hi!bert, Methoden der math. Physik, Berlin 1924, p. 34_ 
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(5) 
I 

Z(T.) = I ( F ( ~ ) -  T~(~))"d~ 
0 

1 n n 

O = 

This shows that, for n fixed, the mean square error E(T,~) is least when 
n 

C, -~ A,, and T, is a partial sum of the series (4),  S ,  =- 2 A, f~, and also 
i = 1  

that, as n increases, E(S,,) decreases. 

We shall now show that,  if P (x )  is continuous, for any positive e 
there exists an N(~) such that ,  if n > N, E(2~)< e. We first define a 
broken line function of type n, B, ,  to be a continuous function, linear in 
each of the intervals bonded by consecutive points of the set (be), 

(6) 1 2 1 3 
0, ~-~, ~ ,  . . .  a~, a ~ - f - ~ ,  a ~ + ~ ,  . . .  1. 

These (except for 1 ) are simply the ai, i <= n, arranged in order of magni- 
tude. Every function B~ is clearly a linear combination of the first 
(n + 1)v i, for we may reduce it to zero by subtracting the constant times 
v o which makes it zero at x = 0, then the constant times v 1 which coin- 
cides with the remainder in the first interval, then the constant times 

V i 
\ 

in the first two intervals, and so on. As it is evident from (2) that each 
vi is linearly dependent on the first (i + 1)fj, we see that  each B~ is a 
linear combination of the first (n-}-1)  f~, i. e. it is a T~. 

:From the continuity of F (x )  in the closed interval '0 ~ x ~ 1, we 
infer the existence of a ~(~) such that I F ( ~ l ) - F ( ~ ) t  < ~, wheneve~ 
l x ~ - - z ~ f <  ~. If K is an integer for which 

(7) ~�89 < ~(~), i v =  ~ 

maybe taken as N(e). For, as all the points m/2 ~ ( m =  1 , 2 , 3 . . . 2  K -  1) 
are points a~ with i ~ N, the broken line function which agrees with F(x)  
at 0, 1 and these pointa, and is linear in the in~rvals determined by them 
is a B ,  and hence a T, for any n > N. But, for this fanction, from (7) 
we have 

so that  E(T,,) and hence E ( S ~ ) <  e. 
We shall next prove that  when n exceeds the N of (7), S~,(x)uni- 

formly approximates ~ (x ) .  A characteristic propex~ of S~(x) is the fact 
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that it is the T~ which minimizes E(T,~). To apply this property, we 
need a lower limit for EI~ (T.) ,  the contribution to E(T~) from an interval 
x~ ~ x ~ x~, in which T~ is a linear function of x. We assume that 

(9) x. 2 -- x~--  D <: 5(e).  

Consequently, if L (x) is the linear function for which 

(10) L(xl)--- .F(xl) and L(x~)-~ F(x~), 

we will have throughout the interval x 1 x~ 

(11) 1 ~ ( ~ ) -  L(~)I <~  (x~_< ~__< ~.). 

It  follows from this that, in this interval 

(12) I F ( x ) -  T,~(x)l > iL(x ) -- T,,(x)I-- e. 

RecaUing that L(x) und T,~(x) are both linear in the interval x~x: and 
putting 

we find for the right member of (12): 

1 (14) ls T,~(x)l-- e--Dl(H~ +_It~)x-- tt,~x~--T-H,x~l-- e, 

the upper and lower signs corresponding to the cases in which T,~(x a) and 
T~(x~) are on opposite sides of, or on the same side of L(x).  If we 
take the upper signs, and integrate the square of this expression over the 
parts of the interval x~ x~ where the expression is positive, we find 

(15) ~ ( T . )  > v[  (H,-.)" + ( ~ -  ~)~] 3 (H~-bH~) ' 

when H~ and H~ are bo~  ~ e. If either of these is < e the corresponding 
parenthesis does not appear in (15), but as it is negative, it may be 
inserted without destroying the inequality. If at  least one of the H's is 
> 4e, we shall have 

1 1 
(16) H,+H~ > 2 [(H~-~)+(H,-~)I' 

and in view of this, (15) becomes: 

When the lower signs in (14) are used, we have in place of (15): 

(~s) E~ (T.) > D I(H,-.)'--(H,- ~)~-.~ (~ , -  ~,) l 
3(H,-~) 
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When //I and H~ are both ~ e, the last term in the numerator does not 
appear. As after division by the denominator it is negative, its presence 
merely strengthens the inequaliVy. We have inserted it so that (18)wilt  
apply to the case in which one of the H's,  say/ /1  is < e. Here the first 
term does not appear, and may not be supplied by itself since it is a 
positive multiple of the denominator. However, in view of our second 
condition, when //1 < e, H~ > 4 e,. and 

(19) (H~-8)~ ~ - B ~  --~<0, 

so that these two terms may be inserted together. As it is easily seen 
that (18) implies (17), this last inequality gives a lower limit for EI~(T~) 
which holds in all cases. 

Let us now consider S~, which is linear in the intervals bounded by 
the bj of (6). We put 

(20) H~ = 1 F (b~) -  S.(b~) I. 

Let M be the greatest of the quantities H~, and bg one of the points at 
which Hg = M. Suppose that M > 4e, and let bp be the first point to 
the left of bg at which H~ ~ 4e (or 0, if no such point exists) and bq 
(or 1) the first such point to the right. We will compare S ,  with a 
particular T,, obtained from it by the following process. For values of x 
outside the interval b~,_< x <= bq, T,,(x) coincides with S,,(x). Inside this 
interval, we put 

(21) T,~(bp)~-Sn(b~) (or F(0)), T,~(bq)=Sn(bq) (or F(1)), 
T,(b,) = ~(b,) (p < i < q). 

In view of the linear character of T, in the intervals between the bj, 
it is defined by these values. 

To compare the mean square errors E(S,,) and E(T,~), we need 
merely compare the contributions from the interval b~,bq. Applying (17), 
we find 

3 )~ o.. (22) ~ ( s . )  > ~ ( b ~ -  b~)~~ ~ ( M - -  ~ - - ~ D ~  

Here D - - - ~ ,  so that the elementary bj intervals are at least D,  and at 

most 2 D in width. For T~, we obviously have 

(28) E~,(T.) < (b, -- b,) ~ +  100D~ ~, 

since the nfimerioal error is at most e, el. (8), except in the end inter- 
vals, where it is at most 5e. From (22) and (23) we :find: 
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(24> E~o~(S,,)-- E~q(T , , )>~(M " ~)~-- 1 0 4 D ~ - ~ ( b ~ - - b p > e  ~, 

and since 

(25) E~q(S.)  --  E ~ (  T . ) =  E ( S . )  --  E ( T . ) <  0, 

we must have s ) 

(26) M < 3 7 e .  

Thus all the H 3. ~ 37s,  and in consequence 

(27) i F ( z ) -  s~(~){ < 3s~ (n > ;v(~)), 

which proves our contention about uniform approximation. We may 
express this result as 

T h e o r e m  I. 1] any /unction .F(x), continuous in the interval 
0 ~ x ~ 1, be expanded in a series o/constant multiTles o/the/unctions f~. 
(3), the resulting series (4) will converge to ~ ( x) at all points o/ the 
unit interval, and, in /act, uni/ormly. 

Let us next treat  the case in which F ( x )  is a measurable function 
with summable square in the unit interval. Such a function can be approxi- 
mated to an arbitrary degree of exactness, in the sense of least squares, by 
a continuous function~), C(x), so that  

1 

(2s) f [ F ( ~ ) -  C(~)]~d~ < ~. 
0 

As we have shown above, (8), that  there exists a T~ for which 

1 

(29) f i e ( x ) - -  T,,(x)'j~dx < ~2~, 
0 

for this function EFT,,)-< 4~] ~. This implies the same relation for E(S,,), 
and shows that  for the functions now treated the expansion will converge 

in the mean. 

If, at any point of the unit interval, iv(x)  is continuous, we may 
show that the expansion converges there in the ordin~ary sense. Let, then, 
xr be a point of continuity of $'(x),  and x~x~ an interval such tha t  

(8o) t F ( . ) - F ( ~ ) I < ~ ,  ~__<x=<.~; .~--~--~--*~. 
1 

Let us take n so large that  ~ is small compared with x~ ~ x 1, and 

s) By  a longer calculation, which treats the cases more in detail, we  may  show 
that, in fact, M <  17s. 

~) cf. e. g. E. W. Hobson~ Theory of functions of a Real Variable, 2 ~ ed., 
Cambridge 192t, voL 1, p. 584. 
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for S~ consider the //3" for the b 3. of the interval x~ x~ here defined by 

(3i) lF(xo) - -  I (xl < < 

If more than l I P  of these //~. were ~ 4e, from (17) we would have 

(32) E(S,~) ~ E~.(S,~) > (x~ -- x~)e~/P. 

As E(S,~) approaches zero as n increases, we may take n so large that 
l / P <  z.1 When this is done, ~ of the H~.<: 4s, and in particular 
bj for which this holds exist on both sides of x c in the interval xlx e. 
Calling bs the first such point to the left of xr and b a the first one to 
the right, we may use the argument given above to establish (27), to 
show that each of the H~ for b~. adjacent to xr (or for x~ itself if that 
is a by) < 37s, and hence 

(33) I F (xc ) - -  S,~(x~) t < 38s (n > Nz(s) ). 

This proves the convergence of S~ to F ( x )  at any point of conti- 
nuity, and an obvious modification of the argument shows that the con- 
vergence is uniform for any closed interval in which F ( x )  is continuous. 
We have thus established" 

T h e o r e m  II. I] any measurable ]unction F(x ) ,  with summable 
square in the interval 0 ~_~ x ~_~ 1, be expanded in a series o/ constant 
multiples o~ the /unctions f~ (3), the resulting series (4) will converge to 
F ( x )  at all points o/ continuity. .Further, in any closed interval o/ con- 
tinuity the convergence will be uni/orm. Over the whole interval, the series 
converges in the mean to F (x). 

The consideration of simple examples shows that  if the function F(x)  
is continuous in each of the intervals x 1 x~ and x~xs, but discontinuous 
at x~, the series will in general oscillate between two finite values at x.~. 

4. Other Functions. 

We have based the set of function used, fi (3), on the functions v~ (1) 
with breaks at  as, the proper fractions with denominators integral powers 
of 2. Similarly, we could obtain an orthogonal set of broken line functions 
from any other set of points p~. For such a set to have the convergence 
properties of theorems I and I I ,  it is sufficient that the points p ,  be 
everywhere dense on the unit interval and enumerated in such a way 
that,  of the intervals marked off at any stage by these points, the ratio 
of the greatest interval to the least remains uniformly bounded for the 
entire set. With this restriction on the ~ ,  the theorems can be proved 
essentially as above. 
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5. Application to the Haar set. 

The set of discontinuous functions used by Ha i r  may be obtained 
by applying the process of orthogonalization (2) to the derivatives of our 
functions v i (1). As the linear combinations of them are step functions, 
the deductions made from (5) show that the set is complete, As, in a 
step function, any one step may be altered without disturbing the rest 
of the function, it is obvious from the minimum property that in any 
interval between adjacent points of discontinuity bj, S,,(x) must lie between 
the greatest and least values of F(x) in the interval. From this remark 
most of the convergence theorems given by Haar may be deduced imme- 
diately without further calculation. 

Massachusetts Institute of Technology. 

(Eingegangen am 20. 12. 1927.) 


