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Abstract. We study upper and lower bounds for the lowest eigenvalue A of
the Laplace operator on a spherical cap G, in m-dimensional space (m > 3).

We prove that these bounds are sharp by finding asymptotic expressions
for A as § = 7 and as § — 0.

1. Introduction

The purpose of this paper is to study upper and lower bounds as well as
asymptotic behavior of the lowest eigenvalue A of the Laplacian on a spherical
cap in m-dimensional space, m > 3.

In Section 2 we find the bounds mentioned above by using probabilistic
methods. For the case m = 3 these are compared to the ones given by Pinsky [5].

Sect. 3 is devoted to the asymptotic expressions of A as the cap tends to the
whole sphere, and also as the radius of the cap tends to zero. In order to obtain
these expressions we use a result of Hobson [4] concerning zeroes of Legendre
functions as well as the bounds for A given by Friedland and Hayman [3].

Finally, in Sect. 4 we examine the sharpness of our results.

2. Upper and Lower Bounds

Consider the eigenvalue problem

[(sin0)2'ma%((sin0)m_2%)] FAF=0 2.1)

F(6,) = 0, 0<6<86,<m,
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and let (X,) be the diffusion on (0, ) with generator

L= %[(sinﬂ)z_m%((sinO)m_zga)]
killed when it reaches 6,. Define

Ty, = inf(t>0: X, = 6,)
and let

V(o) = °f Tor(X,) dt

be the associated potential operator.
If D, denotes the domain of L, one has for f €D,

—VLf=f in (0,00)
and hence

Lf = —%f if and only if f =%Vf,

from which it follows that

1
> —

i

8| >

Now
|Vf(6) < nfusng"(Ta)

and moreover

Wi = sn;pE"(Ta)-

Theorem 2.1.

1

(A 1 x. m=—2 ’
———— | (sint)" “dt
'/(; (sinx)™ 2‘[0

A=

(2.2)

Proof. We shall find an upper bound for ||V|| which, together with (2.2), will give

the desired lower bound for A.
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Let g be such that Lg =1, g(0) =0, g’(0) = 0 and apply Dynkin’s formula to
obtain

g(8,) — g(0) = E*(T,).

Now clearly

g(0) = 2/ — 2/ (sint)™ *d

0 (sin x)
So g(8) >0 for 0 < @ < 7 and therefore

Wi = supE”(T) (). (2.3)

From (2.2) and (2.3) we obtain

where

g(8) = z[ - 2[ (sinz)™ % dr. O (2.4)

(sin x)

Observe that in the case m = 3 we have

8(00) =4

1 %
0gCcos 2)

and so we obtain a better lower bound than the one given by Pinsky [5]. We shall
see in Sect. 3 that this bound is in accordance with the asymptotic behavior of A.

Theorem 2.2.  If ji,,_s) ., is the first zero of the Bessel function Ji,,_s, ,, then
A< Joueny2 /-

Proof. In order to find an upper bound for A, we follow Pinsky [5] and compare
the equation

d’F
02+(m 2)cot0 +)\F—O 0<0<6,<m
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which is clearly equivalent to (2.1) with the equation

&F | (m=2) dF
do? 0 do

+AF=0, 0<0<§6,<m, (2.5)

whose solution is

F(0) = 0(%'")/2-](3"")/2(\&0)’

where Ji;_,, ,, is the Bessel function of order (3—m)/2.

Thus the smallest eigenvalue A, of (2.5) is A = ( Jim=372) 2/63, Jim—-13),2 being
the first zero of the Bessel functlon Jim-32-

Using now the comparison theorem in [1] we get

A< -3/ o

3. The Characteristic Constant of a Spherical Cap and Asymptotic Results

In this section we would like to obtain asymptotic expressions for the first
eigenvalue of a cap of the (m — 1)-dimensional unit sphere (m > 3).

The result that we obtain turns out to be different in the cases m =3 and
m> 3.

Following Hobson [4] we consider the Legendre’s associated function of the
first kind P/(p) defined for unrestricted values of the degree n and the order /.
This function is a particular integral of the ordinary linear differential equation of
the second order

d*u du 2
(1—”2);’72—2 Eﬁ+{n(n+l)—1 2}u=0,

which is known as Legendre’s associated equation of degree n and order /. Next,
we quote a result concerning the zeros of P, /(cos §) considered as a function of n
and when @ is near 7. The proof of the following lemma can be found in Hobson
[4].

Lemma 3.1. The smallest value of n for which P, '(cos@) vanishes satisfies the
following asymptotic relations as @ tends to . if | =0, then

1

2
210g77_0
if >0, then
r2/+1) uf m—0
N ENY D) an{ 2 }
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In what follows we define the characteristic constant of a spherical cap of the
(m — 1)-dimensional unit sphere and see its relationship with both the above
lemma and the first eigenvalue.

Let Gy be the cap of the (m — 1)-dimensional unit sphere S,,,(0, 1) defined by
cos 8, < x, < 1. The characteristic constant a(#,) for such a cap is given by the
positive root of the equation

a(fp){ () +(m—2)} = A(6,),

where

/ |grad f]* do,
. . Co,
N(#y) = inf J(f) = inf—"———,
€ F
K /C 1/1?do
()

and

_{/f, functions depending only on x,, nonnegative, Lipschitzian,
% " nonidentically zero on S,(0,1) and vanishing outside the cap Gy }.

This infimum is attained at the solution of the Laplace-Beltrami equation
Af+Af=0

on G, , where A = A(8,) is the lowest eigenvalue of this equation.

The fact that we may take axisymmetric functions is due to Sperner [6]. If we
write x; = cos §, then all functions f on the cap Cy can be considered as functions
of the variable @ (8 € [0, 7]). Therefore the elements of the class Fy are functions
f(8) defined in [0, 7], Lipschitzian, nonnegative, nonidentically zero on [0, 7] and
which vanish in [§,, 7]. Furthermore,

[ %6 sin™ 20 46

A(6,) = inf =2 .
/" fer, fa"f(ﬂ)zsin’"‘zﬂdﬂ
0

Regarding the minimum value of J(f) we have the following lemma due to
Friedland and Hayman [3].

Lemma 3.2. Let f(0) be a Lipschitzian function in [0, 7], not identically zero and
such that f(0)=0, 6, <0 <a. Then J(f)= J(F)=A(b,), where u=
(sin8)/2m=DF(@) is a solution of the differential equation

d’u Lmogyiy m=D@E=m)\
d02+{}\+4(m 2+ 250 } 0 (3.1)
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and the positive number A is so chosen that F remains analytic at 0 =0
F(0) =0, F(0,) =0 and F(8) >0 for0 <86 < @,.

The smallest zero of the function F(#) is 6,. The differential equation (3.1)
can also be written in the following way

{(s nd)"" zdF} = — Asin™ " 20F(9)

or

2
Zof—k(m 2)cotg0d + AF = (3.2)

Theorem 3.1. The following asymptotic relations hold as 0 — «

1
a(8) ~ — ifm = 3;

210g7r__0

a(8) ~ I'(m-2) ){'71—6?}’"“3 ifm > 3.

)

2
Proof. 'The differential equation (3.2) is equivalent to
(1=z2)w” = (2v+1)zw’ + a(a+2»)w = 0

for

m—
z=cosl,y = 3 and a(a+m—2) = A.

This means that the function F in (3.2) is a Gegenbauer function of degree a
and order ». We also observe that a is the characteristic constant of G, . In the
standard nomenclature it is denoted by C;(z). The Gegenbauer functions can be
represented in terms of the Legendre’s assoc1ated functions of the first kind in the

following way [2]

v 2T (a+20) T+ (12N> =)
Ci(z) = T2 (a+1) fes iy

(3.3)

We are interested in the zeros of C(cos#) as a function of a. More precisely,
we are interested in an asymptotic expression for a (as a zero of C’(cos#)), in
terms of @, as # approaches the value #. This asymptotic expression will lead us to
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the corresponding asymptotic expression for the characteristic constant of a
spherical cap G, in terms of 8 (as § — 7). Lemma 3.1 states these relations for the
functions P, /(cos ).

Therefore, by means of (3.3) we obtain the corresponding relations for the
functions C,(z). All we have to do is to write in Lemma 3.1 the values

_l__l__ _3—m
2T T
n=at —l=a+m—_3
atyv—> >

Finally, the results that we obtain are

1
a(8) - ifm =3,
210gﬂ_0
and
. _ m—3
a(6) ~ L[(m=2) {W 0} ifm > 3.
I,(m—l)r(m—3) 2
2 2

Remark 3.1. In the case m = 4 equation (3.1) is

d?u
—+{(A+Du=20
107 (A+1)

which is a Sturm-Liouville equation. The eigenfunctions of this equation are

u(8) = sinVA +18.
The condition u(f,) = 0 implies that

nip?

A =
85

-1, n=12,...
so the least eigenvalue is

2
A8) =Z—1.
0 002



200 C. Betz, G. A. Camera, and H. Gzyl

4. Sharpness of Results

The lower bound near § = @ for m=3: In Thm. 2.1 we obtained

1

= .
2|logcos3 4|

A(8) (4.1)

Since A(#) ~ a(8) for m = 3 then the asymptotic behavior obtained in Sect. 2
for a(#) is the same for A(8). If we compare (4.1) with this asymptotic expression
we see that this lower bound for A(#) is sharp.

The lower bound near 8 =« for m > 4. 1In Sect. 2 we obtained the global lower
bound

A(8) = 0 dx

o sin™ 2x

1
- .
f sin™ 2t dt
0

We shall prove now that this lower bound is also sharp for m > 4. What we
shall do is to compare this lower bound with the asymptotic expression that we
obtained for a(#) in the case m > 4.

Since A /a— m —2 as 6 — 7, the sharpness of our lower bound comes as a
consequence of the following

Lemma 4.1.

e ()
lim (7 —6)" " [ fsin’"‘ztdt =
0

0 m sin”~2x Yo I(m-1)

Proof. We have as § tends to 7

m—3 (0 dx X (-1)" 0
-6)" sin” "2t dt ~ ——————— [ sin™ " tdt.
(m=6) fo sin"“zx-[o (m—3)cos”'_20—£)

Therefore,

-3 10 dx X
lim (7 —8)™° sin™ 2t dt
(m—6) fo [

60— sin” " %x Yo

R

(3]

1 T
= m/ sin”" " 2tdt =
—3J
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On the other hand, from the duplication formula for the Gamma function we
have that

r()r(2) _YrT(m-1)

2 om=—2
Thus
m-2 m—1 m—73 _ m—3)
w2 r( 5 )=2 (m 3)r( .
m I'(m-1) T(m—1)
(3)
Then
m—1 mea{m—1 m—3
ﬁr(z)j o))
(2 I'(m—1)
(m-31(5)
Thus the lemma is proved. a

The upper bound near 8 =0 for m=3: We shall show now that for m =3 the
upper bound obtained by Pinsky [5] may be combined with the lower bound
obtained by Friedland and Hayman {3] to show that

lim 82A(60) = j?
0T10 ( ) Jos

where j, = 2.4 is the first zero of the Bessel function J;. In fact, Hayman and
Friedland have shown that

for 0 <8 < 7/2. Since A(0) = a(8)a(f)+1) then

1/2

L1
L

1/2
1. 1 1 1 {11, 1 1
Sln‘i Slni

Therefore,

2
sin? 2

}\(0)271—]02( ! —1)—1 0<6<=.
2
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On the other hand, Pinsky obtains

The last two inequalities yield
lim 827 (0) = j3.
Jim 6A(6) = Jjs
The upper bound near 8 = 0 for m > 4: We have obtained the upper bound

A() < j(2m~3)/2/02

where ji,,_3) , is the first zero of the Bessel function J,, s ,. Friedland and
Hayman [3] have obtained the following lower bound for the characteristic
constant a(@) of G, 0 < <7/2, and m = 4,

1/m—1
1
a(0) = jim- - = 3him-n,2 —3(m—2).
T (=) [(sine)" e
0
Since A(8) = a(0) a(8)+ m —2) one obtains
1/m—1 2 ( )2
1 2 m-—2
-2
o - N e Y0
N m=1) [(sine)" 5 4
0
sj(2m~3)/2

02
From these inequalities one can deduce that also for m > 4

lim 92X (8) = j2 .
0Ln1() () J(m—3),2

References

1. Debiard A, Gaveau B, Mazet E (1975) Théoremes de comparison en géometrie Riemannienne.
Comptes Rendus Acad Sciences Paris, Ser A, 281:455-458

2. Erdelyi A, Magnus W, Oberhettinger F, Tricomi F (1953) Higher transcendental functions, vol 1.
McGraw-Hill, New York

3. Friedland S, Hayman WK (1976) “Eigenvalue inequalities for the Dirichlet problem on spheres
and the growth of subharmonic functions. Comment Math Helvetici 51:133-161

4. Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge Univ. Press

Pinsky MA (1981) The first eigenvalue of a spherical cap. Appl Math Optim 7:137-139

6. Sperner E (1973) Zur Symmetrisierung von Funktionen auf spharen. Math Z 134:317-327

e

Accepted 4/21 /83



