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Abstract. We study upper and lower bounds for the lowest eigenvalue ~ of 
the Laplace operator on a spherical cap C o in m-dimensional space (m > 3). 

We prove that these bounds are sharp by finding asymptotic expressions 
for ~ as 0 ~ ~r and as 0 ~ 0. 

1. Introduction 

The purpose of this paper  is to study upper and lower bounds as well as 
asymptotic behavior of the lowest eigenvalue X of the Laplacian on a spherical 
cap in m-dimensional space, m > 3. 

In Section 2 we find the bounds mentioned above by using probabilistic 
methods. For the case m -- 3 these are compared to the ones given by Pinsky [5]. 

Sect. 3 is devoted to the asymptotic expressions of X as the cap tends to the 
whole sphere, and also as the radius of the cap tends to zero. In order to obtain 
these expressions we use a result of Hobson [4] concerning zeroes of Legendre 
functions as well as the bounds for h given by Friedland and Hayman  [3]. 

Finally, in Sect. 4 we examine the sharpness of our results. 

2. Upper and Lower Bounds 

Consider the eigenvalue problem 

[(sinO)2-m~--~((sinO)'-2~)] 

r (  Oo) = O, 

+ X F = O  

0<0<00<~r ,  

(2.1) 
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and let (Xt) be the diffusion on (0, ~r) with generator 

L =l[(sinO)E-m~-~((sinO)m-2~-~)] 

killed when it reaches 0 o. Define 

Too = inf(t > 0: X t = 0 o) 

and let 

Vf(O) = E° foTO°f(Xt) dt 

be the associated potential operator. 
If ®L denotes the domain of L, one has for f ~ ~L 

in (0, 0 o) - V L f  = f 

and hence 

Lf  = - -~f if and only i f  f = ~ Vf, 

from which it follows that 

1 

2 -> IlVl---l" 

N o w  

I gf(o)[ <_ Il f l lsupt°(T~) 
0 

and moreover 

Ilml[ = supE°(T,~). 
0 

C. Betz, G. A. C~nera, and H. Gzyl 

(2.2) 

Theorem 2.1. 

~ >  

fo 0O 1 /'X(sin t)m -2 dt 
(sin x)  m -2 "to 

Proof We shall find an upper bound for []VIJ which, together with (2.2), will give 
the desired lower bound for 2~. 
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Let g be such that Lg = l, g(O) = O, g'(O) --- 0 and apply Dynkin 's  formula to 
obtain 

g(Oo)- g(O) = e ° ( ~ ) .  

Now clearly 

g(O) = 2fo0 dx foX(sin t) m-2dt 
(sin x)  '~ - 2  

So g(O) > 0 for 0 < 0 < ,t and therefore 

flvll = s u p E ° ( ~ o )  -< g(Oo). (2.3) 
0 

From (2.2) and (2.3) we obtain 

2 A > - -  
g(Oo) ' 

where 

j0,° . -  j0 x g(O) = 2 ( s i n x ) m -  2 (sint)m-2dt. [] (2.4) 

Observe that in the case m = 3 we have 

g(0o) = 4  l o g c o s ~ l  

and so we obtain a better lower bound than the one given by Pinsky [5]. We shall 
see in Sect. 3 that this bound is in accordance with the asymptotic behavior of ?~. 

Theorem 2.2. I f  j{m-3)/2 is the first zero of the Bessel function J{m-3)/2 then 

<- J~,,- 3~/2/Oo2. 

Proof. In order to find an upper bound for ~,, we follow Pinsky [5] and compare 
the equation 

dZF+ ( m -  2)cot dF 
dO----- 7 0--~ + ~F = O, 0 < 0 < 0 o < 7r 
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which is clearly equivalent to (2.1) with the equation 

d2F ( m - 2 )  dF 
+ + • F =  0, 0 < 0 < 00 < 7r, (2.5) 

dO 2 0 dO 

whose solution is 

F ( O )  = 

where J(3-m)/2 is the Bessel function of order ( 3 -  m)/2 .  
Thus the smallest eigenvalue ~(, of (2.5) is ?~ " 2 2 = (J(m-3)/2) //0~, J(m-3)/2 being 

the first zero of the Bessel function J(m-3)/2" 
Using now the comparison theorem in [1] we get 

-2 2 
< J(m_3)/2/06. [] 

3. The Characteristic Constant of a Spherical Cap and Asymptotic Results 

In this section we would like to obtain asymptotic expressions for the first 
eigenvalue of a cap of the (m - 1)-dimensional unit sphere (m >__ 3). 

The result that we obtain turns out to be different in the cases m = 3 and 
m > 3 .  

Following Hobson [4] we consider the Legendre's associated function of the 
first kind P~(/~) defined for unrestricted values of the degree n and the order l. 
This function is a particular integral of the ordinary linear differential equation of 
the second order 

d2u - du { 12}  
( 1 - / ~ 2 ) ' - ~ 2 - 2 / ~ ' - ~ ' +  n ( n + I )  1 - . 2  u = O '  

which is known as Legendre's associated equation of degree n and order l. Next, 
we quote a result concerning the zeros of P,- 1(cos 0) considered as a function of n 
and when 0 is near ~r. The proof of the following lemma can be found in Hobson 
[4]. 

Lemma 3.1. The smallest value of n for which P S ( c o s 0 )  vanishes satisfies the 
following asymptotic relations as 0 tends to rr: if l = O, then 

1 
n ~ 

2 
21°g ~r - 0 

if l > O, then 

n - I  r 2,+l> tan2'{ } 
r(l+l)r(l) 



Bounds for the First E~genvalue of a Spherical Cap 197 

In what follows we define the characteristic constant of a spherical cap of the 
( m -  1)-dimensional unit sphere and see its relationship with both the above 
lemma and the first eigenvalue. 

Let Coo be the cap of the (m - 1)-dimensional unit sphere Sin(0, 1) defined by 
cos0 o < x I < 1. The characteristic constant a(0o) for such a cap is given by the 
positive root of the equation 

a(Oo)(a(Oo)+(m-2))  = 2t(Oo) , 

where 

7 t ( 0 0 )  = i n f  J(f) = inf 
f ~  Foo 

f i g  rad f12 do~ 
Coo 

fcoo lf 2 do~ 

and 

( f ,  functions depending only on Xl, nonnegative, Lipschitzian, 
F°o = nonidentically zero on S,n(0, l) and vanishing outside the cap Coo ). 

This infimum is attained at the solution of the Laplace-Beltrami equation 

Af  + Xf = 0 

on Coo, where )t = X(00) is the lowest eigenvalue of this equation. 
The fact that we may take axisymmetric functions is due to Sperner [6]. If we 

write x 1 = cos 0, then all functions f on the cap Coo can be considered as functions 
of the variable 0 (0 ~ [0, ~r]). Therefore the elements of the class F0o are functions 
f(O) defined in [0, ~r], Lipschitzian, nonnegative, nonidentically zero on [0, ~r] and 
which vanish in [0o, rr ]. Furthermore, 

X(Oo) = 
fo O°f'( 0 )2 sin m_ 20 dO 

yinfFoo foO°f(O)Zsinm-ZOdO " 

Regarding the minimum value of J ( f )  we have the following lemma due to 
Friedland and Hayman [3]. 

Lemma 3.2. Let f (  O) be a Lipschitzian function in [0, ~r], not identically zero and 
such that f (O)=O,  0 o < 0 <  cr. Then J(f)>_ J(F)=}t(Oo),  where u =  
(sin 0 ) 0/2)(,~ - 2)F( 0 ) is a solution of the differential equation 

d2u+ ()t + ~ ( m - 2 ) 2 +  ( m - 2 ) ( 4 - m ) }  
dO 2 4sin20 u = 0 

(3.1) 
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and the positive number ~ is so chosen that F remains analytic at 0 = 0 

F'(O) = O, F(Oo) = 0 and F(O) > 0 forO < 0 < 0 o. 

The smallest zero of the function F(O) is 00. The differential equation (3.1) 
can also be written in the following way 

__d { ( s i n 0 ) m  - 2 d F  ~ = _ ) ts inm_2OF(O) 
dO ~ dO ) 

or  

d 2F + (m -- 2)cot dF 
dO----- 7 gO--d- ~ + ~ F  = 0. (3.2) 

Theorem 3.1. The following asymptotic relations hoM as 0 ~ ¢r 

1 
a(O) 2 , i fm = 3; 

21°g ~r - 0 

( o )  - r A m_ -3)_ if m > 3 .  

Proof. The differential equation (3.2) is equivalent to 

( 1 -  z2)w ' ' -  (2v + 1 ) z w ' +  a ( a + 2 v ) w  = 0 

for 

m - 2  
z = cos0,  v 2 and a ( a + m - 2 )  = ~. 

This means that the function F in (3.2) is a Gegenbauer function of degree a 
and order v. We also observe that a is the characteristic constant of Coo. In the 
standard nomenclature it is denoted by C~(z). The Gegenbauer functions can be 
represented in terms of the Legendre's associated functions of the first kind in the 
following way [2] 

C~(z) = 2 ~ - ° / 2 ) r ( a  + 2 v ) r ( ,  + ( 1 / 2 ) ) ( z  2 - 1) (1/4)-(1/2)v p ( l / 2 ) - v  
r(zp)r( + 11 - . + .  (1/2) • 

(3 .3 )  

We are interested in the zeros of C~(cos 0) as a function of a. More precisely, 
we are interested in an asymptotic expression for a (as a zero of C~(cos0)), in 
terms of 0, as 0 approaches the value rr. This asymptotic expression will lead us to 
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the corresponding asymptotic expression for the characteristic constant of a 
spherical cap C o in terms of 0 (as O ~ 7r). Lemma 3.1 states these relations for the 
functions P~- l(cos O). 

Therefore, by means of (3.3) we obtain the corresponding relations for the 
functions C,~(z). All we have to do is to write in Lemma 3.1 the values 

1 3 - - m  
= ~ - v  - 2 ' 

1 m - 3  n = a + u - ~ = a + ~  

Finally, the results that we obtain are 

1 
a ( 8 )  2 if m = 3, 

2 logrr _ O 

and 

_ F ( m - 2 )  _ ~ )  
a ( 8 )  F ( _ ~ _ _ I ) F ( _ ~ ) (  . , -3 i f m >  3. 

Remark 3.1. In the case m = 4 equation (3.1) is 

d2u 
- - + ( h + l ) u  = 0 
dO 2 

which is a Sturm-Liouville equation. The eigenfunctions of this equation are 

u(8 )  = s inv~+ 10. 

The condition U(Oo)= 0 implies that 

n2,~. 2 
1, n = 1,2 . . . .  

og 

so the least eigenvalue is 

=~r 2 _  
X(Oo) og 1. 
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4. Sharpness of Results 

The lower bound near 0 = tr for m = 3: In  Thm. 2.1 we obtained 

1 
~ ( 0 )  > (4.1) 

211ogcosk01 

Since ~ (0 )  - a ( 0 )  for m = 3 then the asymptot ic  behavior  obta ined in Sect. 2 
for a(O) is the same for ?~(0). I f  we compare  (4.1) with this asymptot ic  expression 
we see that this lower bound  for ~ (0 )  is sharp. 

The ~wer bound near 0 = ~ f o r  m ~ 4: In  Sect. 2 we obtMned the globM lower 
bound  

x(0) 

f o dx foXSin ' ' -  2t dt " 
sinm-2x 

We shall prove now that this lower bound  is also sharp for m > 4. What  we 
shall do is to compare  this lower bound  with the asymptot ic  expression that we 
obtained for a(O) in the case m > 4. 

Since ~ / a  ---, m - 2 as 0 --, ~r, the sharpness of  our  lower bound  comes as a 
consequence of the following 

Lemma 4.1. 

lim (qT--o)m--3fo0 dx f0 s inm-2td '  = 
0--, ~r sinm-2x ]?(m -- 1) 

Proof We have as 0 tends to ~r 

x ( 1) 2 f sinm- 2t dt. ( ~r - O ) m 3 foO dX fo sinm- 2t dt - m 0 
sinm-Zx (m -- 3)cos m- 0 "10 

Therefore, 

lim ( rr _ o ) m- 3 fo0 dx foXsinm_ 2 t dt 
0 --, ~r sin m- 2X 

1 f0 - m - 3  sinm-2tdt ( m -  3)ore_ 1 
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On the other hand, from the duplication formula for the Gamma function we 
have that 

¢~-r(m- 1) 

Thus 

lf~ 2m- 2F ( m 2"----~1 ) 2 m - 3 ( m - 3 ) F ( - ~ )  

F ( 2 )  F ( m -  1) F ( m - 1 )  

Then 

( m _ 3 ) F ( 2 )  F ( m - 1 )  

Thus the lemma is proved. [] 

The upper bound near 0 = 0 for m = 3: We shall show now that for m = 3 the 
upper bound obtained by Pinsky [5] may be combined with the lower bound 
obtained by Friedland and Hayman [3] to show that 

lim 0 2 X ( 0 )  = j02, 
0 ---, 0 

where Jo---2.4 is the first zero of the Bessel function J0. In fact, Hayman and 
Friedland have shown that 

1 

½~ .2o 
Or(O) > 

sin -~ 

1/2 

1 
2 

for 0 < 0 < rr/2. Since X(O) = a(O)(a(O)+ 1) then [(1 
½Jo .20 X(O) >__ 

sin -~ 

Therefore, 

x(e) >_ ¼aa 1 1) 1 
. 2  0 2 

sin -~ 
0 < 0 < -  

4 '  2" 
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On the other hand, Pinsky obtains 

< sg 
- -  0 2 "  

The last two inequalities yield 

lim 02X(0)  = j2. 
0 ~ 0  

The upper bound near 0 = 0 for m > 4: We have obtained the upper bound 

• 2 2 X(0) _< b~,.-3)/2/0 
where J(m-3)/2 is the first zero of the Bessel function J(m-3)/2" Friedland and 
Hayman [3] have obtained the following lower bound for the characteristic 
constant a(O) of Co, 0 < 0 < 7r/2, and m > 4, 

( a ( 0 )  > J}m-3)/2 (m_l)foO(sint) m 2d t -~J}m-3) /2-½(m-2) .  

Since ~ (0 )  = a ( O ) ( a ( O ) +  m - 2) one obtains 

J~m-3)/2 ( m _ l )  foO(sint)m_Ed t - 5  

(m - 2) 2 

From these inequalities one can deduce that also for m > 4 

lim 027t(0) = J~m-3)/2" 
0--*0 

x(0) 

j~2 
( m - 3)/2 

< 02 
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