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Abstract. In this p a p e r  we s tudy ques t ions  o f  exis tence,  un iqueness ,  and  
con t inuous  d e p e n d e n c e  for  semi l inea r  e l l ip t ic  equa t ions  with non l inea r  
b o u n d a r y  condi t ions .  In  par t i cu la r ,  we ob ta in  results  concern ing  the con- 
t inuous  d e p e n d e n c e  o f  the so lu t ions  on the non l inear i t i e s  in the p rob l em,  
which  in turn impl ies  ana logous  results  for  a re la ted  p a r a b o l i c  p rob l em.  Such 
ques t ions  arise na tu ra l ly  in the s tudy o f  po ten t i a l  theory ,  flow th rough  porous  
media ,  and  obs tac le  p rob lems .  

1. Introduction 

In this ar t ic le  we es tabl ish  some results  concern ing  the exis tence,  un iqueness ,  
and  con t inuous  d e p e n d e n c e  on the da ta  o f  so lu t ions  o f  b o u n d a r y - v a l u e  p r o b l e m s  
for  semi l inea r  e l l ipt ic  equa t ions  o f  the spec ia l  form 

(i) fl(u)-Au~f on 12, 
(BVP) 

(ii) u.+y(u)~O o n F ,  

where  f~ c R N is open,  connec ted ,  b o u n d e d ,  and  local ly  lies on one  side of  its 
C 2 b o u n d a r y  F, A denotes  the Laplace  o p e r a t o r  in R N, f z  L I ( o ) ,  and  u.  denotes  
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author was carried out in part while visiting the Institute for Mathematics and Its Applications at 
the University of Minnesota. 
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the exter ior  no rma l  der ivat ive  o f  u on F. The non l inear i t i e s /3  and  3' are max imal  
m o n o t o n e  graphs  in R (see, e.g., [8]). In par t i cu la r ,  they may  be mul t iva lued  and  
this a l lows (ii) to inc lude  the Dir ichle t  cond i t ion  u = 0 ( taking 3' to be the 
m o n o t o n e  g raph  def ined by  3'(0) = R) and  the N e u m a n n  cond i t ion  u~ -- 0 ( taking 
3"(r) = 0 for  all  r) as well  as many  o ther  possibi l i t ies .  

In  o r d e r  to discuss the no t ion  o f  so lu t ion  o f  (BVP) we will use, we require  
a little no ta t ion .  The Sobolev  space  consis t ing o f  those  funct ions  whose  der ivat ives  
up  to o rde r  k lie in L P ( ~ )  will  be deno t ed  by  wk'P(~). We use d F  to denote  
a rea  measure  on F and  LP(F) will mean  the L p space  def ined  by  this measure .  
The s ta tement  "a.e.  on ~ "  means  with respec t  to Lebesgue  N - m e a s u r e  and the 
s ta tement  "a.e.  on F "  means  with respect  to d F .  A so lu t ion  o f  (BVP) will mean  
a t r iple  [u, v, w] c w l ' l ( f~ )  x Ll(f~) x LI (F)  such that  

v(x) c fl(u(x)) a.e. on f~, w(x) c 3"(u(x)) a.e. on F 1 (1.1) 

and  

~ I" f f 
J v p + J V u .  V p + J r W p = J f p  for  every p E wl'°~(~'~). (1.2) 

Here  and  be low the in tegrals  over  f~ are with respect  to Lebesgue  measure  and 
the integrals  over  F are with respect  to d F .  Of  course,  i f  we w r i t e / 3 ( u )  in p lace  
o f  v and 3'(u) in p lace  o f  w, (1.2) is jus t  the express ion  which  would  result  f rom 
assuming  everything is smoo th  and  s ing le-va lued  (so v = / 3 ( u )  and  w = 3'(u)),  
mul t ip ly ing  (BVP)(i)  by  p, in tegrat ing once by  parts ,  and  using the b o u n d a r y  
cond i t ion  (BVP)(i i) .  The def ini t ion above  uses the fact that  the t race  o f  u ~ wl ' l ( f~ )  
on F is well  def ined in L1(F) (Theorem 4.2 o f  [18]). Observe  that  we use the 
same no ta t ion  u for u and  its t race when convenient .  

Some hypotheses  on the graphs  /3 and  3' are necessary  in o rde r  for  (BVP) 
to have a solut ion.  To begin ,  we clearly need  that  the c losure  o f  the doma ins  o f  
/3 and  3' are not  d is jo in t  and  so it is na tura l  to assume that  

D(/3)  n D(3 ' )  ~ Q;  (1.3) 

however ,  we will assume more .  Fo r  example ,  i f  a ~ R , / 3 ( a )  = R, and  (u, v, w) is 
a so lu t ion  o f  (BVP), then  u-= a, v = f ,  and  0 =  w(x)=-3"(u(x))= 3'(a)  a.e. In  
par t icu la r ,  for  th is /3  we mus t  have 

D(/3)  n 3' 1(0) ~ Q (1.4) 

in o rde r  for  (BVP) to have any  solut ions  at all. We will  assume that  (1.4) holds ,  
which in turn  amount s  to assuming  that  there  is at least  one cons tant  funct ion  f 
for  which (BVP) has a so lu t ion  (u, v, w) which  is a constant .  

A n o t h e r  necessary  cond i t ion  for  the  exis tence o f  a so lu t ion  of  (BVP) is 
ob ta ined  by  choos ing  p -= 1 in (1.2) to find 

t Hereafter when we write the expression v ~ ~7(u) where u and v are functions on a measure 
space and "q is a monotone graph, we will mean that v and u are integrable with respect to the 
measure defined by the context and v(x)~ ~7(u(x)) a.e. 
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Using the notation ~0+=sup R(¢ )  and ~p_=infR(~0) for a graph ~p in R with 
range R(~0), (1.5) immediately implies that 

e-lnl + y-lvl-  f e+[al + y+lrl, (1.6) 

where [~[ is the Lebesgue N-measure of 1~ and IF[ is the area of F. 
Since (1.6) arises from an approximation of the condition imposed by a single 

choice of test function p, it is not quite sufficient for the existence of a solution 
of (BVP). It will be convenient to use the graph 

B(r) = IrlT(r) + Inle(r) (1.7) 

for the statement of necessary and sufficient conditions in the following theorem. 
Observe that (1.4) implies B(r) is maximal monotone (since D ( e )  c~ D(T)  • Q) 
and B+=lrl ++lnle+, etc. Then (1.5) in fact leads at once to the necessary 
condition stated in the following theorem. This theorem also completely character- 
izes the cases in which (BVP) is solvable--in particular, it follows from the 
theorem that (BVP) is solvable if (1.6) holds with strict inequalities. 

Theorem A. Let (1.4) hold and f ~ L1(1~). I f  (BVP) has a solution [u, v, w], then 

n f e R ( B ) .  (1.8) 

Conversely, (BVP) has a solution if  S n f c interior ( R ( B ) ) or, equivalently, 

B_ < I n / <  B+. (1.9) 

Lastly, if  S n f  = B+ c R ( B )  (respectively, ~ n f  = B_ c R(B) ) ,  then the solvability of  
(BVP) is determined as follows: if fl+ > B- ,  then (BVP) has a solution exactly when 
(the unique within a constant) solutions z of  the linear problem 

- A z = f - e +  in 1~, z~ = - y +  on F (1.10) 

(respectively, - A z  = f - e -  in 1~, z~ = - y _  on F) are bounded below (respectively, 
above) on 1~. i f  e+= e_ and y+> 3'-, then (BVP) has a solution exactly when 
solutions of  (1.10) (respectively, etc.) are bounded below (respectively, above) on 
F. I f  e+ = e -  and y+ = y_, then (BVP) has a solution. 

We remark that a sufficient condition for the solutions of (1.10) to be bounded 
is that f c  LP(I~) for some p > max(l ,  N/2) .  This can be proved by the method 
of Murthy and Stampacchia [17]. 

Theorem A will be proved in the next section together with the following 
result concerning the continuous dependence of v on 13 and 3' where [u, v, w] is 
the solution of (BVP) provided by Theorem A. Using nonlinear semigroup theory, 
this result implies, as is recalled in Section 3, the continuous dependence of 
solutions of an associated nonlinear parabolic problem on the nonlinearities in 
the problem. The resulting continuous dependence result for this parabolic 
problem was a principal motivation for this investigation. 
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Theorem B. Let i l k  )tk be maximal  monotone graphs with 0 c ilk(o) c~ "fk(o) and 
fk C LI(~)) for  k = 1, 2 , . . . ,  oo. Assume that fig _~ i l~ and yk ~ y~  in the sense of  
maximal  monotone graphs 2 and fk ~ f~  in LI(I))  as k ~ oo. Let B k = ilk]~)[ + yk]F], 

B~_ < I a f o ~ < B +  (1.11) 

and [ Uk, Vk, Wk ] be a solution of  

ilk(Uk)--AUk ~ f onlY, 
(BVP) k 

(Uk)~+yk(uk)~O o n F  

for  large k (the existence being guaranteed by Theorem A in view of  (1.11) and 
the other assumptions). Then Vk'--> Vo~ in L1(1)) and Wk--~ Woo in Ll(F) as k ~oo. 

Problems related to (BVP) have received a great deal of  attention. If/3,  7 
are Lipschitz continuous on R and il', y'-> e > 0 and f ~  L2(~)~), the existence of 
a solution follows from standard variational arguments. Brezis in [6] and [7] 
handles the case in which 13 is the identity, y is a maximal monotone graph, and 
f c  L2(I)). The case in which f 6  LI(I)) and/3, 3' are continuous nondecreasing 
functions from R to R with/3'--- e > 0 is studied in Brezis and Strauss [10]. Other 
aspects of  (BVP) are generalized in [10]- - for  example,  A can be replaced by 
more general elliptic operators, etc. We could consider this generality as well, 
but do not do so here since they will be developed in [5]. In [2] Benilan has 
proven existence results for f ~  LI(['),), y a maximal monotone graph, and /3 
continuous and strictly increasing. The analog of Theorem A for f in L2(~) was 
obtained by Schatzman [19] by variational methods--however ,  the gap between 
results for f c  L~(I~) and for f c  L2(~) is substantial (indeed, think of the linear 
Dirichlet problem in this regard). Brezis has pointed out that formally the problem 
can be regarded as a "range of the sum" question, although the L ~ setting falls 
outside the scope of Brezis and Nirenberg [9]. Finally, see Magenes et al. [16], 
Alikakos and Rostamian [1], and Diaz [13] for some other special cases, referen- 
ces, and applications to some corresponding parabolic problems. The problem 
addressed in Theorem B in the case where 1) is R s (and so there is no boundary) 
is rather different in character and was studied by Benilan and Crandall [4]. 

Section 2 of  the text contains the proofs of  Theorems A and B and several 
auxiliary considerations concerning (BVP). The "simplicity" of  these proofs is 
one of the contributions of  this paper. Section 3 is devoted to explaining the 
relationship of the results to the associated parabolic problem. In Section 4 we 
discuss the case f c  L p for p > 1 and an associated obstacle problem. 

2. Proofs of Theorems A and B 

Before proceeding, we will simplify the writing by using the assumption (1.4) to 

2This convergence of (e.g.) the /3 k can be expressed in terms of the inverse (l+fl k) i of 
r~ r+flk(r); it means that (l+flk)-l(r)~ (l+fl°°)-l(r) for rE R. 
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reduce to the situation in which 

/3(0) • 7(0) ~0; (2.1) 

this is done by choosing a ~ D(/3) c~ y-l(0) ,  b c /3(a) ,  and putting f = u - a. In 
terms of ff the problem becomes f i ( f ) - A f t  = f - b  in 1) and f~ + ~(f i )= 0 on F 
where fi(r)  = / 3 ( r + a ) - b  and ~(r) = 7(r+a) .  Since (2.1) holds for/3, ~ in place 
of/3, 7 we hereafter assume (2.1). 

In fact, the heart of the proofs of both Theorems A and B is the following 
sharpened form of Theorem B: 

Theorem B'. Let/3k ,~k be maximal monotone graphs with 0 c ilk(o) ("1 "yk(o) and 
fk C LI(I)) for k = 1, 2 , . . . ,  oo. Assume that/3k +/3o° and 7k _~ yo~ in the sense of 
maximal monotone graphs and fk ~ f~  in LI(~)  as k ~oo. Let [Uk, Vk, Wk] be a 
solution of 

/3k(u~)-auk~A one,  
(BVP) k 

Uk~+yk(uk)~O o n F  

for finite k = 1, 2 , . . . .  Let Bk(r) = 10]/3k(r)+lrlyk(r) for all k and assume that 

r a f t -  < By.  (2.2) BT_< 

Then we have: 

(i) The sequences {Vk}, {Wk} converge to limits Voo in L'( f l )  and woo in L1(F) 
as k ~oo. 

(ii) I f  {Uk} has a limit point u~ in L~(I)), then [Uo~, v~, woo] is a solution of 
(aVP)oo. 

(iii) I f  {In Uk} is bounded, then {Uk} is bounded in wI'q(gl) for 1 <-q < 
N / ( N - 1) (and hence is precompact in L l ( l) ) ). 

(iv) I f  

B+ < f foo<B ~_ (2.3) 
d 11 

then {Sn Uk} is bounded. 

Clearly, Theorem B' implies Theorem B if we know that whenever [u, v, w] 
and [a, 23, k]  are solutions of (BVP) then v = 3 and w = 6. This follows at once 
from the first assertion of Proposition E below. We proceed below by deducing 
Theorem A from Theorem B' and then we prove Theorem B'. 

Proof of Theorem A. In order to prove Theorem A we use the following standard 
approximation scheme: let A > 0 and/3, ,  Ya be the Yosida approximations of ]3, 
7; that is 

B a = ( I - ( I + a f l ) - l ) / a ,  y a = ( I - ( I + a y )  ~)/a. (2.4) 

Let 

fiA (r)= ar+ fla (r). (2.5) 
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Then fla and its inverse are both Lipschitz continuous homeomorphisms of R. 
The problem 

~(u~)-Au~=f  i n ~ ,  u ~ + y ~ ( u a ) = 0  o n F  (2.6) 

has a solution [u~, vA, wA] = [ua,/3x(uA), y~(u~)] for h > 0 by the results of [10]. 
Alternatively, if the reader prefers a self-contained presentation, for f c  L2(I~) it 
is a simple matter to exhibit the solution of (2.6) as a minimum of the functional 

(1)Io + f#")' 
where j ;  = / ~ ,  j~ = y~. Now replace f by an approximation fA ~ L2(I]) where f~ --)f 
in LI (~)  as A ~ 0. Since/3~ -) 13 and YA --) Y as maximal monotone graphs as h $ 0, 
we may use Theorem B' to conclude that i f f  satisfies (1.10) there is a solution 
of (BVP). 

Assume now that S ~ f  = B+ and (BVP) has a solution [u, v, w]. Then the 
identity (1.5) implies w -- Y+ and v -=/3+ so z = u satisfies (in the obvious sense--we 
assume some simple facts here concerning the Neumann  problem which are 
reviewed again in Proposition C below) 

- A z  = f - - / 3+ ,  z~ = - y + .  (2.7) 

Moreover, the relation v(x)=/3+ ~/3(u(x)) a.e. shows that either/3 ~/3+ or u is 
bounded below (by inf{r:/3+ ~/3(r)}) and in the former case we must have (by 
(2.1))/3 =-0. Similarly, either u is bounded below on F or y-= 0. I f  fl+ >/3_ then 
u is bounded below so (2.7) has a solution z which is bounded below. Conversely, 
if (2.7) has a solution z which is bounded below on 1~, then for a large enough 
constant c [z+c, fl+, y+] solves (BVP). Assume therefore that /3---/3+=0 and 
y+ > y . As above, a solution of (BVP) is then a solution of (2.7) which is bounded 
below on F and if z is a solution of  (2.7) which is bounded below on F, then 
[z+¢, O, y+] is a solution of (BVP) for large enough c. In the remaining case, 
/3 = y = 0, S a f  = 0 and if z solves - A z  =f ,  z~ = 0 (see Proposition C), then [z, 0, 0] 
is a solution of (BVP). 

We turn now to the proof  of  Theorem B'. The theorem itself is a fairly direct 
consequence of several ingredients. First we recall some basic facts concerning 
the linear Neumann problem 

(NP) - A u = f  in f l ,  u ~ = g  onF ,  

where f c  L1(1~) and g c LI(F); a solution of  (NP) is a u c W1"~(1)) such that 

for p ~ wl'°e(~'~). Set 
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We will use the following proposition: 

Proposition C. 

(i) 
(ii) 

Let f •  LI(~)  and g 6  LI(F). 

(NP) has a solution i f  and only i f  I ( f ,  g ) =  O. 
Solutions of  (NP) are unique within a constant so i f  I ( f  g) = 0 there is a 
unique solution u with the property Sa u = 0; this solution will be denoted 
by u = G ( f  g). 

(iii) For 1 <- q < N / (  N - 1) there is a constant C depending only on q and 
such that i f  I ( f ,  g) =0,  then 

II G(f ,  g)ll wl'q(a) ~ c(llfll LI(~+ Ilgll L'<F)). (2.8) 

(iv) There is a bounded linear mapping T: L1(1)) ~ L~(F) such that the solution 
u e w~'l(f~) of  the Dirichlet problem - A u  = f i n  1), u = 0 on F is also a 
solution o f  (NP) with g = Tf. Moreover, i f  1 <-p < oo, then the restriction 
o f  T to LP(~) is a bounded linear operator from LP(f~) into 
L(lV-1)P/(N-P)(F) i f  N > p and from LP(1)) into Lq(F) for  any finite q i f  
p>-N.  

(v) I f I ( f ,  g) =0  and u = G(f ,  g), then 

I(fx(~>o~, gx~,>o~) -> I ( f -x( ,=o~,  g X~,=o~), 

where r ÷ =max(r ,  0), r = r+-r ,  XA is the characteristic function o f  the 
set A, and {u > 0} denotes the set o f  x • 1) (or F) on which u(x)  > O, etc. 

Sketch o f  Proof of  Proposition C. For the moment, let ru denote the trace of 
u e W1'1(1)) in LI(F). Let M be the operator in L1(D) x LI(F) with the graph 

{[(u, w), (f, g)] : [u,f,  g ] e  WI'I(I)) 

x LI(I)) x LI(F), w = ru and u is a solution of (NP)}. (2.9) 

Clearly, M is a linear, single-valued, and densely defined operator in L1(1))x 
LI(F). It follows from [10] that M is an m-accretive linear operator (i.e., (I  + 
AM) 1 is an everywhere defined nonexpansive self-mapping of LI(I)) x LI(F) for 
A > 0). Moreover, if P is the projection of L1(12) x L1(F) onto LI(I)), Lemma 23 
of [10] implies that 

P ( I  + M) 1: L1(1)) × LI(F)_~ wl,q(~) (2.10) 

boundedly for 1 -< q < N / ( N -  1). Thus M has a compact resolvent and ( f  g) • 
R ( M )  if and only if (f,, g) is orthogonal to the null space of the adjoint M* of 
M. Now if (u, z) is in the null-space of M we have z = ru and 

- A u = 0  in 1) and u~=0 onF.  

We claim that then u is a constant (and therefore z is the same constant). To 
see this, we rely on the classical fact that the problem 

- A p = ( f ) x ,  inf~ and p~=0  o n F  
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has a classical solution whenever each f is smooth and compactly supported in 
and then use p as a test function in the relation satisfied by u. The null-space 

of M is thus one-dimensional and (because of the compact resolvent) so is the 
null-space of  M*. But constants (as elements of  L~(fD × L°°(~)) are in the 
null-space of M*,  whence the sufficiency of the condition I ( f ,  g ) =  0 for the 
solvability of  (NP). We have argued that (i) and (ii) hold. The estimate (iii) 
follows from similar considerations. Since a solution u of (NP) also solves 

u - A u = f + u e L l ( l ~ ) ,  u + u ~ = g + u e L l ( F )  

we have u = P ( I  + M)-l(f+ u, g + TU) C w l ' q ( ~ ) .  Thus G is a mapping from the 
subspace of L~(I~)x LI(F) on which I( f ,  g ) =  0 into w~'q(f~). It clearly has a 
closed graph and is therefore bounded,  whence (iii). 

We turn our attention to (iv). A solution u of  the Dirichlet problem also 
satisfies 

- f  u A p + f r U ~ P = f c f  p (2.11) 

for p e  C2(1~) i f f  is smooth. I f  we choose a regular function g on F and solve 
- A p  = 0 in Xq, p = g  on F, the maximum principle implies that 

II p II L~,.)-< Jig II L~,r) 
so (2.11) yields 

ru~g <- I]fll L'(mllg]] L~(F) • 

We conclude that the linear mapping f -~  u~ = Tf where u is the solution of the 
Dirichlet problem (which is well defined for smooth f )  is bounded from LI(fD 
into L~(F) whence the result for p = 1. For 1 < p < oo the result follows from the 
W 2"p regularity estimates and trace theorems for W~'P(f~). 

To establish (v) we use the following variant of  Lemma 2 of [10]: 

Lemma D. Let 1 <- p <- oo, f e  LP(f~), g e LP(F), and u be a solution of  (NP). Let 
~7 be a maximal monotone graph in R and Oe 71(0 ). Let p' be the Holder conjugate 
of  p, a e LP'(12), b e LP'(F), a(x ) e  ~7(u(x)) a.e. on f~, and b(x )e  rl(u(x)) a.e. on 
F. Then 

f a a f + I r b g  >-0" 

In order to deduce (v) from the lemma we choose 

f{l}  for r > 0 ,  

~7(r)=~[0,1]  for r = 0 ,  

[{0} for r < 0, 

and a ( x ) - I  on {u>0},  a ( x ) = 0  on { u = 0  and f->0},  and a ( x ) = l  on { u = 0  
and f <  0} (respectively, define b on F by b(x) = 1 on {u > 0}, b(x) = 0 on {u = 0 
and g->0}, and b ( x ) =  1 on { u = 0  and g<0}) .  
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Sketch o f  Proof of  Lemma D. The lemma follows from the fact that the m- 
accretive operator M in LI(II) x Ll(F) satisfies the conditions (I) and (II) formu- 
lated below. We will use the notation JA = ( / + A M )  1= (Jal, JA2) to indicate the 
projections of JA on LI(I)) and L~(F). The first condition can be verified by the 
arguments of [10]. 

f~  ( Ja ' ( f g ) - Ja ' ( f ' g ' ) )+  + fr (Ja2(f 'g)-Ja2(f 'g'))+ 

<_ f (f-f)+ + (I) 

for (f, g), (f,  ~) c Ll(fi)  x L~(F). The second condition is trivial--we have 

Jxl(b, b) = JA2(b, b) = b (II) 

for all constants b. Now one shows that the (analog of) Lemma D holds for any 
linear densely defined m-accretive operator M in a product space Ll(/x) x Ll(v) 
(/z and v are measures) which satisfies the analogs of (I) and (II). This can be 
done by the method of proof  of Lemma 3 of  [ 10]. In particular, if (Jl,  J2): L~ (/x) x 
L l ( v ) ~ L l ( i x ) x L l ( v  ) has the properties (I) and (II) then one checks that for 
any convex lower-semicontinuous function j:  R-+ [0, 00] one has 

The next proposition is formulated for the reader's convenience for the 
generalization 

(i) f l ( u ) - A u ~ f  on l l ,  
(BVP)f,g 

(ii) u ~ + y ( u ) ~ g  onF,  

where f e  L~(12) and g e L~(F) of (BVP). A solution of (BVP)f,g is a triple [u, v, w] 
as before, but (1.2) is replaced by 

if p e W~'~(I)). 

Proposition E. 
and [~, 9, ~,] be a solution of  (BVP)y,~. Then 

Moreover, i f  g = 0 and b >- 0 then 

f. (Ivl-b)+-< fo ( ' f ' - b )  + 

Let f, f ~ Ll(f/) ,  g, ~ Ll ( r ) ,  [u, v, w] be a solution o f  (BVP)I,g, 

(i) 

(ii) 
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IF (Iwl-b)÷ Ir (IT(f-v)l-b)+' (iii) 

where the operator T is from Proposition C(iv). 

Proof of Proposition E. According to the assumptions z = u -  t~ is a solution of 

- A z = f - f + ~ - v ,  z~ = g - ~ + ~ -  w. 

Proposition C(v) implies that 

I ( ( f  - f  + ~-  v)X~z>O), (g-g,+ w - w)X~z>o~) 

>- I ( ( f - f  + ~ - v) Xlz=ot, (g -g, + ff~ - w)-Xtz-Oi). 
Now the relations v(x) c fl(u(x)) a.e., etc., imply that v - ~3, w - k - 0  (respectively 
-<0) on {z>0} (respectively, {z<0}) and then manipulation of the above 
inequality (using Sa v+ <- ~ X~>o~V + ~ X/~=o~V +, v + -< ( f -  v)- + f + ,  etc.) implies (i). 
To obtain (ii), let [u, v, w] be a solution of  (BVP)xo. If a, b, c-> 0, b ~/3(a), and 
cc y(a) then [a, b, c] is a solution of (BVP)b,c. By (i) we have 

Ia(v-b)+ + Ir(W-C)+ <- Ia( f -b)+ 

and so 

Ia(v-b)+ <_In(f-b)+. (2.12) 

So far we have obtained this inequality for b e fl([0, ~ )  n D(T)) .  If D (y )  contains 
D(fl), then it will hold for all b > 0 ,  since if b>/3(R)  we have ( v - b ) + = 0 .  If 
b e f l (a)  and a > D(T),  we proceed by letting A > 0 and observing that [u, v, w] 
is a solution of 

f l (u ) -Au~f  o n e ,  u,+y~(u)~y~(u)-w onF,  

while [a, b, y~(a)] is a solution of 

¢l(a)-Aa3b o n e ,  a~+yA(a)3yA(a) onF.  

Using the estimate (i) on these problems yields 

II)(I.)--b)+]-fF(W--'yA(a))+<~f~](f--b)+-I-fl('~A(I~I)--W--'A(a))+" 
Since ]w]--]y~ (u)] and y~(a) --~ oe as A $ 0 (by properties of the Yosida approxima- 
tion) the inequality (2.12) follows upon sending A to 0. In a similar fashion one 
proves that 

In (v+ b)-<- In ( f  + b)- 

for 0 < - b and adding this and (2.12) yields (ii). 
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It remains to prove (iii). To this end let ~ be the solution of  

- A t ~ = f - v  inl~ and t~=0 onF;  

according to Proposition C(iv) t~ also solves 

- - A t ~ = f - v  inf , ,  ~ = T ( f - v )  onF .  

Thus (using that ~ = 0 on F) we have the solution [ u -  if, 0, w] of 

- A ( u - a ) = 0  inl~, (u -a )~+T(u-a )~T(v - f )  onF.  

If b c y(a) we have the solution [a, 0, b] of  

- A a = 0  inI~ and a~+y(a)~b onF.  

Applying (i) again to the latter two problems (with fl = 0 now) we find that 

fr(W-b)+ <- f r (T(v - f ) -b )+  

as desired. This completes the proof. 

We now complete the proof  of Theorem B'. 

Proof of Theorem B'. We use the notations and assumptions of  the theorem. 

Step 1. The sequence {Vk} is weakly sequentially compact in Ll(f~). This follows 
from the following criterion for weak sequential compactness of a subset F of  
Ll(/z) where/~ is a finite measure: 

sup [ ( [ f l -  b) + d/z = 0. lim 
b ~ o o  F J 

Indeed, this condition is easily seen to be equivalent to the uniform integrability 
of the family F (that is, for every s > 0 there is a 8 > 0 such that ~A Ifl d~ _< ~ if 
~(A)_< 3) and this implies the weak sequential compactness. Since we have 

f. ('vd-b)+ <- f~ ( ' f k l - - b )  + 

by Proposition E(ii) and {fk} is convergent in L~(O) by assumption, the weak 
sequential compactness of {Vk} follows. Observe in particular (taking b = 0) that 
{Vk} is bounded in Ll(f~). 

Step 2. The sequence {Wk} is weakly sequentially compact in L~(F). First note 
that the sequence {T(fk- Vk)} is weakly sequentially compact in L~(F) because 
of Step 1, the assumed convergence of the fk, and the continuity of the linear 
operator T as a map from LI(y~) into LI(F). Since Proposition E(iii) implies that 

we conclude as above. 
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Step 3. The sequence {Vk} is precompact  in L~(ft). In view of the uniform 
integrability of  the sequence, it suffices to prove that for each compact  subset f t '  
of  f~, {Vk} is precompact  in L~(I)'). For this we use the following local version 
of Proposition C(v). 

1,1 1 Lemma F. Let u c Wloc(ft), f E Lloc(~'-~), --Au =f,  and ~ ~ C2(II) be nonnegative 
and compactly supported in ft. Then 

f~ ( f~+uA~)> f{ u=o}" (2.13) 

Proof of Lemma F. We may assume that u = 0 holds in a neighborhood of F 
since otherwise we may replace u by q,u where ~/J = 1 in a neighborhood of the 
support  of  ~ and has compact  support  in ft. Since 

-V  . ((~ + e)Vu)=(~ + e) f  -Vu"  V~ 

Lemma 2 of [10] implies that if ~/ is a maximal monotone graph containing the 
origin, a ~ L°~(~), a c ~7(u), and e > 0, then 

ya((K e ) f -  V~')a -> + Vu- O. 

Now choose ,/ and a as in the proof  of  Proposition C(v), let e ~ 0 and use the 
fact that Vu = 0  a.e. on {u =0} to see that 

I{u>o} ('f-Vu" V~)>- I~u:o}f ~" 
Next we claim that 

f{o>o}VU Vc=-f u>o} U a,; 
this may be seen by choosing a suitable sequence of smooth approximations ~Tk 
of the Heaviside function and passing to the limit in the relation 

fa ~Tk(U)VU" V~=--fa  Nk(U) A', 

where Sk(r) =Io rlk(S) ds. 
TO continue, fix y e R N, observe that 

--A(Uk(X) -- Uk(X + y)) = f ( x )  --f(x + y) + (Vk(X + y) -- Vk(X)), 

and apply Lemma F (as we did with Proposition C(v) to get Proposition E(i)) 
with ff supported in {x ~ ~ :  distance (x, F) < lyl} to conclude that then 

aff(x)lvk(x + y ) -  v(x)l 

-< f lac(x)l !uk(x)- uk(x + y)l+ f Iff(x)l I A ( x ) - A ( x  + y)l. 
3a 3n 
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The sequence {Uk--(1/[~[) S~ Uk} is bounded in wl'q(~'~) by the boundedness of 
{Vk} and {Wk} (from Steps 1 and 2) and hence is precompact in L~(~) by 
Proposition C(iii). Likewise, translations act equicontinuously on {fk} in L]o~(~) 
by the assumptions. We conclude by appropriate choice of ~" that 

lim sup f~  IVk(X + y ) -  Vk(X)[ =0  
lYl ~ 0  k ' 

and this implies the desired compactness. 

Step 4. If [Uk,,, I.)kn , Wk. ] is a subsequence of  [Uk, Vk, Wk] and Vkn "~ 1)oo weakly in 
L~(I)), Wk, ~ woo weakly in L~(F), and Uk. ~ U~ in L~(I)), then [u~, v~, woo] is a 
solution of  (BVP)oo. To establish this, first note that {Uk°} is bounded in wLq(I"~) 
by Proposition C(iii) applied to {Uk°--(1/1121)~ Uk,,} SO we can 'assume that 
VUk, ~ Vuoo weakly in Lq(u~) for 1 -< q < N / ( N -  1). Now we must show that 

I v ~ p + I n V u ~ . V P + f r w ~ P = y n f ~  p (2.14) 

for every p ~ W~'~(I~) and 

v~6 f l~(u~),  wo~c y~(u~).  (2.15) 

Equat ion (2.14) follows immediately from the assumptions. Condition (2.15) 
follows from the next simple lemma. 

Lemma G. Let ~ a n d  T~ k, k = 1, 2, . . . ,  be maximal monotone graphs in R and 
k ~1 ~ r 1 in the sense of  graphs as k o ~ .  Let ( S, I~ ) be a ~r-finite measure space, Uk, 

U, Vk, v~ L1(tx), Vk~Tk(uk)  for k = l , 2 , . . . ,  and uk ~ u  strongly in LI(/~) and 
Vk ~ V weakly in Ll(/x) as k ~oo. Then v c  ~7(u). 

Sketch of  Proof It is standard in the theory of accretive operators that if v satisfies 

I(v-~)signo(u-a) d~>-O whenever U, /3GLI(S) and 13c ~7(~) 

(2.16) 

(where signo(r)= 1 , -1 ,  or 0 according as r > 0 ,  r < 0 ,  or r = 0 ) ,  then v~ ~7(u). 
Moreover, owing to the assumptions, if z3~ rl(~ ) then there are sequences 13k 
rlk(ak) such that t~k ~ ~, ~3k ~ t3 in LI(#) .  Finally, the monotonicity of  k implies 
S (Vk -- ~k)p(Uk -- ~k) dtx >-0 where p(r)  = r /m,  1, -1  according as I r l -  < m, r >  m, 
and r < -m.  We may pass to the limit as k ~ oo in this relation and then as m ~ oo 
to find (2.16). 

We know from Proposition E that if [u~, voo, woo] and [u~, v~, woo] are two 
solutions of (BVP)~, then v~ = ~3~ and w~ = ~oo. We therefore further conclude 
that if{uk} is precompact in L1(I)), then (BVP)~ has a solution and i f [u~ ,  v~, woo] 
is a solution 

Vk ~ V~ in L1(O) and Wk ~ Woo weaklyin LI(F). (2.17) 
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Step 5. If  {i~ Uk} is bounded then {Uk} is precompact in Ll(fl) and Ll(F) and 
(2.3) implies that {~r~ Uk} is bounded. The first assertion follows from Proposition 
C(iii). As regards the second, we argue by contradiction. Indeed, assume for 
example that 

I Uk-) oO. (2.18) 

Proposition C(iii), --AUk =fk -- Vk in 11, Uk~ = --Wk on F, and the boundedness of 
vk and Wk from Steps 1 and 2 imply that {Uk -- (1/]l)[)~a Uk} is bounded in w~'q(12) 
for 1 -< q < N / ( N -  1). The precompactness of this sequence in both LI(I)) and 
LI(F) follows and we can conclude (passing to a subsequence if necessary) that 

Uk "+ OO a.e. on [1 and a.e. on F (2.19) 

and there are v~c LI(II) and w~oc LX(F) such that (2.17) holds. It follows from 
the assumptions and (2.19) that v¢~->/3+ and w~---y+ a.e. The compatability 
condition 

then yields 

la]¢~7+lrl~+-> I foo 

in the limit, and this contradicts (2.3). Hence (2.18) cannot hold (even along a 
subsequence). In this way we see that {in Uk} is bounded and {Uk} is precompact 
in L~(I)) and La(F). 

We note that the existence assertion of Theorem A now follows from what 
has already been proved (recall the argument which showed Theorem A follows 
from Theorem B' and the above steps). 

Step 6. The sequence {Wk} converges in LI(F). We begin by assuming that 
B ~ >  B~ so that B k >  B k for large k. By the previous steps we know that the 
problem (BVP)k has a solution [Uk, Vk, Wk] if 

< f n f k  < Bk+ (2.20)k B k 

and we set Skfk = [Slkfk, S2kfk] = Irk, Wk]. By Proposition E(i) Sk is a nonexpan- 
sive mapping of the subset of LI(I)) on which (2.20)k holds into Ll(tl)  x L~(F) 
and we may therefore extend it by continuity to the set 

Moreover, we know that if f k e D ( S k )  and fk -~f~ in LI(~'~) then {S~kfk} is 
precompact in L~(ll) and every limit point is S ~ f ~ .  Hence S ~ k f k ~ S ~ f ~  in 
L~(I'I). Let (2.20)~ hold and consider {S2kf~}. If  this sequence is precompact 
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La(F) we conclude as above that S2kfo~ S2o~fo~ in L~(F) and then (using the 
nonexpansiveness) that S2kfk ~ S2oofo~ in La(F). Moreover,  using the nonexpan- 
siveness, it will suffice to check the precompactness for a dense set offoo's satisfying 
(2.20)o~ and once we have this we get the desired conclusion: S2kfk ~ S2oofoo in 
LI(F). 

Lemma H. I f  f o~ ~ L2(l~) and satisfies (2.20)o~, then { S2kf o~} is precompact in LI(F).  

Sketch of Proof of Lemma H. For the moment  let [Uk, Vk, Wk] be the solution 
of (BVP)k with fk replaced by fo~. It will suffice to show that {Uk} is bounded in 
L2(O). Indeed, we have 

Uk--Atik =foo'Jt-Uk--Vk in f / ,  Ukv'q-~/k(uk)~O o n F  

and we argue below that {Vk} is bounded in L2(~-~) and {Wk} is bounded in Lz(F). 
I f  we show {Uk} is also bounded in L2(f~), then {foo+ Uk- Vk} is as well and we 
conclude from Brezis [6] that {Uk} is bounded in W2"2(O). This implies that {Ugh} 
and hence {Wk} is precompact  in L2(F) and so also in L~(F). 

In order to see that {Uk} is bounded in L2(f/) we use Proposition E(ii) and 
(iii) as in the proof  of  Lemma 3 of [10] to conclude that 

fnj(Vk)<fnj(fo~) (2.21) 

and 

for every even lower-semicontinuous convex function j:  R ~ [0, oo]. Taking j ( r )  = 
r 2 we deduce first that {vk} is bounded in L2(I1) and then (using Proposition 
C(iv)) that {wk} is bounded in L2(II). Hence 

--AUk = fk in f/  and Ukv = gk, 

where fk, gk are bounded in L2(f/) and L2(F) and then we conclude by the usual 
duality argument that {--VUk} is bounded in L2(f/). Moreover, we know that 
{ ~  Uk} is bounded,  so by the Poincar6 inequality we are done. 

There remains the case in which/30°= y~_= 0, which is trivial by Proposition 
E(ii) and (iii) with b = 0 (in this case v~ = 0, wo~ = 0). 

We end this section with some simple remarks concerning the uniqueness of  
the solutions of  (BVP). We know that if [u, v, w] and [t~, 13, ~]  are two solutions, 
then v = ~3 and w = ~. However, it is not true that u and ~ must coincide. For 
example, if/3 = 3' - 0, then u is only unique up to an arbitrary constant. In fact, 
the uniqueness of  v and w implies that this is the general case, in the sense that 
we must have t~ = u + c for some c. Using the arguments of Lemma 3.5 of  [3] we 
see that if u is not unique then v must be a constant. We suspect that then w 
must be constant on each component  of  F but have not established this. If, for 
example, y -=0  (so w is constant) and v = b is a constant, the compatabili ty 
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relation shows that blal=~nf. Then be /3 (u )  and b=(1/lal)~,~f imply 
(1/[~[) S n f • / 3 ( u )  and u is unique if fl-x((1/[~[) ~nf )  is a singleton. In the event 
we knew w is constant as well, we could conclude that u is unique if B- I (S~f )  
is a singleton. See Theorem 3 of [19] in this regard. 

3. The Parabolic Problem 

Let T >  0 and Q = 1)x (0, T). We consider the "parabolic" problem 

z t - A u = f  onQ,  

u~+y(u )~O on (0, T ) x F ,  (3.1) 

ze /3 (u )  onQ,  

z(O, x) = Zo(X) on f~, 

in which/3 and 3' are maximal monotone graphs with 0 e/3(0) c~ y(0), f e  L~(~), 
and z0 • L~(f~). The partial differential equation above could be formally replaced 
by either the inclusion / 3 ( u ) , - A u  ~ f  or by the inclusion z t - A ~ p ( z ) ~ f  where 
~P =/3-1. Both forms appear in the literature and here we are emphasizing that 
they are coextensive. By a classical solution of (3.1) we mean a function z • C(t~) 
with z, 6 C(O~) for which there is a u •  C(O.) which is twice continuously 
differentiable with respect to the space variables so that the conditions in (3.1) 
are satisfied in the pointwise sense. I f /3  is everywhere defined, smooth, /3' is 
bounded away from zero, 3' and f are smooth, and Zo is smooth and compactly 
supported in f~, it can be shown by standard methods that (3.1) has a classical 
solution. We are going to define generalized solutions of (3.1) when these 
regularity conditions are not satisfied by taking limits of classical solutions of 
approximating problems in which they are satisfied. 

We will say that a sequence of problems 

Zk,--AUk =j~ on Q, 

llkt,-~')/k(uk)~O o n  (0, T) xF ,  
(3.1)k 

z~ •/3~(u~) on Q, 

Zk(X, O) = Zko(X) on ~ ,  

of  the same form as (3.1) converges to the problem (3.1) provided we have 

(i) /3k ~/3 and yk --> 3/ in the graph sense, 

(ii) f k ~ f  in L1(Q), (3.2) 

(iii) Zko ~ Zo in L1(1)), 

as k~oo.  

Definition. A generalized solution z of  (3.1) is a limit in C([0, T); L~(lq)) of a 
sequence of classical solutions Zk of  a sequence of problems (3.1)k which conver- 
ges to (3.1). 



Some L 1 Existence and Dependence Results 219 

For each t-> 0 let B' be the maximal monotone graph 

B'(r)  = tlrl~,(r) + lal/3(r). (3.3) 

One sees, in the obvious way, that if (3.1) has a classical solution then the 
compatability condition 

BL<-fazO+fot(f f(x,s) dx) ds<-B" for 0 < t < T  (3.4) 

holds. This condition is not quite strong enough for what follows and we will 
use the following stronger variant: 

y++f l+=oo  or f ~ f ( x , t )  dx<-lFly+ Either 

0 < t < T  and [Zo-<[l)]f l+ and for 
J f ~  

(3.5) t "  
y _ + / 3 _ = - o o  or Jaf(x,t) dx>_[FJ~,_ either 

0 < t < T  and f~ Zo>-If~lfl . for 

To motivate (3.5), consider the case in which f ( x ,  t) = f ( x )  is independent of t 
and (3.4) holds for all T. Then (3.4) is obviously equivalent to (3.5). We have 
the following theorem: 

Theorem I. Let (3.5) hold. Then a necessary and sufficient condition that (3.1) 
have a generalized solution is that 

fl_<- Zo(X) <-/3+ a.e. (3.6) 

Moreover, if (3.5) and (3.6) hold, then the generalized solution of  (3.1) is unique. 
Finally, if (3.5) and (3.6) hold and (3.1)k is any sequence of  problems converging 
to (3.1) with generalized solutions Zk we have 

Zk ~ Z in C([0, T); LI(I))), 

where z is the generalized solution of (3.1). 

Outline of  Proof The proof  of this result relies upon nonlinear semigroup theory 
and the results of Section 2. In order to apply the nonlinear semigroup theory 
to (3.1) we define a (possibly multivalued) operator A in Ll(f~) associated with 
(3.1) by f -  v ~ Av if there is a u c/3-1(v) and a w c y (u)  such that [u, v, w] is a 
solution of (BVP). We now exhibit the dependence of A on/3, 3' and define 

At3,v = { [ v , f -  v]: v, f c  L~(12) and there is a solution [u, v, w] of (BVP)}. 

(3.7) 

A = At3,r is accretive in LI (o )  by Proposition E(i). 
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Step 1. We determine  the closure of  D(A) where A = A~,r is defined in (3.7). 
I f  [u, v, w] solves (BVP), then clearly v(x) ~ fl(u(x)) a.e., so v(x) ~ R(fl) a.e. On 
the other  hand ,  if v c L l ( f l )  and  satisfies 

v(x)cR(3)  a.e. and  fl I l<I I (3.8) 

we will show that  v ~ D(A). Once this is established,  it follows that  

D(A) = {v ~ L l ( f l ) : /3_  _< v -</3+ a.e.} (3.9) 

since the closure of  the set o f  v 's  satisfying (3.8) is given by (3.9) (except in the 
trivial case /3_  =/3+). 

Let v ~ L1(I)),  (3.8) hold,  and  A > 0. We claim there is a solut ion [u~, vA, wa] 
of  the p r o b l e m  

/3(u~)-hAu~ ~v i n I I ,  
(3.10) 

u~+3,(u~)~O o n F  

with va ~/3(ux),  etc. In  part icular ,  vA ~ D(A). The existence assert ion follows 
f rom Theo rem A (appl ied  with the graph r--> (1/A )/3 (r) in p lace/3)  upon  dividing 
the equat ion  by  A. We m a y  rewrite (3.10) as 

/3A(uA)--Au~v i n I l ,  
(3.11) 

u~+y~(uA)~O o n F ,  

where 

flA(r)=/3(r/A), y~(r)=AT(r/A), and uA=Au~. (3.12) 

Of  course,  a solut ion o f  (3.11) is a triple [u ~, v A, w A ] ~ w la ( f~ )  x Ll(f~) x L~(F) 
with the obvious  propert ies .  In  this cor respondence  v ~ = vA and we claim that  
v ~ ~ v as A ~ 0 (at least a long a subsequence)  in L~(I~), whence  v ~ D(A). Indeed ,  
there is a max imal  m o n o t o n e  g r a p h / 3  such that/3~-->/3 as A ~ 0. Concern ing /3  
we only need  to note that  

int fl(O) = (/3_,/3+). (3.13) 

Similarly, there is a sequence  An $ 0 and a max imal  mono tone  graph  ~ such that  
y~ ~ ¢ / a s  n-~oo and 

9(0) 90. (3.14) 

It follows that  a solut ion [~, 13, ~ ]  o f  

~(a)-±a~v, 

a~+~(~)~0 

is ~=0, ~=v, and }~=0. We conclude from Theorem B that vA-~v in Ll(~) as 
A ~ O, completing the proof. 
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Step 2. In order to apply the nonlinear semigroup theory to the abstract problem 

z ' + A z ~ f  z(0) = Zo (3.15) 

in Ll(l)) we need to know the closure Ra of  R(I+AA) in L1(12) for A>0.  
However, it is immediate from Theorem A that 

Rx = { f c  LI(o) :  B ~ -  < I f ~  < B~}. (3.16) 

To give the idea of  the proof  it will suffice to let f be independent of t. Let 
fi~ be the closure of A in L~(l)). It follows from (3.16) that if f, zo satisfies (3.5) 
then, if to = 0 < h < t2 < • < • is an increasing sequence, the difference scheme 

z~-zi_~ FAz~gf for i = 1 , 2 , . , .  (3.17) 
t i - - t i  1 

has a unique solution Zo, z~ , . . . .  It follows that if Zo is in the closure of  D(A), 
that is (3.6) holds, then (3.15) has a unique mild solution (see, e.g., [5] and [12] 
concerning this notion). In the general case of time-dependent f satisfying (3.5) 
we use a suitable approximation o f f  by step functions and proceed in the obvious 
way to conclude that if (3.5) and (3.6) hold, then (3.15) has a (unique) mild 
solution. 

If we have a sequence of problems (3 .1 )k  with associated operators A k  = A~k.vk 
which together with (3.1) may be solved by this method, then the "graph conver- 
gence" inclusion 

A c  lim infAk (3.18) 

guarantees that the mild solution Z k o f  Z t k "~ A k Z  k ~ 0, Z k (0 )  -= ZkO, o f  (3 .1 )  k converges 
to the solution z of (3.1) in C([0, T); L1(12)) as k - ~  (see Theorem 6 of [12]). 
Moreover, the relation (3.18) is an immediate consequence of Theorem B. 

Step 3. If (3.5) and (3.6) hold, then a generalized solution exists. Indeed, we 
can approximate (3.1) by a sequence of problems (3.1)k which converge to (3.1) 
and which have classical (and hence mild) solutions Zk. By Step 2 the Zk converge 
in C([0, T): LI(~))  to the mild solution z of (3.1), which is then a generalized 
solution according to the definition. In fact, a refinement of this argument shows 
that if (3.5) and (3.6) hold, the problems (3.1)k converge to (3.1) and Zk is a 
generalized solution of (3.1)k, then Z k " )  Z in C([0, T): LI(~)) .  This relies upon 
the fact that the notion of graph convergence is convergence in a metric topology 
and so the notion of convergence "o f  problems" we are using is also metrizable. 

Step 4. To conclude the proof, we remark that under assumption (3.5) any 
generalized solution is a mild solution. In particular, (3.6) holds and generalized 
solutions are unique since mild solutions are unique. To see this, first note that 
because of (3.18) generalized solutions are integral solutions in the sense of [2] 
(see also [5] when it appears). Then use the fact that if an integral solution z of 
(3.15) satisfies z(0) c R~ for h > 0, then z(t) lies in the closure of D(A) and hence 
is the mild solution. 

This completes the outline of the proof. 
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The notions above are very general. There are interesting questions about 
generalized solutions which we have not answered--for  example, the uniqueness 
is open in the event we do not know that generalized solutions are mild solutions. 
We do know, however, that the class of generalized solutions strictly includes 
the class of mild solutions. An example of this can be given by choosing fl = y = 0, 
f =  0. Using the approximations 

f l k ( r ) = r / k  and y k = 0  

one can see that constants are generalized solutions in this case while only 0 is 
a mild solution. 

We remark that the recent interesting works of Caffarelli and Friedman [ 11 ] 
and Friedman and Huang [14] determine the limit of the solutions of a sequence 
of problems 

Ukt--Aq~k(Uk)=O for t>O,  x E R  N, Uk(X,O)=g(x ) 

in some cases where the q~k are everywhere defined and have the limit ¢~ given 
by ~p~(r) = Q, [0, ~ ) ,  {0}, [0, -o0) according as Ir[ > 1, r = 1, Irl < 1, or r = -1  and 
the function g does not take values in D(¢~)  a.e. There are interesting questions 
about analogous results in our setting. 

4. The L e Case 

We consider the analog of Theorem B' for the case in which f ~  LP(I'~) and 
f k ~ f ~  in LP(~-~) where l < p < N .  

Theorem J. Let ilk, ,yk be maximal monotone graphs with Ocflk(o) c~yk(o), 
1 <-- p < o0, and fk ~ LP(1)) for k = 1, 2 , . . . ,  oo. Assume that fig _~ fl~ and yk ~ yoo 
in the sense of maximal monotone graphs and f~-~f~ in LP(I)) as k->~. Let 
[Uk, Vk, Wk] be a solution of (BVP)kfor finite k = 1, 2 , . . .  and (2.2) hold. Then 

(i) {Vk} is convergent in LP(I)). 

If, moreover, 1 < p < N, then 

(ii) {Wk} is convergent in L(N-1)P/(N-P)(F) and 

(iii) {VUk} is bounded in L Np/(N P)(I~). 

Corollary K. Assume the hypotheses of Theorem J(ii) and (iii) and also (2.3). 
Then (BVP)~ has a solution [Uo~, v~, woo] belonging to wI"Np/(N-P)(I~) x LP(~-~) × 
L (N-I)p/(N P)(F). Furthermore, Vk ~ Voo in LP(I)) and Wk ~ W~ in L(N-l)P/(N-P)(F). 

Proof of Theorem J. Since fk ~ f ~  in LP(I)), there is a convex function j:  R ~  
[0, ~ )  with limlskooo (j(s)/ls] p) =o0 for which { ~ j ( f k ) }  is bounded. By (2.21), 
(putting fk in place of  f~),  ~aj(Vk) is bounded and this implies that {[Vk] p} is 
uniformly integrable. Since {Vk} is convergent in L~(~) by Theorem B', it is then 
also convergent in LP(I)), and we have proved (i). 
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To prove (ii), we use Proposition C and (i) above to conclude that T(fk -- Vk) -~ 
T ( f ~ -  v~) in L (N ~)P/(N-P)(F) where Vo~ is the LP(f~) limit of  the Vk. Using (2.22), 
Theorem B', and arguing as above we conclude that {IWk] (N-1)P/(N-P)} is uniformly 
integrable and {Wk} is convergent in LI(F), so {Wk} is convergent in 
L (N I)p/(N-p)(F). 

TO prove (iii) We argue by duality. Let h be the solution of mean zero of 

N 

-Ah=Y~(p,)x,  i n f l  and h~=0 onF ,  (4.1) 
1 

where Pi ~ Co(O)  for i = 1 , . , . ,  N. We have 

N 

II h II c E II p, II Lq<r) for 1 -< q < co, (4.2) 
1 

where C depends on l-I and q. There seems to be no convenient reference for 
this estimate, but it is proved by standard methods. Using h as a test function 
in (1.2) yields 

fn ~ Uk,~,pi= fah(Vk--fk)+ IrhW k. (4.3) 

Let q = N p / ( N p + p - N ) ,  which is the Holder  conjugate of  N p / ( N - p )  and 
satisfies q < N. Using Sobolev and imbedding inequalities together with (4.2) we 
thus have 

II h II L,,,. II h II 1)(1. ) ~ C 2 II O, II (4.4) 

Equations (4.3) and (4.4) together imply that 

I 1 

and we conclude that {VUk} is bounded i n  LNP/(N-P)(~"~) as asserted. 

The final remarks we make concern the obstacle problem: let ~b ~ H2(12) c~ 
H~(I-I) and put 

K = {v ~ H~(I-I): v>_XI t in 12}. 

We consider the solution of the variational inequality 

u ~ K  and (Au, v - u ) > _ ( f v - u )  for vcK,  (4.5) 

where A = - A  and ( - , - )  is the inner-product of  L2(1)). A standard way (see 
Kinderlehrer and Stampacchia [15, Chapter  IV]) to approximate the solution u 
of  this problem is to choose a e C~(R) satisfying 0 -< a ' ,  a (r) = 0 for r > 0, a (r) < 0 
for r < 0 ,  and a ( r )  is linear for large r and then put 

fl~(r) = er + a(r)/ e. 
Let u~ be the solution of 

f l ~ (u~ -~ ) -Au ~=f  on l ) ,  u~=0  onF .  

The arguments in Chapter  IV of [15] establish that ifce > p _> 2 and f, A~ ~ Lp(~~), 
then u~ converges weakly in W2"P(12) to the solution u of  the variational inequality. 
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The point we wish to make here is that in fact one has strong convergence in 
W2,P(f~). 

Indeed, if a~ = u~ - ~  then a~ is a solution of  

f l ~ ( a ~ ) - A t ~ = f + A x I  t inf~ and a ~ = 0  onF .  

By Theorem J we conclude that -Au~ is compact in LP(~]) and so by the 
Calderon-Zygmund estimates ff~--> u -  ~ strongly in W2'P(ID. Similar consider- 
ations may be used to prove the continuous dependence of  u in wZ'P(fD on f 
and A ~  in LP(~'~). 
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