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Abstract. The problem of valuation for contingent claims that can be exer- 
cised at any time before or at maturity, such as American options, is discussed 
in the manner  of Bensoussan [1]. We offer an approach which both simplifies 
and extends the results of  existing theory on this topic. 

I. Introduction 

In an important and relatively recent article, Bensoussan [1] presents a rigorous 
treatment for American contingent claims, that can be exercised at any time 
before or at maturity (in contradistinction to European contingent claims which 
are exercisable only at maturity). He adapts the Black and Scholes [3] 
methodology of duplicating the cash flow from such a claim to this situation by 
skillfully managing a self-financing portfolio that contains only the basic instru- 
ments of  the market, i.e., the stocks and the bond, and that entails no arbitrage 
opportunities before exercise. Under a condition on the market model called 
completeness (due to Harrison and Pliska [7], [8] in its full generality and rendered 
more transparent in [1]), Bensoussan shows that the pricing of such claims is 
indeed possible and characterizes the exercise time by means of an appropriate 
optimal stopping problem, 

In the study of the latter, Bensoussan employs the so-called "penalization 
method,"  which forces rather stringent boundedness and regularity conditions 
on the payoff from the contingent claim. Such conditions are not satisfied, 
however, by tile prototypical examples of  such claims, i.e., American call options. 

The aim of the present paper  is to offer an alternative methodology for this 
problem, which is actually simpler and manages to remove the above restrictions; 
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it is based on a "martingale" treatment of the optimal stopping problem as in 
Fakeev [6], Bismut and Skalli [2], or E1 Karoui [4]. Furthermore, it seems to be 
well-suited for handling claims that are perpetual, i.e., exercisable at any time 
before the end of the age. 

We present a suitably modified version of the Bensoussan model in Section 
2 and the beginning of Section 4, including condition (2.6) which will guarantee 
the completeness of the model in our context. Section 3 introduces the concepts 
of portfolio and consumption processes, necessary for the treatment of valuation 
(pricing) questions. In order to motivate later developments, we present in Section 
4 the treatment of European contingent claims, as in Karatzas and Shreve [10]. 

The notion of "hedging strategy" for an American contingent claim is intro- 
duced in Section 5, as a portfolio/consumption process pair which makes it 
possible to attain, by suitably investing in the market, the same wealth as the 
payoff achievable from the possession of the contingent claim. The fair price of 
the latter at time t = 0 is defined as the smallest value of the initial wealth that 
permits the construction of a hedging strategy, and is related to a problem of 
optimal stopping. The analysis for the latter leads to the valuation formulae (5.10) 
and (5.11); some elementary consequences of  these formulae are discussed, and 
the perpetual case is taken up in Section 6. 

Problems of option pricing have a long history; see, for instance, Samuelson 
[15], [16], McKean [12], Black and Scholes [3], Merton [13] and the review 
article by Smith [17]. Harrison and Pliska [7], [8] developed a theory of "con- 
tinuous trading," based on stochastic calculus, and demonstrated that the pricing 
of European contingent claims is possible under quite general market models. 

2. The Market Model 

Let us consider a market in which d + l  assets (or "securities") are traded 
continuously. One of them, called the bond, has a price Po which evolves according 
to the equation 

dPo(t) = r(t)Po(t) dt, /90(0) =po = 1, (2.1) 

and determines the discount factor 

fl(t)=a 1 =exp  - r(s) ds 0 <_t<oo. (2.2) 
Po( t ) 

The remaining d assets, called stocks, are risky; their prices are modeled by the 
linear stochastic differential equations 

dPi(t)= P~(t)[bi(t) dt+ ~ ~ij(t) dWj(t)], 
j = l  

Pi(0) = pi > 0, 1 -< i ~ d. 

O ~ t < ~ ,  

(2.3) 
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The discounted prices flP~ of  the stocks obey the equations 

d[fl( t)P~(t)]=fl( t)Pi(t)[(b,( t)-r(t))dt+ ~ cru(t) dWj(t)l , 0 - < t < ~ .  
j = l  

, (2.4) 

Here { W(t) = (Wj( t ) , . . . ,  Wa(t))*, ~,;  0_< t < ~} is a d-dimensional Brownian 
motion on the probability space (1~, ~, P), and {~,} is the augmentation under 
P of the filtration 

f fw = t r (W(s) ;  O<--s<-t), 0--- t < ~ ,  (2.5) 

generated by the Brownian motion. It is well known (e.g., Karatzas and Shreve 
[10, Section 2.7]) that {~,} satisfies the "usual conditions": it is right-continuous, 
and ~o contains the P-null events in ~-w. The integer d represents the number 
of independent, exogenous sources of uncertainty in the market model. 

Throughout Sections 2-5, the interest rate {r(t); 0-< t < oo} of  the bond, the 
appreciation {b,(t); 0 -  < t<oo} and dividend{tx~(t); 0 <- t < ~ }  rates of  the d stocks, 
as well as the dispersion coefficients {gu(t); 0 <- t < oo}, 1-< i,j <-d, are assumed to 
be measurable processes, adapted to the filtration {~-t}, and uniformly bounded 
in (t, to)e [0, T] x O, for every finite T >  0. They will be referred to collectively 
as the coefficients of the market model. 

Let us now consider the random matrices 

o'(t)={o'ij(t)}i<i.j<d, D(t)=o'(t)*(t),  

where * denotes transposition. It will be assumed throughout the paper  that there 
exists a positive number  e for which 

¢ * O ( t ,  to)~-_> e II~ll ~ , V ~ e ~  ~', (2.6) 

holds for every (t, to) e [0, oo)xfL 

3. Investment and Consumption 

Let us now consider a "small investor," i.e., an agent whose actions cannot 
influence the prices. This agent starts with an initial endowment x -> 0, and invests 
it in the d + 1 assets of  the market. I f  he decides to hold N~(t) shares from the 
asset i - -0 ,  1 , . . . ,  d at time t, his wealth is then 

d 

Xr = ~ Ni(t)Pi(t), 0 - < t <  co. (3.1) 

Now suppose that the trading of shares, as well as the payment of  dividends (at 
the rate/.q(t) per unit time and per dollar invested in the ith stock), takes place 
at discrete time points like . . . ,  t - h, t, t + h , . . . .  I f  Ct denotes the cumulative 
amount of withdrawals for consumption, made up to time t, then 

d d 

Xt+h-Xt :  ~.. Ni(t)[Pi(t+h)-Pi(t)]+h ~ Ni(t)Pi(t)l~i(t)-(Ct+h-C,). 
i = o  i - 1  

(3.2) 
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The continuous-time analogue of (3.2) is 

d d 

dXt = Y. N,(t) dP,(t)+ ~ Ni(t)Pi(t)tz,(t) .  d t - d C , ,  
i = 0  i = l  

which can be rewritten, with the help of (2.1), (2.3), and (3.1) in the form 

dX, = [ r( t ) X, + i= Tr'( t )( b'( t ) + l~( t ) - r( t ) ) ] dt - dCt 

d d 

+ Y, • 7ri(t)tro(t)dWj(t); 0<- t<oo.  (3.3) 
i-l j=l 

Here, *r~(t)-----a Ni(t)P~(t) is the amount invested in the ith stock, for 1 - < i -  < d. 

Definition 3.1. A portfolio process 7r = {Tr(t) = (~ ' l ( t ) , . .  •, ~d( t) )*, ~,; 0 <-- t <-- 0O} 
is measurable, ~d-valued, adapted, and satisfies 

forTr~(s) d s < ~  a .s .P  (3.4) 
i = 1  

for every finite T > 0. 

Any component of ~-(t) may become negative, and this is interpreted as 
short-selling that particular stock. The amount ~ro(t) A X, - ~ a= 1 7r~ (t) invested in 
the bond may also become negative, and this amounts to borrowing at the interest 
rate r( t ). 

Definition 3.2. A consumption process C = {C,, if,; 0 <- t < ~ }  is progressively 
measurable with respect to {if,}, takes values in [0, co), and satisfies 

(i) Co(to)  = 0, 
(ii) the path t~--> C,(to) is nondecreasing and right-continuous 

for P-a.e. ~o ~12. 

The unique solution of the linear stochastic differential equation (3.3) is 
given, for every pair (Tr, C) as above, by 

If0 Io X,=Po( t )  x+  ¢l(s)1r*(s)(b(s)+tx(s)-r(s) l )  d s -  ~(s) dC~ 

fo' + fl(s)rr*(s)o-(s) dW(s  , 0 < _ t<oo, (3.5) 

and is called the wealth process corresponding to the portfolio/consumption process 
pair (Tr, C). Here 1 denotes the vector in ~d  with every component equal to 1, 
and all the vectors are column vectors. 

Definition 3.3. Given an initial endowment x -> 0 and a finite time-horizon T > 0, 
we say that a pair of portfolio and consumption processes (~r, C) is admissible 
on [0, T] for the initial endowment x>-O, and write (Tr, C)~  M(T, x), if 

Xt>-O, O<-t<- T, (3.6) 
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holds almost surely. We also introduce the notation 

~(x)  a= f~ ~ (T ,x ) ,  (3.7) 
T > O  

and say that a pair (~-, C)~  ~ ( x )  is admissible for the initial endowment x>-O. 

Let us now define the measurable, adapted, ~d-valued process 

O(t) a=o-*(t)D-l(t)(b(t)+tx(t)-r(t)l), if,,, 0 < _ t<oo, (3.8) 

which is also bounded in (t, to)c [0, T] x O for every finite T >  0, because of our 
assumptions on the coefficients of the market model and (2.5). The components 
of this process satisfy the identities 

d 

o'ij(t)Oj(t)=bi(t)+tzi(t)-r(t), 0-< t < ~ ,  l<-i<-d, (3.9) 
j - -1  

P-almost surely. 

Because of the local boundedness of ]]O(t, to)]l, the exponential supermar- 
tingale 

Z, =exp - O*(s) dW(s)-½ [1O(s)l] 2 ds , ~,, 0 < _ t<oa, (3.10) 

is actually a martingale. If one fixes a finite T>0  and introduces the probability 
measure 

/3r(A) a=E(ZrlA), A c ~ T ,  (3.11) 

then by the Girsanov theorem (Chapter 6 in Liptser and Shiryaev [11] or Section 
3.5 in Karatzas and Shreve [10]) we have that 

(i) P and /3T are mutually absolutely continuous on ~r ,  and 
(ii) the process 

fo' f f ' ( t )AW(t )+ O(s) ds,~,, O<-t<-T, (3.12) 

is an ~d-valued Brownian motion on (O, fiT, fir). 

In terms of this process, and thanks to (3.9), equations (3.3) and (3.5) can 
be written equivalently as 

d d 

dX, =r(t)X, d t -dC ,+  Z ~. ~r,(s)~ro(s) dCVj(s), (3.13) 
i--1 j = l  

fo Io ~(t)X,+ ~(s) dC, = x +  ~(s)~r*(s)o'(s) dI2V(s), (3.14) 

respectively. 
The right-hand side of (3.14) is a/3r-local martingale on [0, T], whereas the 

left-hand side is, for every (m C ) c  sg(T, x), a nonnegative process. Therefore, 
the latter is a continuous supermartingale on [0, T], for which the optional 
sampling theorem yields 

[ fo ] Er ~(r)X~+ ~(s) dC, <-x, Vreb°o,r. (3.15) 
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Remark on Notation 3.4. For fixed 0_< u < v _< oe, we denote by b°u.~ the collection 
of stopping times r of {o~,} with values in [u, v]. We shall write 

6e* --a b°,.~, ~,--a {r ~ 5e*; z < co, a.s. P} (3.16) 

for any given te[0,  oo). 

From (3.15), a rather trite necessary condition for (Tr, C)e  sg(T, x) is 

Er fl(s) dC,<- x. (3.17) 

It turns out that (3.17) is also, in a certain sense, "sufficient" for admissibility 
on [0, T]. 

Proposition 3.5. Let C be a consumption process satisfying (3.17) for a given 
x c [0, oe). There exists then a portfolio process 7r, such that (rr, C) ~ sg(T, x). 

Proof With D & J ~ / 3 ( 0  dC, we define the nonnegative process 

, , & E r ( f T e x p ( - I [ r ( u )  d u ) d C s l ~ , ) + ( x - F ,  rD)Po(t), (3.18) 

so that 

I0 fl(t)~,+ fl(s) dCs=x+m, ,  O<-t<- T, (3.19) 

with m, _a/~r(Dio~) _ /~rD = E(DZrIoff,)/Z, - E(DZr) ,  by virtue of the Bayes 
rule (Lemma 3.5.3 in Karatzas and Shreve [10]). It may be assumed that the 
paths of the P-martingale 

g,a=E(DZrlo~,), O<~t < -- T, 

are right-continuous, so from the fundamental martingale representation theorem 
(Ikeda and Watanabe [9, p. 80] or Karatzas and Shreve [10, Section 3.4]) we have 

N, = E(DZT)+ ~pj(s) dW~(s), 0 <- t <- T, (3.20) 
j = l  

a.s. P, for suitable measurable and adapted processes {q~j(t), ~,; 0 _  ~ t -  < T} such 
that 

forq,}(t)dt<oc a.s. (3.21) 
j = l  

But now m , = N t / Z , - E ( D Z T ) ,  and an application of It6's rule, in conjunction 
with (3.20), (3.12), and dZ, =-Z,O*(t)  dW(t) ,  yields 

m t -  tpj(s) dITV~(s), 0 < - t<~ T, (3.22) 
j = l  
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with 

g/( t) ~-~(~o( t) + O( t)Nt). (3.23) 

I f  we set 

zr(t) ~= Po(t)D-~(t)o'(t)~(t), (3.24) 

equation (3.19) becomes (3.14) with s tyX.  Condition (3.4) follows from (3.21), 
(2.6), the boundedness of  I]0]1 on [0, T], and the path continuity of  both Z 
and N. [] 

In terms of the process if" of  (3.12), equations (2.3) and (2.4) for Remark 3.6. 
the stock prices and their discounted counterparts can be written as 

dP~(t) = Pi(t)[(r(t)-txi(t)) dt+ ~ cr~i(t ) dlTVj(t)] (3.25) 
j = l  

d[ f l ( t ) e , ( t ) ]=~( t )~ ( t )  ~ij(t) d ~ ( t ) - . , ( t ) d t  , l<_i<_d. (3.26) 

From (3.26) it becomes obvious that the discounted price process {fl(t)Pi(t), ~,; 
0 ~ t -< T}, for a stock which pays no dividends, is a martingale under the measure 
/St. In fact, the latter was constructed with an eye toward this property;  see 
Harrison and Pliska [7], [8] for an amplification of this point. The existence of 
a probability measure, under which the discounted prices become martingales, 
plays a central role in the theory of continuous trading developed by these authors. 

More generally, if the dividend rate process txi is nonnegative, then the 
discounted price process ~Pi is a supermartingale under t3r. 

4. Contingent Claims 

In order to fix ideas, let us take d = 1 in the market model of  Section 2, and 
suppose that at time t = 0 we sign a contract which gives us the option to buy, 
at any time ~- between t -- 0 and an "expiration date" t = T, one share of  the stock 
at a specified price of  c dollars (the contractual "exercise price"). I f  at time t -- z 
the price P~(r) of  the stock is below the exercise price, the contract is worthless 
to us, but if P~(~') > c, we can exercise our option (i.e., to buy one share at the 
pre-assigned price c ) a n d  then sell the share immediately in the market, thus 
making a net profit of  (Pl(r)-c) ÷ dollars. Because clairvoyance has to be 
excluded, • is restricted to be a stopping time of {~,}, with values in [0, T]. 

Such a contract is commonly called an American option, in contradistinction 
to a European option which allows exercise only on the expiration date, i.e., • = T. 
Both European and American options are financial instruments and can be traded 
in their own right (e.g., at the Chicago Board Options Exchange and other 
organized secondary markets for options). 

The following definitions provide a generalization of the concept of  option. 
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Definition 4.1. An American Contingent Claim (or ACC) (T,f,  g) is a financial 
instrument consisting of 

(i) an expiration date T c (0, ~ ] ,  
(ii) the selection of an exercise time TCSeo, r, 

(iii) a payoff rate g, per unit time on (0, ~-), and 
(iv) a terminal payoff f~ at the exercise time. 

The processes F =  {f~, ~t; 0 -< t<oo} and G={g,, ~,; 0 < - t < ~ }  are assumed 
throughout Sections 2-5 to be nonnegative, progressively measurable, and to 
satisfy, for some f i x e d / z > l ,  

E o s u p ~ +  g, ds <oo forevery 0 < t < o o .  (4.1) 

Furthermore, F is assumed to have continuous paths. 

Remark 4.2. An ACC with an expiration date T = oo is called perpetual; in this 
case, (iv) above is to be understood with the convention 

f ~ ( w ) & f i m f ( w ) ,  w e a .  (4.2) 

Definition 4.3. A European Contingent Claim (or ECC) (T, fr, g) is a financial 
instrument consisting of 

(i) a maturity date T ~ (0, ~ ) ,  
(ii) a payoff rate of gt per unit time on (0, T), and 

(iii) a terminal payoff f r  at maturity. 

Example 4.4. An American (European) option is a special case of an ACC 
(resp., ECC) with d = 1, gt = 0, and f - - ( P l ( t ) -  c) ÷. The number c ~ 0  is called 
the exercise price of the option. 

The central question of option pricing can be formulated as follows: What 
is a fair price to pay at time t = 0  for the (European or American) Contingent 
Claim ? For simplicity, preparation and motivation, we shall address first the case 
of a European Contingent Claim, following Karatzas and Shreve [10, Section 
5.8]. American Contingent Claims will be taken up again in the next sections. 

Definition 4.5. Let x-> 0 and T >  0 be two given finite numbers; a pair (~-, C ) c  
~{( T, x) with corresponding wealth process X is called a hedging strategy against 
the ECC of Definition 4.3, if 

t 
(i) C, = ~o gs ds, 0 <- t <- T, and 

(ii) X r =  fT 

hold almost surely. 

Clearly, a hedging strategy "duplicates" the payoff from the ECC, by manag- 
ing a portfolio that consists of the basic instruments in the market (i.e., the stocks 
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and the bond) and by appropriate,  absolutely continuous consumption as in (i) 
above at the payoff rate of  the ECC. I f  there exists such a hedging strategy for 
an initial endowment Xo = x, then the agent, instead of buying at time t = 0 the 
ECC (T, fT, g) for the price x, can invest in the market according to the portfolio 
• r and consume his wealth according to the process C in such a way as to 
duplicate the payoff from the ECC. Consequently, the price of  the latter should 
not be greater than x. 

Definition 4.6. The smallest value of x - 0  for which there exists a hedging 
strategy (zr, C) ~ ~ ( T ,  x) against the ECC of Definition 4.3, is called the fair price 
(or value) at t = 0 of  the ECC. 

Let us now introduce the continuous, nonnegative process 

Io QtAfl ( t ) f  + fl(s)g, ds,~t, O<-t<-- T, (4.3) 

and denote by Kr an upper  bound on both ]10(t,,o)ll and /3(t,w), ( t , w ) c  
[0, T] × ~.  For every finite a > 1 we obviously have 

- - aO*(s) dW(s) -  ZT -- exp I I ,~o(s) l l  ~ ds 

" exp{°'(°~- l) for ll°(s)ll2 

and thus 

EZ~ <- exp{ a(a -2 1)TKZr } <co. (4.4) 

We then obtain from the HSlder inequality and (4.3), with p--ax/'~-~> 1 and 
1 /p+l /q=l ,  

~_( omax_O,)~<_[K~. E( omaX f,+ ff gtdt)~] '/~. <oo (EZq) ~/q (4.5) 

by virtue of  (4.1) and (4.4). 

Theorem 4.7. The fair price for the ECC (T, fT, g) is given by the finite number 

ff, T( Or ) = ET[ fr exp(-  foT r( u ) du ) + for g, exp(-- f o' r( u ) du ) ) dt ] • 

Moreover, there exists a hedging strategy ( ~r, C) c sg ( T, x ), whose corresponding 
wealth process X = {Xt, ~t;O <- t <- T} is continuous and satisfies 

X,=~r[frexp(-frr(u) du)+frgsexp(-fSr(u)du)ds,~,] a.s. 

(4.6) 

for every fixed t ~ [0, T]. 
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Proof. For every x -> 0, for which there exists a hedging strategy (Tr, C) c M( T, x) 
against the ECC, we have, from (3.15) with ,r = T, Er(Qr)<-x. Therefore, the 
fair price cannot be smaller than the number /~r (Qr) .  It remains to find a hedging 
strategy with this number as its initial wealth. For this we consider, by analogy 
with (3.18) and (3.19), the nonnegative process 

~,~Po( t ) ' [Er (Qr)+m,- f [ f l ( s )g ,  ds], O<-t<-T, (4.7) 

where m is a right-continuous version of the fiT-martingale E(QTI~;,)-E(QT), 
with mo= 0 a.s. PT. It is easily checked that, for every fixed t ~ [0, T], if, agrees 
almost surely with the right-hand side of (4.6). Proceeding exactly as in the proof 
of Proposition 3.5 with D replaced by Qr, we conclude that m admits a stochastic 
integral representation of the form (3.22), and that ~" can actually be taken to 

t 
have continuous paths. Then 7r(t) can be defined as in (3.24) and C, by ~o g~ ds, 
so that (4.7) becomes (3.14) with the identifications X =- ~, x =- ET(QT). [] 

Remark 4.8. Let (~, C )~  M(T, x) be any other hedging strategy against the 
ECC, with x =/~T(Qr).  Denoting by ~" the wealth process corresponding to this 
strategy, and by 

fo x+)Vl, a=x+ ~(s)~r*(s)o'(s) d~V(s)= f l ( t )X ,+  fl(s) dd~ (4.8) 

the nonnegative supermartingale of (3.14), we have IET(X + ]Vlo)= x = ET(QT)z 
FZT(X+ MT). It follows that {M,, o%,; 0 -  < t-< T} is actually a martingale under PT, 
and thus for every t c [0, T] we obtain from (4.8) 

X, : Po(t +/~r T -- fl(s)gsds 

= ET[fT exp(-- f T  r(u) du) + fTgs  exp(-- f,S r(u) du) dslJ:,l 

=x,  

We conclude that )~ is indistinguishable from the process X of Theorem 4.6; 
this latter is thus called the valuation process of the ECC. 

It is also easily checked that the portfolio processes 7r, ~" agree on a subset 
of [0, T] with full Lebesgue measure, almost surely. 

Example 4.9. Consider a market model with constant coefficients r(t)=-r>_O, 
f t i (  l ) ~ f t ,  tru( t ) ~ oij , 1 ~ i, j <- d, and a contingent claim with f = q~( P( t ) ), g, =- O. 
Here, ~: ~d__> [0, ~ )  is a continuous function and 

P(t) = (Pl(t),  • • •, Pa(t))* (4.9) 



On the Pricing of American Options 47 

is the vector of stock price processes which satisfy, in this case, the equations 
(3.25) in the form 

dPi(t) = Pi( t )[(r- lz i )dt+ ~ cr/jdlVi(t)], l<_i<-d. (4.10) 
j = l  

The solution of these equations is given by 

j = l  

We now introduce the function h(t. p. y) : [0. oe)x~+ e x ~ d  ~ ~d+. via 

hi(t.p.y) ~=piexp[(r-lxi-½D,)t+y~]. l<-i<-d. 

and observe that (4.11) can be written in the vector form 

P(t) = h(t, p, tTW(t)). (4.12) 

Coming now to the ECC (T, fT, 0) with fT = q~(P(T)), we see from (4.6) and 
(4.12) that its valuation process is given by 

Xt = ff~T[e r(r-') ¢( P( T) )[~,] 

--/~r[e *(r-t)~0(h( T - t ,  P( t), at( ITV( T) - ~(t))))]o~,] 

= e -~(r-n f ~  ~o(h(T-t, P(t), o'z))FT t(z) dz 

a.s. fiT, for every t e [0, T), where 

Ft(z)A(Zzrt)~d/2 expf [[z[[2~ [ - - -~ - - j ,  z~ ~ d ,  t > 0 ,  

is the fundamental Gaussian kernel. It follows that, with 

G(t,p) a=fe-r(r-n~S~o(h(T-t,p,~rz))Fr_,(z)dz, O<-t<T, pc~a+, 
i [~p(p), t=T,  p~y~a+, 

(4.13) 
the valuation process of the ECC is given by 

X, = G(t, P(t)). (4.14) 

In this case it is even possible to "compute" the portfolio ~r(t) that achieves the 
valuation process of (4.14). Indeed, under appropriate growth conditions on ~0, 
the function G(t,p) of (4.12) is the unique solution of the Caucby problem 

OG 1 a d 02G d OG 
- - + -  2 Y~ D,kp,Pk--+g~Op, Opk -- (r-tz,)p~---rG=Oop, on [O,T) x ~  d, Ot 2 k = l  k = l  1 

G(T,p)=~o(p), p~5~ d, 
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by the Feynman-Kac theorem. Applying I tf 's  rule to the process X of (4.14) 
and using the above equation and (4.10), we arrive at 

dX,=rX,  dt+ 2 ~ o',jP~(t) G ( t , P ( t ) ) d ~ ( t ) .  
i = l j = l  

A comparison with (3.13) gives then 

7r,(t)=P~(t)'o-~G(t,P(t)), O<-t<- T, l<~i<-d, (4.15) 

for the portfolio process of  Theorem 4.7. This example is adapted from Harrison 
and Pliska [7]. 

Remark 4.10. In the particular case of a European option as in Example 4.4, 
with d = 1, ~ (p)  = ( p -  c) + and exercise price c > 0, the integration in (4.13) can 
be carried out in a somewhat more explicit form. Indeed, with 

1 --}- 
qb(z) =a - - - ~  exp dx 

oo 

and 

v+(t ,p)& log +(r-- l~l±~l~)t  , 

we have 

G(t,p) : 

{ pe-U~r-')C~(v+( T -  t, p)) - c e - r ~ T - t ) ~ ( V  ( T -  t, p)), 
+ 

( p - c )  , 

0-< t <  T, 0 < p < ~ ,  

t =  T, 0 < p < o o .  

(4.16) 

(4.17) 

Together with 

X,=G(t,  P~(t)), 0 -  < t -  < T, 

(4.16) constitutes the celebrated Black and Scholes [3] formula. 

5. American Contingent Claims on a Finite Horizon 

We now broach the valuation (or pricing) problem for an American Contingent 
Claim as in Definition 4.1. An analogue of Definition 4.5 will be needed, for the 
notion of hedging strategy. 

Definition 5.1. For given finite horizon T >  0 and level of initial wealth x ~ 0, 
consider a pair (rr, C)~s l (T , x )  and let X denote the corresponding wealth 
process. We say that (~r, C) is a hedging strategy against the ACC (T,f, g) of 
Definition 4.1, and write (~r, C ) c  ~(T ,  x), if for /3r-a.e., to c ~ ,  the following 
requirements hold: 

I/ A,(to) & C , ( w ) -  gs(w) ds, O<_t<_T, 

is a continuous, nondecreasing function. (5.1) 
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x , ( . , )  _>f,(,,,), v t  ~ [o, 7].  

x~-(,o) =f~(,o). 
A,(to) = A,,(,o)(to) for every fixed number 

where we are using the notation 

r, a--inf{t<-s <- T; X , = ~ } .  

te[0, T], 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The continuity of A is equivalent to that of the consumption process C, which 
in turn implies the continuity of the wealth X in (3.5); it then easily follows that 
the random variable in (5.5) is a stopping time: ~', c 5e,.r. 

Discussion 5.2. Suppose that an agent buys the ACC (T , f ,g )  at t = 0  for the 
price x - 0, and that there exists a pair (~r, C) ~ ~ (  T, x). Then it makes no sense 
for the agent to exercise the claim at any time in {0-< t <- T; X, > f } ,  because he 
could have done strictly better in terms of terminal wealth, and at least as well 
in terms of consumption, by investing instead in the market and consuming his 
wealth according to the pair (Tr, C). A similar reasoning shows that it makes no 
sense to exercise the claim at any time in {0-< t <- T; X, = f }  other than to; then 
on [0, ~'0] the portfolio/consumption pair (Tr, C) duplicates exactly the payoff 
stream from the contingent claim. 

In particular, on [0, to) the consumption is absolutely continuous, with rate 
exactly equal to the running payoff from the ACC (as in the case of an ECC): 

Io C, = g, ds, 0 <- t < to, 

and the portfolio "hedges", i.e., maintains a level of wealth strictly above the 
corresponding terminal payoff from the ACC: 

X,>f,, 0-t<~-o,  

almost surely. On (to, T] we have to allow for consumption at a rate greater than 
g, or even for singular consumption, in order to satisfy both X~ o =fro and (5.3). 

By analogy with Definition 4.5, the fair price for an ACC is defined as the 
smallest value of the initial endowment x -> 0, which permits the construction of 
a hedging strategy. 

Definition 5.3. The fair price (or value) at t = 0 for the ACC ( T,f, g) of Definition 
4.1, is the number 

Vo~inf{x->0; 3(7r, C) ~ ~ (T ,  x)}. (5.6) 

Let x - 0  be any number for which there exists a hedging strategy (Tr, C) 
~ (  T, x); the optional sampling theorem applied to the nonnegative supermarting- 
ale of (3.14) then gives, in conjunction with properties (5.1) and (5.2), 

(5.7) 
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for every z c 0°o,,. Therefore, with the notation 

u(t) a-- sup /~T(Q~), 0 <-t<- T, 
" r E ~ t ,  T 

we have u(0)-<x, and from (5.6) we deduce 

u(O) - Vo. 

(5.8) 

(5.9) 

Theorem 5.4. The fair price at t = 0 for the ACC ( T, f, g) is given by 

Vo=u(O)A sup ET[f, e x p ( - f f  r(u) d u ) + f f  g ~ e x p ( - f f  r (u)du)ds]  • 

(5.10) 

Moreover, there exists a strategy (~r, C)c  ~(T, u(0)) with corresponding wealth 
process X = {Xt, ~,; 0 <- t <- T} which is continuous and satisfies 

[,,(; ) X, = ess sup/~r  exp - r(u) du 
"r E 51~t, T t 

for every fixed t c [0, T]. 

In view of (5.9), only the second claim needs verification. For this purpose 
we have to recall some theory for the optimal stopping problem of (5.8), e.g., 
from Fakeev [5] (see also Xue [19]) or Bismut and Skalli [2]. According to these 
references, there exists a nonnegative supermartingale Y = { Y,, ~,;  0 -< t -< T} with 
RCLL (Right Continuous with finite Left-hand Limits) paths, such that 

u(t) = E r ( v , ) ,  (5.12) 

Y, = ess sup/~r(O~l~,) a.s. fir (5.13) 
"r E ~ot, T 

hold for every given t ~ [0, T]. In particular, 

Yo = u(0), YT = Qr a.s. fir- (5.14) 

This process is the Snell envelope of Q, i.e., the smallest supermartingale with 
RCLL paths which majorizes Q, and the stopping time 

p,~inf{t<-s < - T; Ys = Qs} (5.15) 

is optimal for the problem of (5.8): 

u(t)=Er(Qp,), Vt ~ [0, T]. (5.16) 

Bismut and Skalli [2] also show that the supermartingale Y is regular: 

for every monotone sequence {o-,},=1 b% convergmg a.s. PT] 

to a stopping time or ~ 9°0 T, we have l i m n ~ / ~ r (  Y~ ) =/~r(Y¢).  ~ J (5.17) 
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Lemma 5.5. The supermartingale Y of (5.12) and (5.13) is of  class D[0, T], i.e., 
the family { Y,},~.%.T is uniformly integrable, under Pr. 

Proof We have 0 <- Yt <- mr: VO <- t <- T a.s. fir, where m is an RCLL modifica- 
tion of the martingale/~r(maxo_<o_<r Qo[~,). In the notation of (4.5) and with the 
help of the Doob and Jensen inequalities, we obtain 

<  (oSUp 

But this last expectation is finite, thanks to (4.5), and the conclusion follows. 
[] 

Lemma 5.5 and the regularity condition (5.17) allow us to invoke the Doob- 
Meyer decomposition (Meyer [14, Chapter VII] or Karatzas and Shreve [10, 
Section 1.4]) and to write Y in the form 

Y , = u ( O ) + M , - A , ,  O<-t<- T, (5.18) 

a.s. f r ,  where A is a continuous nondecreasing process and M is a fT-martingale 
with RCLL paths and Mo = Ao = 0, /~T(AT) = U(0) --/~T(Qr)" 

The same reasoning as in the proof of Proposition 3.5, employing the "Bayes 
rule" and the stochastic integral representation of Brownian martingales, allows 
us to write M as 

Mt = tpj(s) dlTVj(s), 0<_ t < _ T, (5.19) 
j = l  

for suitable measurable and adapted processes {~bj(t), fit; 0-< t-< T} which satisfy 

foTq~(t)  d t<oo a.s. f t .  (5.20) 
j = l  

In particular, M and therefore also Y can be supposed to have continuous paths. 

Lemma 5.6. For every f ixed t c [0, T] we have 

At = Ao, a.s. PT-. (5.21) 

Proof Thanks to (5.12), (5.16), and the continuity of Q and Y, we have 

ET( Y,) = u( t) = ET( Qp,) = Er(  Yp,). 

But then from (5.18) and the optional sampling theorem we conclude /~T(A,)= 
/~r(Ap,), and (5.21) follows. [] 
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We are now in a position to establish the basic result of this section. 

Proof of Theorem 5.4. We introduce the continuous, adapted process 

a 1 ' ds], ~t, 0 -< t -< T. (5.22) 

From (5.13) it follows that this process satisfies (5.11) and also (5.2) and (5.3) 
thanks to the continuity of F; furthermore, the stopping times p, of (5.15) and 
~-, of (5.5) are actually the same for this choice of X. 

On the other hand, the representations (5.18) and (5.19) allow us to cast (5.22) 
in the form 

fl(t)X,+ fl(s)g, ds+At= u(0)+ O*(s) d~V(s), 

or equivalently in the form (3.14), with -n'(t) as in (3.24) and 

;o f0 C, a= g.~ ds + Po(s) dAs (5.23) 

for 0-< t _< T. It develops that the process X of (5.22) gives the wealth correspond- 
ing to the portfolio/consumption pair (n-, C ) of (3.24) and (5.23); the requirement 
(5.1) is obviously satisfied, and (5.4) follows from Lemma 5.6. Consequently, 
(~, c ) c  ~(T, u(O)). [] 

It can be shown (see Bismut and Skalli [2]) that the path A(w) is flat off 
{0-< s < oo; Y~(w)= Qs(w)}, which means that, with the consumption process C 
defined by (5.23), the path A(w) of (5.1) is actually flat off {0_< s <oo; X,(w)= 
f~(w)}, for Pr-a.e. w EfL 

Remark 5.7. Lemma 5.5 shows that the process X of (5.22) is of class D[0, T] 
under fiT. Under this additional condition it is possible to show that the wealth 
process .~ of any pair (~-, C)~  Yg(T, u(0)), not necessarily the same as the one 
constructed in the proof of Theorem 5.4, is given by (5.11) and is thus uniquely 
determined. 

Indeed, for every fixed t E [0, T], the optional sampling theorem applied to 
the nonnegative supermartingale of (4.8) with x = u(0) yields, in conjunction 
with (5.1) and (5.2), 
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for every ~- ~ owt.r. On the other hand, suppose that .~ is of class D[O, T] under 
/57, consider ~, = i n f { t -  < s-< T; Xs ='f~} as in (5.5), and define 

o -m=r t^ in f  t<-s<-T; II (u)ll2du>-m 

for every m -> 1. We can now take conditional expectations in 

~(o'm)X~, + el(s) dCs = ~( t )X,+ ¢~(s)~r*(s)cr(s) dliZ(s) 
t 

with respect to o~,, and obtain from (5.4) 

~( t)YC, = Er[ ~(~m)YQ + ft%'13(s) dC~ ' ~, ] 

a.s. /ST- (5.25) 

Because of (3.4) we have limm.~ o'm = ~t, a.s./ST; the membership of X in D[0, T] 
and the monotone convergence theorem allow us to conclude from (5.25), by 
letting m ~ oo, that 

A A A 

f l( t)X, = ET f l (r , )X~,+ " fl(s)g, dsl~, 
t 

r r 

~ A =ET ¢~0-,)f~,+ #(s)g, dslJ;, a . s .N.  (5.26) 
t 

It follows from (5.24) and (5.26) that X, is given by the right-hand side of (5.11) 
for every t e [0, T], and therefore that J( is indistinguishable from the process 
X of Theorem 5.4. This latter is thus called the valuation process for the A CC 
(T,f,  g). 

Remark 5.8. Theorem 5.4 was established in [1] under a regularity condition 
on the process F, and under the assumption that both processes F, G of Definition 
4.1 are uniformly bounded. This condition is not satisfied, however, in the proto- 
typical case of an American option (Example 4.4). 

Let us now examine some elementary consequences of Theorem 5.4. 

Example 5.9. Consider the case where the process Q of (4.3) is a submartingale 
under fT  (equivalently, the process {QtZt, ~t; 0 <- t <- T} is a submartingale under 
P). Then it is easily seen from (5.12), (5.13), and the optional sampling theorem 
that 

Yt=ET(QTi,~t) a.s. /5T a n d  U(t)=ET(QT) 
hold for every given t ~ [0, T], i.e., % = T is optimal in (5.8). It develops that the 
pricing problem is equivalent, in this case, to that of the ECC (T, fT, g), and that 
the valuation process is given simply by (4.6). 
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For instance,  in the case of  Example  4.4 with r(t)>-0, ~ ( t ) - =  0, and c > 0, 
the process  

Q, = (f t(  t )P,(  t) - ef t( t))  + 

is easily seen t o b e  a submar t ingale  u n d e r / s t ;  cf. Remark  3.6. We recover  a result 
o f  Mer ton  [13] in the fol lowing form: an American option with positive exercise 
price, written on a stock which pays no dividends, should not be exercised before the 
expiration date. More specifically, if  r ( t )  ~- r > 0 and Crll(t) ~ Cr~l > 0, the valuat ion 
process is given by the Black and Scholes fo rmula  (4.16) and (4.17). 

Remark 5.10. In the context  o f  Example  4.9, suppose  that  the funct ion q~: ~d+-~ 
[0, oO) is twice cont inuously  dit ierentiable and  satisfies 

a a o % ( p )  a o ,p(p)  
½ }~ Z D,kp,pk + E (r--lx,)p,  >--rq~(p) 

i=l k=l OpiOpk i-1 Opi 

in ~d+, as well as a po lynomia l  growth condi t ion in [Ipll. Then it is not hard to 
check that  the process Q, = e r'q~(P(t)); 0 < - t -  < T is a submar t ingale  under  /ST, 
and the va lua t ion  process for  the ACC ( T, f,, 0) with f = ~ (P ( t ) )  is given by (4.14). 

Example 5.11. I f  the process  Q of  (4.3) is a supermartingale under  /st, then 
Y = Q, u( t )  = Er (Q, ) ,  r, = t, and (5.22) gives 

X = f  (5.27) 

Consider  in this vein the si tuat ion in Example  4.4 with e = 0 ,  /~ ( t ) ->0 .  Then 
Q = ftPl is a supermar t ingale  u n d e r / s t ,  and (5.27) gives X = P1- In other words,  
an American option with zero exercise price should be valued at the same amount 
as the stock. 

Remark 5.12. In the case of  an Amer ican  opt ion wi th /~ l ( t ) ->  0 (Example  4.4), 
we have, f rom Remark  3.6 and (5.11), 

f l ( t )X ,  = ess sup /~ r [ f t  (~)(PI(~') - c)+]~]] -< ess sup ~T[ft(~)P,(~)lo~,] 
7 E .~PI, T "r E ,cft, T 

<-f t ( t )Pl( t )  a.s. /ST 

for  every tE[O, T],  i.e. Xt<-Pl( t ) :  the under ly ing stock is always at least as 
valuable  as the option.  

6. Perpetual Claims 

When it comes  to the valuat ion of  perpe tua l  Amer ican  Cont ingent  Claims 
(Remark  4.2), it becomes  essential  that  the process  IV of  (3.12) be a Brownian 
mot ion  on the entire of  [0, oo) under  an appropr ia t e  probabi l i ty  measure /5 ,  and 
be accompan ied  by a filtration which satisfies the usual condit ions and measures  
all the processes in the model .  These requi rements  cause some technical  difficul- 
ties, which are resolved once it is assumed that  all the coefficients in the market  
model  are progressively measurab le  funct ionals  o f  the driving, d-dimensional  
Brownian mot ion  W. 
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Definition 6.1. A measurable process {~b,; 0_< t<oo} on the space (ll, ~, P), 
which is of the form 

~0,(,o) = ~,(t,  w.(o~)) ,  (t, o~) ~ [0, ~ ) x a ,  (6.1) 

for some function ~:  [0, ~ ) × c d [ 0 ,  oo)-->~, is called a progressively  measurab le  
Brownian  func t iona l  if the mapping (t, y ) ~ - - ~ ( t ,  y): [0, T] × c a [ o ,  ~ ) ~  is 
Y3 (~)\Y3 ([0, T]) ® ~3T(C d [0, ~))  measurable and bounded, for every finite T> 0. 
In (6.1) W.(to) is the path of the Brownian motion W in Section 2. 

We have denoted here by c d [ 0 , ~ )  the space of continuous functions 
y: [0, oo)~Yt d, equipped with the topology of uniform convergence on compact 
subsets of [0, oo), by ~ ( C d [ 0 , ~ ) )  the associated Borel o--field, and by 
~T(Cd[o, o0)) the ~r-field ¢~1(~(cd[0 ,  cO))), where ~T: c d [ o ,  ° ° ) o c d [ o ,  °o) is 
the truncation mapping ( ~OT y)(s) & y (  T ^ s); 0 < - s < ~ ,  y6 cd[o, o0). 

Assumption 6.2. The coefficients r, bi,/.~, try, 1-< i, j -< d, of the market model, as 
well as the processes F and G of Definition 4.1, will be assumed in this section 
to be progressively measurable Brownian functionals. Furthermore, the process 
F will be assumed to have continuous paths. 

0 d Then the components { i}i=l of the vector-valued process in (3.8) are also 
progressively measurable Brownian functionals, and by the consistency theorem 
one can construct a probability measure/5 on ([l, ~w) ,  such that 

(i) the probability measures /5 and /ST agree on ~-T, for every 0-< T < ~ ,  
and 

(ii) the process (6.2) 

fo 17¢( t ) = W ( t ) + O ( s ) ds, ~:t w , 0_< t <oo, 

is standard, d-dimensional Brownian motion under/5 (see Ikeda and Watanabe 
[9, pp. 176-180] or Karatzas and Shreve [10, Section 3.5]). Equations (3.13), 
(3.14) and (3.25), (3.26) now hold for 0 -  < t < ~ ,  a.s. /5. 

In order to endow the new Brownian motion of (6.2) with a filtration which 
satisfes the usual conditions, one could take the augmentation under /5  of 

~ = c r ( l ~ V ( s ) ; O < _ s < _ t ) ,  0<_ t<oo,  

but the resulting filtration will typically fail to measure the coefficients of the 
model. A more convenient and universal choice of filtration is obtained as follows: 
denote by {~,} the augmentation under 15 of {jrw}, and define 

~ a j / ,+=  (-~ ~,+~, 0_< t<co.  (6.3) 
e>0 
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This filtration obviously satisfies the usual conditions, and 

{ ~ t), ~,; 0 <-- t < ~}  is a standard Brownian motion under/5. (6.4) 

Indeed, it suffices to show that, for every function fl ~d  ~ ~ which is twice 
continuously differentiable and has compact support, the process 

fo Mfa=f(l~V(t))-½ Af(l~¢'(s)) ds, 0 <- t < ~ ,  

is an {~t}-martingale under /5. We know from (6.2) (ii) that M y is an 
{~W}.martingale under/5: thus with 0 < s < s + 1/n < t < ~ ,  there exists for every 

o77W given F ~ + ~ / ,  an event G~  3%+~/, such t h a t / 5 ( F / \  G ) = 0  and 

/~ [ (M( -  r M~+,/ . )I ,=]  - ~ : [ ( M f -  M f + ~ / . ) l ~ ]  = 0. (6.5) 

By taking F c ~ ÷ = ~  and then letting n~oo in (6.5), we obtain /~[(M~- 
M~)lv] =0, and therefore (6.4) as well. 

In this section we shall take (f~, ~oo,/5), {~,} as our basic probability space. 
All processes under consideration will be adapted to {~,}. In Definitions 3.1-3.3 
and Remark 3.4, the filtration {~,} now replaces {o~,}, and almost surely statements 
are understood with respect to P. By analogy with (4.2), we shall understand 

~ ( w ) & l - ~ , ( w ) ,  w~f~,  and /~:~&/~[~l{~<~}+~:~l{r=~}] (6.6) 
t--~cc 

for any nonnegative, progressively measurable process {so,, if',; 0-< t < oo} on this 
space and any r~5 e*. Finally, it will be assumed that the process Q = {Q,, ~w ~,  ; 
0_< t<oo} of (4.3) satisfies 

/~( o~,<~sup Q , ) < ~ .  (6.7) 

We now take up the valuation problem for perpetual American Contingent 
Claims. 

Definition 6.3. For any given level x->0 of initial endowment, we say that a pair 
(z r, C ) c  ~4(x) is a hedging strategy against the perpetual ACC (~,  f, g), and write 
(or, C)~  ~(x) ,  if the analogues of (5.1), (5.2), (5.4) on [0, co) and 

lim fl(t, to)X,(to) = l i m  fl(t, to)ft(to) 
t~ox3 t ~ o o  

(5.3') 

hold for/5-a.e, to ~ ~.  

By analogy with Definition 5.3, the number 

Vo=~ inf{x->0; 3(~-, C)E 5~(x)} (6.8) 

will be called the fair price (or value) at t = 0 for the perpetual ACC (~ , f ,  g). 
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Theorem 6.4. For the number in (6.8) we have 

Vo=u(O)As?y ff~[f, exp(-I~r(u) dy)+ f f  g~exp(-I f  r(u)du)ds ]. 

(6.9) 

Moreover, there exists a strategy (Tr, C)~ ~((u*(0)) whose wealth process X = 
{Xt, ~t; 0 <- t < ~ }  is given by 

I (I ) ] + g, exp - , r(u) du dslJ;~ a.s./3 (6.10) 

for every fixed 0 <- t <- oc. 

The detailed development is omitted; as before, it uses the optional sampling 
theorem (which, applied to the nonnegative /5-supermartingale of  (3.14), leads 
ultimately to u(0)-< V0) and the results of [5] and [2] for the optimal stopping 
problem 

u(t)A sup /~(Q,), 0-< t<oo.  (6.11) 

The Snell envelope for this problem, i.e., the smallest supermartingale 
Y={ Y~, #,;  0 _  < t < ~ }  which majorizes Q, satisfies 

u( t )=/~Y,  and Yt=esssupE(Q~l~Tt) a~s./5 (6.12) 

for every t c [0, ~) ,  as well as 

Yoo = Q~ a.s./5 (6.13) 

with the convention Of (6.6). This supermartingale is regular (i.e., (5.17) now 
holds, under/5, for every finite T >  0) and of class D (i.e., the family { Y , } ~ o  is 
uniformly integrable under /5). For the last claim, it is useful to recall the 
strengthening of (6.12): 

r~, = ess sup/~(Q,  [ ~ )  a.s./5 

which is valid for every cr c 6eo* with S/'~* A {z c 6e0*; cr _< z, a.s. /5} (e.g., E1 Karoui 
[4, Section 2.15]). The stopping time pt=inf{s>-t; Y,=Qs}~b °*t is optimal 
for the problem (6.11): u(t) =/~(Qp,). 

Now Y admits a Doob-Meyer  decomposition of the form (5.18) on [0, co), 
where {Mt,~t; 0-< t < ~} is a uniformly integrable martingale and {At, ~'t; 0-< t <  
oo} a continuous, integrable nondecreasing process, flat off {0-<s<oo; Y,=Qs} 
and with E ( A ~ ) =  u (0 ) - /~ (Q~) ,  A0 = M o = 0  a.s .P.  The martingale M admits 
the (Fujisaki-Kallianpur-Kunita 2 representation (5.19) on [0, co), where now the 
integrands ~bj are measurable, {ff~}-adapted, and satisfy (5.20) a.s. /5 for every 
finite T > 0 ;  see, for instance, Theorem 5.20 in Liptser and Shiryaev [11], in 
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conjunction with (6.2)(ii). Finally, the continuous process {X,, ~,; 0 -  < t < ~ }  is 
defined as in (5.22) and is shown to be the wealth process of a strategy (~r, C) 
~(u(0)) ,  just as in the proof of Theorem 5.4. 

It is also observed that the process/3X is of class D under ft. For any other 
strategy (¢), C) ~ Yg(u(0)) with wealth process X satisfying this condition, it is 
shown as in Remark 5.7 that X is indistinguishable from X, which thus earns 
the right to be called the valuation process of  the perpetual A C C  ( ~ , f ,  g). 

Remark 6.5. In the case of perpetual American options as in Example 4.4 with 
o-l~(t)-= o-> 0, /z~(t)~/z >0,  we hav.e 

Q, = ~( t ) (P~(t )  - c) ÷ <- f l ( t )P l ( t ) ,  

where the last process satisfies (3.26). It follows easily from this equation that 

O<_Qt<_ple ~',, 0 _ < t < ~ ,  

holds a.s./3, where 7,= ~'~(t) - vt is a Brownian motion with negative drift and 
v = / x / t r + t r / 2 .  But now the law 

/3[ o-<,<~sup rh~db]  =2ve-2~bdb, b > 0 ,  

is well known, and condition (6.7) follows from it. Consequently, Theorem 6.4 
applies to such American options and we also have Q~ = 0, a.s.P. 

For an American option as above but with/z~(t) =-0 (i.e., on a stock which 
pays no dividends) and 

r(t)>--O, 0 - < t < ~ ,  

fo r (6.14) lim r( t ) dt = ~ 
T ~ o o  

valid a.s. /3, we shall agree that the valuation process is given by 

X, a= lim X,(/~), 0 -  < t < co, (6.15) 
~+0 

where X(/x) is the valuation process under a constant dividend rate, provided 
that the limit in (6.15) exists a.s. /3. From the optional sampling theorem and 
(6.10) we then obtain 

f l ( t )P , ( t )  >- ess sup E [ ~ ( r ) P l ( r ) l ~ t ]  
Tcbo* 

>- f l ( t )X , ( I z )  = ess s u p  E [ ~ ( 7 " ) ( P I ( ' r )  - c ) + ]  ~ t ]  
rc~*,  

-->/~[fl(T)(PI(T) - c)+[~t] 

>-- f l ( t )Pl ( t )  exp{-/x ( T -  t)} - c/~ [/3 ( T)lff', [ 

for every finite numbers/x > 0 and T >  t. Letting/z~,0 and then T ~  0o we obtain 
X~=P~(t) from (6.15). In words, a perpetual American option on a stock which 
pays no dividends, and in the presence of  condition (6.14), must sell for the same 
amount as the stock. 
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I f  the perpetual option has zero exercise price, the same conclusion holds 
without the restr ict ion/zl( t)-= 0 (by analogy with Example 5.10). 

Case 6.6 (The Markovian Case). Consider the market and contingent claim 
model of  Example 4.9; under the conditions of  this section, the valuation process 
X of Theorem 6.4 is obtained via 

X,=v(P( t ) ) ,  0-< t < m ,  (6.16) 

a.s. /3, where v: ~ d .  [0, ~ )  is the least r-excessive majorant of  the function ~p 
(see Fakeev [5]). 

Example 6.7. In Case 6.6 (Markovian) with d -- 1, c = 1 and ¢(x)  -- ( x -  1) + the 
function v in (6.16) was computed by McKean [12] as 

v(x) = I ( K -  1) , O < x < K ,  

I x - l ,  K < - x < ~ ,  

with 3' = (1 / o -2) ( x / ~  - ~), a = r - / z  > 0, 6 = a - o-2/2, and K = 3'/(3' - 1) > 1, 
and the optimal exercise time becomes z, = inf{s-> t; Pl(s)---K}. This stopping 
time belongs to 6e,. The finite-horizon version of this problem was studied by 
Van Moerbeke [18], along with the associated free-boundary problem. 
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