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Abstract. Simulated Annealing (SA) has become a very popular tool in 
combinatorial optimization since its introduction in 1982. Recently Dueck 
and Scheuer proposed another simple modification of local search which they 
called "Threshold Accepting" (TA). In this paper some convergence results 
for TA are presented. The proofs are not constructive and make use of the 
fact that in a certain sense "SA belongs to the convex hull of TA". 

1. Introduction 

An instance of a combinatorial optimization problem consists of a finite set ~ of 
configurations and a cost function C: R ~ E which assigns a real number to each 
configuration. The task is to find a configuration for which C takes its minimum 
value Copt. ~opt denotes the set of all configurations with this minimum value Cop t. 
When a neighborhood ~i  c ~ for each configuration i t  ~ exists, a local search 
can be performed: 

Starting at a given configuration, a sequence of iterations is made, each 
iteration consisting of a possible transition from the current configuration i to a 
configuration j selected at random from the neighborhood Hi of i. I f j  has a lower 
cost, i is replaced by j, otherwise another neighbor of i is selected and compared 
for its cost value. The algorithm terminates when a configuration is obtained whose 
cost is no worse than any of its neighbors. 

Local search (also known as iterative improvement) often terminates in a local 
minimum which is suboptimal. The stochastic optimization algorithm Simulated 
Annealing (SA) overcomes this local-search problem of being trapped in sub- 
optimal local minima by a more liberal acceptance rule: 

Let i be the current configuration at time k and let j be the selected neighbor. 
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Then j becomes the next configuration in the sequence, 

with probability 1 if C(j) < C(i), 

withprobabil i tyexp if C(j) >_ 
Ck 

Thus, there is a nonzero probability of continuing with a configuration with higher 
cost than the current configuration. Ck > 0 is called the temperature at time k. 
Typically, the sequence (G)~=o of temperatures is chosen nonincreasingly. SA has 
become very popular since its introduction by Kirkpatrick et al. in 1982 [7], [8]. 
The book by van Laarhoven and Aarts [9] gives a survey of theory and 
applications of SA. 

Recently Dueck and Scheuer proposed another more simple modification of 
local search which they called Threshold Accepting (TA). As presented in [1], TA 
finds very-near-to-optimum tours for the famous 442-city traveling-salesman 
problem of Gr6tschel [5] within 3 or 4 minutes of CPU time and has been used 
to construct good error-correcting codes. 

TA works as follows: Let i be the current configuration at time k and let j be 
the selected neighbor. Then j becomes the next configuration in the sequence, 

with probability 1 if C(j) - C(i) <_ Tk, 

with probability 0 if C(j) - C( i) > T k. 

Thus, in contrast to SA, the acceptance rule of TA for new configurations works 
deterministically at all times k. The threshold sequence (Tk)~: o consists of nonnega- 
tive real numbers and has always been chosen nonincreasingly by Dueck and 
Scheuer. 

In this paper we prove some convergence results for TA. Section 2 contains 
the description of th,e theoretical model and the results. In Section 3 the proofs 
are worked out. Section 4 consists of some concluding remarks. 

2. The Theoretical Model  and the Results 

The theoretical analysis of SA is conveniently done in terms of Markov chains. 
The conditional probability P i j ( k -  1, k) denotes the probability that the kth 
transition is to configuration j, if i is the current configuration at time k - 1. X(k) 
denotes the configuration obtained after k iterations. P i j ( k -  1, k) is called the 
transition probability and the I~l x [~l matrix P(k - 1, k) is called the transition 
matrix. The entries of the transition matrix depend on the control parameter Ck- 1- 
Figure 2.1 shows an example: ~ = {u, v,x,  y, z}, ~ ,  = {v}, ~v = {u, x}, ~x = 
{v,y}, ~ y = { x , z } ,  ~ z = { Y } ,  C(u)=O,  C(v )=3 ,  C ( x ) = 2 ,  C ( y ) = 4 ,  C ( z ) = l ,  
Cop t = 0, ~ovt = {u}. For  a fixed parameter c k_ 1 the transition matrix is shown in 
Table 2.1. 

In this example we assumed that for a current configuration i with I~il = n 
every neighbor has the same a priori probability 1/n to become the candidate for 
the next transition. Our results below, however, hold for any other type of 
transition probabilities as well. 
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T h e  s t a r t i ng  c o n f i g u r a t i o n  X(0) is chosen  at  r a n d o m ,  thus  P r { X ( 0 ) =  i} = 
1/JNI for  every  i e ~ .  SA is sa id  to  o b t a i n  a g l o b a l  m i n i m u m  at  t ime  k if 
P r{X(k)  e ~opt} = 1. SA is sa id  to  o b t a i n  a g l o b a l  m i n i m u m  a s y m p t o t i c a l l y  if 

l im Pr{X(k)  s Nopt} = 1. (2.1) 
k'--~ oo 

G e l f a n d  a n d  M i t t e r  [3] ,  [4]  gave  a set of  c o n d i t i o n s  wh ich  are  sufficient  to  ensu re  
the  c o n v e r g e n c e  of  SA to a set I c N (of cour se  we can  c h o o s e  I = ~opt). W e  
r e f o r m u l a t e  the i r  resu l t  as we need  a s l ight ly  m o d i f i e d  ve r s ion  of  it  to  p r o v e  the 
t h e o r e m  be low:  

F o r  any  p a i r  of  con f igu ra t i ons ,  i a n d  j ,  we def ine  ~td~ ij as the  set  of  al l  cha ins  
of  t r a n s i t i o n s  i = 1 o ~ l~ ~ ' . .  ~ le = j of l eng th  d, for  w h i c h  

l~ + 1 = l~ a n d  there  exists  s o m e  

l' e ~l~ wi th  C(l') > C(l ,)  

aT(d) F o r  i, j e N,  d e N, a n d  r _ _ ij let  

d - 1  

F(r) = ~ max(0, C( l ,+O - C(l,)) 
a t = 0  

a n d  

Ftd) { m i n ~ , F ( z )  
i j  = 

for  c~ = 0, 1 , . . . , d -  1. 

if _~a) - i j  ¢ ~ ,  

otherwise ,  

(2.2) 

(2.3) 

Table 2.1 

k 

k - 1  u v x y z 

u 1 - exp( - 3/Ck_ 1) exp( -- 3/c k_ 1) 0 0 0 
x 0 ½ 0 0 V 

x 0 ½ exp(--1/Ck-l) 1 . . . .  ½ exp(--2/Ck-O 0 
y o o ½ o ½ 
z 0 0 0 exp(-3/ck_l) 1 - exp(--3/Ck_ 0 
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and ,  f inally,  

Fij = m i n  _,~F! d.). (2.4) 
d e n  

F o r  a f ixed subse t  I ~ ~ let J be  the  c o m p l e m e n t ,  i.e., J = ~ - I.  I f  an  index  in 
(2.2), (2.3), or  (2.4) is r e p l a c e d  b y  a set, then  an  a d d i t i o n a l  m i n i m i z a t i o n  is to  be 
p e r f o r m e d  ove r  the  e l emen t s  of  the  set, for  ins tance ,  r-td) m i n j ~ j  r'~.0 x i j  ~ ~ t J "  

Resu l t  (Ge l f and  a n d  Mit te r ) .  
limk_~o Pr{X(k)  e I} = 1: 

1. T h e r e  exis ts  s o m e  d ~ N such tha t ,  for  all  j ~ J ,  F}~ ) = FjI .  

2. max j~s  FjI  < oo. 
3. F i t  < F I j  for  eve ry  j E J .  
4. limk_,o ~ Ck = 0 a n d  c k > F * / ( l o g  k) for  all  k l a rge  enough ,  

wi th  F* = maxj~  s F j l .  

A set I ~ ~ is ca l led  nice with respect  to C if  c o n d i t i o n s  (2.5)-(2.7) hold .  

T h e  fo l lowing  c o n d i t i o n s  are  suff icient  to  ensure  

(2.5) 
(2.6) 
(2.7) 

In  T A  the t r a n s i t i o n  m a t r i c e s  a re  s o m e w h a t  s imple r ,  for  ins tance ,  in the  case  
wi th  e q u a l  a priori  t r a n s i t i o n  p r o b a b i l i t y  l / [ ~ i [  for  all  n e i g h b o r s  of  i. 

I 
0 if j ¢  { ~  u {i}}, 

1/n if  j ~ l i ,  j ~ i ,  [ ~ i [ = n ,  

a n d  C(j )  - C(i) < Tk_ 1, 
e o ( k  - l ,  k) = | O  if j ~  a n d  C(j)  --  C(i) > T k_ l, 

[ 1 - -  ~ P . ( k - l , k )  if j = i .  
k l~ i  

Table 2.2 

k k 

k - 1  u v x y z k - 1  u v x y z 

u 1 0 0 0 0 u 1 0 0 0 0 
v ½ o ½ o o v ~ o ½ o o 

Qo= x o o 1 o o Q , =  x o ½ ~ o o 
y o o ½ o ~- y o o ½ o 
z 0 0 0 0 1 z 0 0 0 0 1 

k k 

k - 1  u v x y z k - 1  u v x y z 

u I 0 0 0 0 u 0 1 0 0 0 
½ o ~ o o ~ ½ o ~ o o 

Q~= x o ½ o ½ o O~= x o ½ o ½ o 
y o o ½ o ~ y o o ~ o 
z 0 0 0 0 1 z 0 0 0 1 0 
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Table 2.2 shows the relevant TA-transition matrices Qj for the example in Figure 
2.1. Any threshold value other than 0, 1, 2, 3 also yields one of these matrices. 
This example shows that a convergence condition like (2.1) cannot hold for TA. 

T~ oo Fact 2.1. Every sequence ( k)k=O of thresholds yielding 

lim sup Pr{X(k) = u} = 1 
k-*co 

also yields 

lim sup Pr{X(k) = v) = 1. 
k - - ~  

This stems from the fact that any such sequence must have Tk ---- 3 for infinitely 
many k e N. Moreover, the example shows that the restriction to monotone 
sequences (Tk)ff= o does not suffice. 

T ~3 Fact 2.2. Let ( k)k= 0 be monotonically decreasing. Then 

lira Pr{X(k) e {y, z}} >_ ¼. 
k-~oo 

However, we were able to prove some "convergence" results for threshold 
sequences of finite lengths. For simplicity we have restricted ourselves to the case 
where (~, (~i)i~e) is a finite undirected connected graph G(V, E) with V = ~ and 
~ = {j[{i,j} eE} .  The example in Figure 2.1 is of this type. In the following the 
graph G(V, E) is always assumed to be finite, undirected, and connected, and C: 
V ~ R is a cost function. We use the short notation (G, C) for such a pair. 

Proposition 2.3. Let (G, C) be given. I f for some e > 0 there exists a sequence (ck)~-_- ~ 
of temperatures such that Pr{X(K)e ~opt} = 1 - e in the SA algorithm, then there 
also exists a sequence ~T, ~K-a kJk=O of thresholds such that Pr{X(K)e~opt} >_ 1 -  e in 
the TA algorithm. 

Proposition 2.4. Let {(G1, C 0 , . . . ,  (G,, C,)} be a finite set of(G, C) pairs. For every 
> 0 there exists a constant K = K(e, (G1, C1) . . . . .  (Gr, Cr))eN and a threshold 

sequence ttT'~K-ak:k=O of  length K such that the application of TA to (Gs, Cs) yields 

Pr{X(K) e ~opt(S)} _> 1 - e for s = 1 . . . . .  r. 

Here 9¢opt(S ) denotes the set of optimal vertices in (G~, Cs). 

Theorem. For every tuple (e, a, n), with e > O, a > O, and n e ~,  there exists a 
threshold sequence K- t (Tk)k= o of natural numbers such that an application of  TA with 
this sequence to any pair (G(F, E), C), with ] V] < n and a real-valued function C: 
V ~ [0, a], yields 

Pr{C(XK) - Cop ' < (n - 2)(n - 1)} > 1 - a. 

The length K of the threshold sequence depends on e, a, and n. 
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Our theorem can be formulated in a slightly different way by introducing a 
multiplicative factor 6/((n - 2)(n - 1)) > 0. 

Corollary. For every tuple (e, a, n, c~), with E > 0, a > 0, n 6 ~, n _> 3, and 6 > 0, 
there exists a threshold sequence tT,~K-1 k,k=O in {i '6/((n -- 2)(n -- 1))[i6 ~} of  some 
length K = K(e, a, n, 6) such that an application of  TA to any pair (G(V, E), C), with 
IV[ < n and a real-valued function C: V ~ [0, a], yields 

Pr{C(X(K))  - Cop t ~ 6} ~ 1 -- ~B. 

The corollary cannot be improved to get 

Pr{C(X(K))  = Copt} ~ 1 - 

for all functions C: V ~ [0, a]. Namely, let (Tk)~= o be a threshold sequence of finite 
length. This sequence is outwitted by the simple graph with V = {0, 1, 2}, E = 
{{0, l}, {1, 2}}, and C(0) = 0, C(1) = 26, C(2) = ~, where 

0 < 26 <mino<k<K{Tkl TR > 0}. 

3. The Proofs 

For a fixed pair (G, C) there exist only m + 1 < IE] + 1 many different transition 
matrices Qo, Q1,.-. ,  Qm in TA, namely at most one for each threshold T = 
IC( i ) -  C(j)I, { i , j } ~ E  and Qo for the trivial threshold T =  0. In contrast, the 
transition matrices Pck of SA for (G, C) depend on the real-valued temperature 
parameters c k > O, where Pc-¢ Pc. for c ~ c'. Hence there are infinitely many 
different SA matrices. Yet all these Pjs  can be written as convex combinations of 
the TA transition' matrices for the same pair (G, C). 

Fact 3.1. For  every c > 0 there exist unique positive real numbers 2o(C ) . . . .  , I~m(C), 
with ~j"= o 21(c) = 1, such that 

P~ = ~ 2j(c)Qj. 
j=0 

Example. For  the graph in Figure 2.1 we get 

,~3(C) = exP(c~3), )~2(C) = exp(~2- )  - eXP(c~3 ),  

21(0 = exp(~-~)  - e x p ( - ~ ) ,  2 o ( 0 = 1 - - e x p ( ~ ) .  

In the general case let 0 = T O < T~ < . "  < T,, be the thresholds relevant to (G, C). 
The corresponding weights are 
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and 

/ -  T..'x 
2,(c) = e x p k - ~ ) -  e x p ~ - - ~  ~) f o r / - - 0 , 1  . . . . .  m -  1. 

Hence all P / s  for c > 0 belong to the convex hull of {Qo . . . . .  Q,,}. 

P r o o f  o f  Proposit ion 2.3. Fix a pair (G, C) and let (Ck)~k2~ be a sequence for SA 
such that 

Pr(X(K)  • ~opt} = 1 - e. (3.1) 

Let  P~ = ~ ' = o  2j{Ck)Qj be a representat ion of Pc~ as a convex combinat ion of 
{Qo . . . . .  q,,} for every k • {0 . . . . .  K - 1}, V = {1, . . . ,  n}, (pl(0), . . . ,  p,(0)) = ( l /n,  
. . . .  I/n) the starting distribution of SA, and (p~(K) . . . . .  p,(K))  the distribution at 
time K, where pi(k) g Pr{X(k) = i}. Thus 

F~[K-1 1 (Pl(K) . . . . .  pn(K)) = (Pt(O) . . . . .  Pn(O)) " l_~ ~oPck 

with 

As 

p,(K) = 1 -- e by (3.1). (3.2) 
ie~opt 

k=O j 

: Jk Ck " jk ' 
< O_jo  . . . . .  jK 1-<mLk=O 1 

we have 

[-K- 1 qFK- 1 
( p , ( K ) , . . . ,  p ,(K))  = (p,(0) . . . . .  p,(0)). < Z < | 1-] 2/k(c*)| |  I-[ QJk| 

O _ j o  . . . . .  j K _ t _  m L k = O  _lLk=O / 

O_jo  . . . . .  j K - i < _ m L k = O  _l L 

(3,3) 

For  (Jo . . . .  , J K - O •  (0 . . . .  , m} ~ we define 
V K - 1 Q  q 

(ql(Jo . . . . .  JK- ,), "" ", q,(Jo, ' ' . , J K - O )  ---- (p,(0) . . . . .  P.(O))'[R~=O i~J" 

Combining (3.2) and (3.3), the method of first moments  (see, for instance, [2] as 
a reference), there exists at least one sequence (Jo . . . .  ,J~-1) with 

K-1 (i) l~k : o 2j,(c,) > 0 and 

(ii) ~ i ~ o , ,  qi(Jo . . . . .  JK- t )  >-- 1 -- e. 

(Q~o,..-, QJK-,) is the desired sequence of transition matrices for TA. []  
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Proof of  Proposition 2.4. Let (Ck)~--o 1 be a t empera ture  sequence of SA such 
that  

Pr{Xs(K) e ~opt(S)} > 1 - -~ for s = 1 . . . . .  r. (3.4) 
r 

Such a sequence exists for some K large enough, for instance, by the result of 
Gelfand and Mitter.  

Fo r  s =  1 , . . . , r ,  let Gs=(V~,Es)  with V ~ = { I ,  ns}, let p(s) be the kth 
• . .  ~ - - C  k 

t ransi t ion matr ix  of SA for the pair  (G s, Cs), and let Q~o s) . . . . .  Q~,) with rh < ~ =  
I E, I be the finitely m a n y  different t ransi t ion matr ices resulting f rom the thresholds 
T O = 0 and {T~ . . . . .  T~} = {Ift(i) -- c,(j)ll{i,j} ~E, for some 1 < t _< r}. N o t  all of 
the matr ices Q~S) for a fixed s need to be different. Namely ,  Q~S)= Q~,) if Tj < Tj, 
and if there is no edge {i, i'} in G, with Tj < [Cs(i) - Cs(i')l < T~,. Then there exist 
unique weights 2~(Ck), for j = 0 , . . . ,  ~ and k = 0 . . . . .  K - 1, such that  

m 

p(s) = ~ 2j(Ck)O~) for all s = 1, r. 
C k " ' ' ~  

j = o  

Note  that  the coefficients 2~(Ck) do not  depend on s. Thus  

~: 1p(~)=¢, X ,IF[Aj,(Ck • .) for s =  i , . . . , r .  
< k = O  O-<jo . . . . .  jK - i_ r~ l - - k=O _1 L _ k = O  ._1 

Analogously  to the p roof  of  Propos i t ion  2.3 we define, for (Jo . . . .  ,Jr-~) 
(o  . . . . .  

(q(ls)(Jo . . . . .  JK-1). .,s,/; ; [ KISI1 Q 1 . . . .  qn  s L l O , ' ' ' ,  J K -  1) )  = ( P l ( O )  . . . . .  Pns(O)) . (s) . 
L k = O  J 

(s) - • A (s) • • Set q o p t ( J o ,  " ' ' , J K - 1 ) =  2ieRopt(S) qi (Jo . . . . .  J K - 1 )  and denote  by M s the subset of 
all (Jo . . . .  , J r - l ) e  {0, . . . ,  rh} K which satisfy qto~t(jo . . . . .  J K - 0  < 1 -- e. 

Claim. 

Ps & 
K - 1  1 

2 U "~Jk(Ck) < - -  for s = i . . . . .  r. (3.5) 
(jo . . . . .  JK l )eMs k = 0  F 

Inequal i ty  (3.5) holds since, because of (3.4), 

13 
m ( 1  - + (1 - u s )  1 > P r { X s ( K )  E n o p , ( s ) }  _> 1 - - 

r 

which is equivalent  to Ps < 1/r. 
Let p = Z(i0 ..... jK_~)~M lrI~(=o ~ 2ik, where M & U~=,  Ms. By (3.5) 

p <  # s < r ' - =  1. 
s = l  r 

As in the p roof  of Proposi t ion  2.3, there exists at least one sequence (Jo . . . . .  JK-1) 
with ] - ] f -o  ~ 2jk > 0 and 

is) • " _ for all s 1 , . . . , r .  q o p t ( J o , . . . , J K - 1 )  > 1 - - / 3  = 
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The corresponding thresholds Tjo . . . . .  Ti~-1 form the desired sequence for TA. 
Observe that its length K may be much greater than the length L of the shortest 
SA sequence ttCk~k=o,~L-~ yielding 

Pr{X(L) ~ ~opt(S)} >_ 1 - e for s = 1 . . . . .  r. []  

Our theorem cannot be proved by the same argument as Proposition 2.4 
because there are infinitely many possible choices for the real-valued function C: 
V ~ [0, a] for each graph G(V, E). 

Proof of  the Theorem. Consider a fixed graph G(V, E) and the set (1~ a of all 
functions C: V ---, [0, a]. The key idea is to find a partition of ~ ,  in finitely many 
equivalence classes, which allows us to apply the proof  of Proposition 2.4. Before 
doing this we present a modified version of Theorem 4.2 of [4] : the cost function 
C: ~ ~ R is substituted by an arc cost function f ,  which assigns real values to all 
neighboring (directed) pairs (i,j) of configurations. 

In this arc cost model SA works as follows: Let i be the current configuration 
at time k and let j be the selected neighbor of i. Then j becomes the next 
) 
Configuration in the sequence 

with probability 1 if f(i , j)  < O, 

with probabi l i tyexp\  Ck / if f ( i , j )>O.  

Now we adopt the notion of the reformulated result of Gelfand and Mitter in 
Section 2, except the definition of F(r), which becomes 

d - 1  

F(r) --= ~ max{0, f(l~, l~+ 1)}, 
a = 0  

and see that the result, as formulated in Section 2, remains valid in the arc cost 
model. 

For G(V, E) and C: V ---, ~ we define integral arc costs f by 

if 

if { i , j } sE  and C(i) >_ C(j), (3.6) 
F( i , j )=  [C(j) -C(i )]  if { i , j }eE  and C(i)<C(j), 

{.undefined otherwise. 

Here [c] denotes the smallest integer not smaller than c e R. 

Lemma 3.2. Let G(V,E) with I V [ = n  be given, let C: V ~ N ,  and let f be the 
corresponding arc cost function. Then there exists a nice subset I c V with respect 
to f such that 

C(O - Copt < (n - 2)(n - 1) 

for all i ~ I. 
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P r o o f  o f  L e m m a  3.2. Assume V = {V 1 . . . . .  Vn} a n d  Cop ' = C ( V l )  _ ( C ( v 2 )  ( 

• . . <  C(v.) .  

Case 1. C(vi+ 1) - C(vi) < n - 2 for i = 1 . . . . .  n -  1. Then  I = V is an appropriate  
choice. 

Case 2. Let i e  {1 . . . . .  n} be min imal  with C(vi+O - C(vi) > n - 2. 

Claim. Then {V 1 . . . . .  Vi} is nice with respect to f .  

P r o o f  o f  the claim. Condi t ions  (2.5) and  (2.6) obviously hold, so only (2.7) remains 
to be proved. Let j e J and  let I ~ i = u o ~ . - .  --, ur = j be a cheapest pa th  from I 
to j of min imal  length. Thus  ul . . . . .  ur_ 1 ¢ I and r - 1 < n - 2. We define 

A, j  = y~ (C(u~+ 0 - C(uO) 
0_<~t_<r-- 1: 

C(u~ + t) > C(uD 

and 

A j i  = Y~ (C(uO - C(u~+ 0). 
O_<c~_<r- 1: 

C(u~,+ ~) < C(u~) 

Reversing the path we see that  

r~, <_ Y~ f C ( u O  - c(u~+l)] 
0_<~t_< r -  1: 

C(u~+ ~) < C(u~) 

< ( r - 1 ) + A t i .  

The term (r - 1) instead of r stems from the fact that C(j) > C(i). Thus there must  
be at least one ~ with C(u~) < C(u,+l).  

On the other hand,  

F l j  = F i j  ~ A i j ,  

A i j  - -  A j i  = C(j) - C( i ) ,  

thus by the case condi t ion  

A i j  - -  A j i  ~_ n - 2. 

Hence 

F l j  - -  F j l  ~ F i j  - r'ji > A i j  - -  A j i  - -  (r - 1) > n -- 2 -- (r -- 1) > 0, 

which completes the proof  of the claim and  also the proof  of Lemma 3.2. [] 

Conjecture. L e m m a  3.2 can be improved to have the condition C(i) - Copt < n - 2 
instead o f  C(i) - Cop, < (n - 2)(n - i). 

That  we cannot  hope for more than  this may be seen from the example in 
Figure 3.1 where e > 0 is arbi trari ly small. The names of the (some) nodes are 
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given below the node and the C-values are given above the nodes. The minimal 
nice set is I = {u, z} and 

C(z) - C(u) = n -  2 -  (n - 2)e ~ n - 2. 

Two functions C1, C2: V-* ~ are called equivalent, if the corresponding arc cost 
functions from (3.6) coincide. 

Fact 3.3. Let G(V, E) be given. For  every real number a > 0 there exist only 
finitely many nonequivalent functions C: V --+ 1-0, a]. 

Fact 3.4. Let C1, C2: V--+ ~ be two equivalent functions on G(V, E) and let 
(Tk)~=0 be an integral sequence of thresholds. Then an application of TA with 
(Tk)~=o to (G, C1) yields the same distribution on V as an application to (G, C2). 

Now we combine Fact 3.3, Fact 3.4, Lemma 3.2, and the arc cost version of 
the result of Gelfand and Mitter. As there are only finitely many different graphs 
G(V, E) with IV[ _< n, a proof like that of Proposition 2.4 yields the result of our 
theorem. [] 

4.  C o n c l u d i n g  R e m a r k s  

1. Our proofs are only results of existence and do not tell us anything about how 
to construct optimal (or even good) threshold sequences. Therefore the results will 
not have a direct impact on TA practice. But this missing relevance for practice 
is (partly by other reasons) also true for most of the theoretical results on SA. 

2. In applications we are often not interested in getting convergence to the 
set  ~opt .  Instead it is sufficient to have visited a member of ~opt  O17 even only a 
near-to-optimum configuration in ~ once along the tour of transitions. In these 
models analogs of our results (for instance, in Proposition 2.3 replace the condition 
"X(K) • Rop t" by "X(k) • Rop , for some k • {0 . . . . .  K}") can also be proved by the 
convex hull argument. We omit the straightforward elaborations. See also the 
recent paper by Hajek and Sasaki 1-6] whose Proposition la is closely related to 
our Proposition 2.3. 
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3. In  some sense TA is a half-deterministic skeleton of SA. The only remaining 
probabil ist ic par t  is the r a n d o m  choice of a neighbor  j of the current  configurat ion 
i. Dueck and  Scheuer have also successfully applied variants  of TA, which make 
even these choices determinist ically [1]. A theoretical model ing of this can be done 
as follows: For  each configurat ion i the neighbors are ar ranged in a l inear list 

Jl . . . . .  Jdeg,). For  every time k not  only a threshold T k but  also a parameter  ~k, 

Table 4.1 

K Optimal threshold sequence of length K Pr{X(K) = u} 

0 0.2000 
1 0 0.3000 
2 i0 0.3500 
3 110 0.4250 
4 1110 0.4750 
5 11110 0.5188 

6 111110 0.5531 
7 1111110 0.5831 
8 11111110 0.6039 
9 311111110 0.6273 

10 3111111110 0.6508 

11 01311111110 0.6723 
12 013111111110 0.6967 
13 0131111111110 0.7164 
14 01311111111110 0.7324 
15 301311111111110 0.7455 

16 3013111111111110 0.7583 
17 13013111111111110 0.7708 
18 013013111111111110 0.7833 
19 0130131111111111110 0.7937 
20 01301311111111111110 0.8020 

21 013110131111111111110 0.8103 
22 0131101311111111111110 0.8187 
23 01311101311111111111110 0.8263 
24 013111101311111111111110 0.8335 
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0 < 7k < 1, is given. 7k determipes which neighbor of i has to be selected, namely, 
for instance, J[~k-deg(1)l in the case where each neighbor has the same probability of 
becoming the candidate for the next transition. It is a simple exercise to prove the 
analogs of our results for this completely deterministic version of TA. The key 
idea is that "usual" TA belongs to the convex hull of "deterministic" TA. 

4. Our results are not restricted to undirected graphs. By some more notional 
and technical efforts it is possible to yield, for example, a TA analogon to the 
sufficiency result of Gelfand and Mitter for SA. 

5. In contrast to SA it is by TA possible to get convergence in a suboptimal 
configuration, even in case of undirected neighborhoods. Figure 4.1 shows an 
example which is formally similar to that of Figure 2.1. The unique global 
minimum is in u, yet it is possible to achieve l i m k ~  Pr{X(k) = z} = 1 by the 
constant threshold sequence 3, 3, 3 , . . . .  

Open Problem: For  each instance (~, (~i)i~e, C) characterize all those subsets 
I ~ N, to which a TA "convergence" (lim or limsup) can be achieved by an 
appropriate threshold sequence. 

6. By computer enumeration we have found the optimal threshold sequences 
K-1 (Tk)k= o for the graph in Figure 2.1 for all K < 24, where the optimization criterion 

was to maximize P r{X(K)=  u}. The starting distribution was (½ . . . .  , ~). For  all 
K > 2, sequences with T~_ 2 ~ { 1, 2} and TK_ 1 ~ {0, 1, 2} are equioptimal. The 
sequences shown in Table 4.1 are the lexicographic smallest among all equioptimal 
sequences. 
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