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Abstract. Optimal control problem for systems governed by ordinary 
differential equations with continuous, switching and impulse controls are 
studied. It is proved that the value function of the problem is the unique 
viscosity solution of the corresponding Hamilton-Jacobi-Bellman system. 

I. Introduction 

In this paper we study an infinite horizontal optimal control problem for systems 
governed by ordinary differential equations with continuous, switching and 
impulse controls. Formal application of the Bellman Dynamic Programming 
Principle leads to the following Hamilton-Jacobi-Bellman (HJB for short) system 
for the value function u =- ( u ' , . . . ,  u")  of the optimal control problem: 

max{Aud ( x ) -  Ha(x, Dud(x)), ud ( x ) -  Md[ u](x), ud ( x ) -  Nud (x)} = O, 

x~R", d ~ A - { 1 , 2 , . . . ,  m}, (1.1) 

where Ha(x, p) is some given function (see Section 2), M d and N, we call them 
switching and impulse obstacle operators, respectively, are given as follows: 

Md[u](x) = min{ua(x) + k( d, d)}, (1.2) 
d¢a  

Nu d (x) = inf{u d (x + ~:) + l(¢)}, (1.3) 
~cK 

where k( . ,  • ) and l(. ) are some given functions and K c •" (see Section 2). 
The major contribution of this paper is to prove that the value function 

u(- ) ~ (u'( • ) , . . . ,  urn( • )) of our control problem is the unique viscosity solution 
of (1.1). The difficulty in the proof is due to the appearance of the impulse 
obstacle operator N, which is nonlocal. However, the notion of viscosity solutions 
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is of a local nature in some sense. To overcome this difficulty, we combine the 
ideas of [2], [5], and [9] and repeat the relevant arguments. The key point in the 
proof is that under some mild and reasonable conditions, the number of iterations 
of the arguments is finite. 

Optimal switching problems were discussed by Capuzzo-Dolcetta and Evans 
[5] for ODE (ordinary differential equation) systems, by Evans and Friedman 
[7], Lenhart and Belbas [11], and Lions [12] for stochastic ODE systems, and 
by Stojanovic and Yong [15], [16] for abstract evolution systems in infinite 
dimensions. Optimal impulse control problems were also studied by many authors. 
Among them we mention works of Barles [1], Bensoussan [3], Bensoussan and 
Lions [4], Menaldi [13], Menaldi and Robin [14], and the extensive references 
cited therein. Also, we mention the work by Belbas and Lenhart [2] for optimal 
switching and impulse problems of stochastic ODE systems. Finally, we should 
point out that our approach is different from that given in [1]. 

2. Control Problem 

In this section we give some preliminaries. Let V be a metric space, A = 
{1, 2 , . . . ,  m} and K be a closed subset of R" satisfying the following: 

~l,Sr2~K ~ Srl+~:2~K. (2.1) 

Let g: R" x A ~ R", f :  R n x A ~ R, k: A x A--> R + - [0, ~) ,  l: K ~ R + be continuous 
mappings satisfying the following conditions, which are assumed throughout this 
paper: 

(i) There exist constants L, Lo, y > 0, 0 < 6 - 1 such that, for all x, ~ ~ R n, 

(ii) 

(v, d )~  VxA,  

[g(x, v, d ) =  g(~, v, d)l-< Ltx-.~I, 

tg(x, v, d) I -< L +  golxt, 

If(x, v, d) -f(:~, v, d)l <- g(1 + Ixl v + I l )lx - 

If(x, v, d) I <- L(1 + IxlV+~). 

For all d, d, d ~ A, with d ¢ d ¢ d, 

k(d, d) < k(d, d) + k(d, d), 

k(d, d) = O. 

There exists a constant lo > 0 such that 

i(~) ~ to, 

and 

t(¢+~)<-l(¢)+l(~), V#,~K, 

lim I~:1"+~- O, 
e~,,lej-~o~ I(~) 

where y and 8 are the same as those in (i). 

(iii) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.1o) 
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Next, let us introduce the following control sets: let A > 0 and d ¢ A be given. 
We define 

~" = {v(. ): [0, oo) -. V]v(. ) is measurable}, 

= Id("  ) = Y. d,-1Xto,_,,o,)(" ): [0, +oo) --> Aldo = d, 0o = 0, 0, 6 [0, +oo], M a 
k i>_1 

1; 0,'~+oO, di+l # di if 0~+1 <oo; y. k(di_~, di)e -ae' <oo !. Vi_> 
i_>l J 

X = { • ( . ) =  Y~ 6Xl~-~,oo)('): [0, o o ) - ~ K l ~ [ 0 ,  oo],Yj___l; 
j ~ l  

~1'+oo; sup [~(t)le-~Z'--- R; Y~ l(6)e-~ <ool, 
t --0 j--~l J 

where h > 0, R, ~ - 0  are given constants. We call any v(. ) ~ T', d( .  ) ~ ~¢a, and 
~(. ) ~ Y( an admissible continuous, switching and impulse control, respectively. 

For (x, d) e R" x A and any (v( . ) ,  d( .  ), ~(. )) ~ °Vx ~¢a x Yt', the response of 
the dynamic system is the unique solution of  the following equation: 

yx(t) = x +  g(yx(s), d(s)) ds+¢(t) ,  t>-O. (2.11) 

The following result is obvious. 

Proposition 2.1. Let d e A ,  x, ;~R" ,  (v( .) ,  d( . ) ,  ¢ ( . ) )e  ~ x a ¢  d x ~ .  Then the 
corresponding solutions yx(. ) and y~(. ) of (2.11) satisfy the following: 

Io lyz(t)l-<eLo'(lxl+Lt)+l~(t)l+Lo eLo('-~)l~:(s) [ds, t>-O, (2.12) 

ly~(t)-y~(t)l<-eL'lx-~l, t>-o. (2.13) 

Hereafter, we assume the following: 

a > ( y + a )  max{/£, Lo}. (2.14) 

It is easy to see that under our assumptions, for any ( x , d ) ~ R " x A ,  
(v( . ) ,  d ( . ) ,  ¢( . ) )  ~ °Fx ~¢a x Yf and the corresponding trajectory y~(.),  the 
following cost functional is well defined 

ja (v ( .  ), d(" ), ¢(" )) = f(yx(s),  v(s), d(s)) e -x` ds 

+ E k(d,_~, d,) e -ae, + Y~ l(~) e-XS. (2.15) 
i ~ l  j-->l 

The right-hand side of  (2.15) represents the sum of running, switching and impulse 
costs. The constant A > 0 is called the discount factor. Now, we defined the value 
function u( .  ) -- (ul( • ) . . . .  , u " ( .  )) of the control problem in the following way: 

ua(x)= inf J~(v(.) ,d(.) ,¢(.)) ,  ( x , d ) c R " x A .  (2.16) 
~x~ax~ 
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Then, our optimal control problem is the following: 

Problem (P). For any given (x, d) E R" x A, 
M d x X, such that 

d * ( .  ), )) = 

find (v* ( . ) ,d* ( . ) , ~* ( . ) )6 °Ux  

(2.17) 

Next, we give some basic properties of the value function. 

Lemma 2.2. T h e v a l u e f u n c t i o n u ( . ) s a t i s f i e s t h e f o l l o w i n g : f o r a l l ( x , d ) ~ E " x A ,  

lud(x)l <_ 6(1 + (2.18) 

l u d ( x ) -  ud (.~)J----- C(1 + [xl ~' + (2.19) 

where C = C ( L, LoT, 6, A, I~, R ). 

The proof is very similar to that given in [5] or [16]. The following result is 
the Dynamic Programming Principle. The proof is essentially the same as that 
in [5]. 

The value function u( .  ) satisfies the following: for any (x, d) 

(2.20) 

(2.21) 

Proposition 2.3. 
R n × A, 

ud (x) <__ Md[ u](x) ~ min{ud(x) + k( d, tt)}, 
d # d  

u d (x)  <- S u  d (x)  =-- inf {u d (x + ~) + l(()}, 
~eK 

} ud(x )  < -- inf . .  f ( y ~ ( s ) , v ( s ) , d ) e - ~ d s + u d ( y ~ ( t ) ) e  -~' , Vt->O, 
v(.)c~ L J0  

(2.22) 

where px(s) = g(yx(s) ,  v(s) ,  d) ,  0 < s <- t, yx(O) = x. Moreover, i f  the strict inequali- 
ties hold at some point Xo both in (2.20) and (2.21), then there exists a to> 0 such 
that 

ud(xo) = inf f ( y ~ ( s ) , v ( s ) , d ) e - ~ d s + u d ( y ~ ( t ) ) e  -A' , O<-t<-¢o. 
v(-)e~ k J o '  

(2.23) 

From Proposition 2.3 we see that if u ( . )  ~ C 1 ( R  n) m ~ {~m.value d C '  functions 
on R"}, then it satisfies the following HJB system: 

m a x { A u d ( x ) -  Ha(x ,  Dud(x ) ) ,  ud ( x ) - -  Md[U](X),  u d ( x ) -  N u d ( x ) }  = O, 

Vx ~ R", d ~ A, (2.24) 

where 

H d ( x , p )  = inf{(p, g(x, v, d ) ) + f ( x ,  v, d)}. (2.25) 
v c V  
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However, in general we cannot guarantee the value function u(.  ) to be C a. 
Hence, we need the following notion (see [5] and [6]): 

Definition 2.4. Function u( .  ) c C ( E " ) "  =- {Rrn-valued continuous functions on 
R"} is called a viscosity solution of  (2.24), if for any d c A and any ~o(. ) c CI(R n) 
with U d( • ) -  ~0(. ) attaining a local maximum (minimum) at x0 s R", then 

max{Au d (Xo) - H d (Xo, D~o (Xo)), u d (X0) -- M d [ u](Xo), u d (Xo) - Nu d (Xo)} 

-<o (_>o). 

Then, by Proposition 2.3, we can prove the following result (see [5]): 

Theorem 2.5. The value function u( . )  o f  Problem ( P ) is a viscosity solution of  
(2.24). 

3. Uniqueness of Viscosity Solutions 

This section contains the main contribution of  this paper. We will prove the 
uniqueness of the viscosity solutions of the following system: 

max{Aud(x) - Hal(X, Dud(x)) ,  ud(x)--  Md[u](x) ,  ud(x) -- Nud(x)}  = O, 

Vx ~ R", d ~ A .  (3.1) 

Here, H d (x, p) does not have to be in the form of (2.25). However, it is clear 
that Definition 2.4 is still good for (3.1). 

Before proving our uniqueness theorems, let us first give the following: 

Lemma 3.1. For each d c A, the function Nu( .  ) is continuous in R". 

The proof  is simple if we note (2.10) and Lemma 2.2. 

Lemma 3.2. Suppose u ~ (U 1 , U 2 , . . . ,  Urn) is a viscosity solution o f  (3.1). Then 

ud(x)<--min{Md[u](x),  Nud(x)},  V(X, d ) ~ R  n ×A. (3.2) 

By Lemma 3.1, similar to [5], we can easily prove the above lemma. 
Now let us consider sublinear viscosity solutions. To this end, let us define 

for ~ -> 0 that 

Q~(R" )={  u c  UC("n)m sup lu(x)] < } 
x~R l+[xl  ~ oo , 

where UC (R")" is the set of all R "-valued, uniformly continuous functions on R". 
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Theorem 3.3. Let Ix, v ~ [0, 1). Let k ( . ,  .), l ( . )  be given continuous functions 
satisfying (2.6)-(2.9), and 

max k(d, d ) <  lo < - inf l(¢), (3.3) 

1+1¢" 
lim - O. (3.4) 

¢~ r,l~l-,oo l(~) 

For each d ~ A, let H d : •n X ~ n  __) R be continuous satisfying 

IHa(x ,p ) - -Hd (x ,  q ) l<-L( l+lx l~) lp-q l ,  Vx, p, q ~ n  ~, (3.5) 

IH a (x, p )  - H a (x, q ) l -  w~([pl I x -  Yl) + w2(r; Ix - yl), 
Vp R Ixl, ]Y[ -< r, (3.6) 

where Wl(" ) and w2(r;. ) are strictly increasing continuous functions from ~+ to 
R +, with wl(0) =0,  w2(r; 0) =0,  for any r>-O. I f  u, ~ Q~,(R n) are two viscosity 
solutions of  (3.1), then u = ~. 

Remark 3.4. Condition (3.3) means that switching is "cheaper" than impulse. 
Also, we should note that in the above theorem, K only needs to satisfy (2.1), 
in particular, K may be B~". 

Proof of  Theorem 3.3. Since u, t~ ~ Q,(R~), we can find a strictly increasing 
continuous function w(. ): R+~ B~ + with w(O)= 0, such that 

[U(X) -- U(X)I , lU(X)- U(;)I ~< w(lx ---~1) ~ C1( 1 q- I x -x lg ) ,  

Vx, ~ e R ". (3.7) 

Next, we let tr, r />  0 be such that (see (3.3)) 

/ o -max  k( d, d ) -  w(cr) >_ ~7. (3.8) 
d,d 

Then we have the following lemma which will play a crucial role in our proof. 

Lemma 3.5. Let  {di, ~i, Yi}~=o be a sequence satisfying 

~d'(yi)=~d'(yi+~i)+l(~i)  , O<_i<_j, (3.9) 

ly,.~ - y , -  ~il < cr, O<-- i <--j. (3.10) 

Then there exists a constant C > O, only depending on tr, m, Ix, l(. ), C1, and ~q, 
such that 

j ~ d .  (3.11) 

Proof. From (3.2) and (3.7)-(3.10) we have 

a d ' ( y , ) = ~ d ' ( y , + ~ ) + l ( ~ , ) > - - a d ' + ~ ( y , + ~ ) + ~ l > - -  "" " ~ d ' ( y ~ ) + ( l - - i ) r l  (3.12) 
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for all 0 - - i  < - ~---j. Without  loss of  generality, we assume that  dr = do, ~>_j/m. 
Then, 

~do(y ~) ~ ~dO(yo) + ! .  T]. ( 3 . 1 3 )  
m 

On the other hand,  we have (see (3.7)) 

!(~:~) = ~a,(y;) _ ~d, (y, + ~:) _< C1(1 + [~:~1~'). 

Hence,  by (3.4), we can find C2 > 0 such that  

If, I -< c2, o<_ i<-j. (3.14) 

Also, from (3.10), we have 

j--I 

]Yt-Yo[ -< Y~ [Yi -Y,+I[ <-j(tr+ C2). 
i=o 

Hence, (3.13) gives 

J - -  r/--< C,[1 +j~(cr  + C2)"]. 
m 

Since/.t  < 1, (3.11) follows. [] 

Now we return the p roof  of  Theorem 3.3. 
Let e, o~ ~ (0, 1) be fixed. We define 

cbd(x,y)=ud(x)--~d(y)--llx--y[--a((X)+(y)), x,y~R", deA, 
E 

where (x) = (1 + [x[2) 1/2. Since/z < 1, it is clear that there exists (Xo, rio) e R 2n such 
that for some d o e A  (see [5], [15], and [16]) 

c~a°(Xo, Yo) = max q~d (~o, 1~o) = sup max ~d(x, y) 
d x,y d 

and 

adO(yo) < Mdo[a](yo). 

Now, we assume 

tSa°(Yo) = N~d°(yo) = ~d°(Yo+ Go) + 1(~:o) 

i'or some ~:o~ K. Then, by (3.2) and (3.14), we have 

• ¢(Xo + ~:o, yo+ ~:o) -> ~,¢(Xo, yo) - 2  c2c~. 

Next, we let ~': R 2" -~ [0, 1] be C 1 such that 

supp ~" c ~7((0, 0), o-); IDa'[ < 2 ;  
O" 

~ ( 0 , 0 ) = 1 ;  ~ ' ( x , y ) < l ,  if (x, y) ~ (O, O), 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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where 0((0, 0), or) = {(x, y) e ~2" I [x[2+ ly[ 2 < 1}. We set 

~l(x, y)  = ¢(x - ; o -  ¢o, y - ; o -  ¢o) 

and define 

~al(x,y)=dgd(x,y)+2C2a~l(x,y) ,  x, yeR" ,  d ~ A .  

Then we can apply the above argument to ~a (x ,y ) .  By repeating the above 
procedure, and by Lemma 3.5, we know that there exists a j -  C such that, for 
some xj, yj ~ R ~, dj ~ A, 

"~d;(yj) < min{ Ma;[ ~](yj), N~a;(yj)}, 

• ];(xj, yj) = sup max ~ ] (x ,  y), 
x,y d (3.19) 

J 

~ d ( x , y ) = ~ d ( x , y ) + C 2 a  ~, 2i~i(x,y), x, yCR N, d e A ,  
i = 1  

where ~i+l(x, y) = ~(x - xi - ~i, Y - Yi -/fi). Then, from ~dj(o, O) <-- ~dj(xj, y:), we 
have (see [9]) 

a((xj) + (yj))-< C1(2+ Ixjl ~ + ly:l")+ C, 
for some C, independent of e and a. Hence, noting /x < 1, we have R~ > 0, 
independent of e, such that 

Ixjl, ly~l- R~. (3.20) 

Hence, from 2't@(x~, yj)>-'Ir~J(x:, x:)+ *~i(y~, yj), we have 

1 2 - [ x j - y j [  <-w( lx : -y~ l )+c:~  E 2i~(xj, yj)<-w([xj-yjl)+c22C+1a. (3.21) 
E i = 1  

Next, by the definition of viscosity solutions, from (3.5), (3.6), (3.19), and (3.20), 
we have 

A ( ud/( x j ) -  ~ld/(yj) ) ~ Wl( 2 ,xj - yjl2) -l- w2( Ro,, lxj - yj[) 

+ aL(2+ [xjl" + [y~l")(x + C~2a+~/~r). (3.22) 

Then we may assume that (xj, yj) =-- (Xj(e,oO, Yj(e,oO) -'~ ( Xc~, X'~), as e ~ 0 (see (3.21)). 
Hence, (3.22) gives 

,~.[udj(x ~) - -  ~(X°~)] --< w1(C22£'+1~)+2aL(1 +2d+2C2/o')(1 + Ix°l~). (3.23) 

Then, from (3.19), we see that for any fixed x ~ R ~, a > 0, 

u" (x) - ~" (x) - 2o4x) <- 1 wffC~2a+~c~) + C~2a +~ o~ 

- 2 a [ ( x ~ ) - L  (l+2a+2C2/o-)(l+lx~,~)]. 
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Since u < 1, l e t t i n g  a ~ O, we obtain 

Ud(X)<--~a(X), d e A ,  x6R" .  

By symmetry, we complete the proof. [] 

The idea of  the proof  essentially comes from [2], [5], and [9]. Because of 
the nonlocal nature of the impulse obstacle operator N, we have to repeat some 
procedures. Then Lemma 3.5 plays a crucial role. But for Lemma 3.5 to be true, 
we need conditions (3.3) and (3.4) with /z < 1 and u, t~ uniformly continuous. 
Finally, at the end of the proof, we see that u < 1 is also crucial. 

Next we discuss the case where (3.3) does not hold, namely, switching is not 
necessarily "cheaper"  than impulse. For this case we have the following unique- 
ness result. 

T h e o r e m  3.6. Let u~[0 ,1) .  Let K c R + = - { ( x l , . . . , x , ) ~ R " l x i > - O , l < - i < - n }  
satisfy (2.1). Let k ( . , • ) and l ( . ) be continuous functions satisfying (2.6)-(2.10), and 

lim 1 ÷1~1 = 0. (3.24) 
~ K,l~l-,~ 1(~:) 

For each d ~ A, let H d" R n X ~n ~ R be continuous satisfying 

IH~(x,p)-U~(x,q)l<-L(l+lxl")lp-ql, Vx, p, q c R " ,  (3.25) 

[Ha(x ,p ) - -Hd(x ,q ) I<--Wo(Ip[ lx - -YI ,  Ix--y]) ,  Vx,  y , p ~ " ,  (3.26) 

where Wo(', • ): N+ x N+ ~ R + is continuous, strictly increasing in each argument  and 
wo(0, 0) = 0. Let  u, ~ ~ U C  (R~) ~ be two viscosity solutions o f  (3.1). Then u = ~. 

The basic idea of proving the above theorem is the same as that of Theorem 
3.4. However, since u and a are not necessarily sublinear and condition (3.3) is 
not assumed, to get a result similar to Lemma 3.5 we have to impose the condition 
K c ~ .  But still K is not necessarily R+ (say, K could be the set of all points 
in R~_ with integer coordinates). 

Proof  o f  Theorem 3.6. First, from u, ~ c UC(Rn)  m, we know that (see [5]) there 
exists a strictly increasing continuous function w(. ): I~ + ~ R + with w(0) -- 0, such 
that 

[U(X) -- U(X)I , I/~(X) -- a(3~)1--< W(lX --Xl) <- C1(1 + IX --XI),  

Vx, ~ ~ J~". (3.27) 

Next we let o-> 0 be such that 

w(o') < Io, (3.28) 

where lo is given in (2.8). Then we have the following lemma. 
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Lemma 3.7. For ~r > 0 given as in (3.28), the result of Lemma 3.5 holds. 

Proof From (3.9)-(3.10) and (3.27)-(3.28) we have 

w(cr) < lo-< l(~,) - w(l~,[) - Cl(1 -q-I~,1) 

Hence, by (3.24) and the monotonicity of w(. ), we obtain 

tr<-I¢i[<-C2, O<-i<-j, 

for some (?2 independent of i. We let 

/~ = max k(d, d). 
d,a 

Then, for 0-- i <  i'--<j, similar to (3.12), we have (note (2.9)) 

ad,(y,) >- ad,+,(y,+,) + l( ~,) - w ( ~ ) -  fc > - . . .  

>- ad;(yr) + l(~, + ~,+~ + . . .  + ~r) - ( ~ -  i)( w( ~) + ~c). 

By (3.30), we have (note (3.10)) 

[Y , -  Y,I <- ( ~ -  i)( o" + C2). 

Again we may assume that dr = do, ~>-j/m. Then, from (3.29)-(3.31), 

1(¢o+ ~1 "It-" " "  "~- ~ )  ~ j [  C,(1 + 2~ + C2) +/~] + C~. 

On the other hand, since ~o , . . . ,  ~ e R2, we have (see (3.30)) 

1 j~  
r e x / -  f f  • 

Then our conclusion follows from (3.24), (3.33), and (3.34). 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

[] 

Now we return the proof of Theorem 3.6. 
From the proof of Theorem 3.3 we see that it suffices to prove that for each 

e > 0, d ~ A, the function ud(x)= ~d(y)_ ( 1 / e ) l x - y l  2 is bounded from above 
on R" × R". To prove this, let e, a > 0. We consider the following function: 

• ~(x, y) = ud(x)-- ad(y)--I  Ix_yI_,~(IXl 2+ [y12), 
E 

x, y6R",  d6A .  

Then, applying the argument used in the proof of Theorem 3.4, we can obtain 
the following: there exists j--- C such that 

'a4(yj) < min{Md,[a](y~), Nad,(yj)}, 

• f,(xj, yj) = sup max d~d(x, y), 
x , y  d 

(3.35) 
J 

¢bd(x,Y)=dgdo(x,Y) +a E K,~,(x,y), x, y e E  n, d ~ a ,  
i=1 

K,+I = K, + 2C2(Ix,1+ ly, I + c=), 
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where (x,+l, yi+l)elT((xi+s~, Y, + ~:i), ~r), ~'i+l(x, y ) = ~ ( x - x i - l ~ ,  Y-Yi-~i ) .  
Then, by the definition of  viscosity solutions, we have 

A (UdJ(Xj)- ~dJ(y.i))<-- Wo( 2 [X i -- yj[2, [Xj -- yj[) 

+2o~t(N+lxjl=+lyjl ~) xj[+lyjl+2 Y~ g,/o- . (3.36) 
i=1 

It is clear that 

Ix, I-IxA +J(~+  c=), O<_i<_j. 

Thus, we have some C, independent of  e and a, such that 

J 

y. g , ~  ~(l+lxjt+lY~l). (3.37) 
i = l  

Then, from ~ , ( 0 ,  0 ) -  qb~,(xj, yj), we can obtain (similarly as before) 

~ (Ixjl= + lyjl =) --- (2c1 + ~ ) ( 1  + Ixjl + lyjl). 

Hence, 

(Ixjl + lyjl) -< c. (3.38) 

Similarly, from 2~dj(Xj, yj) ----- ~ ' (Xj ,  Xj) + qb~J(y~, yj), we can derive that 

! Ix j _yj[2< C, Vot ~ (0, 1). (3.39) 
E 

Hence, from (3.35)-(3.39), for any (x, y) ~ R 2", d ~ A, we have 

ud (x) _ ~d (y) _1  IX _el2 - ~(ixl2 + lyl= ) 
E 

1 
< ~  Wo(2 c, 4 - ~ )  - ~ ( I x / +  lyjl =) + ~ ( ~  + Ix~l + lyjl) 

2aL (2 + [xj[ ~ + ly~l=)EIx~l + levi + 2t~(1 + Ix~l + ly~l)/~:l. 
+ h 

Then, noting ~, < 1, by letting a --> 0, we obtain 

u d ( x ) - ~ ( y ) - l  lx-yl2<-Wo(2C, x/-CT)/A, Vx, yea" .  
E 

Then the proof  of  Theorem 3.3 applies. [] 

It is easy to see that if (2.2), (2.4), and (2.5) hold with 3' = 0 and for some 
r e  [0, 1), 

Ig(x,v,d)l<--L+Lolx[ ~', V ( x , v , d ) ~ R " x V x A ,  (3.40) 

then (3.5)-(3.6) and (3.25)-(3.26) hold. Hence, from Theorems 2.5, 3.3, and 3.6, 
we obtain a characterization of the value function for Problem (P). 
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Theorem 3.8. Suppose g and f satisfy (2.2), (2.4), (2.5) (with y = 0), and (3.40). 
Suppose the conditions of either Theorem 3.3 or Theorem3.6 concerning K, k( . ,  . ), 
and l(. ) hold. Then the value function u(. ) of Problem ( P) is the unique viscosity 
solution of (2.24) with Hd(x,p)  given by (2.25). 

Remark  3.9. It is well  k n o w n  that  for genera l  quas i -var ia t iona l  inequal i t ies  in 
u n b o u n d e d  d o m a i n  with u n b o u n d e d  data ,  the  solu t ions  in some (weighted)  
Sobolev  spaces  are not  necessar i ly  un ique  (see [3] and  [4], for  example) .  In this 
case, to charac te r ize  the  va lue  funct ions  for  op t ima l  impulse  (s tochast ic)  cont ro l  
p r o b l e m s  as the max ima l  so lu t ions  o f  the co r r e spond ing  Bel lman equa t ions  (kinds 
o f  quas i -var ia t iona l  inequal i t i es ) ,  some k inds  o f  coercivi ty  cond i t ions  on the da ta  
(name ly  f )  were n e e d e d  (see [13] and  [14]). We have seen that  in o u r  presen t  
s i tua t ion ,  we have i m p o s e d  some coercivi ty  cond i t ions  on l ( . )  (see (3.4) and  
(3.24)). These  cond i t ions  ensure  L e m m a  3.1 which  is needed  in the  p r o o f  o f  later  
un iqueness  results.  We refer  the r eade r  to [8] and  [10] for some classical  unique-  
ness results  abou t  quas i -var ia t iona l  inequal i t ies .  

We shou ld  note  tha t  the  cases we have d iscussed  in the above  inc lude  the 
case where  g and  f are  un i fo rmly  b o u n d e d ,  for  which  C a p u z z o - D o l c e t t a  and  
Evans  d i scussed  op t ima l  switching p r o b l e m  [5]. 

F ina l ly ,  we shou ld  po in t  out  that  it is still open  whe ther  Theorem 3.8 holds  

wi thout  assuming  3' = 0 and  ~, < 1. 
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