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Abstract. Some stochastic partial differential equations arising from a tur- 
bulent transport model are studied using Hida's theory of Brownian func- 
tionals. For the spatially homogeneous case, the solutions are constructed as 
a regular or generalized Brownian functional, depending on a small param- 
eter. The regularity property of such solutions is also determined. However, 
for the spatially nonhomogeneous equations, only generalized solutions in 
a series form involving iterated singular Wiener integrals are found.  

I. Introduction 

This paper is mainly concerned with the fundamental solution of a certain 
stochastic parabolic equation as a generalized Brownian functional in the sense 
of  Hida [3]. The equation arises from turbulent transport theory. Let u(x, t, to) 
be the concentration of a passive substance convected by a turbulent fluid, such 
as smoke in turbulent air. For an incompressible flow with the turbulent velocity 
field v(x, t, to), the concentration u satisfies the heat equation with a random 
drift [1, p. 31]: 

°U+v. Vu =lvVZu, 
Ot (1.1) 

u(x, O, ~o) = 8(x), 

where v denotes the molecular diffusivity and the initial concentration 6(x) is 
the Dirac delta function representing a unit point source at the origin. Usually 
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the molecular diffusivity is relatively small and often neglected. Then, by some 
physical arguments, the mean concentration is assumed to satisfy an effective 
diffusion equation (see, e.g., pp. 606-614 of [10]). In fact, under some technical 
assumptions, this kind of  diffusion approximation can sometimes be justified [7]. 
The diffusion approximation allows as to approximate the random velocity 
v(x, t, to) locally by a white noise ~,(x) satisfying 

drh = b(x, t) dt + cr(x, t) dBt, 

*?o = Y, 
(1.2) 

where b, o- are the drift vector and the diffusion matrix, respectively, y is the 
initial state, and B, is the standard Brownian motion. Taking the molecular 
diffusion into account, we are led to the model equation 

Ou+ 
-~ nto Vu =½vV2u, (1.3) 

u(x, o) = ~(x).  

Here the symbol "o" in the random drift term denotes the symmetric 
(Stratonovich) scalar product. While the diffusion approximation alleviates the 
computational difficulty considerably, it also creates some serious mathematical 
problems. For example, consider the simple one-dimensional problem 

(0U..~_ j~ 0U 02/./ 1 
Ot t ° ~ x = ~ e o x  2 , (1.4) 

u(x, o) = ~(x),  

where u = e is taken as a small parameter. Regarding the solution u = qx.t(B) as 
a Brownian functional depending on e, it is easy to check by the stochastic 
calculus that 

e " qx, t (B) = p ( x - B t ,  et), 

where 

1 e_X2/2t. p(x, t)=--~ 

As e ~ 0, we expect, at least formally, that 

q~,t( B)-*  qx, t( B)  = 8 ( x -  Bt), 

which, as shown by Kuo [9], is a generalized Brownian functional, known as 
Donsker's delta function. Clearly, for e > 0, the solution q~,t is a regular Brownian 
functional. The remarkable change in the solution behavior as e ~ 0 is due to a 
singular perturbation (for the deterministic case, see [12]) of the problem (1.4). 
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Also we note that, in It6's form, it may be rewritten as 

ra__. . .  a2u 
a X  2 ' t at B' ox - 2 v  (1.5) 

[ u ( x ,  0) = a(x),  

where u ~= ( l + e ) .  Therefore, for a parabolic It8 equation such as (1.5), the 
solution is a generalized Brownian functional unless v ~ is sufficiently large ( v ~ > 1 
in this case). 

In this paper the solution to a stochastic equation is called a "regular" or a 
"generalized" solution according to whether it is a regular or a generalized 
Brownian functional. For notational simplicity, we study only one-dimensional 
stochastic parabolic equations suggested by the model equation (1.3) in the 
turbulent transport theory. In Section 2 we briefly review Hida's generalized 
Brownian functionals. A few definitions and technical lemmas on some mixed 
singular stochastic integrals are also introduced. Then, in Section 3, a spatially 
homogeneous turbulent transport equation is treated. By the Fourier transform 
and the Wiener-Hermite expansion, the solution is constructed explicitly. Thereby 
the singular behavior, as e ~ 0, and the regularity of the solution are also examined. 
When the coefficients are spatially nonhomogeneous,  the situation is more com- 
plex. Such an equation is considered in Section 4. Here, for technical convenience, 
the stochastic parabolic equation is written in It6's form. By an iteration pro- 
cedure, the solution is constructed as a series of iterated singular stochastic 
integrals which is shown to converge to a generalized Brownian functional. In 
view of the above example (1.5), in general, we cannot expect to find a regular 
solution. The regularity question for this equation seems difficult and remains 
open to us (see remark (2) following Theorem 4.2). 

We wish to point out that regular or even strong solutions to parabolic It6 
equations have been studied by several authors (for references, see [1]). However, 
most of  the abstract results are applicable only when the spatial domain is 
bounded. The regular solution of a simpler parabolic Ito equation with spatially 
homogeneous coefficients has been treated by Shimizu [13] using Hida's theory 
of Brownian functionals. However, no one seems to have studied the generalized 
solution a nd  the regularity question as presented here. It will also become clear 
that most techniques used in this paper can be applied to problems in higher 
dimensions and to other types of stochastic equations. 

2. Preliminaries 

To fix the notations, let us first briefly review Hida's generalized Brownian 
functionals (G.B.F.s) (see Chapter 8 of [4]). The white noise distribution/z is a 
standard Gaussian measure on b °* with the characteristic functional 

C(~)  = f~ ,  e i<~'~:> d # ( B )  = e -IPeIP/2, ~:e 5 ~, 



4 Pao-Liu Chow 

where 0 °* is the dual of the Schwartz space 5 e = 0°(R) with the duality relation 
( . , . ) ,  and ][. II denotes the L2(R)-norm. 

Let (L 2) -- L2(o go*,/./,) stand for the space of regular or L2-Brownian func- 
tionals q~(/~). By the Wiener-It6 decomposition theorem, we have 

(L 2) = Z @ ~., 
n = 0  

where Y(, is the set of nth multiple Wiener integrals 

I , ( F ) =  [ F ( f i , . . . , t , ) d B t , . . . d B , , ,  (2.1) 
oR n 

for F • £2, the s~cmmetric L 2. = L2(Rn). Denote by H k = n k ( ~  ") the Sobolev space 
of  order k. Let H k = L 2 ~ H k and H~ k = (Hk) *. For F • H~ % with a ,  = (n + 1)/2, 
the corresponding multiple Wiener integral I , (F)  is known to be a generalized 
Brownian functional of degree n. Now let Y ( ~ " ) = { I , ( f ) : F ~  H~,,} and yg¢-n~= 
{ / , ( F ) : F e  H~%}. Then we can define 

co 

(L2) += Z ®~.°~ 
n=O 

and 
co 

n = 0  

which are called the space of test functionals and the space of generalized 
Brownian functionals, respectively. 

An interesting application of G.B.F.s is due to Kuo [9], who has defined 
Donsker's delta function 8,,x(/~)= 8 ( x - B , )  in this framework. The regularity 
property of such a function was subsequently investigated by Kallianpur and 
Kuo [6]. Some analytical techniques developed in these references will be found 
very useful to the problem under study. In the subsequent analysis, it is necessary 
to introduce multiple Wiener integrals with a mild singular kernel F, which are 
related to the iterated stochastic integrals 

I~")(F) . . . .  F ( t , , . . . ,  t,) d B , , . . ,  dB,,, (2.2) 

in the usual way: I , (F)  = n! I~'~(F). To be specific, let the kernel F satisfy the 
condition 

I F ( q , . . . ,  t,)l-< a [ ( t , -  t2)" • • (t, , -  t ,) t ,]  -'/2 (2.3) 

for some positive constant A. Then I~")(F) can be defined as a G.B.F. according 
to the following lemma. 

Lemma 2.1. Let condition (2.3) hold. Then the singular iterated stochastic integral 
I~")(F) can be defined as a G.B.F. in Yg~-"). Furthermore, for each t > 0, there 
exists a constant A > 0 such that 

III~n)(F)ll~-,,,<~gA(1r3/2t)'/2/n[F(n/2)] 3/2 for n - 2 ,  (2.4) 

where F denotes the Gamma function. 
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Proof Let 

F , ( t , , . . . ,  t,) = F ( t , , . . . ,  t , ) 4 , ( t l , . . . ,  t , ) ,  (2.5) 

where  ~ t ( t l , . . . ,  t , ) = X s T ( 4 , . . . ,  t,) denotes  the indicator  funct ion over  the 
s implex $7 = {0-< t, -<. • • - t~ -< t} in R". Let F, be the symmetr iza t ion  of  F,. Then 

1 
114"~(v)ll'~:, °' =7., II/"(tr')ll~:,-"'-< IIF'II':'°° (2.6) 

On the other  hand,  by definition, 

2 f_  ^ 2 iJfll,<o,,= ,(1+l;~12)-~,,IF(~)l dh, 

w h e r e / 6  is the Four ier  t rans form of  F, 

Io ' 
/3(h) = ,, F(r) e ix" dr 

with r = ( q , . . . ,  t , )  e R". Note  that  the sup -no rm 

H~IF~-< IIFII4 with L~, = LI(R") ,  

and  

fR n + l  ,(l+[hl2)-'~"dh<~o',, for  a . =  2 ' 

where  o-. = 2~"/2/F(n/2) denotes  the surface area  of  the unit  sphere  in R" [9, 
p. 173]. It fol lows f rom (2.6) that  

2zrn/4 
I I / I°~(F) II ~.-°)-< Jr(n/2)]  '/~ II F, II L:,. (2.7) 

In the mean t ime ,  f rom condit ions (2.3) and (2.5), we get 

IlF, ll4 <- ad , (  t), 

where 

d. ( t )= f [ ( t , - t 2 ) . . . ( t , _ l - t . ) t , ]  -1/2 d t a . . . d t . .  
3s 

By a change  of  variables  sl = (tl - t 2 ) ,  . . . , S n - 1  = ( t n _  1 - -  t n )  and s, = t,, the above 
integral d,(t) can be shown to be domina ted  by the Dirichlet  integral  [14, p. 258]: 

f r  (sl ' ' '  s,) -~/2 dsl . .  • ds, = 2(¢rt)"/Z/nF(n/2), 
7 

where T7 = {4 -> 0 , . . . ,  t, -> 0: tl + . . . .  + t, -< t} is a te t rahedra  in R". Therefore  

[[F,]I L~, -< 2A(~- t ) " /2 /nF(n /Z)  

or, in view o f  (2.7), the desired inequal i ty  (2.4) now follows. []  
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the form 

Let 

As a variant of an iterated Wiener integral, consider the mixed integral of 

(f/;) (f? f) 1 , (x , t )  . . . .  L ( x , x , ; t , q ) . . . f , ( x , _ ~ , x , ; t , _ l , t ° )  

X (dx 1 d B , , ) ' "  (axn dBt,,). (2.8) 

F~)~ t tn)= k f l (x ,  x l " t ,  t a ) ' ' ' f n ( X n _ l , x n ' t n _ l , t n ) d x l  .dx~. 

(2.9) 

Suppose the following conditions hold: 

(A1) For each k_> 1, the function fk ( ' ,  "; t, s) is bounded and jointly con- 
tinuous over R 2 for every t, s ~ R +, and uniformly integrable over 
separately. 

(A2) irk F~k)rt "" x,,~ 1 , . . . , t k ) [2d t l  " d t k < ° ° , f o r x 6 R ,  t>-O, andk<-n .  

Then, as usual, the integral I , (x ,  t) can be defined in the (LZ)-sense and rewritten 
a s  

Iolo 
in-1 

In(x, t) . . . .  ~x,t~(~)r "~,l, . . . , t ,)  dB,, " . . dBt (2.10) 

To do so we have to appeal to a Fubini type of theorem [5, Lemma 4.1] to change 
the order of mixed integrations. For instance, take the integral I2(x, t), which 
can be written as 

I:(x, t) = A(x, xl ;  t, tl)7~(x~, t , ,  t:) dB,~ dXl dB,, 

with f2(x~, q ,  t:) = jf2(xa, x2; h ,  tz) dx2. The above integral is of the form (2.10) 
provided that the order of  the last two integrations may be interchanged. Under 
conditions (A1) and (A2), it is easy to check that the assumptions of  Lemma 4.1 
in [5] are met so that the interchange is justified. For higher-order integrals, it 
resolves in a similar fashion. 

Now let us turn to the stochastic integral I , (x ,  t) with a singular kernel. In 
particular, in lieu of (A1) and (A2), we assume that: 

(B1) For each k->-1, the function f k ( x , y ;  t, s) is jointly continuous for x, 
y ~ R  and t, s>-0. 

(B2) There exist positive constants A and v a independent of  n, such that 

F~")rt t ,)[<-A"p(x, v l t ) [ ( t a - t 2 ) . . .  ( t , _ l - t , ) t ~ ]  -1/2, x , t \  1 , ' ' ' ~  

where, as before, p(x,  t) = (1/2~--~) e -~/2'. 
(B3) For each k >- 1, there is a regular function fT, which satisfies conditions 

(A1) and (A2) for each e > 0, such that f~ converges to fk pointwise 
for t>  s>_O. 
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Then the mixed singular integral of the form (2.8) may be defined as follows. 

mn)'~ be a regularized version of F~,~, ~ defined by (2.9) and let Definition 2.1. Let --x,, 

Iofo 
in--  1 

I~.(x, t) . . . .  --x.,~(")'~t't .1, • • •, t.) dB,, " • • dB,,,. 

Then we define the integral (2.8), if it exists, as the limit 

I.(x, t ) = l i m I ~ ( x ,  t) in(L2) -. 
e$0 

We note that, by regularization, the integral In(x, t) can be written in the 
form (2.10). The existence of such an integral as a G.B.F. is ensured by the 
following lemma. 

Lemma 2.2. Under conditions (B1)-(B3), the integral In ( x, t) defined above exists 
as a G.B.F. of  order n such that, for  n >- 2, 

III,(x, t)[lx}-,~<- 4p(x, vt)An(Tra/2t)n/2/n[F(n/2)] 3/2. (2.11) 

Proof. By regularization, the proof follows closely that of Lemma 2.1 and is not 
given here. [] 

For simplicity, the same notations for norms, inner product, and the duality 
pairing are used for different Gelfand's triplets as long as there is no confusion. 
Otherwise, appropriate subscripts will be attached to indicate to which spaces 
they are associated. 

3. Spatially Homogeneous Equations 

Consider the following stochastic equation with time-dependent coefficients: 

{ Ou ~+ au ~ 02 u ~ 
O: i l '°-~x=½ev(t)-~x2 +C(t)u (3.1) 

u (x, 0) = ~ ( x ) ,  

where 

{ d~?, = a( t )  d t+o-( t )  dB,, 
(3.2) 

70 = Xo- 

Suppose that the coefficients satisfy: 

(C1) a(t) ,  v(t) ,  c ( t )~  L~oc(R +) and o-(t)~ Ll2oc(~÷), that is, they are locally 
L ~ and L 2 functions over R ÷ = [0, oo), respectively. 

(C2) There exist constants O-o, Vo>0 such that o-(t)->O-o and v(t)>_ Vo for 
a.e. t>-0. 
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For  convenience,  define 

a, =Xo+ a(s) ds, 

j" 
c, = c(s) ds, 

0 

Io E 0 r ,  [o'2(s) + ev(s)] ds with r, = r , ,  

and 

1 fol 

Then we can construct  the solution to equat ion (3.1) as follows: 

(3.3) 

Theorem 3.1. 
given above. 
regular Brownian functional having the following representation: 

oo 1 [ r , \  "/2 [ x - a t \  " 

q : , ' ( B ) : p ( x - a " r ~ ) e C '  5on~.2~ t T )  H"t~)H'(~)' 
where H,  (x) is the Hermite polynomial of  order n. 

Let the coefficients a, or, v, and c satisfy conditions (Cl )  and (C2) 
e " Then equation (3.1) has a unique solution u ~= qx, t(B) which is a 

(3.4) 

Proof The theorem will be proved in the case when a = c =- 0. The general case 
can be verified by a simple modification. Therefore ,  it will be shown that, setting 
a = c-= 0 in (3.4), the solution is given by 

77 
By the Fourier  t ransform, ~'(A, t ) = ~  u~(x, t) ei~Xdx, equat ion (3.1) with 

a = c =-0 can be easily solved to give 

a~(A, t) = exp{iA (/7, ~r),v~, -½A2(r7 - r,)}. 

Thus,  by the inverse Fourier  t ransform, it yields 

, . 1 [ 
u ~ = qx,,(B) = ~--~ exp{ia((B, o - ) , 4 7 , - x ) - ½ a 2 ( r ,  - r,)} dA, (3.6) 

which is clearly well defined as a regular Brownian functional.  
To obtain the series representat ion,  we formally expand the integrand in 

(3.6) and interchange the order  of  summat ion and integration to obtain 

f . n n / 2  " " 7-1 ~ exp{_iax_½AZr~}(ia) ."(~)  H , ( ~ )  dA, (3.7) 
q ~ ' t ( B ) = z c r , = 0  n: \ z /  \ v z  / 
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where we have made use of  a formula for the generating function of  the Hermite 
polynomials [4, p. 311]. By invoking an integration formula [4, p. 312], we get 

--27r I f (iA)"exp{-iAx -~a1"2 Ttl~l=(2rt)-"/2p(x,r~)H.(~r~) . (3.8) 

In view of (3.7) and (3.8), representation (3.5) follows. 
In justifying the above procedure, we only show that the series (3.5) converges 

in (L2). Since H,((/~, o-),/v/2) c ~ ,  and []H,((. ,  c r ) , /~) l l  = n[2", the (L2)-norm 
of q~,, given by (3.5) yields 

IIqLII2= y ( n t 2 " ) - '  p(x, rT)H, x "r__.L 
,=o \ r , /  

In view of the estimate [9, p. 173], 

it follows that there exists a constant K > 0 and a positive integer no such that 

co e X e n e - X 2 / 2 , r ~  Y= ( n ! 2 " ) - '  r t ) H  n (r , )  < K ( r t )  -1 2 n-1/6(rt) n 
n ~ n  o n = n  o 

which converges for t > 0 and x c ~, since the ratio 

r,  = ~ - <  1 for e > 0 .  
"/'t 

With the aid of the above results, it is straightforward to show that, in fact, the 
series (3.5) converges in (L 2) to the unique solution u ~ given by (3.6). [] 

Now, as e~0, equation (3.1) reduces to 

[ ou+ . ou_ 
n' °Ox -c(t)u" (3.9) 

lu(x, o) -- ~(x). 
As mentioned before, the above equation does not have a regular solution. 

The next theorem states that there exists a unique generalized solution u, which 
is defined as the weak limit, in (L2) -, of  the perturbed solution u ~ as e~0. But 
let us first define a modified Donsker's delta function. 

Lemma 3.1. Let ~h be given as in equation (3.2). Then the Donsker' s delta function 
6 ( x - ~ , )  is a generalized Brownian functional which has the following rep- 
resentation: 

(3.10) 
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Proof The proof is similar to that of Theorem 2 in [9], and thus is omitted. [] 

Theorem 3.2. For a f ixed t > O, as e,~O, the solution u ~ = qx,,( B ) of  equation (3.1) 
converges to the generalized solution 

u = qx,,( B ) =  eC, a(x-Tq, )  (3.11) 

in the sense that, for any q~ ~ (L2) +, 

(q~,,,~p)+(q~,,,~o) uniformlyin x ~ R .  (3.12) 

Proof The fact that the G.B.F. (3.11) is the unique generalized solution of (3.9) 
can be verified by applying a Fourier transform (now, in the distributional sense) 
to equation (3.9) in a manner similar to the proof of  Theorem 3.1. Here we only 
prove the convergence statement (3.12) with a --- c =- 0. 

For q~ 6 (L2) +, let 

g,~,~(x) = (q~,,, ~o) and gt,~(x) = (qx,,, q~). 

Noting (3.5) and (3.10), we have 

ig~,~(x) _g,,~(x)lZ=(q~,t_q,,a, q~)2 

_<II~II~L2,+ (n! 2,)_Zh~(x, t) ((.,o-),'~ 2 (3.13) 
,=o 

where 

hi(x ,  t )=  r , ) H ,  x - p ( x ,  r , )H,  . 

By invoking the Fourier integral representation (3.8) and the like, it can be shown 
that 

h~,(x, t) <- (2r,)" I A2" e-Z2"[1 - e-( l /2)AZ(r~-r , ) ]2  dA 

1 e 2 n f ,~2(n+2) e-AZrt - < a ( r , - r , )  (2r,) dA 

2 5/2 5 n+2 = (ev,) r, F(n+~) /2  , (3.14) 
t 

where we have used the fact (1 - e- ')-< t, Vt-> O, and v, = ~o v(s)  ds. 
Let f , (s)  = (o'(s)/ . f '~,)~,(s),  where ~, is the indicator function on [0, t]. Then 

(/~, ~), = (/~,f)  and the Fourier transform f t (a)  = S f ( s )  e ~ ds has the obvious 
bound ]f,()t )1 <- (1/v~,) 5'o I°'(s)l ds <- v'-i. 

Now an application of Lemma 1 in [9] gives 

H ((.,cr),'~ 2 -<2(2t)"n!~r,, n->2. (3.15) 

Since cr, = 2rr"/E/F(n/2),  inequalities (3.14) and (3.15) imply that 

2 )  h , ( x , t )  H , ( ~ )  2 2 _ - 5 / 2  (_..~.f) ! . - 2  (B, or), 2 r ( n  ". 
<- e v , r ,  (3.16) 

~L~)- n ! F(n/2)  
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By the ratio test and Stirling's formula, it can be shown that the series 

r(n +~) tk 
n ! F ( n / 2 )  n=2 

converges for t---0. Therefore, upon substituting (3.16) and (3.13) into (3.13), 
we get 

[g~,~(x) - gt.¢(x)[ <- K,e, 

where, for a fixed t >  0, K, is a constant independent o f  x. This proves the 
theorem. [] 

The following theorem is concerned with some regularity results for the 
solutions of the stochastic equations. 

Theorem 3.3. Let the assumptions in Theorem 3.1 hold and let q~,,, and qx, t denote 
the solutions of  the stochastic equations (3.1) and (3.9), respectively. For each 
q~ c (L:) and ql ~ (L2) + define 

gt~,,(x) = (q~,,t, ~) and gz,~,(x) = (qx.,, ~). 

Then, for each fixed t > O, the functions gt~,, and gt., belong to 5P. Furthermore, for 
~ (L2) +, the uniform convergence (3.12) can be strengthened so that g~,, ~ &,, in b °. 

Proof To prove the regularity property, introduce the Sobolev space 5ek = Hk(R)  
of order k with the norm 

Ilgllk = (l+X=)klff(a)12 dA for gE,,~k, (3.17) 

where if(A) is the Fournier transform of g. By definition and (3.5), we have 

,=o \ r T /  \ \ x /2  / '  q~ n ,  . (3.18) 

In view of (3.8) and (3.17), equation (3.18) yields 

IIg,.,vllk-<ll~,llb~) (n!2") - ;~ '  /4, .)H, 
.=o r ,  \ ~/2r, / ' 

<[le[l~=) ~ (nt ) (n'2")(2r~)" ( l+a2)ka2"e-a= ' :da  
n =0 "/'t " 

~llq~ll~L 2) Y, ~ (I+A2)kA2"e-X:': dh. (3.19) 
n=O /1. 

Making use of the fact (1 + A2)k-- < 2k-1(1 + A2k), the above integral has the bound 

f (1+ A2)kAZ"e -x:~'; d l ~ - - 2  k-1 ~'r( /1_-~1! r(n- .~- k.-~½) 1 
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Again, by the Stirling formula, it is easy to check that the last series in (3.19) 
converges for each k >  0. This implies that g~,~ c 5¢= (-']k_> 00Wk. 

With an appropriate change of norms, the proof  of  the fact g,,¢ c O ° is 
quite similar, and the convergence g,~,-~ gt., in b ° as e$0 can be verified as in 
Theorem 3.2. [] 

In passing, a few remarks are in order. 

(1) Since the proofs are based on the method of the Fourier transform, the 
above theorems may be generalized to stochastic equations in several 
space-dimensions. This requires the introduction of  the spaces (L2) +, 
(L2) -,  etc., for functionals of  multidimensional Brownian motions. 

(2) Note that, if nt = Bt and c ~ 0 in (3.1) and (3.9), the results of  this section 
reduce to that of  Kuo's  Theorem 2 in [9] and Theorem 1 of Kallianpur 
and Kuo [6]. In addition, qx, t( ) = p ( x - B t ,  et) may be regarded as a 
regularization of the Donsker 's  delta function g ( x - B , )  for e > 0. 

(3) By taking q~ = qJ = 1 and then ~ = qy, t, Theorem 3.3 implies that the first 
two moments of  q~,,t and the first moment  of  qx, t are C°%functions in 
each space variable for t > 0. 

4. Spatially Nonhomogeneous Equations 

To avoid undue notational complication, let us first consider a special case: 

(Ou+ x Ou 1 oZu 
21]0X2' (4.1) 

( u(x, 0) = 

where ~,(x) is the Wiener integral 

L 71t(x) = o'(x, s) dB,, (4.2) 

and u > 0 is a constant. Note that in contrast with (3.1), the product in the random 
drift term 9t" Ou/Ox is now taken in the It8 sense. Let g be Green's  function 
associated with (4.1): 

1 _ ~ 1  x2 ~ (4.3) g(x,t)=p(x,  t)= / ~ e x p  (2 t  J" 

Rewriting (4.1) in an integral form, we get 

L u ( x , t ) = g ( x , t ) -  g ( x - y , t - s )  Ou(y's) Oy o'(y, s) dydB,. (4.4) 

Since we are interested in a generalized solution, the above stochastic integral 
should be interpreted in the sense of Kubo [8]. An obvious procedure for 
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constructing the solution to (4.4) is by an iteration method (see, e.g., [13]). To 
this end, we set 

Uo(X, t)= g(x, t), 

and 

Io u~+l(x, t )=g(x ,  t ) -  g ( x - y ,  t - s )  - -  

for n =  1, 2 , . . . .  

Thereby, we obtain 

u.(x, t )=g(x ,  t)+ ~ (--1)klk(X, t), 
k=l  

where Ik is a 

Ik(x, t )= 

Oun(y,s) 
Oy 

o-(y, s) dy dB~ 

(4.5) 

(4.6) 

Lemma 4.1. Suppose that the function o- is in L°°(R × R+). Then, for each t > 0 
and x c R, the singular stochastic integral In(x, t) given by (4.7) exists as a G.B.F. 
in yg(-n) for n = 1, 2 , . . . .  

Proof. This is an easy consequence of Lemma 2.2. To see this, let 

f l(x,  y; t, s ) = g ( x - y ,  t -  s)o-(y, s), 

f k ( x , y ; t , s ) = g x ( x - - y , t - - s ) o ' ( y , s )  for k = 2 , . . . , n - 1 ,  

and 

f , (x ,  y; t, s) = gx(x - y, t - s)o'(y, S)gx(y, s). 

Condition (B1) is clearly met. Then define F ("3 x,, as in (2.9), or 

F~")r t tn) x , t \  1 , ' ' ' ,  

= [.R" [ g ( x -  xl ,  t -  4)cr(x, 4 ) ] ' ' '  [gx(X._, -  x. ,  t._, - t . )~(x . ,  t.)] 

X g x ( X n ,  tn)  d x l  • " dxnS~ t (  tl  . . . .  , ln) .  (4 .8 )  

Since, referring to (4.3), the integrand in (4.7) is singular in t's, the above 
iterated stochastic integral Ik(X, t) cannot be defined in the usual sense. In fact, 
this has motivated us to define such singular integrals (Definition 2.1) in Section 
2. Based on this definition, we can show that 

k-iterated integral of the form 

( I o f ) ' " ( I o k - ' I ) [ g ( x - x l , t - t l ) O ' ( X l , t l ) ]  

X [g~(x l -x2 .  t , -  t2)cr(x2, t2)]""" [gx(Xk-,--Xk. tk-1-  tk)Cr(Xk, tk)] 

X gx(Xk, tk)(dXl dBq) . . . (dxkdBtk), 

with gx(Y, t)=Og(x' t) (4.7) 
OX x=y 
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Since, for each u~ < u, there exists a > 0 such that (see Lemma 4.2) 

]g~(x, t) I <- at-~/Zp(x, uat), (4.9) 

condition (B2) is satisfied. To verify (B3), we simply take g'(x,  t )=  g(x, t+  e) 
for e > 0. It is straightforward to show ~'(")'~ with g replaced by g~ in (4.8), is ~ x , t  

a regularization of F ~"~ The conclusion now follows from Lemma 2.2. [] x , t  • 

In view of this lemma, the sequence u,(x, t) given by (4.6) is well defined in 
(L2) -. It converges to the generalized solution of equation (4.1), or, equivalently, 
the integral equation (4.4), as asserted by the next theorem. 

Theorem 4.1. I f  cr e L°~(R x R+), then equation (4.1) has a unique generalized 
solution u = qx, t ( B), which admits the following representation: 

qx, r (B)=g(x,  t)+ ~ (-1)"I , (x,  t). (4.10) 
n = l  

For each t > O, the above series converges in (L2) -, uniformly in x over R. 

Proof Consider the regularized version of equation (4.4) in which g is replaced 
by g~, as mentioned above. Then its solution u~(x, t) ~ " = q~,,(B) has, in lieu of 
(4.10), the representation 

e " qx, , (B)=g'(x ,  t)+ L (-1)"I,](x, t), (4.11) 
n = l  

where 

I~,(x, t) = fR ~(")'~' t,) dBt," • •dB, . (4.12) 

By invoking (4.9) and Lemma 2.2 for 0-< e - t and n --- 2, we have 

II I5(x, t)II %'.-"' < 1692( 0 , t)(2A27r3/2t) nn 1/n2[F( n/2)] 3", (4.13) 

where gl(x, t) = p(x, vl t) with 1,, < u, and A = tz 11 cr ]1oo. Again, by Stirling's formula, 
the series with the nth term given by the right-hand side of (4.13) converges for 
each fixed t > 0 (independent of x and e). Also, if u~(x, t) denotes the nth partial 
sum of the series (4.11), then Hu~(x, t)ll~L2) - = [g~(x, t )12+~=,  Ilia(x, t)[l~l,-"'. 
Therefore, q~,, defined by (4.11) converges in (L2) - to the generalized solution 
q~,, as indicated in (4.10). [] 

Now we consider the stochastic parabolic equation 

f Ou+ Lu, t > 0 ,  x~R,  
3u 

- ~  ,~, ( x ) " o x  = 

l u(x, o) = ~(x), 
where 

(4.14) 

32u Ou+ 
Lu=½a(x, t)-~x2+b(x, t)--Ox c(x, t)u, 
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and, without the loss of generality, r/,(x) is taken as the stochastic integral (4.2). 
For, if it has the general form (1.2), the deterministic drift item can always be 
incorporated in the definition of L. 

Suppose L is a regular, strongly elliptic operator such that its coefficients 
satisfy the following conditions: 

(D1) There is a constant v > 0  so that a(x, t)>_ v for all t->0 and x~R.  
(D2) The functions a, b, c are bounded and uniformly HSlder continuous 

on R x R  +. 

Then, by appealing to the theory of parabolic equations, the reduced equation 
of (4.14) (~/,-= 0) has a unique Green's function h(x, y; t, s) with the following 
properties [2, pp. 23-24]: 

Lemma 4.2. Let assumptions (D1) and (D2) be satisfied and let Vl be any constant 
w i t h  0 ~ 1] 1 ( IJ. Then there exists a constant A > 0 such that 

(i) Ih(x, y; t, s)l-< A ( t  - s) -1/2 exp{-(x - y ) 2 / 2 V l ( t  - s)} and 
(ii) I (a /ax)h(x ,  y; t, s)l-< A ( t  - s) -1 exp{-(x - y ) 2 / 2 v x ( t  - s)}, 

for t>  s>O and x ~ R .  

To construct the solution to the problem (4.14), we may proceed as before 
by the method of iteration. Let u(x, t) = qx,,(/~) be such a solution. Then the 
series representation is given by 

ct3 

qx,,(B) = Jo(x, t )+  )~ (-1)"J~(x, t), (4.15) 
n = l  

where 

Jo(x, t) = h(O, x; O, t), 

and, for n -> 1, 

(f/I) (f;1;) J,(x ,  t) . . . .  h(x, Xl ; t, q)[o'(xl, tl)hx(Xl, x2; tl, t2)] 

• "" [o-(x,, t , )hx(x,_~, x, ; t,-a, t,)]hx(0, x, ; 0, t ,)(dXl dB, L) 

• • • ( d x .  d B , . )  (4.16) 

with 

x2; tl, t2) =0-~ h(x l ,  x; q ,  t2)l . . . .  • hx(Xl, 

Define 

G~"):t t , )  

= : t ( q , . . . , G )  f h(x,  xl;  t , q ) [cr (X l ,h )hx (x l , xE;  q , t2)]  
du n 

" " [ o ' ( x ~ , t , ) h x ( x n - l , x ~ ; t , _ l ,  tn)]hx(O, x n ; O , t , ) d X l . . . d x n .  (4.17) 
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Then, by Lemma 4.2 

G(~)tt t.)l<_fl~gl(x, t ) [ ( t l - t 2 ) " "  (tn_l-t~)t~] -1/2 x, t k  1 ~ ' ' ' ,  

x 5~ , (4 , . . . ,  t,), (4.18) 

where 

#. = [ a  24~-~d°+'11 ~ll ~.  
In view of this inequality, it is easy to prove the following theorem. 

Theorem4.2. Supposeconditions (D1) and (D2) aresatisfiedandcr~ L°°(R x~+) .  
Then there exists a unique generalized solution u = qx,,(/~) of equation (4.14), which 
can be expressed in the form (4.15). This series solution converges, for each t > O, 
in (L2) - uniformly in x over g~. 

Proof Because of  the bound (4.18), it should be clear that this theorem can be 
proved in a way parallel to Theorem 4.1. Therefore, the proof  is omitted. [] 

Finally, we would like to make a few comments.  

(1) By comparison with the spatially homogeneous case, we have been unable 
to show the solution of (4.1) as being regular for sufficiently large ~,. This 
is due to the necessary use of  the estimate for the derivative of  Green's  
function given by (ii) in Lemma 4.2, which gives rise to iterated singular 
Wiener integrals. 

(2) In addition, the regularity results similar to Theorem 3.3 are lacking for 
the same reason. However, for Zakai 's  equation, the regularity property 
of  the solution has been shown by applying the Malliavan calculus [11]. 
But, in this case, it could also be proved more simply by the present 
approach,  since the multiple Wiener integrals involved are nonsingular. 

(3) The analysis in this section cannot be extended directly to a multi- 
dimensional problem. This is so because the associated multiple Wiener 
integrals would have a nonintegrable singularity. To overcome this 
difficulty, it is necessary to enlarge Hida 's  class of  G.B.F.s in such a way 
that the kernel in the integral representation admits a generalized 
function. 
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