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F I N I T E  M I N K O W S K I  P L A N E S  IN W H I C H  E V E R Y  

C I R C L E - S Y M M E T R Y  IS A N  A U T O M O R P H I S M  

1. INTRODUCTION 

Our main result is as follows: a finite Minkowski plane in which every circle 
admits an automorphism fixing it pointwise is either a '  Miquelian' plane or a 
plane associated to a non-projective sharply 3-transitive group. 

1.1. DEFINITIONS.  Let M be a set of points provided with a family cg of 
subsets called circles and two other families ~ 1 ,  ~z~2 of  subsets called lines 
(or more precisely ~,~-lines and ~.,~2-lines, respectively). We say that two 
circles are tangent if their intersection is a unique point. The quadruple 
(M, 5e a , &a 2 , ~)  is a Minkowski plane (Heise and Karzel [6]) if the following 
axioms hold: 

(M1) 5r 1 and ~ 2  are partitions o f  M; 
(M2) 
(M3) 
(M4) 

(M5) 
(T) 

every Y l - l ine  meets every ~2-line in a unique point; 
there is a circle containing at least three points; 
through three distinct points, such that no two of  them are on a 
common line, there is a unique circle," 
every circle intersects every line in a unique point," 
qiven a circle C, a point p ~ C and a point p' q~ C, with p and p' not on a 
line, there is one and only one C' through p'; such that 
c c '  = {p}. 

If  a Minkowski plane is finite--i.e, the set of points is finite--all its lines 
and all its circles have the same number of  points q + 1, where q ~> 2 is 
called the order of the plane. Actually, infinite planes, the 'tangency axiom' 
(T) is a consequence of  the preceding conditions (Heise and Karzel I-6], 
Percsy [133). 

Two Minkowski planes M and M'  are called isomorphic if there exists an 
isomorphism from M onto M',  i.e. a one-to-one mapping preserving lines and 
circles. An isomorphism from M on M is called an automorphism of M. 

1.2. Examples o f  Minkowski Planes 

A classical example of Minkowski plane (the ' Miquelian' plane) is given by 
the geometry of a ruled quadric Q in a three-dimensional projective space: 
M is the set of  points of Q, ~ x  and ~ 2  are the two families of lines 
contained in Q, and the circles are the non-degenerate plane sections of Q. 
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In view of this example, we say that a Minkowski plane is embeddable in a 
three-dimensional projective space P if it is isomorphic to a plane 
(M, Y l ,  Lf2, cd), where M is a set of points of P, 5~ and ~ 2  are families of 
lines of P contained in M, and each element of cd is the intersection of M 
and of a plane of P. 

Given a finite field Fq of order q, there is a unique (up to isomorphism) 
Minkowski plane that is embeddable in PG(3, q): this plane is isomorphic to 
the geometry of a ruled quadric in PG(3, q) and will be denoted by Mn(Fq). 
This property is a consequence of Segre's results on ' reguli' [ 16] (Percsy [ 15]). 

By using Benz's method ([1] or [2, p. 296]), 1 a non-embeddable 
Minkowski plane can be obtained from any sharply 3-transitive set of 
permutations, containing the identity, that is not a projective group. For 
instance, there is a Minkowski plane associated with every non-projective 
sharply 3-transitive group. Such a group has degree q = pZm + 1,  where p is 
an odd prime and m a positive integer (Passman [11, p. 261]) and the 
corresponding Minkowski plane will be denoted by Mn(Nq). 2 

According to Pedrini [12], and contrarily to a guess of Heise and 
S6rensen [7], there exists also finite sharply 3-transitive sets of permutation, 
containing the identity, that are not groups? Recently, Wilbrink [18] 
obtained independently a slight generalization of Pedrini's construction. By 
a short and neat proof, he establishes the existence of (at least) one 
Minkowski plane of order p" for each odd prime p and each integer n i> 3, 
which is not isomorphic to Mn(Fq) or Mn(Nq). 

1.3. A Common Description of all known Finite Models 

We give briefly a common description of all known finite Minkowski planes 
in a manner that differs slightly from that of Wilbrink. 

We first introduce the following (right distributive) quasi-field. Let S be 
the multiplication subgroup of all (non-zero) squares of F = GF(q), for q 
odd, and let o- be a non-trivial field automorphism of F. A new multi- 
plication is defined in F by 

xy if y ~ S; 
x o y =  

x~y if y r S. 

The set F, provided with its original addition and the new multiplication o, 
becomes a quasi-field, which is not a field, and which will be denoted by 
Q~. The proof follows easily from Dembowski [3, (4), p. 222], for instance, by 
using the property that S is a subgroup of index 2 and S ~ = S. The particular 
case ~2 = 1 leads to the regular nearfield Nq of rank 2 over its kernel and 

1 Let us recall that in the finite case, Axiom (T) is not needed, so Benz's result applies. 
2 This notation will be explained in 1.3. 
3 Moreover, the geometry called '3-rete'--obtained by Pedrini from such a set--is actually a 
Minkowski plane (Axiom (T) is not needed). 
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odd order q (or N(2, x/~) according to the notation of  Dembowski [3, p. 33]). 
Following Wilbrink [18], we define a set of permutations on F u  {oo} 

(where oo r F), as follows: 
PGL(Qq) = G 1 u (G2~), where G1 = PSL(2, q) and G z = PGL(2, q)\Ga in 

their natural action on F w  {oo}, and r~ is the permutation fixing ~ that 
coincides with a on F. 

We thus obtain a sharply 3-transitive set on F u  {oo} (Pedrini [12] for a 
particular value of  ~ and Wilbrink [18] for the general case). If  Q~ = Nq, we 
obtain the non-projective sharply 3-transitive group of  degree q + 1 
(described in Passman [11, p. 261], for instance). Accordingly, we shall write 
PGL(Fq) instead of PGL(2, q) (here q may be even). 

Now let K, + ,  o be either the field Fq of arbitrary order q, or the regular 
nearfield Nq of rank 2 over its kernel and odd order q, or the (proper) 
quasi-field Qq of odd order q, where a 2 ~ 1. The Minkowski plane Mn(K) 
over K is defined as follows: 

(i) M = / {  x /<, where / s  and c~ r  
(ii) ~ 1  = {{(k, x2) lx  2 e ~'} [ k e g'} 

and ~ 2  = {{(Xl,k) lxl  Eg'} ] k e g ' } ;  
(iii) c# = {{(Xl, x2) lx2 = qS(xl)} ] ~b e PGL(K)}. 

Finally, let us mention a useful description of PGL(K)--or, equivalently, 
of the circles of Mn(K). It is well known that the elements of PGL(Fq) can 
be written in the form x ~-* (ax + b)/(cx + d) (for a, b, c, d e Fq, with 
ad - bc # 0). We generalize this property by considering a natural involutary 
automorphism ct of the multiplicative loop of Q~: for a non-zero a e Qq, 
a ~ is the inverse of a with respect to the multiplication of the associated 
field Fq. Now PGL(Q~) is the set of all permutations q~ of  Q~ w {00} of one 
of the following forms: 

x o a + b ,  if x e  Q~; 
(i) ~b(x)= o% i f x = c ~ ;  

{ ( x + b )  " o a + c ,  i f x e Q ~ - { - b } ;  
(ii) (b(x) = oo, i f x  = - b ;  

c, i f x  = oo; 

where a, b, c e Qq and a ~ 0. 
This description explains better the notation PGL(Q~). Also, by using it, 

one proves immediately that the residual affine plane at (oc, oo) (see 2.1) 
of Mn(K) is a translation plane which can be coordinatized over K. 

1.4. Circle-Symmetries 

There is a natural way to define, in a Minkowski plane, a symmetry with 
respect to each circle C; it is a permutation ac of M, fixing all points of C, 
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and mapping eachp r C on the unique pointp '  r C such that the lines through 
p' meet C in the same points as the lines through p (see Axioms M 1, M2, M5). 
So ~c is an involutary permutation of M, preserving lines, whose set of fixed 
points is C; it is not necessarily an automorphism of  the plane. 

For  the finite Minkowski planes Mn(K) introduced in 1.3, we have the 
following precise result, proved in 2.8: 

T H E O R E M  A. (i) I f  K = Fq or Nq, every symmetry with respect to a circle is 
an automorphism. 

(ii) I f  K = Q~, where ~r 2 r 1, none o f  the symmetries with respect to a circle 
is an automorphism. 

Our main result states that the property involved in Theorem A actually 
characterizes the planes over Fq or Nq (i.e. the planes associated to a sharply 
3-transitive group): 

T H E O R E M  B. A finite Minkowski  plane in which every symmetry with respect 
to a circle is an automorphism is isomorphic to a plane over Fq or Nq. 

Let us note that a non-trivial automorphism of a Minkowski plane fixing a 
circle C pointwise must be the symmetry o- c (Dienst [4, w Theorem B 
can thus be stated in the following way: 

COROLLARY. A finite Minkowski  plane in which every circle admits a non- 
trivial automorphism fixing it pointwise is isomorphic to a plane over Fq or Nq. 

The proof  of  Theorem B is based especially on the Hering-Kantor-Sei tz-  
Shult classification of finite groups with a split BN-pair of rank 1 [-8]. Let us 
recall that, for even order Minkowski planes, there is a stronger result than 
Theorem B (Heise [5], Percsy [13]): an even order plane is isomorphic to 
Mn(Fq) for some even prime power q. But our proof  works also in that case, 
and we did not omit it a priori. Let us also remark that some of our results 
hold for infinite Minkowski planes; this is briefly discussed in 4.9. 

Finally, we list here some information about the group Z generated by all 
symmetries with respect to a circle in a Minkowski plane of finite order q, 
in which all these symmetries are automorphisms. 

T H E O R E M  C. The subset o f  all elements o f  Z stabilizing =.~l and Y 2  is a 
normal subgroup Y. + o f  index 2. It contains a normal subgroup T, isomorphic 
to the direct product T 1 • T2, where Ti is the subgroup of  Z of all elements 
stabilizing every 5~i-line (i = 1, 2); T has index 2 in ~ + or T equals Z + 
according to whether q is odd or even.* 

Moreover, T 1 and T2, acting on an arbitrary 5f  l-line or 5Pz-line, respectively, 
are isomorphic to PSL(2, q) in its usual representation over PG(1, q). 

4 The elements of T (resp. T~) are called translations (resp. ~i-translations) for their remarkable 
properties (see 3.2, 3.3). 
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The orbits o f  the yroups T and E on the set o f  circles cg are the equivalence 
classes with respect to the equivalence relation 9enerated by the tangency 
relation. 5 There are one or two orbits accordin9 to whether q is even or odd. 

2. AUTOMORPHISMS 

2.1. Let  (M, 2 '  1 , s z , cg) be an arbi t rary  Minkowski  plane. The residualplane 
M r with respect  to a poin t  p e M is the set M - (L 1 vo L2), where L1, L a 
are the lines through p, provided with all non-void  subsets K c~ Mp for 
K e  ~ 1  vo ~P2 k..) (~. Such a subset K ~  mp is called a hyperbol of  Mp if K is a 
circle of  M not  containing p ;  it is called a line if K is a circle through p 
or a line of  M (distinct f rom L 1 , L2). More  precisely, if K e 5 ~  vo 2r 
(K :J: L1, L2) , Kc~ Mp is an isotropic line. 

2.2. R E S U L T  (Heise and Karzel  [6]). The residual plane M r at a point p 
o f  a Minkowski  pIane M, provided with its lines, is an affine plane. 

Let us note  that  K n M v and K'  c~ Mp are parallel iff either K and K '  are 
tangent  circles at p or they both  belong to s  for i = 1 or 2. 

2.3. As a consequence of  2.2, each residual M v can be extended to a projective 
plane Mp. Let  us denote  by M p  the ideal line of  M r and by 0% the ideal 
point  o f  the isotropic lines corresponding to s176 of  M (i = 1 or 2). It  is 
easily checked that ,  for each hyperbol  H, H w  {OOl, oo2} is an oval in the 
projective plane Mr-  

2.4. Clearly, every a u t o m o r p h i s m  of  the Minkowski  plane M, fixing a po in tp ,  
induces a coll ineation in Mp (resp. in My) preserving isotropic lines and 
hyperbols  (resp. stabilizing {ool,  OOz} and preserving hyperbols) .  The 
converse is t rue:  

2.5. R E S U L T  (Percsy [15]). A collineation c~ o f  M v, mapping each hyperbol 
on a hyperbol and each isotropic line on an isotropic line, induces an 
automorphism ~ o f  the Minkowski  plane M fixin9 p. 

The p r o o f  is s t ra ight forward;  we only ment ion  how & acts on the lines 
L1, L 2 th rough  p. By Axioms  M1 and M2 there is a na tura l  one- to-one 
mapp ing  a f rom (L a vo L2) - {p} on the set o f i so t rop ic  lines: for every point  
a e L i  - {p}, a ~ is the line L,  e .g~ containing it (i = 1 or 2 m o d  2). Since 

induces a (one-to-one)  mapp ing  on the isotropic lines, we obtain,  by using 
a, a pe rmuta t ion  of  L 1 vo L z, which is precisely the action of  & on this set 
(obviously,  we define ~(p) = p). 

5 Two circles C and C' are equivalent in that sense iff there are circles C1, ..., C, such that 
C I=C,C~=C'andC iistangentto C~+1 f o r i = l , . . . , n - 1 .  
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2.6. Let us denote by Aut(M) the full automorphism group of an arbitrary 
Minkowski plane M. We use the following notation: 

(i) Aut+(M) (resp. Au t - (M)  is the set of all automorphisms of M 
preserving (resp. interchanging) ~1  and 5(' 2. 

(ii) Auto(M) (for i = 1 or 2) is the subgroup of Aut +(M) of all auto- 
morphism stabilizing each ~~ 

Clearly, Aut+(M) is either a normal subgroup of i~dex 2 in Aut(M) or 
Aut(M) itself. 

2.7. PROPOSITION. In a Minkowski plane M, the following properties hoM 
for i= 1 and 2: 

(i) Aut/(M) is a normal subgroup of Aut+(M); 
(ii) /f  c~ ~ Auti(M ) fixes a point x, it fixes the 5Pi+ :line through x 

pointwise (i =- 1, 2 mod 2); 
(iii) Auti(M) acts semi-regularly on ~;6 
(iv) a non-trivial element of Auti(M ) fixes at most two points on each 

~ i-line ; 
(v) each element of Aut l (M ) commutes with each element of Aut2(M). 

Proof The proof is straightforward. For (iv) and (v), we use the 
property that an ~EAuti(M), fixing a point p, induces a central 
collineation ~ in Mp of centre ~ i .  

2.8. Proof of Theorem A. According to the notations of 1.3, let C be a circle 
y = q~(x), where r ~ PaL(K). Clearly, the symmetry o- c with respect to C 
is the mapping 

(xl, xz) ~ (r r (1) 

where r 6 PGL(K). 
By Benz [2, Satz 1.2, p.297], (1) is an automorphism iff for all 
~ PaL(K), 

r162  E PaL(K). (2) 

The latter condition is obviously satisfied if K = Fq or Nq for PGL(K) is 
then a group. If  K = Q~, it is easily checked that it is not satisfied (we use 
the definition of PGL(Q~) in 1.3 and the property that ~Gi 6-I  = a i for 
i =  1,2). 

3. TRANSLATIONS 

The following result shows the importance, for our problem, of a certain kind 
of automorphism, called translation (Definition 3.2). The study of these 

6 As usually, this means that, given C, C' in c~, there is at most one element of Aut,(M) 
mapping C on C'. In other words, only the identity stabilizes a given circle. 
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automorphisms leads to Theorem 3.6, which is proved by using the 
Hering-Kantor-Sei tz-Shult  classification [8]. 

3.1. RESULT (Dienst [4]). Let  M be a (not necessarily finite) M i n k o w s k i  
plane in which every symmetry  with respect to a circle is an automorphism; 
denote by E the group generated by all circle-symmetries. Then, for  all p ~ M,  
Mp is a translation plane and every translation o f  MI, induces (in the sense 
of  2.5) an automorphism o f  M contained in E. 

The second part of  this result does not appear explicitly in [4], but the 
author uses a theorem of  Pickert which implies the entire property 3.1. 

3.2. DEFINITION.  An automorphism c~ of an (arbitrary) Minkowski plane 
M is called a translation if there exists a point p, fixed by e, such that c~ 
induces a translation in Ml,. A translation belonging to Auti(M) is an 
5fi-translation (i = 1, 2). 

3.3. PROPOSITION. For an automorph&m ~, the following properties are 
equivalent (i = 1, 2 mod 2): 

(i) cr is an 5~i-translation; 
(ii) 7 f i xes  a point q and induces a translation in Mq f i x ing  ~ i ;  

(iii) the f i x e d  points o f  ~ are all the points on a line K 6 &~ 
(iv) cr is in Auti(M ) and there is an 5 f  i-line admitting a unique f i x e d  point p. 
Proof. (i) ~ (ii). This is a consequence of Definition 3.2. 
(ii) =~ (iii). ~ stabilizes each 5~ not containing q; so the line L i ~ 5e i 

through q is also fixed and the line Li+l ~ ~ 1 through q must be fixed 
pointwise (Axiom M2). There are no fixed point in Mq, nor on L~ - {q} 
(for no L#i+l-line, except Li+l ,  is fixed, see 2.7(ii)). 

(iii) ~ (iv). Since K is fixed, ~ belongs to Aut+(M). Consequently every 
~i-l ine must be fixed, since it contains a unique fixed point. 

(iv) ~ (i). In/~rp, u induces a central collineation of  centre oo~ and fixing 
~ i  + 1. This collineation must be a translation of Mp otherwise there would be 
an L,q'~ + : l ine  pointwise fixed, meeting L in a second fixed point (2.7(ii)). 

3.4. COROLLARY.  Let  p be a point and Li E Y i  a line through p such that, 
for  all a, b ~ L i - { p}, there exists an ~i- translat ion f ix ing p and mapping a on 
b. Then the set "Y-i o f  all ~i- translat ions f ix ing p is a group acting regularly on 
L i - {p}. Moreover,  i f  the hypotheses hold for  i = 1 and i = 2, the groups 
are abelian. 

Proo f  Note that by 3.3(iii), all elements of J-i fix a point q not on L i. The 
first assertion follows thus from 3.3(ii) and from similar properties of  
translations in affine planes (Dembowski [3, p.131 and no.15, p.122]). 

The second part is a consequence of 3.3(ii) (where q = p) and Dembowski 
[3, p.131 and no . l l ,  p.121]. 
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3.5. Let us note that, for allp, a, b ~ M, such that a, b are not on a line through 
p, there is at most one translation fixing p and mapping a on b. In view of 
Definition 3.2, this follows from a similar property of translations in affine 
planes (Dembowski [3, p.131 and no.15, p.122]). 

According to 3.1, we are interested in Minkowski planes having all possible 
translations: 

3.6. THEOREM.  Let M be a Minkowski  plane such that for all a, b, p e M, 
with a and b not on a line through p, there exists a translation fixing p and 
mappin 9 a on b. Then, the automorphism group generated by all translations of  
M is the normal subgroup T 1 • T2 of Aut(M), where T~ denotes the group 
generated by all ~i-translations, for i = 1, 2. 7 

Moreover, if M has finite order q, then q is a prime power and for 
i =  1, 2, T~, as a permutation group acting on an arbitrary 5r is 
isomorphic to PSL(2, q) in its usual representation over a projective line. 

3.7. LEMMA. The conjugate, in Aut(M), of  an 5Pl-translation is an 5f  s- 
translation, for some j. 

Proof. This follows immediately from Proposition 3.3(iii) which provides 
an intrinsic geometric characterization of ~i-translations. 

3.8. Proof  o f  the First Part o f  3.6. By 3.2 and the well-known properties of 
translations in affine planes (see, for instance, Dembowski [3, p. 131 ]), every 
translation of M is a product of an 5~ 1- and an 5~z-translation. Consequently, 
the group generated by all translations must be TI.  T z (see also 2.7(v)). 
Moreover, T 1 and T 2 are normal subgroups in Aut+(M) (by 3.7 and 2.7(i)) 
and, clearly, 7"1 c~ T 2 is the identity. Thus T 1 �9 T 2 is actually a direct product 
and, by 3.7, must be normal in Aut(M). 

The proof  of the second assertion of  Theorem 3.6 is based on the following 
part of the Hering-Kantor-Seitz-Shult  classification of groups with a split 
BN-pair of rank 1. It is a consequence of Lemmas 3.10 to 3.13. 

3.9. RESULT (Hering-Kantor-Seitz [8]). Let G be a finite group doubly 
transitive on a set f~, such that for each a e ~ ,  the stabilizer G a of a has a normal 
subgroup regular on f~ - {a}. 

Then G has a normal subgroup which acts on f~ as one o f  the following groups 
in its usual 2-transitive representation on q § 1 points." 

(I) a sharply 2-transitive group; 
(II) PSL(2, q); 

7 /-1 • 7-2 denotes a direct product. 
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(III) Sz(x// q); 

(IV) PSU(3, ,~/q)," 
(V) a group of  Ree type. 

Moreover, each of  these groups satisfies the above hypotheses. 

3.10. LEMMA. The group Tz, defined in 3.6, acting on an arbitrary Sly-line L, 
is isomorphic to one of  the groups listed in 3.9 (i = 1 or 2). 

Proof By Corollary 3.4, the subgroup of all the ~- t rans la t ions  fixing a 
given point p on L is regular on L - {p}. Moreover, it is normal in the 
subgroup of T i stabilizingp, for, by 3.3(iv), it is the set of all the elements of T i 
fixing only the pointp. Moreover, T~ is clearly doubly transitive, and result 3.9 
therefore applies: T i contains a normal subgroup Nwhich is one of the groups 
(I)-(V). 

Since each of these groups satisfies the hypothesis of 3.9, for all p, N~ 
contains a normal regular subgroup S(p). The semi-regularity of S(p) implies 
that it contains only ~i-translations (Proposition 3.3(iv)) and its transitivity 
implies that every ~- t rans la t ion  fixing p belongs to it (Corollary 3.4). 
Therefore all s162 are in N. 

Since T i is generated by these translations, Ti must be N. 

3.11. LEMMA. T i cannot be (V). I f  it is (IV), it is also (I). 
Proof Tz contains no element fixing more than two points (Proposition 

2.7(iv)). Therefore, it cannot be a Ree-type group (Ward [17, (5), p. 63]). Nor 

can it be PSU(3, ,yq), unless it be PSU(3, 2), which is sharply 2-transitive (see, 
for instance, Huppert  [-9, no. 10.12, p. 242 and no. 10.14, p. 245]). 

3.12. LEMMA. T~ is not (III). 

Proof Assume that T~ is isomorphic to Sz(xfq); then q must be even. 
Consequently, all ~- t ransla t ions  have order 2: this follows from 3.1 and 
from the well-known property that, in a translation plane, all translations 
have the same prime order (see, for instance, Dembowski [-3, no. 13, p. 190]). 

Therefore, the group S of  all ~i-translations fixing a given point p on L, 
is a 2-group. Since S is regular on L - {p} (Corollary 3.4), its order equals 

the order q of a 2-Sylow subgroup in Sz(x/-a ) (Lfineburg [10, p. 26]). Then S 
is actually a 2-Sylow, and its centre must be of  order x/q (Liineburg [10, 
(4.1.b), p. 26]). This is a contradiction, for S is abelian by Corollary 3.4. 

3.13. LEMMA. Let M o be a finite Minkowski plane and assume that 
Auti(Mo) (for i = 1 or 2) contains a subgroup G that is sharply 2-transitive 
on an 5f i-line L. Then M o is either Mn(F2) or Mn(F3) and G, acting on L, 
is isomorphic to PSL(2, 2) or PSL(2, 3), resp., in their usual 2-transitive 
representation. 
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Proof We may assume i = 1. Since G is sharply 2-transitive, one can 
associate to it an affine plane A by the following well-known method 
(Dembowski I-3, p. 140]): 

(i) A is the set L x L; 
(ii) two parallel classes of lines of A are given by the sets {a} x L and 

L x {b}, for a,b~L; 
(iii) all other lines are subsets {(x ~, x) [ x ~ L}, for some c~ s G: 
We make use of another well-known method (Benz [2, p. 296]) to identify A 

with the set of  points of Mo. Let C be a circle; a point x e Mo is associated 
to the point (a, a') E A obtained as follows: a (resp. a') is the intersection of L 
with the line through x (resp. x') meeting it, where x' is the unique point 
on C such that x and x' are on a lin6 riot intersecting L. Thus the lines 
{b} x L and L x {b'}, for b, b' ~ L, coincide with the lines ofMo,  and all other 
lines of  A correspond to the circles of Mo that are in the orbit of C under G. 
The latter assertion follows from the hypothesis that G is contained in 
AUtl(Mo). 

Let p be a point not on C. Since A is an affine plane of  order q § l, 
there are q circles through p, besides the ~ - l i n e s  through it, that coincide 
with (affine) lines of  A. Any two of them meet only in p, and only one of  
them is parallel to C (as a line of A). Thus we get q - 1 circles, pairwise 
tangent at p, any of  which meet C in a unique point. 

Now consider the projective plane (Mo)v of order q (see 2.3). Ccorresponds 
to an oval in this plane, admitting exactly q - 1 tangent lines through a point 
on (Mo) ; .  By a result of Qvist (see Dembowski [3, no. 23, p. 148]), q - 1 
must be less than 3; therefore, either q = 2, or q = 3. 

In these cases, M o is isomorphic to Mn(F2) or Mn(F3), resp. This is a 
consequence from the unicity of the Minkowski planes of order 2 and 3: the 
number of  circles in a Minkowski plane is (q + 1)q(q - I) (Heise and Karzel 
[6]) and the number of 'possible circles' (i.e. subsets of q + 1 points meeting 
every line in a unique point) is (q + 1)!. The two numbers are equal i fq  = 2 
or 3. Moreover, any sharply 2-transitive group acting on three or four points 
is isomorphic to the symmetric group on three points or the alternating group 
on four points. These groups are isomorphic, respectively, to PSL(2, 2) and 
PSL(2, 3). 

It is easily checked that both groups may actually happen as auto- 
morphisms groups of Minkowski planes in the way described in our 
Lemma 3.13. 

4. PROOF OF T H E O R E M S  B A N D  C 

4.1. We need the following result, which is a corollary, in the finite case, 
of a characterization of Minkowski planes over a Tits nearfield (Percsy 
[14, Lemma 2 and Result 1]). 
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4.2, R E S U L T  (Percsy [14]). Let  M be a finite M i n k o w s k i  plane and let i be 
either 1 or 2. I f  Auto(M) is transitive on the set o f  circles, then M is 
isomorphic to Mn(Fq) or Mn(Nq). 

P r o o f  Actually,  the p r o o f  of  this par t icular  case does not  appea r  in [14];  
but  as a consequence o f  [14, L e m m a  2] and of  Benz [2, p. 299~, such a 
plane is associated to a f inite 'sharply 3-transitive group.  Thus,  in view o f  1.3, 
it must  be either Mn(Fq) or mn(Nq).  

4.3. F r o m  now on, let (M, ~ x ,  ~q~2, cg) be a finite Minkowsk i  plane in which 
every circle-symmetry is an automorphism. By 3.1 and 3.6, Aut i (M)  (for 
i = 1 and 2) contains  a subgroup  T~ isomorphic ,  as a pe rmuta t ion  g roup  
acting on an arb i t ra ry  ~ i - l ine ,  to PSL(2,  q), where q equals the order  of  M.  

I t  is well known tha t  PSL(2,  q) has order  e~, where c~ = (q + 1)q(q - 1) and 
e is either 1 or �89 according to whether  q is even or odd. Since ~ is also 
the n u m b e r  o f  circles in M (Heise and Karzel  [63 or Percsy [13]), we can 
deduce the following f rom 2.7(iii): if  q is even, T i acts regularly on cg; if q is 
odd,  Ti has two orbits  on cg of  length cq2. In the even case, Theo rem B is a 
consequence of  4.2. 

4~ Accordingly,  we m a y  suppose q odd. Then,  it is easily shown that  T 1 
and T2 have the same orbits  on cg. Fo r  if there is an 5e~-translation f rom a 
circle C on a circle C' ,  by 3.3(ii), 3.3(iii) and 2.2, C and C '  are tangent ;  the 
converse follows f rom 3.1 and 3.3(ii). Consequent ly ,  C and C '  are in the same 
orbi t  under  T i iff there are C1 . . . . .  (7, ~ cg, such tha t  C 1 = C, C, = C '  and 
C~ is tangent  to Ci+ 1 for i = 1 . . . .  , n - 1. 

Let cg I , (~2 be the same orbits  o f  T 1 and T a and let U be a given circle 
in (gl. For  every circle C, we define two pe rmuta t ions  ~c and c~ c o f  M:  

(i) if x e U, ~C(x) is the intersection of  C and the Sz-l ine through x 
(i = 1, 2 m o d  2); 

(ii) if xq~U, the 5r through x meets  U in y; eC(x) is the 
intersection of the ~q~ th rough  x and the s ~-line th rough  eC(y). 

4.5. L E M M A .  (i) For any C E cg, i f  c~ c maps every circle on a circle, then it 

belongs to Auti(M).  
(ii) I f  C ~ cg 1 , ~c belongs to Ti. Conversely, every c~ ~ T i is the mapping ~i D, 

where D = U ~. 
(iii) For any C, C',  the mappings ~c, and :r commute.  
(iv) For any C, C',  ~C(c') = ~C'(c). 
(v) For any C~Cg: c c _  c c s ~10~2 - -  ~2~1  = tTCff U. 

Proof. (i) By definition, ~c stabilizes every Wg-line and maps  an ~g+  : l i n e  
on an ~ i  + l-line. 

s According to 1.4, a v and a c denote the symmetries with respect to U and C. 
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(ii) By 2.7(iii), ec must  be the member  of  T i that  maps  U on C. 
(iii) I f x  is a point,  x 1 = eC(x) is on the W~-line th rough  x and x 2 = eC'(x) 

is on the L~z-line through x. Since ec maps  an ~ i + l - l i n e  on an ~ i+ l - l i ne ,  
=  f'(x0. 

(iv) This follows f rom (iii), for  

= = = 

(v) Let  x be a point  and let x' ,  x" denote  O-u(X ) and O'eav(x ) respectively. 
Fur thermore ,  let u~ and c~ be the intersections of  U and C, respectively, 
with the ~ i - l ine  through x '  (i = 1, 2). (All these points  need not  be distinct.) 

Clearly, ~C(ui) -- c i. Since x = av(x') ,  the point  y = ~C(x) is the intersection 
of  the ~x - l i ne  L 1 th rough  x and the 5ez-line L 2 th rough  cx, and L 1 contains 
u2. Similarly, x" = ~rc(X' ) implies that  x" is on L~ and on the ~ea-line through 
e 2. Also x" = ~2C(y), for c 2 = 0~f(b/2) ; therefore,  ~2~1C C = O.C~TU" 

The remaining par t  o f  (iv) follows f rom (iii). 

4.6. L E M M A .  For any C ~ cg 2, ot c maps every circle on a circle. 
Proo f  (1) We claim that  ec maps  cg~ o n t o  (~2 o9 Let us prove  this for i = 1 ; 

the second case is similar. I f  D e cg t , e~ is an au tomorph i sm ( L e m m a  4.5(ii)) 
and e C ( D ) =  e~(C) by 4.5(iv). So eC(D) is a circle. Conversely,  for each 
E e (~9 2 there is an e ~ T 2 mapp ing  C on E (see 4.4). But e = ~ for some 
D e r (4.5(ii)) and E = e~(C) = elC(D) by 4.5(iv). 

(2) N o w  let D be an element of  cg 2" we have elC(D) = ~2~1(~2)C C C -  I(D) 
(by 4.5(iii)). But ( e c ) - t ( D )  is a circle o f  Cgl (by (1)), and c c ~ z ~  = acav is an 
a u t o m o r p h i s m  (4.5(iv)), so eC(D) must  be a circle. One proves  similarly that  
e2 c maps  cg 2 on cg 1 . 

4.7. End o f  Proo f  o f  Theorem B. I t  follows f rom 4.6, 4.5(i) and 4.5(ii) that  
all mappings  ee defined in 4.4 are elements of  A u h ( M ) .  Therefore,  result 4.2 
applies. 

4.8. Proo f  o f  Theorem C. (i) First  we note that  Z + is the set o f  all products  
o f  an even n u m b e r  o f  circle-symmetries.  I t  is therefore a no rma l  subgroup  
of  index 2 in Z. 

(ii) By 3.1 and 3.6 there is a normal  subgroup  T = T 1 x T2 in Y~ such that  
T~ is i somorphic  to PSL(2,  q) and is contained in Auto(M). 

(iii) Given two circles C and U, we have 

C C 
~10~2 ~"  O'cO'u~ 

where c c e l ,  52 are the mappings  defined in 4.4. For  odd order  planes this 

9 The  proper ty  tha t  e l  is ' o n t o '  is obvious  here  since the p lane  is finite, bu t  in view o f  the  
general izat ion in w 5, we prove  this l e m m a  wi thout  the finiteness a s sumpt ion .  
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follows from Lemma 4.5(v); the proof  4.5(v) also applies to even order planes 
without any change. 

(iv) If  the order of the plane is even, Ti is transitive on cs (by 4.3) and it 
must be equal to Auti(M ) (see 2.7(iii)). Thus, ~c is in Ti for every C ~ cg and, 
by (iii) and (i), T coincides with s Theorem C is now obvious. 

(v) From now on, suppose that the plane has odd order. By 4.7, Auto(M) 
is transitive on cg. So T i has index 2 in it (see 4.3 and 2.7(iii)). It follows from 
4.5(ii), 4.6 and 4.5(i) that, for any C ~ cg, ~1~2c c belongs to T = T 1T 2 w T 1. T~,* 
where T* = Auto(M) - T i. Clearly, T is a group, which contains T as a 
subgroup of  index 2; by (i) and (ii), T = E+. Moreover, this implies that 
E + c~ Auti(M) = Ti, i.e. Ti is the set of all the elements of E stabilizing 
every ~cl ine .  

(vi) By 4.4 we know that T has two orbits cgl, (~2 o n  (~. Since cgl, cg z 
are equivalence classes with respect to the equivalence relation generated by 
th e tangency (4.4), they are sets of imprimitivity of Aut(M). But a symmetry 
~c, for C e cg~ for instance, fixes C, and thence, preserves cg~ and ~g2- 
Therefore Y is not transitive on cg, and this ends the proof. 

5 .  W H A T  ABOUT I N F I N I T E  M I N K O W S K I  PLANES 9. 

The proof  of Theorem B is based on the existence of sufficiently many 
translations (result 3.1) and on the characterization of  Minkowski planes 
associated to sharply 3-transitive groups as planes in which Auti(M) is 
sufficiently large (Theorem 4.2). Both results hold for infinite Minkowski 
planes. 

The crucial step, in the finite case (see 3.6), is to prove that the translations 
actually generate a 'half '  of  the group needed in 4.2. Unfortunately, only the 
first part of Theorem 3.6 is valid in general; clearly, the construction of 
PSL(2, q) is not. But Lemmas 4.5 and 4.6 apply also to infinite planes; 
therefore our proof  holds if we add the following axiom, which enables us to 
avoid the second part of 3.6: 

T H E O R E M  D. Let M be a (possibly infinite) Minkowski plane in which every 
circle-symmetry is an automorphism. Assume that there are at most two 
equivalence classes with respect to the equivalence relation generated by the 
tangency relation. Then M is isomorphic to a Minkowski plane associated to a 
sharply 3-transitive group. 

In other words, M is a well-known plane: it can be described by means 
of coordinates over a Tits nearfield in a way very similar to 1.3 (see Percsy [14] 
or 1-15]). 

Let us note finally that the hypotheses of Theorem D actually occur in 
infinite Minkowski planes: the number of the above-mentioned equivalence 
classes of Mn(K) is one if K is, for instance, a perfect field of characteristic 2 
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(this fol lows f r o m  c o n d i t i o n  (OT)  in  Percsy [13, T h e o r e m  4]) a n d  two if  K is 

the field o f  real  n u m b e r s .  
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