J. A. THAS

OVOIDS AND SPREADS OF FINITE CLASSICAL POLAR SPACES

ABSTRACT. Let P be a finite classical polar space of rank $r, r \ge 2$. An ovoid O of P is a pointset of P, which has exactly one point in common with every totally isotropic subspace of rank r. It is proved that the polar space $W_n(q)$ arising from a symplectic polarity of $PG(n, q)$, n odd and $n > 3$, that the polar space $Q(2n, q)$ arising from a non-singular quadric in *PG(2n, q), n* > 2 and *q* even, that the polar space $Q^-(2n + 1, q)$ arising from a non-singular elliptic quadric in $PG(2n + 1, q)$, $n > 1$, and that the polar space $H(n, q^2)$ arising from a non-singular Hermitian variety in $PG(n, q^2)$, *n* even and $n > 2$, have no ovoids.

Let S be a generalized hexagon of order n (≥ 1). If V is a pointset of order $n^3 + 1$ of *S*, such that every two points are at distance 6, then *V* is called an ovoid of *S*. If $H(q)$ is the classical generalized hexagon arising from $G_2(q)$, then it is proved that $H(q)$ has an ovoid iff $Q(6, q)$ has an ovoid. There follows that $Q(6, q)$, $q = 3^{2h+1}$, has an ovoid, and that $H(q)$, q even, has no ovoid.

A regular system of order m on $H(3, q^2)$ is a subset K of the lineset of $H(3, q^2)$, such that through every point of $H(3, q^2)$ there are $m (> 0)$ lines of K. B. Segre shows that, if K exists, then $m = q + 1$ or $(q + 1)/2$. If $m = (q + 1)/2$, K is called a hemisystem. The last part of the paper gives a very short proof of Segre's result. Finally it is shown how to construct the 4-(11, 5, 1) design out of the hemisystem with 56 lines ($q = 3$).

1. OvoiDs AND SPREADS

Let P be a finite classical polar space of rank (or index) r, $r \ge 2$ [3]. An ovoid O of P is a pointset of P , which has exactly one point in common with every totally isotropic subspace of rank r . A spread S of P is a set of maximal totally isotropic subspaces, which constitutes a partition of the pointset.

We shall use the following notation:

- $W_n(q)$ the polar space arising from a symplectic polarity of *PG(n, q), n* odd;
- $Q(2n, q)$ the polar space arising from a non-singular quadric O in *PG(2n, q);*
- $Q^+(2n+1, q)$ the polar space arising from a non-singular hyperbolic quadric Q^+ [7] in *PG*(2*n* + 1, *q*);

 $Q^{-}(2n + 1, q)$ the polar space arising from a non-singular elliptic quadric Q^{-} [7] in *PG*(2*n* + 1, *q*);

 $H(n, q^2)$ the polar space arising from a non-singular Hermitian variety H [7] in *PG(n, q²)*.

The following results are known:

(a) $W_n(q)$, *n* odd, has always a (regular) spread (the proof given in [16] for $n = 5$, extends to any odd *n*). $W_3(q)$ has an ovoid iff q is even [19]; every ovoid of $W_3(q)$, q even, is an ordinary ovoid of $PG(3, q)$ and every ordinary ovoid of $PG(3, q)$, q even, is an ovoid of some $W_3(q)$ [18].

(b) $O^+(3, q)$ has spreads and ovoids (trivial). Since $O(4, q)$ is the dual of $W_3(q)$ [18], the polar space $Q(4, q)$ has always an ovoid, and has a spread iff q is even. $Q^{-}(5, q)$ has no ovoids [2] (see also Section 7). Since $Q^{-}(5, q)$ is the dual of $H(3, q^2)$ ([1], [20]) the polar space $Q^{-}(5, q)$ has always spreads (see (c)). $Q^+(5, q)$ has always ovoids (if we consider Q^+ as the Klein quadric, these ovoids correspond to the ordinary spreads of *PG(3, q)).* $Q^+(7, q)$ has a spread [25], from which it easily follows (by triality) that $Q^+(7, q)$ has an ovoid. $Q^+(4n+1, q)$ has no spreads [8]. $Q(2n, q), Q^-(4n + 1, q), Q^+(m, q)$ and $Q^-(m, q), q$ even, m odd and $m \neq 4n$ $+ 1$, have always spreads [8].

(c) $H(3, q^2)$ has ovoids (any Hermitian curve on H is an ovoid of $H(3, q^2)$). Since $H(3, q^2)$ is the dual of $Q^-(5, q)$ ([1], [20]), the polar space $H(3, q^2)$ has no spread (see also Section 7).

We shall frequently use the following theorem $[17]$:

The only pointsets of PG(m, q), m > 2, having exactly 1 or n (> 1) distinct points in common with every hyperplane and having one point in common with at least one hyperplane, are the lines of $PG(m, q)$ and the (ordinary) *ovoids of PG(3, q).*

2. THE POLAR SPACES $Q(2n, q)$, q EVEN, AND $W_n(q)$

THEOREM. $W_n(q)$, *n odd and n* > 3, has no ovoid.

Proof. Suppose O is an ovoid of $W_n(q)$, n odd and $n > 3$. We consider the intersection of O and a hyperplane $PG(n-1, q)$ of $PG(n, q)$. Let x be the image of $PG(n-1, q)$ with respect to the symplectic polarity π defining $W_n(q)$ (x is a point of $PG(n-1, q)$). Suppose $x \in O$ and assume there is a point $y \in O$, $y \in PG(n-1, q)$, $x \neq y$. There is a maximal totally isotropic subspace containing x and y, a contradiction since \hat{O} is an ovoid. So $|PG(n-1, q) \cap O| = 1$. Next we suppose that $x \notin O$, and let $y \in O \cap$ $PG(n-1, q)$ (y exists since any maximal totally isotropic subspace contained in $PG(n-1, q)$, i.e. containing x, has one point in common with O). Then there is a maximal totally isotropic subspace containing x and y . Now we count in two ways the number of ordered pairs (maximal totally isotropic subspace R contained in $PG(n-1, q)$, $y \in R \cap O$). Then we obtain: number of maximal totally isotropic subspaces containing x (i.e. contained in $PG(n-1, q) = |PG(n-1, q) \cap O| \times$ (number of maximal totally isotropic subspaces containing x and y, $y \in O \cap PG(n-1, q)$). Hence $|PG(n-1, q) \cap O| =$ (number of maximal totally isotropic subspaces of a $W_{n-2}(q)/($ number of maximal totally isotropic subspaces of a $W_{n-4}(q) = (1 + q)(1 + q^2) \ldots$ $(1 + q^{(n-1)/2})/(1 + q)(1 + q^2) \dots (1 + q^{(n-3)/2}) = 1 + q^{(n-1)/2}$. So we have always $|PG(n-1, q) \cap O| = 1$ or $1 + q^{(n-1)/2}$, and there is at least one

hyperplane for which $|PG(n-1, q) \cap O| = 1$. From Section 1 it follows that $n = 3$, a contradiction.

COROLLARY. *The polar space* $Q(2n, q)$ *,* $n > 2$ *and q even, has no ovoids.*

Proof. Suppose O is an ovoid of $Q(2n, q)$, $n > 2$ and q even. Let p be the nucleus [14] of Q and let $PG(2n - 1, q)$ be a hyperplane which does not contain p. If we project $Q(2n, q)$ from p onto $PG(n - 1, q)$, then there arises a polar space $W_{2n-1}(q)$, and the projection of O is an ovoid of $W_{2n-1}(q)$, a contradiction.

3. THE POLAR SPACE $Q^{-}(2n + 1, q)$

THEOREM. $Q^-(2n+1, q)$, $n > 1$, has no ovoid.

Proof. Suppose O is an ovoid of $Q^-(2n+1, q)$, $n > 1$. We consider the intersection of O and a hyperplane $PG(2n, q)$ of $PG(2n + 1, q)$. Let x be the pole of $PG(2n, q)$ with respect to the quadric Q^- . Suppose $x \in O$ (then $x \in PG(2n, q)$ and assume there is a point $y \in O$, $y \in PG(2n, q)$, $x \neq y$. Then there is a maximal totally isotropic subspace containing x and y , a contradiction since O is an ovoid. So $|PG(2n, q) \cap O| = 1$. Next we suppose that $x \notin O$, $x \in Q^-$ (then $x \in PG(2n, q)$). Now we count in two ways the number of ordered pairs (maximal totally isotropic subspace R contained in *PG(2n, q),* $y \in R \cap O$ *).* Then we obtain: number of maximal totally isotropic subspaces containing $x = |PG(2n, q) \cap O| \times$ (number of maximal totally isotropic subspaces containing x and $y, y \in O \cap PG(2n, q)$. Hence $|PG(2n, q) \cap O|$ = (number of maximal totally isotropic subspaces of a $Q^-(2n-1, q)$ /(number of maximal totally isotropic subspaces of a $Q^-(2n-3, q) = \prod_{i=2}^n (q^i + 1)/\prod_{i=2}^{n-1} (q^i + 1) = q^n + 1$. Finally, let $x \notin Q^-$. Then $Q^- \cap PG(2n, q)$ is a non-singular quadric Q in $PG(2n, q)$. So $|PG(2n, q) \cap O|$ = (number of maximal totally isotropic subspaces of $Q(2n, q)$ /(number of maximal totally isotropic subspaces of $Q(2n, q)$ containing a given point) = $\prod_{i=1}^{n} (q^{i} + 1)/\prod_{i=1}^{n-1} (q^{i} + 1) = q^{n} + 1$. So we have always $|PG(2n, q) \cap O| = 1$ or $q^{n} + 1$, and there is at least one hyperplane for which $|PG(2n, q) \cap O| = 1$. From Section 1 it follows that $n = 1$, a contradiction.

4. THE POLAR SPACE $H(n, q^2)$, *n* even

THEOREM. $H(n, q^2)$, *n* even and $n > 2$, has no ovoid.

Proof. Suppose O is an ovoid of $H(n, q^2)$, *n* even and $n > 2$. We consider the intersection of O and a hyperplane $PG(n - 1, q^2)$ of $PG(n, q^2)$. Let x be the image of $PG(n-1, q^2)$ with respect to the unitary polarity π defining H. Suppose $x \in O$ (then $x \in PG(n-1, q^2)$) and assume there is a

point $y \in O$, $y \in PG(n-1, q^2)$, $x \neq y$. Then there is a maximal totally isotropic subspace containing x and y, a contradiction since O is an ovoid. So $|PG(n-1, q^2) \cap O| = 1$. Next we suppose that $x \in H$, $x \notin O$ (then $x \in PG(n-1, q^2)$). Now we count in two ways the number of ordered pairs (maximal totally isotropic subspace R contained in $PG(n-1, q^2)$, $y \in R \cap O$. Then we obtain: number of maximal totally isotropic subspaces containing $x = |PG(n-1, q^2) \cap O| \times$ (number of maximal totally isotropic subspaces containing x and $y, y \in O \cap PG(n-1, q^2)$). Hence $|PG(n-1, q^2) \cap O|$ $=$ (number of maximal totally isotropic subspaces of a $H(n-2, q^2)$)/(number of maximal totally isotropic subspaces of a $H(n-4, q^2) = (q^3 + 1) \times$ $(q^{5}+1)...(q^{n-1}+1)/(q^{3}+1)(q^{5}+1)...(q^{n-3}+1)=q^{n-1}+1$. Finally let $x \notin H$ (then $x \notin PG(n-1, q^2)$). Then $H \cap PG(n-1, q^2)$ is a non-singular Hermitian variety of $PG(n-1, q^2)$. So $|PG(n-1, q^2) \cap H| =$ (number of maximal totally isotropic subspaces of $H(n-1, q^2)$ /(number of maximal totally isotropic subspaces of $H(n-1, q^2)$ containing a given point) = $(q + 1)(q^3 + 1)...(q^{n-1} + 1)/(q + 1)(q^3 + 1)...(q^{n-3} + 1) = q^{n-1} + 1.$ So we have always $|PG(n-1, q^2) \cap O| = 1$ or $q^{n-1} + 1$, and there is at least one hyperplane for which $|PG(n - 1, q^2)| \cap O| = 1$. From Section 1 and $n > 3$ follows a contradiction.

5. THE POLAR SPACES $Q(2n, q)$, q ODD, $H(n, q^2)$, n ODD, AND $Q^+(2n+1, q)$

Concerning ovoids we do not have an existence or non-existence theorem in the cases of the polar spaces $Q(2n, q)$ $(n > 2)$, q odd, $H(n, q^2)(n > 3)$, *n* odd, and $Q^+(2n+1, q)(n > 3)$. We only know that $Q(4, q)$, $H(3, q^2)$, $Q^+(5, q)$ and $Q^+(7, q)$ have ovoids. So the first cases to consider are $Q(6, q)$, q odd, $H(5, q^2)$ and $Q^+(9, q)$. The following remark may be useful: if the polar space $Q(2n, q)$ (resp. $H(n, q^2)$, resp. $Q^+(2n + 1, q)$) has an ovoid O, then also the polar space $Q(2n - 2, q)$ (resp. $H(n - 2, q^2)$, resp. $Q^+(2n - 1, q)$) has an ovoid (easy by considering the maximal totally isotropic subspaces of $Q(2n, q)$ (resp. $H(n, q^2)$, resp. $Q^+(2n + 1, q)$) containing a fixed point $x \notin O$ of Q (resp. H, Q^+)).

6. THE POLAR SPACE $Q(6, q)$ and the Classical Generalized HEXAGON (OF ORDER q) ARISING FROM $G_2(q)$

Introduction. A generalized hexagon [5] of order $n \geq 1$ is an incidence structure $S = (P, B, I)$, with an incidence relation satisfying the following axioms.

- (i) each point (resp. line) is incident with $n + 1$ lines (resp. points);
- (ii) $|P| = |B| = 1 + n + n^2 + n^3 + n^4 + n^5 = v;$

(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines.

As usual the distance of two elements α , $\beta \in P \cup B$ is denoted by $\lambda(\alpha, \beta)$ or $\lambda(\beta, \alpha)$ [5].

If V is a set of points (resp. lines) such that $\lambda(x, y) = 6$ (resp. $\lambda(L, M) = 6$) for all distinct $x, y \in V$ (resp. L, $M \in V$), then $|V| \le v/(n^2 + n + 1)$ or $|V| \le n^3 + 1$. If $|V| = n^3 + 1$, then we say that V is an ovoid (resp. spread) of the hexagon S [5].

In [5] we remarked that the classical generalized hexagon $H(q)$ (of order q) arising from $G_2(q)$ has always a spread. We also proved that a generalized hexagon S of order q has an ovoid (resp. spread) if S admits a polarity. J. Tits informed us that it is possible to prove that the classical hexagon $H(q)$ of order q, $q = 3^{2h+1}$, admits a polarity [22].

In the presentation of J. Tits of the classical generalized hexagon of order q, the set P is the pointset of $O(6, q)$ and the set B is a subset of the lineset of $Q(6, q)$ [21]. Moreover, for $x, y \in P$, $x \neq y$, we have $\lambda(x, y) \leq 4$ iff x and y are on a line of the polar space $O(6, q)$ (see also [24]).

THEOREM. *H(q) has an ovoid iff* Q(6, *q) has an ovoid.*

Proof. Suppose that O is an ovoid of $H(q)$. If $x, y \in O$, $x \neq y$, are in a plane of $Q(6, q)$, then *xy* is a line of Q and so $\lambda(x, y) \leq 4$ in $H(q)$, a contradiction. So every plane of $Q(6, q)$ has at most one point in common with O. Since $|O|=q^3+1$, every plane of $Q(6, q)$ has exactly one point in common with O, and hence O is an ovoid of $O(6, q)$.

Conversely, suppose that O is an ovoid of $Q(6, q)$. If $x, y \in O$, $x \neq y$, are at distance at most 4 in $H(q)$, then *xy* is a line of $Q(6, q)$ and so *x* and *y* are in a plane of $Q(6, q)$, a contradiction. Hence for all $x, y \in O$, $x \neq y$, we have $\lambda(x, y) = 6$ in $H(q)$. Since $|O| = q^3 + 1$, O is an ovoid of $H(q)$.

COROLLARY 1. $Q(6, q)$, $q = 3^{2h+1}$, *has an ovoid.*

Proof. $H(q)$, $q = 3^{2h+1}$, admits a polarity and consequently has an ovoid. Hence $Q(6, q)$, $q = 3^{2h+1}$, has an ovoid.

COROLLARY 2. H(q), *q even, has no ovoid.*

Proof. Suppose O is an ovoid of $H(q)$, q even. Then O is an ovoid of $Q(6, q)$, q even. This is in contradiction with Section 2.

7. HEMISYSTEMS OF THE POLAR SPACE $H(3, q^2)$

Introduction. A regular system of order m on $H(3, q^2)$ is a subset K of the lineset of $H(3, q^2)$, such that through every point of H there are $m (> 0)$ lines of K. B. Segre shows that, if K exists, then either K is the set of all lines of $H(3, q^2)$ or $m = (q + 1)/2$ [15]. In the latter case, K consists of $(q + 1)(q³ + 1)/2$ lines and is called a hemisystem [15]. The proof is restricted to q odd, but in [1] A. A. Bruen and J. W. P. Hirschfeld remark that with their definition of a quadric permutable with H , it also holds for q even. So, for q even, there are no regular systems on $H(3, q^2)$ other than the set of all lines. Another corollary is that $H(3, q^2)$ has no spread. In what follows we give a very short proof of Segre's result.

Let K be a regular system of order m, $0 < m < q + 1$, of $H(3, q^2)$. If θ is an anti-isomorphism of $H(3, q^2)$ onto $Q^-(5, q)$, then K^{θ} is a pointset of $Q^$ which has exactly *m* points in common with every line of $Q^-(5, q)$. Now we define the incidence structure $S = (P, B, I)$ *:* $P = Q^- - K^\theta$, *B* is the lineset of $Q^-(5, q)$, and I is the incidence of $Q^-(5, q)$.

THEOREM. $S = (P, B, I)$ *is a partial quadrangle* [4] *with parameters* $s=q-m, t=q^2, \mu=q^2+1-m(q+1).$

Proof. Every line of B is incident with $q - m + 1$ points of P, and every point of P is incident with $q^2 + 1$ lines of B. If $M \in B$, $x \in P$, $x \neq M$, then M contains at most one point which is collinear (in S) with x . Finally, let us consider two non-collinear points x and y of S, and call μ the number of points of S collinear with both. The $q^2 + 1$ points of $Q^$ collinear (in $Q^{-}(5, q)$) with x and y are the points of an elliptic quadric in a *PG(3, q).* Now we consider the $q + 1$ hyperplanes *PG(4, q)* containing *PG(3, q),* and their intersections with K^{θ} . We obtain

$$
2((q^{2} + 1)m - (q^{2} + 1 - \mu))
$$

+ (q - 1) $\left(\frac{(q^{2} + 1)(q + 1)m}{q + 1} - (q^{2} + 1 - \mu)\right)$
+ (q^{2} + 1 - \mu) = $|K^{\theta}| = \frac{m(q^{2} + 1)(q^{3} + 1)}{q^{2} + 1}$

or $\mu = q^2 + 1 - m(q + 1)$ (and so $m \leq q - 1$). Hence S is a partial quadrangle with parameters $s = q - m$, $t = q^2$, $\mu = q^2 + 1 - m(q + 1)$.

THEOREM. If K is a regular system of order m, $0 < m < q + 1$, then $m = (q + 1)/2$. So the corresponding partial quadrangle has parameters $s = (q-1)/2, t = q^2, \mu = (q-1)^2/2.$

Proof. Let K be a regular system of order m , $0 < m < q + 1$, and let $S = (P, B, I)$ be the corresponding partial quadrangle. Then

$$
|P| = v = 1 + (t + 1)s(1 + ts/\mu)
$$

= 1 + (q² + 1)(q - m)(1 + q²(q - m)/(q² + 1 - m(q + 1))

[4]. Since $v = (q^3 + 1)(q + 1 - m)$, there results $m = (q + 1)/2$.

Some Properties of the Pointset K^{θ} , with $m = (q + 1)/2$

(a) Let $PG(4, q)$ be a hyperplane of $PG(5, q)$. If $PG(4, q)$ is not a tangent hyperplane of Q⁻, then $|PG(4, q) \cap K^{\theta}| = (q + 1)(q^2 + 1)/2$; if $PG(4, q)$ is tangent to Q^- at $x \in K^\theta$, then $|PG(4, q) \cap K^\theta| = ((q^2 + 1)(q - 1)/2) + 1$; if *PG*(4, *q*) is tangent to Q⁻ at $x \notin K^{\theta}$, then $|PG(4, q) \cap K^{\theta}| = (q^2 + 1)(q + 1)/2$. So $|PG(4, q) \cap K^{\theta}|$ takes only two values.

(b) Let $PG(3, q)$ be a three-space of $PG(5, q)$. If $PG(3, q) \cap Q^- = E$ is hyperbolic, then $|PG(3, q) \cap K^{\theta}| = (q + 1)^2/2$; if E is degenerate, with vertex on K^{θ} , then $|PG(3, q) \cap K^{\theta}| = (q^2 + 1)/2$; if E is degenerate, with vertex not on K^{θ} , then $|PG(3, q) \cap K^{\theta}| = (q + 1)^2/2$; if E is elliptic and if all the points of E are collinear (in $Q^-(5, q)$) with two points of K^{θ} , then $|PG(3, q) \cap K^{\theta}| = (q-1)^2/2$ (μ of the preceding theorem); if E is elliptic and if there is no point on K^{θ} which is collinear with every point of E, then $|PG(3, q) \cap K^{\theta}| = (q + 1)^2/2$; if E is elliptic and if all the points of E are collinear with exactly one point of K^{θ} , then $|PG(3, q) \cap K^{\theta}| = (q^2 + 1)/2$ (considering the $q + 1$ hyperplanes containing $PG(3, q)$, and their intersections with K^{θ} , we obtain

$$
\left(\frac{(q^2+1)(q-1)}{2}+1-\nu\right)+\left(\frac{(q^2+1)(q+1)}{2}-\nu\right)+\nu(q-1)\left(\frac{(q^2+1)(q+1)}{2}-\nu\right)+\nu=\frac{(q+1)(q^3+1)}{2},
$$

with $v = |PG(3, q) \cap K^{\theta}|$). So $|PG(3, q) \cap K^{\theta}|$ takes only three values.

(c) Let C be an irreducible conic on Q^- , and let $|C \cap K^{\theta}| = \gamma$. If π is the plane of C and if π' is the polar plane of π , then the irreducible conic $\pi' \cap Q^-$ is denoted by C'. Further, let $|C' \cap K^{\theta}| = \gamma'$. By considering the $q^2 + q + 1$ three-spaces containing π , and their intersections with K^{θ} , we obtain

$$
\gamma' \left(\frac{q^2 + 1}{2} - \gamma \right) + (q + 1 - \gamma') \left(\frac{(q + 1)^2}{2} - \gamma \right) \n+ \frac{q(q - 1)}{2} \left(\frac{(q + 1)^2}{2} - \gamma \right) + \frac{\gamma'(\gamma' - 1)}{2} \left(\frac{(q - 1)^2}{2} - \gamma \right) \n+ \frac{(q + 1 - \gamma')(q - \gamma')}{2} \left(\frac{(q + 1)^2}{2} - \gamma \right) + \gamma'(q + 1 - \gamma') \n\times \left(\frac{q^2 + 1}{2} - \gamma \right) + \gamma = \frac{(q + 1)(q^3 + 1)}{2},
$$

or $y + y' = q + 1$.

The case q = 3

 $q = 3$ is the only value where the set K^{θ} is known to exist. Here K^{θ} is the 56-cap of R. Hill [11] (a k-cap is a set of k points, no three of which are collinear). Moreover, in $PG(5, 3)$ there is no 57-cap, and any 56-cap is necessarily of the type described above [12]. The partial quadrangle $S=(P, B, I)$ has parameters $s=1$, $t=9$, $\mu=2$ and is essentially the graph of Gewirtz [9]. If $S^* = (P, B^*, I^*)$, with $B^* = \{L_x \mid x \in P\}$, where L_x is the set of all points of P collinear (in S) with x , and I^* the natural incidence relation, then S^* is the 2-(56, 11, 2) design first mentioned as a design by Hall, Lane and Wales [10]. We remark that the 56-cap of R. Hill and the corresponding hemisystem of $H(3, 9)$ were also studied by A. A. Bruen and J. W. P. Hirschfeld in [1].

Finally we obtain as follows the unique $4-(11, 5, 1)$ design of Witt [23]. We consider L_x , with $x \in P(L_x)$ is contained in a $PG(4, 3)$). Call B^{**} the set of all three-spaces having at least four points in common with L_x , and I^{**} the natural incidence relation.

THEOREM. $S^{**} = (L_x, B^{**}, I^{**})$ *is the presentation of H.S.M. Coxeter* [6] *of the unique* 4-(11, 5, 1) *design.*

Proof. Let $L_x = \{x, x_1, \ldots, x_{10}\}$. Evidently no four points x, x_i , x_j , x_k , i, j, k distinct, are coplanar. Now let us suppose that x_i , x_j , x_k , x_l , i, j, k, l distinct, are in a plane π . Then x_i , x_j , x_k , x_l are the four points of an irreducible conic C on Q^- . If π' is the polar plane of π , and if $C' = \pi' \cap Q^-$, then $x \in C'$. So we have $|C \cap K^{\theta}| + |C' \cap K^{\theta}| \leq 3$, in contradiction with property (c) of the set K^{θ} . Consequently no four points of L_{x} are coplanar.

Let $PG(3, 3)$ be a three-space containing at least four points of L_x ($PG(3, 3)$ is contained in the $PG(4, 3)$ defined by L_x). If $PG(3, 3)$ contains x, then $PG(3, 3) \cap Q^-$ is degenerate, and so $|PG(3, 3) \cap L_x| = 5$. If $PG(3, 3)$ does not contain x, then $PG(3, 3) \cap Q^-$ is elliptic (since $PG(3, 3) \subset PG(4, 3)$ and Q^- is elliptic). As $|PG(3, 3) \cap P| \geq 4$ and as x is collinear with every point of $PG(3, 3) \cap Q^-$, there is no other point of P collinear with all points of $PG(3,3) \cap Q^-$. Now from property (c) of the set K^{θ} it follows that $|PG(3, 3) \cap P| = |PG(3, 3) \cap L_{x}| = 5$. Hence every three-space containing at least four points of L_x contains exactly five points of L_x . We conclude that S^{**} is the presentation of H. S. M. Coxeter of the unique 4-(11, 5, 1) design [6].

Remark. The presentations of H. S. M. Coxeter of the unique 5-(12, 6, 1) design and the unique 4-(11, 5, 1) design were rediscovered by G. Pellegrino [13].

Acknowledgement: Further information on ovoids and spreads can be found in [26].

BIBLIOGRAPHY

- 1. Bruen, A. A. and Hirschfeld, J. W. P., 'The Hermitian Surface', *Geom. Ded.* 17, 333-353 (1978).
- 2. Bruen, A.A. and Thas, J.A., 'Partial Spreads, Packings and Hermitian Manitolds', *Math. Z.* 151, 207-214 (1976).
- 3. Buekenhout, F. and Shult, E., 'On the Foundations of Polar Geometry', *Geom. Ded.* 3, 155-170 (1974).
- 4. Cameron, P. J., 'Partial Quadrangles', *Q. J. Math. Oxford* 25, 1-13 (1974).
- 5. Cameron, P.J., Thas, J.A. and Payne, S.E., 'Polarities of Generalized Hexagons and Perfect Codes', *Geom. Ded.* 5, 525-528 (1976).
- 6. Coxeter, H.S.M., 'Twelve Points in *PG(5,* 3) with 95040 Self-transformations', *Proc. Roy. Soc. (A)* 247, 279-293 (1958).
- 7. Dembowski, P., *Finite Geometries,* Springer-Verlag, Berlin, Heidelberg, New York, 1968.
- 8. Dye, R.H., 'Partitions and their Stabilizers for Line Complexes and Quadrics', *Ann. Mat.* IV, 114, 173-194 (1977).
- 9. Gewirtz, A., 'Graphs with Maximal Even Girth', *Can. J. Math.* 21, 915-934 (1969).
- 10. Hall, M., Lane, R. and Wales, D., 'Designs derived from Permutation Groups', J. *Comb. Theory* 8, 12-22 (1970).
- 11. Hill, R., 'Caps and Groups', *Coll. lnt. Teorie Combinatorie,* Rome, 1973, pp. 389-394.
- 12. Hill, R., 'Caps and Codes', *Discrete Math.* (to appear).
- 13. Pellegrino, G., 'Su una interpretazione geometrica dei gruppi M_{11} ed M_{12} di Mathieu e su alcuni $t-(v, k, \lambda)$ -disegni deducibili da una $(12)^4_{5,3}$ calotta completa', *Atti Sem. Mat. Fis. Univ. Modena* 23, 103-117 (1974).
- 14. Segre, B., 'Introduction to Galois Geometries', *Mem. Accad. Naz. Lincei* 8, 133-236 (1967).
- 15. Segre, B., 'Forme e geometrie hermitiane, con particolare riguardo al caso finito', *Ann. Mat. Pura Appl.* 70, 1-202 (1965).
- 16. Thas, J.A., 'Two Infinite Classes of Perfect Codes in Metrically Regular Graphs', *J. Comb. Theory(B),* 23, 236-238 (1977).
- 17. Thas, J.A., 'A Combinatorial Problem', *Geom. Ded.* 1, 236-240 (1973).
- 18. Thas, J.A., 'Ovoidal Translation Planes', *Archiv. Math.* 23, 110-112 (1972).
- 19. Thas, J.A., 'On 4-Gonal Configurations', *Geom. Ded.* 2, 317-326 (1973).
- 20. Thas, J.A. and Payne, S.E., 'Classical Finite Generalized Quadrangles: a Combinatorial Study', *Ars Combin.* 2, 57-110 (1976).
- 21. Tits, J., 'Sur la trialité et certains groupes qui s'en déduisent', *Inst. Hautes Etudes Sci. PubL Math.* 2, 14-60 (1959).
- 22. Tits, J., Private communication.
- 23. Witt, E., 'Die 5-fach transitiven Gruppen yon Mathieu', *Abh. Math. Sem. Hamb.* 12, 256-264 (1938).
- 24. Yanushka, A., 'Generalized Hexagons of Order (t, t)', *Israel J. Math.* 23, 309-324 (1976).
- 25. Kantor, W. M., Private communication.
- 26. Thas, J. A., 'Polar Spaces, Generalized Hexagons and Perfect Codes *", J. Comb. Theory* (A) 29, 87-93 (1980).

Author's address:

Seminar of Geometry and Combinatorics University of Ghent Krijgslaan 271 *9000-Gent* Belgium

(Received April 12, 1979)