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O V O I D S  A N D  S P R E A D S  O F  F I N I T E  C L A S S I C A L  

P O L A R  S P A C E S  

ABSTRACT. Let P be a finite classical polar space of rank r, r t> 2. An ovoid O of P is a 
pointset of P, which has exactly one point in common with every totally isotropic subspace 
of rank r. It is proved that the polar space W,(q) arising from a symplectic polarity of 
PG(n, q), n odd and n > 3, that the polar space Q(2n, q) arising from a non-singular quadric 
in PG(2n, q), n > 2 and q even, that the polar space Q-(2n + 1, q) arising from a non-singular 
elliptic quadric in PG(2n + 1, q), n > 1, and that the polar space H(n, q2) arising from a 
non-singular Hermitian variety in PG(n, q2), n even and n > 2, have no ovoids. 

Let S be a generalized hexagon of order n (>/1). If V is a pointset of order n3+ 1 
of S, such that every two points are at distance 6, then V is called an ovoid of S. If 
H(q) is the classical generalized hexagon arising from G2(q), then it is proved that H(q) has 
an ovoid iff Q(6, q) has an ovoid. There follows that Q(6, q), q = 3 zh+a, has an ovoid, 
and that H(q), q even, has no ovoid. 

A regular system of order m on H(3, q2) is a subset K of the lineset of H(3, q2), such that 
through every point of H(3, q2) there are m (> 0) lines of K. B. Segre shows that, if K exists, 
then m = q + 1 or (q + 1)/2. If m = (q + 1)/2, K is called a hemisystem. The last part of the 
paper gives a very short proof of Segre's result. Finally it is shown how to construct the 
4-(11,5, 1) design out of the hemisystem with 56 lines (q = 3). 

1. O v o i D s  AND SPREADS 

Let  P be a f inite classical  p o l a r  space o f  r a n k  (or index)  r, r > /2  [3].  

A n  ovo id  O o f  P is a po in t se t  o f  P,  which  has  exact ly  one  p o i n t  in  c o m m o n  
wi th  every to ta l ly  i so t rop ic  subspace  o f  r a n k  r. A spread  S o f  P is a set o f  

m a x i m a l  to t a l ly  i so t rop ic  subspaces ,  which  cons t i t u t e s  a p a r t i t i o n  o f  the  
po in tse t .  

W e  shall  use the fo l lowing  n o t a t i o n :  

W,(q) the p o l a r  space a r i s ing  f rom a symplec t ic  po la r i t y  o f  

PG(n, q), n o d d ;  
Q(2n, q) the  p o l a r  space a r i s ing  f rom a n o n - s i n g u l a r  quad r i c  Q in  

PG(2n, q); 
Q+ (2n + 1, q) the  p o l a r  space a r i s ing  f rom a n o n - s i n g u l a r  hype rbo l i c  

q u a d r i c  Q + [7] in  PG(2n + 1, q); 
Q -  (2n + 1, q) the  p o l a r  space a r i s ing  f r o m  a n o n - s i n g u l a r  el l ipt ic quad r i c  

Q -  [7]  in  PG(2n + 1, q);  
H(n, q2) the  p o l a r  space a r i s ing  f r o m  a n o n - s i n g u l a r  H e r m i t i a n  

var ie ty  H [7]  in  PG(n, q2). 
The  fo l lowing  resul ts  are  k n o w n :  

(a) W,(q), n odd,  has  a lways  a ( regular)  spread  (the p r o o f  g iven in [16]  
for  n = 5, ex tends  to a n y  odd  n). W3(q) has  a n  ovo id  iff q is even  [19] ;  
every ovo id  o f  W3(q), q even,  is a n  o r d i n a r y  ovo id  o f  PG(3, q) a n d  

every o r d i n a r y  ovo id  o f  PG(3, q), q even,  is a n  ovo id  o f  some  W3(q) [18].  
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(b) Q+(3, q) has spreads and ovoids (trivial). Since Q(4, q) is the dual of 
Wa(q) [18], the polar space Q(4, q) has always an ovoid, and has a spread 
iff q is even. Q-(5, q) has no ovoids [-2] (see also Section 7). Since 
Q-(5, q) is the dual of H(3, q2) ([1], [20]) the polar space Q-(5, q) has 
always spreads (see (c)). Q+(5, q) has always ovoids (if we consider Q+ 
as the Klein quadric, these ovoids correspond to the ordinary spreads of 
PG(3, q)). Q+(7, q) has a spread [25-], from which it easily follows (by 
triality) that Q+(7, q) has an ovoid. Q+(4n + 1,q) has no spreads C8]. 
Q(2n, q), Q-(4n + 1, q), Q+(m, q) and Q-(m, q), q even, m odd and m :~ 4n 
+ 1, have always spreads [83. 

(c) H(3, q2) has ovoids (any Hermitian curve on H is an ovoid of 
H(3, q2)). Since H(3, q2) is the dual of Q-(5, q) ([1], [20]), the polar space 
H(3, q2) has no spread (see also Section 7). 

We shall frequently use the following theorem [173: 

The only pointsets of  PG(m, q), m > 2, having exactly 1 or n (>  1) distinct 
points in common with every hyperplane and having one point in common 
with at least one hyperplane, are the lines of  PG(m, q) and the (ordinary) 
ovoids of PG(3, q). 

2. THE POLAR SPACES Q(2n, q), q EVEN, AND W,(q) 

THEOREM. Wn(q), n odd and n > 3, has no ovoid. 
Proof Suppose O is an ovoid of W,(q), n odd and n > 3. We consider 

the intersection of O and a hyperplane PG(n - l, q) of PG(n, q). Let x be 
the image of PG(n - 1, q) with respect to the symplectic polarity rr defining 
W,(q) (x is a point of PG(n - 1, q)). Suppose x E O and assume there is a 
point y ~ O, y ~ P G ( n -  1, q), x ~ y. There is a maximal totally isotropic 
subspace containing x and y, a contradiction since O is an ovoid. So 
[PG(n-  1, q) n O [ =  1. Next we suppose that x r  and let y ~ O n  
PG(n - 1, q) (y exists since any maximal totally isotropic subspace contained 
in P G ( n -  1, q), i.e. containing x, has one point in common with O). 
Then there is a maximal totally isotropic subspace containing x and y. 
Now we count in two ways the number of ordered pairs (maximal totally 
isotropic subspace R contained in PG(n - 1, q), y ~ R n O). Then we obtain: 
number of maximal totally isotropic subspaces containing x (i.e. contained 
in PG(n - 1, q)) = [PG(n - 1, q )n  O[ • (number of maximal totally isotropic 
subspaees containing x and y, y ~ 0 c~ PG(n - 1, q)). Hence I PG(n - 1, q) n O[ = 
(number of maximal totally isotropic subspaces of a W,_2(q))/(number of 
maximal totally isotropic subspaces of a Wn_g(q) ) = (l -k-q)(l + q2) . . .  
(1 + q("-a)/2)/(1 + q)(1 + q 2 ) . . .  (1 --k q(n-3)/2) = 1 + q(n-l)/2. So we have 
always [PG(n-  1, q ) n  O[ = 1 or 1 + q~,-1)/2, and there is at least one 
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hyperplane for which [PG(n - 1, q) c~ O[ = 1. From Section 1 it follows that 
n = 3, a contradiction. 

C O R O L L A R Y .  The polar space Q(2n, q), n > 2 and q even, has no ovoids. 
Proof  Suppose O is an ovoid of Q(2n, q), n > 2 and q even. Let p be 

the nucleus [14] of  Q and let PG(2n - 1, q) be a hyperplane which does 
not contain p. I f  we project Q(2n, q) from p onto P G ( n -  1, q), then 
there arises a polar space WE,- l(q), and the projection of O is an ovoid of 
W2,- l(q), a contradiction. 

3. THE POLAR SPACE Q-(2n + 1, q) 

T H E O R E M .  Q-(2n + 1, q),/7 > 1, has no ovoid. 
Proof. Suppose O is an ovoid of Q-(2n + l, q), n > 1. We consider the 

intersection of O and a hyperplane PG(2n, q) of PG(2n + 1, q). Let x be 
the pole of  PG(2n, q) with respect to the quadric Q- .  Suppose x ~ O (then 
x ~ PG(2/7, q)) and assume there is a point y ~ O, y ~ PG(2n, q), x ~ y. Then 
there is a maximal totally isotropic subspace containing x and y, a contra- 
diction since O is an ovoid. So IPG(2n, q) n OI = 1. Next we suppose that 
x ~ O, x E Q -  (then x ~ PG(2n, q)). Now we count in two ways the number  
of  ordered pairs (maximal totally isotropic subspace R contained in 
PG(2n, q), y ~ R c~ 0). Then we obtain : number  of  maximal totally isotropic 
subspaces containing x = IPG(2/7, q) n OI • (number of  maximal totally 
isotropic subspaces containing x and y, y ~ O n P G ( 2 / 7 ,  q)). Hence 
tPG(2/7, q ) n  OI = (number of  maximal totally isotropic subspaces of  a 
Q - ( 2 n -  1, q))/(number of  maximal totally isotropic subspaces of  a 

n n-1  Q-(2n - 3, q)) = 1]i=2 (qi + 1)/lqi=2 (qi + 1) = q" + 1. Finally, let x ~ Q- .  
Then Q - n  PG(2n, q) is a non-singular quadric Q in PG(2/7, q). So 
IPG(2/7, q ) n O I  = (number of  maximal totally isotropic subspaces of  
Q(2n, q))/(number of  maximal totally isotropic subspaces of  Q(2n, q) 
containing a given point) = I]7= 1 (qi + 1)/i17=- ~ (qi + 1) = q" + 1. So we 
have always IPG(2n, q ) n O I  = 1 or q " +  1, and there is at least one 
hyperplane for which IPG(2/7, q ) n  OI = 1. From Section 1 it follows that 
n -- 1, a contradiction. 

4. T H E  POLAR SPACE H'(/7, q2), /7 EVEN 

T H E O R E M .  H(n, q2), /7 even and n > 2, has no ovoid. 
Proof. Suppose O is an ovoid of H(n, q2), /7 even and /7 > 2. We 

consider the intersection of O and a hyperplane PG(n - 1, q2) of PG(n, q2). 
Let x be the image of  PG(/7 - l, q2) with respect to the unitary polarity rc 
defining H. Suppose x ~ O  (then x E PG( /7 -  l, q2)) and assume there is a 
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point y ~ O, y ~ PG(n - 1, q2), x ~ y. Then there is a maximal totally 
isotropic subspace containing x and y, a contradiction since O is an ovoid. 
So [ P G ( n - l ,  qZ)c~O[=l .  Next we suppose that x ~ H ,  x r  (then 
x ~ PG(n - 1, q2)). Now we count in two ways the number of ordered pairs 
(maximal totally isotropic subspace R contained in P G ( n -  1, q2), 
y ~ R c~ O). Then we obtain: number of maximal totally isotropic subspaces 
containing x = [PG(n - 1, q2) c~ OI x (number of maximal totally isotropic 
subspaces containing x and y, y ~ 0 ~ PG(n - 1, q2)). Hence [PG(n - 1, q2) ~ O[ 
= (number of maximal totally isotropic subspaces ofa  H(n - 2, qZ))/(number 
of maximal totally isotropic subspaces of a H ( n -  4, qZ))= (q3+ 1)x  
(qS + 1 ) . . .  (q,-a + 1)/(q3 + 1)(q5 + 1 ) . . .  (q,-3 + 1) = q,-1 + 1. Finally let 
x r H (then x r PG(n - 1, q2)). Then H c~ P G ( n -  1, q2) is a non-singular 
Hermitian variety of PG(n - 1, q2). So [PG(n - 1, q2) c~ HI = (number of 
maximal totally isotropic subspaces of H(n - 1, q2))/(number of maximal 
totally isotropic subspaces of H(n - 1, q2) containing a given po in t )=  
(q + 1)(q 3 + 1 ) . . .  (q,-1 + 1)/(q + 1)(q 3 + 1 ) . . .  (q,-3 + 1) = q"-I + 1. So 
we have always [PG(n - 1, q2)c~ OI = 1 or q"-i  + 1, and there is at least 
one hyperplane for which [PG(n-  1, qZ)n O[ = 1. From Section 1 and 
n > 3 follows a contradiction. 

5. THE POLAR SPACES Q(2n, q), q ODD, H(n, q2), n ODD, AND 

Q+(2n + I, q) 

Concerning ovoids we do not have an existence or non-existence theorem 
in the cases of the polar spaces Q(2n, q) (n > 2), q odd, H(n, qZ)(n > 3), 
n odd, and Q+(2n + 1, q)(n > 3). We only know that Q(4, q), H(3, qe), 
Q+(5, q) and Q+(7, q) have ovoids. So the first cases to consider are 
Q(6, q), q odd, H(5, q2) and Q+(9, q). The following remark may be useful: 
if the polar space Q(2n, q) (resp. H(n, q2), resp. Q + (2n + 1, q)) has an ovoid O, 
then also the polar space Q(2n - 2, q) (resp. H(n - 2, q2), resp. Q+ (2n - 1, q)) 
has an ovoid (easy by considering the maximal totally isotropic subspaces 
of Q(2n, q) (resp. H(n, q2), resp. Q+(2n + 1, q)) containing a fixed point 
x r O of Q (resp. H, Q +)). 

6. Tr~E POLAR SPACE Q(6,  q) AND THE CLASSICAL GENERALIZED 
HEXAGON (OF ORDER q)  ARISING FROM G z ( q )  

Introduction. A generalized hexagon [5] of order n (~>1) is an incidence 
structure S = (P, B, I), with an incidence relation satisfying the following 
axioms. 

(i) each point (resp. line) is incident with n + 1 lines (resp. points); 
(ii) [P I= IB[=  1 + n + n  2 + n  3 + n  4 + n  5 = v ;  
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(iii) 6 is the smallest positive integer k such that S has a circuit 
consisting of k points and k lines. 

As usual the distance of two elements ~, fl ~ P u B is denoted by 2(~, fl) 
or ;~(/~, ~) [5]. 

If V is a set of points (resp. lines) such that 2 ( x , y ) =  6 (resp. 
2(L, M) = 6) for all distinct x, y ~ V(resp. L, M ~ V), then I vI ~< v/(n 2 + n + 1) 
or IVl~<n 3 + 1 .  If I V l = n  3 + 1 ,  then we say that V i s  an ovoid (resp. 
spread) of  the hexagon S [5]. 

In [-5] we remarked that the classical generalized hexagon H(q) (of order q) 
arising from G2(q) has always a spread. We also proved that a 
generalized hexagon S of  order q has an ovoid (resp. spread) if S admits a 
polarity. J. Tits informed us that it is possible to prove that the classical 
hexagon H(q) of order q, q = 32h+ 1, admits a polarity [22]. 

In the presentation of J. Tits of the classical generalized hexagon of  
order q, the set P is the pointset of Q(6, q) and the set B is a subset of  
the lineset of Q(6, q) [21]. Moreover, for x , y ~ P ,  x # y ,  we have 
2(x ,y)~<4 iff x and y are on a line of  the polar space Q(6, q) (see 
also [24]). 

THEOREM.  H(q) has an ovoid iff  Q(6, q) has an ovoid. 
Proof Suppose that O is an ovoid of H(q). If x, y ~ O, x :~ y, are in a 

plane of  Q(6, q), then xy is a line of Q and so 2(x,y)~< 4 in H(q), a 
contradiction. So every plane of  Q(6, q) has at most one point in common 
with O. Since 101 = q3 + 1, every plane of Q(6, q) has exactly one point 
in common with O, and hence O is an ovoid of  Q(6, q). 

Conversely, suppose that O is an ovoid of Q(6, q). If x, y ~ O, x 4: y, 
are at distance at most 4 in H(q), then xy is a line of  Q(6, q) and so x and y 
are in a plane of  Q(6, q), a contradiction. Hence for all x, y ~ O, x r y, we 
have 2(x, y) = 6 in H(q). Since [OI = q3 + 1, O is an ovoid of  H(q). 

COROLLARY 1. Q(6, q), q = 3 2h+l,  has an ovoid. 
Proof. H(q), q = 3 2h+ 1 admits a polarity and consequently has an ovoid. 

Hence Q(6, q), q = 32h+ 1, has an ovoid. 

COROLLARY 2. H(q), q even, has no ovoid. 
Proof Suppose O is an ovoid of H(q), q even. Then O is an ovoid of  

Q(6, q), q even. This is in contradiction with Section 2. 

7. HEMISYSTEMS OF THE POLAR SPACE H ( 3 ,  q2) 

Introduction. A regular system of order m on H(3, q2) is a subset K of the 
lineset of H(3, q2), such that through every point of  H there are m (>  0) 
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lines of  K. B. Segre shows that,  if K exists, then either K is the set of  all 
lines of  H(3, q2) or  m = (q + 1)/2 [15]. In the latter case, K consists o f  
(q + 1)(q3 + 1)/2 lines and is called a hemisystem [15]. The  p r o o f  is 
restricted to q odd, but  in [1] A. A. Bruen and J. W. P. Hirschfeld remark  
that  with their definition of  a quadric  pe rmutab le  with H,  it also holds 
for q even. So, for q even, there are no regular  systems on H(3, q 2 )  other  
than the set o f  all lines. Another  corol lary is that  H(3, q2) has no spread. 
In what  follows we give a very short  p r o o f  of  Segre's result. 

Let  K b e  a regular  system of  order  m, 0 < m < q + 1, o f  H(3,  q 2 ) .  I f 0  is an 
an t i - i somorphism of  H(3,  q2) onto  Q- (5 ,  q), then K ~ is a pointset  o f  Q -  
which has exactly m points  in c o m m o n  with every line of  Q- (5 ,  q). N o w  
we define the incidence structure S = (P, B, I) :P = Q -  - K ~ B is the lineset 
o f  Q- (5 ,  q), and I is the incidence of  Q- (5 ,  q). 

T H E O R E M .  S = (P, B, I) is a partial quadrangle [4] with parameters 
s = q - m , t = q  2 , # = q 2 +  1 - m ( q +  1). 

Proof Every line of  B is incident with q - m + 1 points  o f  P, and every 
point  o f  P is incident with q 2 + l  lines of  B. I f  M e B ,  x ~ P ,  xff'M, 
then M contains  at  mos t  one point  which is collinear (in S) with x. Finally, 
let us consider two non-col l inear  points  x and y of  S, and call # t h e  
number  o f  points  o f  S collinear with both.  The q 2  q_ 1 points  o f  Q -  
collinear (in Q- (5 ,  q)) with x and y are the points  o f  an elliptic quadric  in a 
PG(3, q). N o w  we consider the q + 1 hyperplanes  PG(4, q) containing 
PG(3, q), and their intersections with K ~ We obtain  

2((q 2 + 1)m - (q2 + 1 - #)) 

+ ( q - l ) (  - ( q 2 + l ) ( q + l ) m  ) 
q + 1 _ (q2 + 1 -- #) 

+ (q2 -t- 1 - #) = [K~ = m(q2 + 1)(q3 q- 1) 
q 2 + l  

or # = q 2 +  1 -  m(q + 1) (and so m ~< q -  1). Hence S is a partial  
quadrangle  with paramete rs  s = q - m, t = q2, # = q2 + 1 - m(q + 1). 

T H E O R E M .  I f  K is a regular system of order m, 0 < m < q + 1, then 
m = (q + 1)/2. So the correspondin 9 partial quadrangle has parameters 
s = (q -- 1)/2, t = q2, # = (q _ 1)2/2. 

Proof. Let K be a regular  system of  order  m, 0 < m < q + 1, and let 
S = (P, B, I) be the cor responding  part ial  quadrangle .  Then 

IPI = v = 1 + (t + 1)s(1 + ts/#) 
= 1 + (q2 + 1)(q - m)(1 + q2(q _ m)/(q2 + 1 - m(q + 1)) 

[4]. Since v = ( q 3  + 1)(q + 1 - m), there results m = (q + 1)/2. 
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Some Properties o f  the Pointset K ~ with m = (q + 1)/2 
(a) Let PG(4, q) be a hyperplane of PG(5, q). If PG(4, q) is not a tangent 
hyperplane of Q- ,  then ]PG(4, q ) n K ~  = (q + 1)(q2 + 1)/2; if PG(4, q) is 
tangent to Q-  at x ~ K ~ then IPG(4, q) n K~ = ((q2 + 1)(q - 1)/2) + 1 ; if 
PG(4, q) is tangent to Q- at x r K ~ then IPG(4, q) n K  ~ = (q2 + 1)(q + 1)/2. 
So IPG(4, q) n K~ takes only two values. 

(b) Let PG(3, q) be a three-space of PG(5, q). If PG(3, q) n Q -  = E is 
hyperbolic, then IPG(3, q ) n  K~ = (q + 1)2/2; if E is degenerate, with vertex 
on K ~ then IPG(3, q) n K~ = (q2 + 1)/2; i f E i s  degenerate, with vertex not 
on K ~ then IPG(3, q ) n  K~ = (q + 1)2/2; if E is elliptic and if all the 
points of E are collinear (in Q-(5, q)) with two points of K ~ then 
IPG(3, q ) n  K~ = ( q -  1)2/2 (# of the preceding theorem); if E is elliptic 
and if there is no point on K ~ which is collinear with every point of E, 
then IPG(3, q) n K~ = (q + 1)2/2; if E is elliptic and if all the points of E 
are collinear with exactly one point of K ~ then IPG(3, q) n K~ = (qZ + 1)/2 
(considering the q + 1 hyperplanes containing PG(3, q), and their 
intersections with K ~ we obtain 

( - (q2+l ) (q-1)2  + l - v )  ( ( q 2 + l ) ( q + l ) ) +  " 2 - v  

_ 1)//(q 2 .  + 1)(q + 1) - v ~  + v =  (q + 1)(q3 + 1), + (q 
2 / 2 

with v = IPG(3, q) n K~ So IPG(3, q) n K~ takes only three values. 
(c) Let C be an irreducible conic on Q- ,  and let ICn K~ = 7. If ~z is the 

plane of C and if ~r' is the polar plane of 7t, then the irreducible conic 
n ' n  Q-  is denoted by C'. Further, let [C 'n  K~ = ~'. By considering the 
q2 + q + 1 three-spaces containing r~, and their intersections with K ~ we 
obtain 

 ,(q2+1 ) ) 
2 7 + ( q + l - 7 ' )  q + l ) 2  

2 

+ 
(q + l -- Y')(q-- Y') ( (q + l ) 2 ) 

2 " 2 ~, + y ' ( q +  1 - ~ ' )  

( q 2 2 1  t (q + 1)(q3 + 1) 
x - Y + 7 - -  2 ' 

o r 7 + 7 ' = q +  1. 
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The case q = 3 
q = 3 is the only value where the set K ~ is known to exist. Here K ~ is the 
56-cap of R. Hill [11] (a k-cap is a set of k points, no three of which are 
collinear). Moreover, in PG(5, 3) there is no 57-cap, and any 56-cap is 
necessarily of the type described above [12]. The partial quadrangle 
S = ( P , B , I )  has parameters s = l ,  t = 9 ,  # = 2  and is essentially the 
graph of Gewirtz [9]. If  S* = (P, B*, I*), with B* = {Lx II x ~ P}, where L~ 
is the set of all points of P collinear (in S) with x, and I* the natural 
incidence relation, then S* is the 2-(56, 11, 2) design first mentioned as a 
design by Hall, Lane and Wales [10]. We remark that the 56-cap of R. Hill 
and the corresponding hemisystem of H(3, 9) were also studied by 
A. A. Bruen and J. W. P. Hirschfeld in [1]. 

Finally we obtain as follows the unique 4-(11, 5, 1) design of Witt [23]. 
We consider L~, with x s P (L~ is contained in a PG(4, 3)). Call B** the set 
of all three-spaces having at least four points in common with L~, and I** 
the natural incidence relation. 

THEOREM. S** = (L x, B**, I**) is the presentation ofH. S.M. Coxeter [6] 
of the unique 4-(11, 5, 1) design. 

Proof Let Lx = {x, x 1 . . . . .  Xlo }. Evidently no four points x, xi, xj, xk, 
i, j, k distinct, are coplanar. Now let us suppose that xi, x j, xk, x~, i, j, k, l 
distinct, are in a plane re. Then xi, xj, xk, xt are the four points of an 
irreducible conic C on Q-.  If  re' is the polar plane of re, and if 
C' = ~' c~ Q- ,  then x e C'. So we have ]C~ K~ + IC' c~ K~ ~< 3, in contra- 
diction with property (c) of the set K ~ Consequently no four points of L~ 
are coplanar. 

Let PG(3, 3) be a three-space containing at least four points of L~ 
(PG(3, 3) is contained in the PG(4, 3) defined by Lx). If PG(3, 3) contains x, 
then PG(3, 3) n Q-  is degenerate, and so ]PG(3, 3) n L~] = 5. If PG(3, 3) does 
not contain x, then PG(3, 3) n Q-  is elliptic (since PG(3, 3) c PG(4, 3) and 
Q-  is elliptic)..As IPG(3, 3) n PI/> 4 and as x is collinear with every point 
of PG(3, 3) n Q- ,  there is no other point of P collinear with all points of 
PG(3,3) n Q - .  Now from property (c) of the set K ~ it follows that 
]PG(3, 3) n P[ = [PG(3, 3) n Lxl = 5. Hence every three-space containing at 
least four points of L~ contains exactly five points of Lx. We conclude 
that S** is the presentation of H. S. M. Coxeter of the unique 4-(11, 5, 1) 
design [6]. 

Remark. The presentations of H. S. M. Coxeter of the unique 5-(12, 6, 1) 
design and the unique 4-(11, 5, 1) design were rediscovered by G. Pellegrino 
[13]. 
Acknowledgement: Further information on ovoids and spreads can be found 
in [26]. 
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