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Abstract. Generalized solutions are defined for stochastic evolution equa- 
tions of the form d Y  t = A * Y  t dt + dZt on the nuclear triple 6e(R d) c L2(R d) 
6P'(Rd), where A does not map 6e(R a) into itself. One case which is treated in 
detail involves A = - ( -  A) ~/2, 0 < ~ < 2. This example arises as the Langevin 
equation for the fluctuation limit of a system of particles migrating according 
to a symmetric stable process and undergoing critical branching in a random 
medium. 

1. Introduction 

Stochastic evolution equations of the form 

dYt = A*Yt dt + dZ,  (1.1) 

defined on nuclear triples F c H c F'  arise in many  applications (e.g., [2], [5], [6], 
[9]-[12],  [14], [16], [20]-[24],  [28], and [31]-[34]).  The operator A is assumed 
to generate a semigroup { Tt} on the Hilbert space H and it is usually assumed that 
the nuclear space F is contained in the domain of A and is invariant under A and Tt. 
These assumptions are basic for the usual techniques employed in the study of such 
equations. A different situation arises when F is not invariant under A, because 
then A* does not map F'  into itself and therefore the notation A*Y~ has no meaning. 

* The research of D. A. Dawson was supported by the Natural Sciences and Engineering Research 
Council of Canada. L. G. Gorostiza's research was supported in part by CONACyT Grants 
PCEXCNA-040319 and 140102 G203-006, Mexico. 
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An example of such an equation is 

dYt = A* Yt dt + dZ t (1.2) 

defined on 5°(R d) c LZ(R a) = 5:'(Rd), where 5:(R a) and 5:'(R d) are the usual 
Schwartz spaces and A, = - ( -  A) "/2, 0 < ~ < 2 (i.e., the generator of the spheri- 
cally symmetric stable process on Rd). In this case ~0 ~ 5:(R a) does not imply that 
A,tp and Tttp are in 5:(R a) (fast decay at infinity fails). This raises the question of 
giving an appropriate meaning to equations of the type (1.2). Our objective in this 
paper is to do this, in particular for (1.2) which was stated in [6] as the Langevin 
equation for the fluctuation limit of a particle system. This is achieved by means of 
appropriate intermediate spaces in the triple 5:(R d) ~ LZ(R a) ~ ~'(Rd). 

In several of the papers cited above the operator A is A (Brownian motion), 
which maps ~9¢~(R d) into itself. Most of the evolution equations in these papers still 
hold with A replaced by A,, and the same problem of interpretation of (1.2) will 
arise. The approach we propose here may be useful for these cases also. 

An alternative procedure could be taken: rather than insisting o n  ~gP(R a) as a 
space of test functions we might construct an ad hoc nuclear space F with the 
desired invariance properties (e.g., [28], the method used in [20] and [21] does not 
work in our case because (2I - A,)-r is not Hilbert-Schmidt for any r). This could 
be done in our case [6], but F turns out to be too small, and therefore F' too large; 
and in this sort of problem, while generally there is no smallest adequate F', it is 
desirable to have a reasonably small F'. One reason for this is that the processes Y 
which satisfy equations of the type above often arise as limits of other U-valued 
processes, and therefore a smaller F' means a stronger form of convergence. 
Another reason is that a smaller F' implies a smaller support of the distribution of 
the process Y, which yields finer information. 

Section 2 is devoted to the nuclear and intermediate spaces we need and 
background material, in particular the regularization theorem [1], [18], which is 
one of our main tools. 

In Section 3 we formulate definitions of generalized forms for equations of the 
type (1.1) and for their evolution (or variation of constants) solutions o n  ~,Q~(R d) c 
L2(R d) ~ oq~'(Ra), and show that under these definitions an equation of this type has 
a unique solution and it is given in evolution form. 

Section 4 is concerned with the processes Y and Z in [6] and in Section 5 we 
prove that for (1.2) in [6] the formulation given in Section 3 is applicable, thus 
justifying this equation which was written formally in that paper. 

2. Preliminaries and Intermediate Spaces 

We give some preliminary results we need and introduce intermediate spaces for 
the operator A,. The space 5:(R d) of C~-functions rapidly decreasing at infinity on 
R d is topologized by either of the two following increasing sequences of norms: 

H ~0 I/, = { ~lkl = o  fR(l+lxlZ)"lDk~°(x)[2dx} 1 / 2 ~  (Hilbert norm), 

HI'pill, = max sup (1 + Ixt2)"lDk~o(x)[, q~ES:(Rd), 
0_<]kl_<n x E R  a 
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n = 0, 1, 2 , . . . ,  where k = (k l , . . . ,  ka) , Ikl = kx + ... + kd, D k = t~lkl/Ox k . . . .  dX kd, 
and I'1 is the usual norm on R d. If 5P,(R d) denotes the I1" II,-completion of 6P(Ra), 
then 6e(R d) = ('-],~= o 5e,(Rd), and 5a(R d) is a countably Hilbert nuclear space. 

The space of tempered distributions 6e'(R d) is the strong topological dual of 
5e(Rd), and 6e'(R e) = U,~=o 5e'(R d) where 6e'(R d) is the dual of 6e,(R d) with dual 
norm denoted by It" II-, .  

Let ~([a,  b]) denote the space of C°-functions with supports contained in 
(a, b), a < b in R, with its usual topology. The completed tensor product 5g(R d) 
~([a ,  b]) is nuclear [30]; this space is topologized by the norms 

[11~111. = max sup (1 + Ixl2)"lDk~(x,t)l, 
0 _< Ikl <_n xeRa, te[a,b] 

E 6t(Rd) ® ~([a,  b]), n = 0, 1, . . . ,  

where D k acts also on the variable t. Separately continuous bilinear mappings from 
~ ( R  d) x ~([a ,  b]) into an arbitrary topological vector space are continuous [30]. 

We denote by ( . , . )  the duality on (6e'(Rd), 6e(Rd)), as well as other dualities 
(the underlying spaces will be clear from the context). 

Let D([0, T], Se'(Rd)) denote the space of functions from [0, T] into 6e'(Rd) 
which are right-continuous and possess left limits, with a Skorohod-type topology 
[27]. 

Lemma 2.1 [3]. For x E D([0, T], 5P'(Ra)) let Yc be defined by 

(~, ~)  = (x ( t ) ,  ~ ( . ,  t ) )  dt, • e S"(R ~+ ~). 

Then x~---~ 2 is a continuous mapping from/)([0,  T], ~'(Re)) into ~,°'(Rd+ l). I f  ~ is 
restricted to ~ ( R  d) Q ~([a,  b]), [0, T] c [a, b], then the mapping is continuous into 
(5P(R d) Q ~([a ,  b]))'. 

An obvious consequence of this lemma is: 

Corollary 2.2. I f  X is a process in D([0, T], 5~'(Rd)), then .~ is an 5¢'(Rd+ 1)-valued 
(or (6~(R a) @ ~([a,  b]))'-valued) random variable. 

Lemma 2.3 [3]. Let X be a process in D([0, T], Sf'(Ra)), continuous at T a.s. Then 
the distributions of X and X determine each other. 

Let F be a nuclear space and denote by £fo(f~, ~ ,  p)  the space of equivalence 
classes of real random variables on a complete probability space with the topology 
of convergence in probability (this topology is metrized by p(X, Y ) =  E ( I X -  
YI /x 1)). A linear random functional on F is a family {X s,  f e F} in Zao(f~, ~-, p)  
which is linear and continuous on F. 

Lemma 2.4 (Regularization Theorem [1], [18]). A linear random functional on F 
has a unique regular version, i.e., there exists a unique U-valued random variable X 
such that ( X,  f ) = Xy a.s. for each f E F. 
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The regularization theorem will be applied when F is 6a(R d) or ,~(R d) 
~([a,  b]). 

We now introduce the intermediate spaces. Let C(R d) denote the space of 
continuous functions on R d, C¢(R d) the subset of C(R d) of functions with compact 
supports, and Co(R d) the set of elements of C(R d) vanishing at infinity. 

For p > 0 let tpp(x) = (1 + Ix12) -p, x ~ R d, and define 

Cp(R d) = {¢ ~ C(Rd): Dq~[]p < oo}, 

where 

0 q~ Dp = sup I ¢(x)/e~,(x)l 
x E R  d 

and 

Cp, o(R d) = {¢ e C(Rd): ¢/q~p ~ Co(Ra)). 

Then Cp, o(R a) and Cp(R d) are Banach spaces for the norm •.[]p. Note that 
SY(R d) c Cp, o(R ~) ~ Cp(R d) for all p > 0, and Cp, o(R d) c L2(R d) for p > d/2. 
In addition the inclusion 6P(R d) c Cp, o(R d) is continuous and dense for any p > 0, 
as well as the inclusion Cp, o(R d) ~ L2(R d) for p > d/2. 

We denote by C'p(R d) and C~, o(R d) the duals of Cp(R d) and Cp, o(Rd), respectively, 
with dual norm designated by D-[]_p. Hence for p > d/2 we have the following 
sequence of inclusions: 

,~(R d) c Cp, o(R a) c L2(R d) c Cp, o(R d) c 6a'(n~). 

For p > 0 let M4'p(R d) denote the space of nonnegative Radon measures/~ on 
R d such that (/~, q~p) < oo equipped with the p-vague topology, i.e., the smallest 
topology making the maps/~ ~ (/~, tp) continuous for all tp ~ Q(Rd) + W {q~p}. The 
Lebesgue measure on R d belongs to M/p(R d) for p > d/2. We have MIr(R d) ~ SY'(R d) 
for some n depending on p, and M/p(R d) c C~(R ~) with D/~[]_p = (/~, q~p} for 
/t ~ M/p(Rd). On .AIp(R a) the topology induced by ~'~(R d) is weaker than the p-vague 
topology, and the one induced by C'p(R ~) is stronger than the p-vague topology. 

Set {S, t > 0} denote the semigroup of operators on L2(R d) determined by the 
spherically symmetric stable process on R d with exponent a, 0 < ct _< 2 (e.g., [19]). 
The case a = 2 corresponds to the Wiener process with variance parameter 2. The 
generator of {St} is the fractional power of the Laplacian: A~-= - ( - A )  ~/2 (e.g., 
[29]), and 6e(R d) ~ Dom(A~). The spaces Cp(R d) and Jt'p(R d) are in duality, and S, 
is defined on JC/p(R '~) by duality. 

For e = 2 the operators S t and A 2 = A map 6e(Re) into itself, but for ct < 2 they 
do not, as can be verifed by means of Fourier transforms. This is the reason why we 
cannot work with the triple 6e(Rd) c L2(R d) c b°'(R d) alone and we introduce the 
intermediate spaces related to (pp. 

The next results, which follow from [15], show why these spaces are appropri- 
ate. 

Lemma 2.5 [6]. For each t >_ 0 and p > d/2, and additionally p < (d + ,)/2 in case 
ot < 2, St is a bounded linear operator from (Cv(Rd), [q.[qp) into itself, and from 
(JCp(Rd), [].D_v) into itself. 



Generalized Solutions of a Class of Stochastic Evolution Equations 245 

Lemma 2.6 [6]. For each p > d/2, and additionally p < (d + ~)/2 in case ct < 2, 
and any q9 E Cp(R d) such that limlxl~ ~ qg(x)/~op(x) exists, t~--+Stq9 is a continuous 
curve in (Cp(Rd), •. [qp). Also, for any # ~ Jgp(Rd), t ~ St# is p-vaguely continuous. 

Corollary 2.7. For each p > d/2, with p < (d + ~)/2 in case ~ < 2, S t is a continuous 
linear mappin9 from 6~(R d) into Cp, o(R d) for any t >_ O, and t ~ Stq9 is a continuous 
curve in (Cp, o(Rd), [q.[qp) for any ¢p E 6~(Rd). 

The following inequality is basic for proving the previous results and is also 
used below: for each p > d/2, with p < (d + ~)/2 in case ~ < 2, given T > 0 there is 
a constant  CT > 0 such that 

[qStq)• p < CTlqq)lqp (2.1) 

for q9 ~ Cp(R d) and t ~ [0, T]. 

L e m m a  2.8. For each p > d/2, with p < (d + ~)/2 in case ~ < 2, A~ is a continuous 
linear mapping from • ( R  d) into Cp, o(Rd). 

Proof. We consider the case ~ < 2 (the case c~ = 2 is obvious). We have the 
representation (e.g., p. 166 of [17], in the case d = 1) 

A~<p(x) = K ~ ~(x, y)[y - x[ -~d+~) dy, x e R a, ¢p 5P( Rd), 
JR d 

where 

~(x, y) = ~o(y) - ~(x) - V~(x) . (y  - x)(1 + Ix - yl 2) 1 

(. is the scalar product  in R d) and K is a constant.  Therefore 

A~(p(x) = K[F(x)  + G(x)], 

where 

F(x) = ~ O(x, Y)IY - XI-(d+') dy 
JI y - x l < l  

and 

G(x) = ~ O(x, y)[y - X I-(d+~) dy. 
JI y - x l > _ l  

Using Taylor ' s  theorem we can obtain, since ~ < 2, 

fqF[3p < const{[~lV~olDp + 13~lqp}, 

where 

¢~ (x )=  sup max Ic~2q~(z)/c~zic~z2l. 
[ z -x [<  1 l < i , j < d  
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On the other hand, 

G(x)= i y  ~1>-1 ( ~ ( y )  - ~p(x)) ly  - x l - < d ~ )  dy,  

where 

1, 0 _ < r _ < l  
f ( r ) =  r (d+~l, r>_ l .  

By Lemma 4.1 of [8] we can show that 

fR (1 lyl 2) q f ( l y - x l ) d y  Ixl -(a+~) + 
d 

as Ixl  ~ 0o for q >_ (d + c0/2. Then for such q, since 2p - d - c~ < 0, 

Ixl2) p ~  (1 + l y l 2 ) - q f ( l y - x l ) d y <  oo. s u p  (1 + 
xER d d R  d 

Hence 

DGDp N const(Dtp[~p 4- Dtp~q), q _> (d 4- ~)/2. 

In conclusion, there is a constant  C > 0 such that  

with q _> (d + ~)/2. Therefore q~ --* 0 in 5~(R d) implies FIA,tpDp ~ 0 (use the norms 
Ill" Ill, in 5P(Ra)). 

It remains to show that  A, maps ~ ( R  d) into Cp, o(Ra). But this follows from 
Corollary 2.7 and the fact that Cp, o(R d) is closed for [7.Dp. [] 

Remark. The above proof can be modified to yield the fact that DA, tpp~p < oo. 

Let us summarize the previous results since they constitute the setting for our 
formulation of stochastic evolution equations of the type (1.2). 

Proposition 2.9. For ~ < 2 and d/2 < p < (d + cQ/2 we have the inclusions 

, f (R d) ~ Cp, o(g d) ~ L2(R d) ~ C'p,o(R d) ~ 5P'(Rd), 

<_ OtpOq fgd (1 4- lyl2)-qf(ly - x[) dy, 

hence 

~GOp <_ const[~tpDp + ~g,~Sup (1 + Ixl2) p f y - x l > l  Itp(y)l [y - xl -(a+~ dy. 

Now, for any q > 0, 

I I (y)t ly - xl dy D Dq I (1 + lyl2)-qly - dy 
y - x [>_ l  y - x l > _ l  
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5~(R d) is continuously and densely embedded in Cp, o(Rd), the operators A, and SJor 
each t >_ 0 are continuous linear mappings from 5P(R d) into Cp, o(Ra), and t ~ S, q) is a 
continuous curve in Cp, o(R d) for each (p e 5e(Ra). 

The results in this section are the tools for the proofs in the following sections. 
In general we omit computation details. 

3. A Generalized Form of ~'-Valued Stochastic Evolution Equations 

We will define a generalized form of the symbolic stochastic evolution equation 

dY,=A*Ytdt+dZt ,  t e [0, T], (3.1) 

where Yand Z are ~'(Rd)-valued processes, Z is a semimartingale, Z o = 0, I1o and 
Z are independent, and A generates a semigroup { T~} on LZ(Ra). We assume that 
5e(R d) ~ Dora(A) but A and T t do not necessarily map b°(R n) into itself. 

We denote ~f  = ~(R d) ~ 9 ( [ - 6 ,  T]) where 6 > 0 is fixed, and *t - * ( ' ,  t). 
We start with some formal calculations in order to motivate our definitions. 

Applying (3.1) to (p e 5e(Rd), multiplying b y f  e N ( [ - 6 ,  T]), and integrating by 
parts we obtain 

Jo fo (Y~, q)f'(t) + Atpf(t)) dt = (11o, of(O)) + (Z,, q)f'(t)) dt, 

which extended to 9ff yields 

T /Y, L -<ro,*o> fo ' t Ot*t+ + fo ( Z t ' ~ * t )  dt' * ~ g f .  

(3.2) 

Since A* t may not lie in 5~(Rn), the term ~ ( Yt, A ' t )  dt is not well defined (all the 
other terms are well defined; see Corollary 2.2). Nevertheless, (3.2) together with 
the special case of Proposition 2.9 gives us the basis of a definition. 

Definition 3.1. Let Y and Z be processes in D([0, T], 5e'(Rd)), defined on the same 
probability space (f2, ~ ,  P). Then Y is said to be a 9eneralized solution of (3.1) if 
there exists a Banach space of real functions on R d, denoted by V(Ra), such that 
5e(Ra) c V(R d) c L2(Ra), 6e(R a) is continuously and densely embedded in V(Ra), 

d d T A is a continuous linear map from 5e(R ) into V(R ), the expression ~o ( Yt, A ' t )  dt 
• d is a random variable on (f~, ~-, P) for each * e (Dom (A) ~ V(R )) ~ N ( [ - f , T ] ) ,  
and (3.2) holds for each such * (equality in Le°(O, ~ ,  P)). 

We will define similarly a generalized form of the evolution solution of (3.1), 
namely 

;o Yt = r*Yo + T*~ dZs, t e [0, T]. (3.3) 
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From (3.3) we have, for ~b ~ SP(R d) and g ~ 9 ( [ - 6 ,  T]), 

( ;o );o;o (Yt, O)g(t) dt = I1o, TtOg(t ) dt + (dZs, Tt_s~b)g(t ) dt. 

Using formally integration by parts and Fubini's theorem the last term is 
transformed as follows: 

f f  ~ (dZs, T,_~O)g(t)dt= ~ (dZ~, f f  T,_~C,g(t)dt) 

=-ff(zs,-@g(s)-ffT,_~AOg(Odt)ds 

Hence, extending to ~ we have formally 

(dZ~, Tt_~ Wt) dt = dZs, Tt_~udt dt 

and therefore 

f[ (g, ,e,) dt 

r r r ~ °dt dt) ds, W ~ ~¢~. (3.5) 

The left-hand side of (3.5) is well defined (Corollary 2.2) but the right-hand side is 
not because T ~ r  and Tt(gud,/&) may not lie in 5e(Rd). But again with the 
motivation of Proposition 2.9, (3.5) gives the basis of a definition. 

Definition 3.2. Let Y and Z be processes in D([0, T], 6e'(Rd)), defined on the same 
probability space (f~, ~-, P). Then Y is said to be the generalized evolution solution 
of (3.1) if there exists a Banach space of real functions on R a, denoted by V(Ra), 
such that 6P(Rd) c V(R d) c LZ(Rd), 6e(R a) is continuously and densely embedded 
in V(Rd), Tt is a continuous linear map from 6e(R a) into V(R d) for each t ~ [0, T], 
t ~ T~  is a continuous curve in V(R a) for each ~ ~ 6P(Rd), the right-hand side of 
(3.5) is a random variable on (fL ~ ,  P) for each • ~ V(R a) ~ ~ ( [ -  6, T]), and (3.5) 
holds for each such • (equality in ~¢o (f~, ~ ,  p)). 

Remarks 3.3. (a) Since 9 ( [ - ~ ,  T]) is nuclear, the n and e completions of 
(Dom(A) c~ V(Rd)) ® 9( [ - -  6, T]) are isomorphic [30]. Similarly for V(R d) ® 
9([ -6 ,  T]). 

(b) In (3.2) all the terms except ~o( Y, A$t) dt constitute ~4~'-valued random 
variables (Corollary 2.2). If this exceptional term can be shown to define also an 
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~,g,C'-random variable, then by the Hahn Banach theorem all the terms in (3.2) can 
be extended to (Dom(A) n V(Re) )Qg([ -6 ,  r ] )  (the seminorms on 
V(R a) ® ~ ( [ - 6 ,  T]) are described in Proposition 43.1 of [30]). Moreover, since 
the fact that 6e(R d) is dense in Dora(A)c~ V(R d) implies that ~ is dense in 
(Dom(A) c~ V(Ra) )®~( [ - -6 ,  r ] )  [30, Proposition 43.9], these extensions are 
unique. Thus it suffices to prove that 

{ f T ( y t ,  Adi)t)dr,@• J¢~} (3.6) 

defines an ~ ' - r a n d o m  variable in order for Definition 3.1 to make sense. Similarly, 
in order for Definition 3.2 to make sense, since Yo and Z are independent if suffices 
to prove that 

and 

(3.7) 

r r ~3u? t d t ) ,~P•  i f }  (3.8) (fo i 
define ~4°'-random variables. Now contrary to the other terms in (3.2) and (3.5), the 
families (3.6), (3.7), and (3.8) do not in general define ~ ' - r a n d o m  variables. It must 
be shown in each specific case that they do, and for this it is necessary to use the 
distributions of the processes Yand Z, the fact that 5~(R d) is dense in V(Rd), and the 
regularization theorem, as is illustrated in the following sections. 

(c) The process Y is uniquely determined by {~  ( Yt, ~t)  dt, q' • o~}, assuming 
it is continuous at Ta.s. (Lemma 2.3). Hence only one process Y can satisfy (3.5). 

(d) The difference between our formulation and the analogous one in the 
deterministic theory (e.g., p. 131 of [29]), is that in ours some of the terms in (3.2) 
and (3.5) are not required to be well defined a priori, and they must be shown to be 
well defined in specific cases. 

We now show that Definitions 3.1 and 3.2 are equivalent, assuming, on the 
basis of Remark 3.3(b), that all terms are ¢f ' - random variables. 

Proposition 3.4. Provided that the conditions in Definitions 3.1 and 3.2 are satisfied 
and all the terms in (3.2) and (3.5) constitute ~'-valued random variables, the 
stochastic evolution equation (3.1) has a unique generalized solution and it is given by 
the generalized evolution solution. 

Proof. Let (3.2) be satisfied for • • (Dom(A) c~ V(Rd)) Q 9 ( [ - - 6 ,  T]). To show 
that (3.5) holds for each q' • V(R ~) Q 9 ( [ - 6 ,  r ] ) ,  since 5•(Re) is dense in V(R d) 
and by the Hahn-Banach theorem (as in Remark 3.3(b)) it suffices to take ~P of the 
form q~ = 0 ® 9, ~ • 5e(R~), g e 9 ( [ -  6, r ] ) .  Define 

;/ • (x, s) = Tt_sO(x)g(t)dt, x e R  d, s •  [ - 6 ,  r]. 
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The conditions of the definitions imply O • (Dom(A) n V(Ra)) ~ 9 ( [ - 6 ,  T]) 
(note that O(., T) = 0). Hence (3.2) holds for this O. We have 

f; 0 o = TtOg(t )dt 

f: = TtW t dt, 

t f f  69s Os = --t~g(s) -- Tt_~A~Jg(t )dt  

= Tt-~ Of(t)  dt 

= T t _ ~ t P t d t ,  

and 

f T f T Os Os + A¢)s = -Og(s) -- Tt_~A~g(t) dt + A Tt_~g(t  )dt  

= - ~ g ( s )  = - ° v ~ .  

Substituting into (3.2) yields 

which is (3.5). 
Assume now that (3.5) is satisfied for W e V(R a) Q 9 ( [ -  6, T]). To show that 

(3.2) holds for each ¢I) • (Dom(A) n V(Ra)) ~ 9 ( [ - 6 ,  T]), since ~ ( R  a) is dense in 
Dom(A) c~ V(R a) and by the Hahn-Banach theorem it suffices to take • of the 
form • = q~ ® f, ~o • Sp(Ra),f • 9 ( [ - - 6 ,  T]). Define 

t 
~ , W ( x ' s ) = ~ s O ( X ' s ) + A O ( x ' s ) '  x ~ R  a, s • [ - - 6 ,  T]. 

The conditions of the definitions imply W • V ( R a ) ~ ( [ - 6 ,  T]). Hence (3.5) 
holds for this O. We have 

f: f; Ty,', dt = Ttcpf'(t) d t +  TtAtpf(t)  at 

= -cpf(O) 

- -  ( I )  0 
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and 

r 0 ~p T :"It  ~ 
Tt_s O t , d r =  T t s<pd ~ : d t  + 

= - ~ o f ' ( s )  

= - ~ s ~ S  . 

Substituting into (3.5) yields 

fTo(Yt,~t(~t-~-m(~t) dt~----~Yo,(~o~-~-fT(lt,~Ot)dt, 
which is (3.2). 

T t_~A<pf'(t)  dt 

[] 

Proposition 3.4 is a result of the usual type for evolution equation (e.g., [4], 
[7], [20], and [22]), except for the fact that all the terms in (3.2) and (3.5) need not 
be well defined a priori, but may be well defined for particular processes. 

4. The Processes Y and Z 

In the following section we apply the previous theory to the system discussed in 
[6]. In that paper we studied the asymptotic fluctuations of a branching particle 
system in a random medium, where the particles migrate according to a spherically 
symmetric stable process in R d with exponent e, 0 < e _< 2. The branching law is 
critical and belongs to the domain of normal attraction of a stable law with 
exponent 1 + fl, 0 < fl < 1. The fluctuation of the system is described by an 
5:'(Rd)-valued process Y~ ~- { Y~, t > 0} depending on a parameter  e > 0. It was 
shown that for d > e//3, under certain assumptions on the initial distribution of 
particles the process Y~ converges weakly in D([0, ~ ) ,  5:'(Rd)) to a process Y as 
e ~ 0. It was stated in [6] that Y satisfies the Langevin equation 

dYt = A* Yt d t +  dZt, 

where Z is an cJ'(Rd)-valued stable process with independent increments. Our aim 
is to make this statement precise. We assume that ~ < 2 since the case ~ = 2 is well 
understood. 

In the rest of this section we present some background on the processes Y 
and Z. 

Part  of the convergence proof  in [6] involves showing that for d/2 < p < 

(d + ~)/2, and for 0 = to < tl < "" < t,, ~Po, ~01 . . . . .  q~, e Cp(Rd), and n > 1, the 
random vector ((Y~o, ~Po) . . . . .  (Y~., ~p,)) converges weakly, the limit being 
denoted by (Yto(~Po) . . . . .  Yt,(q~,)). In the limit random vector the q~k play the role of 
parameters; however, it is a consequence of the model that for each t > 0 the 
random variable Y~(q0 is a linear function of ~o a.s. 

The characteristic function of the limit random vector above satisfies the 



252 D.A.  Dawson and L. G. Gorostiza 

relation 

E e x p { - i  j__~ ° Y~j(q~j)} ex.{ iF"  1 ] = y~(~p~) + ~ .  , ( s , . _ ,_  1~o.) 
LJ=O 

I f tn )} + 7 At . . . .  S,._.(iS,_t._lcp,) 1 +# dr , n-1 
(4.1) 

~o o . . . . .  q~, • Cp(Rd). Here 7 is a positive constant, and A t - S ' A ,  where A is a 
deterministic element of Jgp(Rd). 

Iterating (4.1) we find 

E exp{--i j=~o YtJ(q~J)} 

E exp{ /Yo(j~=o S (p j) = - -  t j  

+ ? ~ Atj, Stj+~_ . iS,_tj Stk+,_tj+lq)a+ x dr , 
j = 0  j k=j 

(4.2) 
~o o . . . . .  q~.• Cp(Ra). Moreover, (4.1) implies that Yr.(q),)- Yt._,(S~.-,._,q~.) and 
{ Y~o(~Oo),..., Y~._ ~(~o._ 1)} are independent for all ~Oo . . . . .  q~, • Cp(Rd), and therefore 

E [ e x p { -  iYt.(~o.)} I Yto(~Oo) . . . . .  Yr._ l (q~.-  1); (Po . . . .  , ~°n-1 • Cp(Ra)] 

= exp{-- iYt._ ~(S,.-,._ ~o,) + Y/A, . . . .  ;("_ S,.-,(iS,-,._~°.)a+# dr)} ,  

(4.3) 
~o , • C p( Rd). 

Now, since for the 5:'(Rd)-valued process Y the random vector ((Yto, ~°o) . . . . .  
(Y,., ~0,)) is distributed as (Yto(~Oo) . . . . .  Yt.(q].)) for ~o o . . . . .  ~o, • 5:(Rd), we would 
like to write expressions corresponding to (4.2) and (4.3) for the process Y; namely, 

 ex,f 
= E e x p  - i  Yo, ~ S~j~oj 

\ j = O  

n--ll~ttd+l ( ( n - - X  s,.,_.gs._,, Z 
j = O  j k=j 

q~o . . . . .  q), • 5:(Rd), and (as a consequence of (4.3)) 

E[exp{-i(Y~, ~o)} [ (Y~, 0),  r < s, 0 • ~9°(Rd)] 

=exp{- i (Y~,S t -s~o)  + ?lAs,  f [  S,-,(iS,-sq))l+# dr ) } ,  

(4.4) 

(4.5) 
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0 _< s < t, ~o e 5~(Rd). However, since ~7= o S,j~oj and S,_sq~ lie in Cp, o(R n) but not 
necessarily in ~(Rd), the expressions (Yo, ~7=oS,/pj) and (Y~, St_s~o) make no 
sense and they must be justifed. 

The main assumption in [6] is that the fluctuations of the system at time 0 
converge weakly and the limit Yo is such that Yo(~0) is defined for all q~ e Cp(Rd). 
This suffices for the proof of convergence of finite-dimensional distributions. In 
order to prove tightness of {Y~}~ in D([0, oo), 5e'(Rd)) a stronger condition is 
needed. A simple condition which simplifies computations is that Yo is a 
C~(Ra)-valued random variable such that Eft V,o~_pm + ~ < ~ .  (In most cases Y0 = 0, 
so this is not an important restriction, see [6].) Therefore (4.4) is legitimate, as well 
as (4.5) with s = 0. In order to legitimize (4.5) for s > 0 we show that for fixed s > 0 
the 5a'(Rd)-valued random variable Y~ has an extension to Cp, o(Ra), and therefore 
the expression (Y~, St_s~o) is well defined for q~ e ,~(Rd),  this is done by applying 
the regularization theorem on 6e(R d) (Proposition 5.2). (We cannot assert that Y is 
a C'p,o(Ra)-valued process because the regularization theorem does not hold on 
Cp, o(Rn).) Note that (4.5) implies the Markov property of the process Y. 

The 5P'(Ra)-valued process Z has independent increments such that 

E e x p { - - i ( ( Z  t, q~) -- (Zs ,  tP))} = exp 2 (At, (itp)l+a 5 dr , 

0 < s < t, ~o ~ ~90(Ra), (4.6) 

and Z o = 0. 
For each ~o E 5P(Rd) the real process (Z,  ~0) is stable; hence it has a version in 

D([0, Go), R), and therefore by [26] Z has a version in D([0, ~ ) ,  5~'(Rd)). The 
process Y is in D([0, ~ ) ,  5~'(Rd)) since it arises as a weak limit in this space. (It 
should be possible to show directly from (4.4) that Yhas a version in D([0, ~ ) ,  
~'(nd)).) 

There exists n > 0 such that Yt - S* Yo takes values in 5a'.(R n) for all t > 0. This 
follows from Theorem 3.1 in Chapter 3 of [13] because (A, S~ S,-r(iS,~°) 1 +tJ dr)  is 
continuous in q~ for some norm I1" II. for all t _> 0 (see (4.5)), which can be shown 
using (2.1) and the usual relationships between the norms D-Dp, II" ]1., and I[1" Ill,. The 
same is true of the process Z. 

In the case fl = 1 the processes Y - S*Yo and Z are Gaussian, and it can be 
shown by [25] that they have continuous versions, but for fl < 1 they are 
discontinuous. Thus the fact that Y is continuous or not depends on whether the 
branching law has finite second moment or not, which corresponds to fl = 1 and 
fl < 1, respectively (see [6]), and the continuity or discontinuity of the particle 
motion (~ = 2 or ~ < 2) had no bearing on this. In the case fl < 1, Yhas no fixed 
points of discontinuity. 

Processes like Y, in the case fl < 1, are called infinite-dimensional stable 
Ornstein Uhlenbeck processes, meaning that they satisfy an equation of Langevin 
type and (Y~, ¢p) has a stable distribution for each t and tp (more precisely 
(Yt, q~) - (Yo, S~q~) in our case). Note that Y does not have independent incre- 
ments. 
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5. The Langevin Equation for the Process Y 

We apply the formulation given in Section 3 to the processes Y and Z in order 
to justify the Langevin equation for Y. In addition we show that for fixed s > 0 
the 6a'(Rd)-random variable Y has an extension to C~, o(Rd), so that the expression 
(Y~, St-~q~) in (4.5) is well defined for ~o ~ 6e(Ra). 

The conditions on the operators A, and S t in Definitions 3.1 and 3.2 are 
satisfied with V(R a) = Cp, o(Ra), due to Proposition 2.9. By Remark 3.3(b) we must 
show that ~ (Yt, A ~ t )  dt, (Yo, ~ ScOt dt) and ~ (Z~, ~ S t_~ t /~ t  dt) ds, • 
~,~ - 5P(R a) ~ ~ ( [ - 6 ,  T]) define ~ ' - r a n d o m  variables on the same space where 
Y and Z are defined, 

Since we assumed that Yo is a C'p(Ra)-random variable, and ~w+ 
~ St~tdt is continuous from ~¢g into Cv, o(Ra), then {(Yo, ~ Std~tdt), ¢~ ~ ~t~} 
defines an ocg'-random variable due to Lemma 2.4. 

Proposition 5.1. 

{Io 
defines an ~f'-random variable on the same space where Y is defined. 

Proof By the regularization theorem (Lemma 2.4) it suffices to define the 
expression So r (Y,  A,~ , )  dt in such a way that it is a linear random functional on 
on the same probability space where Y is defined. 

We show first that the integral ~(Y~, tp) f ( t )d t  is well defined for 
q~ E Cp, o(Rd), d/2 < p < (d + ~)/2, and f E @ ( [ - 6 ,  T]). The following fact is used 
(see [6]). If X is a real random variable such that EIXL 1+° < oo for some 0 > 0, 
then 

fK o f l / ,  EIXI ~ +o <_ K ~ +o + C(I + 0) r a +0 [1 - Re F(2)] d2 dr, (5.1) 
,~o 

where C > 0 is a constant, F(2) is the characteristic function of X, and K > 0 is 
arbitrary. 

From (4.4) and (4.5) we have, for 2 > 0, 

E[exp{i(Y. ~o)2} I (Yo, ~b), ~k ~ 6a(Rn)] 

{(fo ,)} =exp{i(Yo, SN~)2}exp V A, St_r(-iS, qg)~+Pd 2 x+p , cp~Sa(Rd), 

(5.2) 
and 

V~(2) = E exp{i(Y, q~)2) 

= E exp{i(Y o, SAo)2 } 

x exp 7 A, St_r(-iSr~o)l+~dr 2 I+p , q~Se(Rn). (5.3) 



Generalized Solutions of a Class of Stochastic Evolution Equations 255 

Hence 

1 -- Re F~(2) = E(1 -- Re[exp{iA2} exp{B2 t +~}]), (5.4) 

where 

<fo ) A = ( Y o ,  St~p ) and B = ~  A, St_,(-iS,.qg)l+adr . 

We can write (5.4) as 

1 - Re F , (2)  = E(1 - Re(1 + U)(1 + V)), 

where 

U = e x p { i A 2 } - - I  and V = e x p { B 2  l + a } - l .  

Therefore  

1 -- Re V~(2) = E R e ( - -  V(1 + U ) - -  U) 

<_ EIVI I1 + U I -  E R e  U 

- I V I - - E  Re U. 

It  follows f rom (5.2) that  lexp{B21 +P}I < 1, and therefore I Vl -< 21BI21 +a. Now,  
using (2.1), 

fo IB[ < 7 (A,  [S,_,(-iS, q~)~+~l) dr 

< constll ~o II~(m, SJ~01) 

< constll q~ I1% DAD_pD~0Dp 

< const0AIq_p[qq~D~ +a, 

(11" II® is the sup remum norm),  where the cons tant  is independent  of  t (for 
t ~ [0, T]) ;  hence 

I V I  < constlq~olq~+~2 ~+~ 

For  the other  te rm we have 

- Re U = - Re exp{iA2} + 1 

= - c o s  A2 + 1 

= 21 +a(1 - cos A2)/21 +a 

< H(q~)21 + p, 
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where 

H(~o) = sup sup ~ - ( 1  +f l ) (1  - -  c o s ( Y o ,  S t q ) ) 2  ) 

o<_t<T ~>_o 

= const sup IKYo, S,~o)l x+p 
O<t<_T 

< c o n s t D V r ~ + a  sup ~S,~olqp ~+~ __ , t 0 u -  p 
O<_t<T 

< const[] v I-I 1 +flFlrnlq 1 +fl - -  ~tO~-- p u W t a p  

(the constant  depends also on fl). Therefore,  since ED Y n~ +p 0 U _ p  ~ OO, 

1 - Re F~(2)  _< eonstD ~p D~ +~2~ + P, cp e ~ ( R a ) .  

Hence, taking 0 < fl in (5.1) we have 

fK~ fx/, 
EI(Yt, ~P)I 1+° < K 1+° + const r ~+° 2 x+a d2 drlq~p[l~ +a, 

J 0  

SO 

E I ( Y ,  qg)[ 1+o ~ K 1 +a + const K°-PDq)D~ +p, ~o ~ 5e(Ra), (5.5) 

for all t e [0, T],  with K > 0 arbitrary.  
Given (p ~ Cp, o(R d) let (~p,), be a sequence in 6e(R d) such that  I]~p, - q~lqp ~ 0 

(by Proposi t ion 2.9). By (5.5) we have for f ~ 9 ( [ - 6 ,  T]),  using H61der's 
inequality, 

( Yt, q%)f(t) at - ( Yt, ~Om)f(t) dt 

_< const E l ( g ,  q~. - Om) l~+°lf(t)l~+°dt 

< cons t [K 1+° + g°-P(D~o. - q~mD~÷P)] sup [f(t)[ 1+° 
O<_t<_T 

Therefore, since (~p,), is a Cauchy sequence in Cp, o(Rd), 

Elf ~ (p.) f( t)dt  1'+° lim sup ( Yt, q).)f(t) d t -  ( Yt, 
m,?l~ oo 

_<cons tK  1+° sup If(t)[ 1+°. 
O < t < T  

But K is arbitrary,  so we may let K - *  0 and therefore (]'o r (Y,, ~o~)f(t)dt). is 
a Cauchy sequence in probability.  Hence it converges in probabil i ty and it can 
be shown that  the limit is independent  of the chosen sequence (~o,).. We define 
~(Y~, ~o)f(t) dt to be this limit. 

Let us write Y{q), f }  = J'T(Yt, q~)f(t) at, ~o e Cp.o(Ra), f e 9 ( [ - - 6 ,  T]).  It 
follows from the procedure  above that Y{~o,f} is a bilinear form which is separately 
cont inuous in ~o and f. Hence, by Proposi t ion 2.9 (~o, f)F--~Y{A~o, f }  is a 
separately continuous bilinear form from 6P(R d) x 9 ( [ - 6 ,  T])  into c~oo(f~, i f ,  p), 
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and therefore it is continuous. This form can be extended to 6e(R d) ® ~ ( [ -  6, T]) 
and it is continuous on this space. We designate it by ~ (Y~, A~Ot)dt for 

~ ~e(R d) ® @([--6, T)). Finally, by a procedure similar to the one above it is 
shown that Sot( Yt, A ~ t )  dt can be extended to ~'~ (the integral is also defined as a 
limit in probability, obtained by means of a sequence (~,)~ is 6:(R d) ® ~ ( [ - -  6, T]) 
converging to A ~  ~ Cp,o(R d) ~ ~ ( [ - 6 , T ] ) .  This yields a continuous linear map 
from ~ into L,e°(f~, Y ,  P) which is the linear random functional we need. 

Finally we apply the regularization theorem, and we use the same symbol 
S T (Yt, Aaf~t) dt to designate the regular version. [] 

Proposition 5.2. For fixed s > 0, (Y~,.)  has a continuous linear extension to 
Cp, o(Rd), and 

{(Y~, St-,qg), q~ ~ ~9~(Rd)) 

defines an 6:'(Rd)-random variable on the same space where Y~ is defined. 

Proof The proof is the same as that of Proposition 5.1 up to (5.5). It is then 
shown, similarly as above, that if (~o,), is a sequence in ~ ( R  d) converging to 
¢p ~ Cp, o(Rd), then ((  Y~, ~p,)), is a Cauchy sequence in probability, therefore it has a 
limit in probability, which is denoted by ( Y~, ~0) and is linear continuous in tp. Then 
by Proposition 2.9 ~o ~ (Y~, St_,~o ) is a linear random functional on 6P(Rd); next 
we apply the regularization theorem (Lemma 2.4), and denote the regular version 
also by (Y~, St_s~o ). 

Now we pass to the process Z. From (3.4) we have the formal expression 

T T T T ~ tg t dt I ds, tF ~ ~'~. 

(5.6) 

We will give definitions of the two sides of (5.6) as random variables on the same 
space where Z is defined, and show that they are equal in L,a°(fL ~-, P). Only the 
right-hand side of (5.6) is needed in connection with Proposition 3.4, but the left- 
hand side is relevant because it has the form of a stochastic integral. 

Since So r St-~q't dt and f f  St-~ e~Ft/dt dt belong to Cp, o(R a) for qJ ~ ~ ,  we must 
first define (Zs, <p) for fixed s > 0 and (p e C~,o(Rd). 

Proposition 5.3. For fixed s > 0, ( Z ~ , . )  has a continuous linear extension to 
Cv, o(Rd). 

Proof The argument in the proof of Proposition 5.2 works also in this case due to 
the similarity of the structures of the characteristic functionals of Y~ and Zs. (The 
present case is in fact simpler.) [] 

Note that expression (4.6) then holds also for ~p e Cp, o(Rd). 
Since Z is in D([0, oo), 5:'(Ra)), and s~--~Sf St_s~gt dt and s~-~Sf St_sOqAt/Ot dt 

are continuous curves in Cp, o(R d) for ~P ~ ~ ,  it is natural to define each of the 
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terms in (5.6) as a limit of  Stieltjes sums. The  next result shows tha t  this can be 
done. 

Proposition 5.4. Let ue e ~ be fixed. Let  0 = t] < t"2 < . "  < t" = T, n = 1, 2, N n  • • • 

be an increasing sequence of  partitions such that supk(t~+ 1 - t~,) ~ 0 as n ~ oo. Let  

and 

N n -  1 

A . =  
k = O  

(z,+ z f;s I 

B . =  E (t~,+l-t~,) Z,~, S,_¢fl~eJOtdt , 
k = O  t~ 

n = 1, 2 . . . . .  Then A .  and B.  are random variables on the same space where Z is 
defined, they converge in probability as n ~ 0% and their limits coincide in _~o(~, oj, 
P). The limits of  A .  and B,  are independent of  the particular sequence of  partitions 
{t~,}, they are denoted by the left-hand side and the right-hand side of  (5.6), 
respectively, and 

E e x p { i f : ( d Z - f f  Xt-sW, d t ) }  

{( fo s[; 3 )} = e x p  y A, S i St_~W td t  ds , q J e ~ .  (5.7) 

Proof The extension given in Propos i t ion  5.3 holds for each s > 0 a.s., due to the 
appl icat ion of the regularizat ion theorem.  This causes no p rob lem in the present  
p roof  because it involves only countably  m a n y  time points.  

We show that  (A,),  is a Cauchy  sequence in probabi l i ty  and A, - B, converges 
to 0 in probabil i ty.  Hence  bo th  A, and B,  converge to the same limit in probabil i ty.  
I t  suffices to prove  that  

E exp{iu(A.,  - A.)} ~ 1 as n, m ~ o% u ~ R, (5.8) 

and 

E exp{iu(A, - B,)} ~ 1 as n ~ ~ ,  u ~ R. (5.9) 

Denote  ~s = ~ St-sWt dt. Assume m > n. For  each 0 < k < N ,  there is a k', 
0 _< k' < N,,,  such that  t~, = tk~,. Then  

N n - 1  (k+  1 ) ' - -  1 

A,, - A ,  = ~ Z (Zt7+, - Zt7, ~q" - ~t~,)" 
k = 0  j = k '  

Using the independence of the increments  of  Z and (4.6) we have 

E exp{iu(A,, -- A,)} = exp{u 1 +PyL,,,.}, 
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where 

I Nn-1 (k+ 1)'-- 1 

L . , , . =  A, ~" E 
k=O j=k' 

7+, ) 
S,[i(#t 7 - ~t7,)] 1 +¢ dr . 

7 

Hence to prove (5.8) it suffices to show that  L.,,.--* 0 as n, m ~ ~ .  Using 
results in Section 2, in particular (2.1), we have 

Nn-1 (k+ 1)'-- 1 

IL.,.I _< DAD_  E Y 
k=O j=k' "+ ' DS,[i(~t 7 - ~t~,)] 1 + # I]p dr 

7" 

and 

DS,[i(~tT, ~ 1 _ • - ,~,)] +PDp < 2 sup I[~,[I~CTD~, 7 -- ~¢,Op; O<t<T 
hence 

Nn-1  (k+ 1)'-- 1 

I L,,,, I < const ~ ~ (t~'+ 1 - t~') • ~t 7 - ~,~, •p. 
k=O j=k' 

Now, for each x E R d, s ~ ~s(x) is differentiable, so by the mean  value theorem 

¢ , 7 ( x )  - ¢ ¢ , ( x )  = ( t  7 - ( x )  

for some r e [t~, t7] , and SUpo_<t_<Tl-l~lqp < o0. Hence 

Nn-1 (k+ 1)' 1 

I L,,,, ] < const ~ ~ (t~'+l - t~')(t~' - t~,) 
k=O j=k" 

< const T sup(tT,+ 1 - t~,) ~ 0 as n ~ ~ .  
k 

Therefore (5.8) is proved. 
The proof  of (5.9) is similar, so we indicate only some of  the main steps. Use 

summat ion  by parts in B,,  do a Taylor  expansion of ~ at s = T, do  an integrat ion 
by parts, and estimate the errors similarly as L,,,,. 

We now prove (5.7). Using the independence of  the increments of  Z and (4.6) 
as before we obtain 

E e x p { i A " } = e x p { v ( A ' N ~ l f f  ~ S~[iCt~] l + a d r ) }  

{ (  N~I ) }  
= exp 7 A, (t~+l - t~)St,~[i~¢] 1+~ + e. , 

k=O 

where ~, is the sum of the errors made by replacing S, by S¢ for r • (t~, t~+ 1]. It can 

be shown by estimates as above that e.--* 0 as n ~ o% and since s ~ Ss[i~]  1 ÷p is 
continuous,  then 

Nn--1 n fTO[fsT ]1+~6 ( tk+l- t l )St~[i~,2,] l+P ~ S~ i St_~U?tdt ds as n--*oo. 
k=0 
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Finally, the previous results are independent  of the particular sequence of  
partitions used. [ ]  

F rom (5.7) and the Bochner -Min los  theorem we have 

Corollary 5.5. 

defines an ~'-random variable on the same space where Z is defined. 

We have shown that  the condit ions of  Proposi t ion  3.4 are satisfied, and we can 
now state our  main result. 

Theorem 5.6. The processes Y and Z with paths in D([0, T] ,  SP(Rd)) whose 
finite-dimensional distributions are given by (4.4) and (4.6), respectively, satisfy the 
Langevin equation 

dr, = A* Yt dt + dZ,, t e [0, T] ;  

moreover, Y is the unique solution of this equation and it is given by the evolution 
solution 

;o Y, = S* Yo + S*~ dZ~, t e [0, T],  

where these expressions are interpreted in the sense of Definitions 3.1 and 3.2. 

Proof The only fact which remains to be proved is that  the equalities (3.2) and 
(3.5) are satisfied. Due to Proposi t ion  3.4 we can prove either one of them, and the 
other one will then also hold. 

Let ~ denote the ~ ' - r a n d o m  variable defined by 

( ; o ) f o ( f ;  ) ( ~ ¢ , W ) =  Yo, StU?tdt - Zs, S t - ~ W t d t  ds, u ? e ~ f  

(see (3.5)). Since Yo and Z are independent  we have 

E exp{ - i ( ~ ,  q~)} 

= E exp{-i(Yo, ff s, V, dt)}exp{y f; (A~,(i ff S,-~e, dt)l+') ds} • 
(5.10) 

Using the same procedure as in the p roof  of  Proposi t ion  4.I in [3]  we may take 
of the form W = ~ = o  ~o~6,j, where ~o o . . . .  , ~o n ~ 5e(Rd), 0 = t o < t 1 < .. .  < tn _< T, 
and 6tj is the Dirac distribution centered at t j , j  = 0 , . . . ,  n (more precisely, we can 
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take sequences in ~ ( [ - 6 ,  T]) which converge in Y'(R) t ° these Dirac distribu- 
tions). Then the right-hand side of (5.10) becomes 

r ,~1 +~\ ds],; Eexp{-i<Yo, j~=oXt/pJ>}exp{Tfo <As'(i  <~ Stj-s~PJ~ / 

and 

f:<ms'(is~<tjStj-sqgj)l+#> dS 

S*,~At~, i" hi+"\ 
k=0 k \ j=k 

= Ate, S~_t~ iSt~+~_ s ~ Stj+l_tk+,q)j+ 1 ds 
k=O k j=k 
n--l(f t tk+, ( n - - 1  ) l+ f l  > 

= E A r k ,  Stk+l-r iSr-tk Z St.i+l-tk+,~OJ+l dr . 
k=O k \ j=k 

Hence the random variable ( ~ ,  W> is defined for all ~P of the form W = ~7=o ~Pj6tj, 
and for each such ~P its distribution coincides with the finite-dimensional distri- 
bution of the process Y with the same tj and ¢pj given by (4.4). Therefore 
(Y/, q'> = ~ < Yt, q~t> dt by Lemma 2.3 for all • e ~ ,  since Y has no fixed points 
of discontinuity (assuming Y is in D([O, T], 5P'(Rd))). [] 

Remark 5.7. In this proof we took Yo and Z as given on a probability space, 
we defined the ~ ' - r andom variable ~¢ in terms of Yo and Z, and we showed that 
( ~ ,  ~F) is of the form So r ( Y,, q~t) dt for a process Ywith finite-dimensional distribu- 
tions given by (4.4). In order to complete the argument we should prove directly 
from (4.4) that Y has a version in D([0, T], 5~'(Rd)), but we omit this since we 
know it is true from [6], and a proof from (4.4) is cumbersome. Another way 
of proving Theorem 5.6 is as follows. We take Yas given and denote by ~ the 
~ ' - r andom variable defined by 

<~e, qb> = <Yo, Do> + t, fftcb t + A~cb t dt, 

(see (3.2)). The distribution of the right-hand side is obtained using (4.5), which 
requires interpreting the integral as a limit of Stieltjes sums, and then it is shown 
that (~e, ~ )  is of the form S~ (Zt, d~t/Or) dt for a process Z with independent 
increments distributed according to (4.6). This proof turns out to be less simple. 
Note that the solution to the equation is "strong" in the sense that given one of the 
processes Y and Z on a probability space the other process is constructed 
(pathwise) from it so as to satisfy the equation which is also unique by Proposition 
3.4. 
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