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Argon plasma transport properties at low pressures (0.01 arm) are calculated using 
a modified Debye length suggested by 7". Kihara et al. Electrons and heat,y species 
are treated as two d(fJerent gases, and the method of  calculation is based on the 
simpl(h'ed theoo, for transport properties developed by R. S. Devoto. A generalized 
Saha equation is used to calculate the species composition, and experimental data 
by ~ Itikawa for momentum tran,sJer cross sections are adopted for the evaluation 
of  electron-atom collision cross sections. 

KEY WORDS: Argon plasma transport properties; two-temperature plasmas; 
reduced pressures; calculation. 

i. I N T R O D U C T I O N  

High-power-density plasma systems operated at reduced pressures are 
attracting increasing interest in connection with plasma deposition, plasma 
sintering, plasma synthesis, and other related applications. In contrast to 
plasmas in local thermodynamic equilibrium (LTE), calculations of trans- 
port properties under reduced pressure conditions are much more complex 
due to deviations from kinetic as well as chemical equilibrium. 

For an argon plasma at low pressure, the theory of transport properties 
has been treated by a number  of authors. Bose et  aL ~ 3 ~  studied various 
two-temperature gas properties based on a simplified theory developed by 
Devoto. ~4-6~ Miller et  al. ~7' calculated the transport properties of a two- 
temperature, partially ionized argon plasma by using the Chapman-Enskog  
method and perturbed-Lorentzian solutions. But in their calculation, the 
plasma composition was calculated without considering the effect of devi- 
ation of the electron temperature from the heavy-particle temperature. 
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There are little reliable data available for the relatively low temperature 
region, because of the uncertainty of using the Debye cutoff Coulomb 
potential. The necessity of modifying the cut-off distance for cases of 
relaxation between electron temperature and heavy-particle temperature 
has been noticed by Kihara and Aono I8"9~ in their unified theory. The basic 
concept in this unified theory is the assumption that the rate of relaxation 
between ion and electron temperature is proportional to the time rate of 
change in the mean kinetic energy of the ions. Classical impact theory does 
not consider collective interactions, which causes the divergence of the 
collision integral. Thus, the screening of the Coulomb field of charged 
particles is not properly considered. In the case of wave theory, the lack 
of information about close collisions leads to the divergence of the collision 
integral. These problems are avoided by introducing the cut-off Debye 
length. Instead of using the Debye length as cut-off criterion for the impact 
theory, Kihara and Aono unified the two theories, i.e., impact and wave 
theory, into an exact theory, so that no cut-off procedure of the diverging 
integrals is needed. 

The shielding is shared by many particles within a sphere of the 
shielding radius. This is based on the assumption that the plasma is close 
to an ideal gas, i.e., the absolute value of the potential energy between two 
particles at the mean distance is assumed to be much smaller than the 
kinetic energy of the particles. In the case of relaxation between electron 
and ion temperature, ions are completely screened by the surrounding 
electrons since ions are moving very slowly compared to electrons, and 
there is only partial shielding by the other i o n s ) "  Hence the screening 
distance of ion-electron interaction must fall between the Debye length for 
electrons only and the one considering both electrons and ions. 

The first attempt to apply this unified theory to the calculation of 
transport properties was made by DaybelgeJ ~''~-~ In his unified transport 
theory, he adopted the impact theory for the definition of the Chapman-  
Enskog's collision integral, i.e., 

l.)~,,,(r) = .~-~(tz/4T,,)~+3/,_ g2r+3 exp (-tzg2/4T,.) 

x fh (1-cosx)bdbdg 
> 0  

where g is the relative velocity, ~ is the reduced mass, b is the collision 
parameter, Te is the electron temperature, and X is the angle of deflection 
during collision. Instead of using the term 

I~>o ( l - c o s  x)bdb dg 
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in the collision integral, he replaced this by introducing the factor suggested 
by Kihara et al., ~8~ i.e., 

Ib ( 1 - c o s x )  exp (-b2/2b~) bdbdg 
:" 0 

where b0 is an arbitrary parameter  which does not affect the final results. 's~ 
Based an this modification of the collision integral, Daybelge' ~ derived a 
unified transport  theory for two-temperature properties which is different 
from the one suggested by Devoto. ~4~ 

In this paper, instead of using the rather complex unified transport 
theory by Daybelge, the widely used approach by Devoto TM is adopted, but 
the idea of the cut-off Debye length is modified to meet the spirit of the 
unified theory. 

2. CALCULATION OF SPECIES C O M P O S I T I O N  

The number  density of  each species in the plasma can be calculated 
from the modified Saha equation for a two-temperature plasma which is 
written in the following form { J3~. 

= 2 _~kT,, 3/2 E, - B E ,  
\ ni / Zi exp - kT,. / (1} 

where 0 = T~/T~. is the ratio between electron temperature and heavy particle 
temperature,  Z~ is the partition function of species i, and 6E~ is the lowering 
of ionization energy. 

Equation (1) can be derived by writing the chemical potentials of the 
electrons, ions, and neutral particles separately and using the condition for 
ionization equilibrium. Because of the simplification made during the deriva- 
tion, it can only be applied for a moderate range of temperature differences 
between heavy species and electrons. ~4~ 

The lowering of the ionization energy is approximated as the Coulomb 
potential energy of charge j +  1 at a Debye shielding distance AD, ~4' i.e., 

(i+ l)e 2 
6E~'- = (2) 

4 ~'eoA D 

The Debye shielding distance will be discussed later according to the unified 
theory. 

This mass action law can be put into the form 

( / n i + l  
n~ - -  = K~ (3) 

\ n , /  

where Ki represents the right-hand side of  Eq. (1). 
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Using this expression in the general expression of the number density 
for species i, we obtain 

ni = no (4) 
r = l  

and 

n~ = no ,~'. i (5) 
r:~ \ n e /  

n , = n o  1+ ( i+1)  (6) 
,=~ r=l \ n , . /  I 

where im,x is the maximum order of ionized species and n, is the total 
number density of particles. 

Combining Eqs. (5) and (6) results in a polynominal of degree imax+ 1 
in the form 

i m a ,  i 

n~ (~m~'+~)+ Z (n~, ~(' .... ' ) + ' ( i + l ) - n , n ~ ( % ° ' - ' ) i )  l-I K ~ = 0  (7) 
i - I  r - I  

The equation of state of the two-temperature plasma is 

p = kTh{n,  + (  O - 1 ) n ~ }  (8) 

In order to solve Eq. (7) for the electron number density, it is necessary 
to use an iterative approach since this number plays an important role in 
determining the lowering of the ionization potential. In the computer pro- 
gram this polynomial equation is solved by using a bi-section method. 

For a partially ionized collision-dominated gas, it is common to assume 
that the electron and heavy species follow a MaxwelI-Boltzmann distribu- 
tion and the excitation temperature equals the free electron temperature, 
while the heavy species (atoms, ions) have the same temperature which is 
different from the electron temperature. In this two-temperature modeling 
of monatomic gas systems, the partition functions of the heavy species (ions 
and neutrals) can be uncoupled. For a detailed formulation on the calcula- 
tion of thermodynamic properties (specific heat, enthalpy, etc.), see Ref. 13. 

3. COLLISION CROSS SECTIONS 

The most widely used method of Chapman and Enskog ~5~ for evalu- 
ation of the transport coefficients entails the calculation of certain weighted 
total collision cross sections. If the interaction potential between charged 
particles is chosen as the shielded Coulomb potential, it is necessary to 
choose an effective shielding distance, commonly the Debye shielding 
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distance. For temperature and particle number density ranges where the 
Debye distance is much greater than the interparticle distance, as long as 
the plasma conditions remain ideal (Lieberman et alJ ~6)), the Debye length 
is used as the shielding distance for the Coulomb potential. But in cases 
of only a few particles within a Debye sphere, such as in nonideal plasmas, 
the previously described approach becomes questionable. 

Thus, the effective shielding distance is chosen according to Kihara et 
alJ 8) as 

where 

Thus 

k e n = k ~ e x p \  2k~ I n \  k~ ] - 1 / 2  (9) 

k, = 1/AD,. = 4e2ne/eokT~ 

k2=I /AD,=  e 2 ~. ini eokT, 
i = l  

ADo. = 1~ken 

The quantity ADo. is chosen to evaluate the collision integrals of the Chapman 
and Enskog type. 

4. A TOM- ATOM INTERACTION 

The most popular potential model for neutrals is the Lennard-Jones 
model. But because of the complexity of evaluating the collision integrals, 
simplified interaction potentials have been suggested by Amdur and 
MasonJ 17) In their repulsive potential model, the relative insensitivity of 
the attraction potential in the high-temperature region is taken into account. 

Thus 

~b = d)o exp ( - r / r o )  

is adopted with 4,o = 7100 eV and ro = 0.258 A. 

5. IO N- ATOM INTERACTION 

There are two different types of ion-atom interactions. One of them 
causes charge transfer from the ion to the atom, and the other is a purely 
elastic collision. For elastic collisions the repulsive potential model of 
a tom-atom collisions is used with ~bo = 4640 eV and ro = 0.306 ,~. For charge 
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transfer collision cross sections, a good approximation has been suggested 
by Dalgarno ~'s~ in the form 

Qtl~= ( A -  B In g)2 

where g is the relative speed of the particles and A and B are constants. 
The values A = 25.61 and B = 1.196 are suggested by Dalgarno ~ls~ for Q in 
(/~)2 and g in cm/s, and Devote  4~ used these values in his work. Later on 
Devoto ~6~ used A=31 .8  and B =  1.725 to correct for a polarization effect 
in the low-temperature regime. Choosing the larger values for A and B may 
reflect the effect of polarization reasonably, but in the relatively high energy 
regime it may underestimate the collision cross section. Several other chosen 
values for A and B are listed in the paper by Bose. ts~ Since the calculation 
domain that is of interest in this paper falls in the low-pressure ranges, 
A = 36.74 and B = 2.11 are chosen to account for the polarization effect in 
the low-temperature region, t3~ 

6. ELECTRON-ATOM INTERACTION 

The collision cross section between electrons and neutral particles can 
be determined from experimental data of momentum-transfer cross sections. 
Although experimental values for momentum cross sections are available, 
the energy range covered by those data is restricted, and the classical method 
of determining the collision cross section from the interaction potential 
cannot be used because of the Ramsauer effect. 

Thus, in order to evaluate the collision integrals in the form 

f/ 1 Q ~ ' x  ~+' exp ( - x )  dx  O'""(r) - ( s  + , 

where 

/,tg -~ 
X m  

2 k T  

a cut-off procedure for the upper limit is required in connection with using 
experimental data for Q ~ .  This is done within the availability of data for 
the momentum-transfer cross section. Itikawa's ~ '~ momentum-transfer cross 
section is used, and the integration is performed by using the Gauss- 
Laguerre 32-point formula. ~2°~ 

7. INTERACTION BETWEEN CHARGED PARTICLES 

Cross-section data for charged particles using as potential model either 
the shielded Coulomb potential (Mason et al. ~2~) or the Morse potential 
(Samuilov et al) 22~) are available. 
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In Ref. 22 the Morse potential has been used as 

~b(r) = ~o(exp ( - 2 ( C / c r ) ( r -  r,.)) - 2  exp ( - ( C / o ' ( r -  r,.))) 

where 

C = tr In 2 / ( r e -  o') 

Because of a finite value at r = 0  in the Morse potential which is 
physically unrealistic, the authors of Ref. 22 used an infinite potential for 
r < 0.3tr in order to prevent particle trajectories through the center of  the 
interacting particles. 

In Ref. 21 a shielded Coulomb potential was used to tabulate the 
dimensionless form of the collision integrals 

~t ,~* = O(t.,)( i , j ) /  ~rcr~,j 

where 

and 

4 ( /+  1) exp (-x)x '+~Q'l~(g) dx 
O't"'(i 'J) = (s+ 1)[(21+ 1 - ( - 1 ) ' )  

2 /~g 
X =  

2kT  

o'i,j is the effecti~,e shielding distance. The data from Mason et al. (2~' are 
used for charged particle collision integrals with the effective shielding 
distance mentioned above. 

8. RESULTS AND D I S C U S S I O N S  

Figure 1 shows the difference between variously defined shielding 
distances. The effective shielding distance has been used in this calculation. 
As can be seen from this plot, choosing the shielding distance according 
to different definitions can lead to different charged particle collision cross 
sections that deviate from each other by a factor of 2 or 3. 

The plasma composition is plotted in Fig. 2 for 0 = 1, and Fig. 3 shows 
the varying electron number  densities for increasing 0. The starting tem- 
perature for ionization increases as the relaxation rate between electrons 
and ions increases, and the maximum ionization also increases, as shown 
in Fig. 4. But in real situations, it is expected that strong electron diffusion 
takes place as the nonequilibrium rate increases. Thus, the higher peak with 
increasing 0 may not be seen in actual experiments. 
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The specific heat is composed of three parts, i.e., electron, heavy species, 
and the contribution of reactions between electrons and heavy particles. 
The total specific heat is the sum of each contribution of those parts and 
depends heavily on the reaction part. In Fig. 5 each contribution is plotted, 
and in Fig. 6 the total specific heat for various 0 is shown. The relatively 
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Fig. 3. Electron number density of an argon plasma at 0.01 arm for different O. 

sharp  peaks  are a s soc ia t ed  with the r ap id  change  o f  the ion iza t ion  rate 
a r o u n d  11,000 and  20,000 K which are t empera tu re s  where  the m a x i m u m  
n u m b e r  dens i t ies  o f  first and  second  ions occur  (see Fig. 2). F igure  7 shows 
the c o r r e s p o n d i n g  en tha lp ies .  The ra ther  ab rup t  changes  o f  the specific heat  
and  en tha lp ies  at large 0 are due  to the s t rong d e p e n d e n c e  o f  those  p roper t i e s  
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Fig. 4. Degree of ionization of an argon plasma at 0.01 atm for different 0. 
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Fig. 5. Species contribution to the specific heat of an argon plasma at 0.01 arm for different 0. 

on the react ion between electrons and heavy species, which sharply increases 
with increasing devia t ion from equi l ibr ium.  

Viscosities are shown in Fig. 8 for different values of 0. Compared  with 

the results of  Bose e t  al . ,  (1~ good agreement  of  the equi l ibr ium viscosity 
(i.e., 0 = 1) is found,  but  for the nonequ i l i b r i um viscosities, discrepancies  
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Fig. 6. Total specific heat of an argon plasma at 0.01 atm for different O. 
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Fig. 7. Enthalpy of an argon plasma at 0.01 atm for different O. 

exist, and this is believed to be due to the different collision cross sections 
used. 

Electrical conductivities are plotted in Fig. 9 and compared with experi- 
mental data in Fig. 10 provided by Lin e t  al.  (23~ Thermal conductivities are 
calculated by adopting the formulation of Ref. 2 for the nonequilibrium 
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Fig. i l .  Electron thermal conductivity of an argon plasma at 0.01 atm for different 0. 

plasma case. The reactive thermal conductivity accounts for the heat trans- 
ferred by the diffusion of ions and electrons to form neutral atoms and to 
release the ionization energy. Electron thermal conductivities are plotted 
in Fig. 11. In L i n e t  al.'s shock tube measurements, it was indicated that 
the electron conductivity was determined by the cross sections for electron- 
atom collisions which were measured by mobility and scattering techniques. 
Figure 4 shows that the equilibrium degree of ionization approaches 1% at 
9000 K at 0.01 atm, and decreases to 0.1% as the temperature relaxation 
rate increases to 5. Thus, it is believed that in nonequilibrium cases, because 
of  the increasing temperature difference between electrons and heavy par- 
ticles, the degree of ionization decreases and, as a result, the deviation from 
equilibrium becomes larger. As a consequence, the experimental conditions 
for 0 in Ref. 23 are expected to be between 4 and 5. 

CONCLUSIONS 

It has been found that using a modified Debye length as the shielding 
distance results in a more reasonable match with experimental data for the 
electrical conductivity. For the temperature region where nonequilibrium 
effects prevail, the transport properties predicted by the conventional Debye 
length <~ are higher than those calculated by the modified Debye length. 

Thus, it is believed that in nonequilibrium cases where the temperature 
difference between electrons and heavy particles is high, using the modified 
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D e b y e  l e n g t h  as  t he  cu t - o f f  d i s t a n c e  p r o v i d e s  m o r e  r e a s o n a b l e  v a l u e s  f o r  

t h e  t r a n s p o r t  p r o p e r t i e s .  

A C K N O W L E D G M E N T S  

T h i s  m a t e r i a l  is b a s e d  u p o n  w o r k  s u p p o r t e d  b y  t he  N a t i o n a l  S c i e n c e  

F o u n d a t i o n  u n d e r  G r a n t  N o .  C D R - 7 8 2 1 5 4 5 .  T h e  g o v e r n m e n t  h a s  c e r t a i n  

r i g h t s  in  t h i s  m a t e r i a l .  T h e  M i n n e s o t a  S u p e r c o m p u t e r  I n s t i t u t e  p r o v i d e d  

s u b s t a n t i a l  s u p p o r t  fo r  t h i s  p r o j e c t .  
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