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1 Introduction 

Let ~ be a complex separable Hilbert space and let ~(a~') be the space of bounded 
linear operators on .,~. Let P1 . . . . .  P .  be a mutually orthogonal family of projections 
in ~ such that ~ P i  = I. Given T in ~(~e), let T o = P~ TPj, i,j = 1, 2, . . . .  n. Making 
the usual identifications we can write T in a block-matrix form 

T = [ T  o] l < i , j < n .  (1) 

Let J r  denote the Schatten p-class of operators and II A lit the Schatten p-norm of 
an operator A in ~'r, 1 < p < oo. Here, I1" II | denotes the usual operator norm and 
or the ideal of compact operators. See [9], [ 11] or I12] for comprehensive accounts 
of these norm ideals. 

One of the objects of this paper is to study relations between the norm of T 
and those of its block matrix entries T w We shall prove the following 

Theorem 1. Let T be an operator in the class Jr, for some 1 < p ~_ oo, havino a 
block-matrix decomposition (1). Then 

for 2 ~_p <-_ oo; and 

n'*/r-2 ~. II T~j 11~ < II TiI~ _~ ~, II ToU~, 
~,j ~,j 

(2) 

II Toll~ ~ U TII~ ~ n'vr-z ~ II T~j tl~, (3) 

for l~_p~_2. 

The inequalities (2) arc also valid for noneompact operators, if II'U| is 
understood to be the operator norm on ~(.,~). 

Theorem 2. Let T be an operator in the class Ja, for some 1 ~ p < oo, having a 
block-matrix decomposition (1). Then 

n2-'tl TII~ ~ ~11TolI~ 6 II TII~, (4) 
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for 2 < p <  c~; and 

II TIIW < ~ II To II~ < n2 -P II TfIW (5) 
l,) 

for I < p < 2 .  

In 17] Bhatia and Holbrook gave an elementary proof of one set of the famous 
Clarkson-McCarthy inequalities by reinterpreting them and then extending their 
validity to a larger class of norms. We follow a similar strategy here. These more 
general norms are defined in Sect. 2. In Sect. 3 we prove some results from which 
the above theorems follow as corollaries. 

Though these inequalities seem elementary they are likely to have several 
applications. In Sect. 4 we use one of them to show that a large class of norm 
ideals has the Radon-Riesz Property. 

2. Q-norms and Q*-norms 

We shall assume the basic facts about norm ideals of Hilbert space operators, for 
which the reader could turn to [9, 11] or [12]. Each such ideal corresponds to a 
unitarily invariant or symmetric norm. Each such norm is a symmetric gauge function 
of the singular values of an operator. Recall that if A is a compact operator the 
singular value of A, by definition, are the eigenvalues of the positive operator 
I AI = (A 'A)  t/2 enumerated as sl(A)> s2(A)>..-. There is a one-to-one correspond- 
enc~ between symmetric gauge functions defined on sequences of real numbers 
and unitarily invariant norms defined on operators. 

Thus, the/p-norms on sequences give rise to the Schatten p-norms on operators 

II a lip = sy(A) , 1 < p < oo, (6) 

where II A I1| denotes the usual operator norm. The concept of a Q-norm was 
introduced in I-4]. A unitarily invariant norm I I ' l le is a Q-norm if there exists another 
unitarily invariant norm II'lld such that 

IIA 118 = II A*A lid. (7) 

Note that 

IIAII2, -- IIA*AII,, 1 _<__p-< ~ .  (8) 

Hence for p => 2 the Schatten p-norms are Q-norms. We shall say that a unitarily 
invariant norm is a Q*-norm if it is the dual of a Q-norm. The Schatten p-norms 
for 1 ~ p =< 2 are examples of Q*-norms. 

Next consider the family 

\ l ip 
IIA II(k),, = _ s ~ ( A ) /  , 1 ____p< oo; k =  1,2 . . . . .  (9) 

j---I 

Each of these defines a unitarily invariant norm. For  p = 1 these reduce to the 
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familiar class of Ky Fan norms defined as 

k 
IIAIL~k)= ~ sj(A), k= 1,2 . . . . .  (10) 

j = l  

For p > 2 each of the norms defined by (9) is a Q-norm, because a relation 
analogous to (8) holds. The duals of these norms can be quite complicated. The 
dual norm of (10) is 

IlAll~k)=max { IlAll~o,~l, Al[1}, k=1,2 ..... (11) 

For 1 < p < oo and k = 2, 3 . . . .  the dual norm of (9) can be described as follows. 
1 1 

Let q be the conjugate index of p : -  + - = 1; and for each positive integer r let 
P q 

{sj(A)}[ denote the finite sequence consisting of the r largest singular values of A. 
Then 

' max max ~(l-(k-rl2V)l/Pll{sj(A)}rl[[~+~ ~ s~(A)}. 

(12) 

This was shown by Ando in response to a question by one of the authors. By what 
has been said above each of the norms (12) is a Q*-norm when p => 2, being the 
dual of a Q-norm. 

Often, it turns out that inequalities which are true for all p-norms are also true 
for all unitarily invariant norms; while those which are true only when p _~ 2 are 
also true for all Q-norms because the crucial property of the norms involved is 
their quadratic character (7). See [1, 4, 6, 7] for illustrations of this phenomenon. 
Results of this paper also fall into this pattern. 

This extension, however, first demands a reinterpretation of the original 
inequalities as in [5, 7]. A useful viewpoint is to go to direct sums as follows. Given 
two sequences of numbers x =  {xl ,x  2 . . . .  } and y= {Yt,Yz . . . .  } define a new 
sequence x v y a~ {x~, Yl, x2, Y2 . . . .  }. Now if Ill'Ill is a unitarily invariant norm 
corresponding to the symmetric gauge function ~), define 

[IIA~BII[--r v {sj(B)}). (13) 

This idea can be extended to n-tuples of operators in an obvious way. Let us 
denote A ~ . . .  (3 A, where the operator A is repeated n times in this direct sum, 
by @ A. It is easy to see that 

n copies 

and 

L.Ail_ ,,5, 
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3. Proof of the main results and their generalizations 

For the sake of brevity we will not repeatedly mention that whenever we use the 
notations II T IIQ, II T lie. or III Till we are assuming that the operator T belongs to 
an ideal Jo, '~e.  or oam. m associated with a Q-norm, a Q*-norm or a unitarily invariant 
norm respectively. 

Proposition 3. Let  T = [ T j  be an operator in an n • n block-matrix form. Then 

I[ TII~ < .~. I[ Z~j I[~, (16) 

for  all Q-norms, and 

II TII~. ~ 11Z,j I1~., (17) 
l,j 

for  all Q*-norms. 

Proof. Let R k denote the matrix obtained by retaining the kth row of the operator 
matrix [Tu] and replacing all its other rows by zeros. Note that R~Rm = 0 if k ,  m. 
So 

) T ' T =  R k R k = R*R  k. 
k ! k 1 k = l  

Hence, for every unitarily invariant norm 

Hence, for every Q-norm, 

lilT*Till ~ ~ IIIRffRklll. (18) 
k = l  

tl TII~_- < ~ IIRkll~. (19) 
k = l  

Since ]t]T [[I= Ill T* Ill for every unitarily invariant norm, we also have 

, rll _-< iick, , (20) 
k = l  

where Ck denotes the matrix obtained by retaining the kth column of [Tu] and 
replacing the other columns by zeros. 

Now, first apply (19) and then (20). We get the inequality (16). The inequality 
(17) follows from (16) by a familiar duality argument as used in [7]. [] 

The second inequality in (2) and the first inequality in (3) are special cases of 
the above proposition. 

In [10] one of the present authors proved, in the special case when n = 2, the 
second of the inequalities (4) and the first of the inequalities (5), using the 
Clarkson-McCarthy inequalities. It turns out that, suitably reinterpreted, they can 
be generalised to Q-norms and Q*-norms respectively, and in proving this more 
general version the force of the Clarkson-MeCarthy inequalities is not needed. 

We will use the following Lemma which is an extension of Theorem 1 of [7]. 
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Lemma 4. Let A ,  . . . . .  An be positive operators. Then for every unitarily invariant 
n o r m  

1 
-II1(~ A,)+ - - -+  (~A,)lll ~ Ilia, +--"  �9 Anlll 
n 

< IIl(~A~)+ 0...  + 0Ill, (21) 

where, each of  the direct sums involves n summands. 

Proof. This can be proved by a slight modification of the proof in [7"1. Let X be 
the n x n matrix 

X =  1 . . .  

Then X X *  has as its top left entry ~ A  t and all its other entries are zero. On the other 
hand X * X  has Ai, A2 . . . . .  An as its diagonal entries. Since IIIXX*lll = s g * X l l l  and 
since the norm of the diagonal part of a matrix is always smaller than the norm 
of the whole matrix [7,91, the second inequality in (21) follows. The first one is 
proved by noting that the block diagonal matrix each of whose diagonal entries is 

~ A t  can be written as sum of n block diagonal matrices diag (Aorta, A ot2~ . . . . .  A,~)) 
t = l  

obtained by cyclically permuting the indices (1, 2 . . . . .  n). By unitary invariance each 
of these n matrices has the same norm. So, the triangle inequality gives the desired 
result. []  

For  p-norms, the above Lemma says: if At . . . . .  /in are positive operators then 
for 1 < p < oo, we have 

IIi I[i n ' -P  /it I/It It~ _-< At �9 (22) 
i i 

Suppose we are now given n 2 positive operator At j, i,j = 1, 2 . . . . .  n. Then by 
considering the direct sum of the n matrices 

.a"i= 0 0 ... 
�9 . ,  . . .  

0 0 -.. 

i =  1, 2 . . . . .  n and applying the same argument as above we get 

(23) 

for every unitarily invariant norm. Here it is to be understood that the left hand 
side involves n 2 direct summands A o and the right hand side involves the direct 



724 R. Bhatia and F. Kittaneh 

sum of n 2 terms the first n of which are the row sums of the matrix [Ao] and the 
remaining n 2 - n are zero. Using this we can prove: 

Proposition 5. Let T be an operator with block decomposition T = [Tij], 1 < i,j < n. 
Then 

for all Q-norms; and 

,,4, 

IITIIc,.< +.~T~] e,, (25) 

for all Q*-norms. 

Proof. The matrix T* T has for its diagonal entries the terms ~ TJ'~ Tj+, i = 1,2 . . . . .  n. 
j ~ l  

As already mentioned in the proof of Lemma 4, for every unitarily invariant norm, 
the diagonal part of a matrix has norm no larger than that of the original matrix. 
Use this first and then the inequality (23) to get 

By the definition of Q-norms, (24) follows from (26). By a duality argument we 
obtain (25) from this. [] 

Notice that the second inequality in (4) is a special case of (24) while the first 
inequality in (5) is a special case of (25). 

The function f ( t )  = t" on the positive half-line is convex when r ~ 1 and concave 
when r ~ I. Choose r = 2/p. When p ~ 2 the first inequality in (2) follows from the 
second inequality in (4) by concavity of the map f(t).  The second inequality in (3) 
now follows from this by duality. Equivalently, we could have first derived this 
latter inequality, using the convexity of the map f ( t )  = t 2/p, from the first inequality 
in (5). Since the dual of J l  is al(H) this explains our remark that the inequalities 
(2) are true for arbitrary operators. Now choose r = p/2. The first inequality in (4) 
then follows from the second one in (2), while the second inequality in (5) follows 
from the f~rst one in (3). 

Both our Theorems 1 and 2 have been established. We now give examples to 
show that they are sharp. 

For each n consider the n • n matrix T with all entries 1. Then II TIIp = n, for 
all p. Let T o be the ij entry of T, i.e. each T o = 1. Then the first of the inequalities 
(4) and the second of the inequalities (5) become equalities. 

For each ;I, let P1 . . . . .  P, be mutually orthogonal rank one projections in the 
Hilbert space eL TM. Let T be a block-matrix operator whose rows are (P,~I~, 
P,~2~ . . . . .  P ~ )  where cr varies over the cyclic permutations of-(1, 2 . . . . .  n). Then T 
is a unitary matrix of order n 2. Hence II TIIp = n 2/p for all p. Each of the entries 
T o is one of tbe projections P~ chosen above. So tl Toll~ = 1, for all i,j and for all 
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p. This shows that the first inequality in (2) and the second inequality in (3) are 
sharp. 

The remaining inequalities in Theorems 1 and 2 are obviously sharp. 
Both these theorems can be extended in various directions; we will examine 

that in a subsequent paper. 

4. The Radon-Riesz property of Q*-ideals 

Let X be a Banach space. We say X has the Radon-Riesz property (RRP) if 
whenever x, is a sequence in X such that x. converges weakly to an element x of 
X and II x.  II ~ II x II then [[ x, - x II ~ 0. 

Arazy [2, 3] and Simon [12,13] have obtained several interesting results 
concerning the RRP for norm ideals. In particular, the Schatten p-ideals have the 
RRP when 1 < p < oo. For 1 < p < oo this is a consequence of the uniform convexity 
of these ideals. However, the ideal Jt 1 is not uniformly convex but has the RRP. 
This follows from the general theory developed by Arazy. However, Arazy [3] 
also gave an interesting special proof for the ideal Jr 1 using the first of our 
inequalities (3) which he proved for p = 1. The same idea works for all Q*-norms 
as shown below. 

We will use the simple fact that in the case of norm ideals the weak Banach 
space convergence in the definition of RRP may be replaced by weak operator 
convergence. In other words, a norm ideal J associated with the unitarily invariant 
norm Ill'Ill has the RRP whenever weak operator convergence of a sequence A. in 
J to an element A of • together with the convergence of Ilia, Ill to  tllAlll implies 
II) a~ - a)[I -~ 0, see [3, 13]. 

Theorem 6. The ideals •Q, corresponding to Q*-norms all have the Radon-Riesz 
property. 

Proof. The proof is an imitation of Arazy's proof for the ideal Jt  I. We give it here 
for the reader's convenience. 

We will use a coordinate-free version of our inequality (17): if P and p l  are 
complementary orthogonal projections in ~ then 

[] r l l~.  >-_ tlPTPll~.+ IIPTP• IIPXTPII~.+ IIP~TP~I[~. (27) 

Let A~ be a sequence in J ~  which converges in the weak operator sense to an 
element A of Jo*- By Lemma 2(c) of Simon [131 there exists an increasing sequence 
of finite rank projections P. with strong limit I such that P,A,P, converges to A 
in the Q*-norm topology. (This is true, in general, for all norm ideals). Using the 
inequality (27) and then the Cauchy-Schwarz inequality we get 

II a .  )1r = 2  > II e.a.e._ II~. + ~[  II e ,a ,e~  IIQ. + II P~.A.P. tic,. + IIP.• A,e,X IJQ*] z, 

for each n. (There is a little error in~[3] in this step with the last square missing). 
Hence, we can write 

llA, - a [IQ,_~ II P, A,P. - A II~. + Il e ,A,e~ ll~, + [I P~ A,P, IIQ, + II P.i A,P,~ lt Q. 

< Jl e , a , e ,  -- A IJtr + [3(11A, II~, - II e , a , e ,  [l~.)] 1/z 
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The right hand side of the above inequality goes to zero as n ~ oo. This proves 
the Theorem. [ ]  

We conclude with some remarks: 
1. Arazy [31 has proved that  the norm ideal J r  associated with a symmetric 

gauge function �9 has the R R P  iff the corresponding sequence space lr has it. So 
the sequence spaces corresponding to Q*-norms also have the RRP. As the examples 
in Sect. 2 shows, some of  these norms can be quite complicated; so a direct p roof  
of  the RRP  for them may be quite involved. 

2. As remarked earlier, the RRP  of the ideals ocp for 1 < p < 0o is a consequence 
of  their uniform convexity. This, in turn, follows from the C l a r k s o n - M c C a r t h y  
inequalities. One  part  of  these is easier to prove - in fact a proof  as easy as the 
ones given here exists [7]. However,  this easier part  is the one used to derive the 
uniform convexity of  J p  for 2 < p < oo. The uniform convexity ofoCp for I < p < 2  is 
a consequence of  the "harder" C l a r k s o n - M c C a r t h y  inequalities usually proved by 
complex interpolation methods.  (See the discussion in [8].) O u r  proof  of  Theorem 6 
which includes the case of  ocp for 1 < p -< 2 is thus much simpler. 

3. By our  Theorem 6 and Lemma 1 of  Simon [13] each ideal 2sQ. has the 
following property. If  A, B in 5Q, are such that  II A IIQ. = II n IIQ. and sj(A) < sj(B) 
for all j, then sj(A)= s~(B) for a l l j .  

For  applications of  the contents of  this section see [12, p. 40-43].  
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