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O. Introduction 

In recent years it has become apparent that the class of  completely positive kernels 
introduced by C16ment and Nohel [8, 9] plays a prominent role in the theory of 
Volterra equations in Banach spaces. Recall that a kernel a I e L~oc(]R§ is called 
completely positive if there are k o -> 0 and k 1 e L~o c ( ~  § nonnegative and nonincreas- 
ing, such that 

! 

koal( t )+Sal( t --~)kl(T)d~=l , t > 0  . (0.1) 
0 

An equivalent of this definition is in terms of the solutions s(t, lz) of the parameter 
dependent equation 

t 

s ( t ) + # S a l ( t - O s ( ~ ) d ~ = l ,  t , p > 0  ; (0.2) 
0 

a 1 (t) is completely positive iff s(t, la) is nonnegative and nonincreasing in t > 0, for 
each # > 0. It follows from the results of Friedman [14] that every kernel a 1 (t) > 0, 
which is nonincreasing and such that log a 1 (t) is convex, is completely positive; see 
also Miller [27]. In particular, every completely monotonic function a 1 ~ Ldo c (R +) is 
completely positive, since it is wellknown that such functions are log-convex; this 
follows also from Reuter's theorem [33]. 

The concept of  complete positivity has been successfully applied to the study of 
abstract Volterra equations of the form 

t 

u(t)+ S a l ( t - z )Bu(~)dz=f ( t )  , t > 0  , (0.3) 
0 

where B denotes an m-accretive (linear or nonlinear) operator in a Banach space X; 
cf. C16ment [5], C16ment and Nobel [8], Cl6ment and Mitidieri [7], Gripenberg 
[17], Priiss [29-31]. Equations (0.3) arise in several applications, like the theory of  
viscoelastic materials (cf. e.g. Priiss [29]), or the theory of heat conduction in 
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materials with memory; cp. Section 6 for the latter. If f ( t )  is of the form 

t 

f ( t ) = x + ~ a l ( t - z ) g ( ~ ) d ~  , t > 0  , (0.4) 
O 

then by virtue of (0.1), (0.3) is equivalent to the problem 

t 

d (kou(t) +S kl ( t-~)u(r)d~) +Bu(t) =k  1 (t)x+g(t),  u(O)=x . (0.5) 
dt o 

This motivates the study of operators A defined by 

J,( ) (Au)(t)= kou(t)+ k l ( t -~)u(~)dz  , t > 0 ,  (0.6) 

in certain function spaces, where ko>0, and k I e L~or is nonnegative and 
nonincreasing. It has been shown that operators A of the form (0.6) are m-accretive 
in Le(0, T; X) and in LP(IR§ ; X), 1 <p  < oo, where Xdenotes any Banach space; cf. 
C16ment [5] and Gripenberg [17]. The semigroup Tp(z) generated by A admits a 
representation of the form 

t 

(Tp(z)f)(t) = ~ f ( t - s )d~w(s ,  ~) , t, "c > 0 , (0.7) 
0 

where the measures dtw(,,  ~) are nonnegative and finite. 
The structure of these measures d r w (., ~) - in particular their supports and their 

regularity properties - have been studied in the recent paper Priiss [29]. There it was 
observed that they lead to another characterization of completely positive kernels. 
Namely, a 1 (t) is completely positive iff the transport equation 

' d 
w(t, ~)+~ al ( t - s )  ~ w(s, z)ds = 0 

0 
(0.8) 

w(t ,O)=l,w(O,z)=O , t , z > 0  

admits a solution w(t, z)>=0 which is nondecreasing in t and nonincreasing in T. 
w(t, ~) and the solution s(t, I~) of (0.2) are related by 

s ( t ,# )=  - ~  e-~d~w(t,~) , t , p > 0  , (0.9) 
O 

i.e. s(t, .) is the Laplace transform of the nonnegative finite measure - d ,w ( t ,  .). 
Priiss [29] contains also another more practical characterization of complete 
positivity by means of Laplace transforms; namely a~ (t) is completely positive iff 
the function r lift 1 (2) satisfies 

r and ~o'(2) is completely monotonic for 2 > 0  . (0.10) 

Observe also that the Laplace transforms of the measures dtw(.,  z) are given by 

h(2,~)=exp(--T~p(2)) , 2 ,~>0  , (0.11) 

which yields just another equivalence, al (t) is completely positive iffh(2, T) < 1, and 
h(-, ~) is completely monotonic for all ~ > 0. 
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Functions ~0(2) which are subject to (0.10) have already been considered by 
Bochner [4] and Feller [13], and are called Bernsteinfunctions by Berg and Forst [2]. 
Their relations to infinitely divisible probability measures via (0.11) and to 
translation invariant positive C0-semigroups of contractions via (0.7) are well- 
known; cf. e.g. Hille-Phillips [18], Feller [13] and the more recent monograph of 
Berg and Forst [2]. Every Bernstein function admits the representation 

~o (,~) = 1 / ~ ( ; t ) ,  ~ > 0 , (0 .12)  

where da is a unique nonnegative measure on ~ §  Berg and Forst [2] call this 
measure a potential measure, and in case it is absolutely continuous w.r. to 
Lebesgue-measure, its Radon-Nikodym derivative al(t)=a'(t ) is a completely 
positive kernel as defined above; in the notation of Kingman [21], al(t ) is the 
multiple of a p-standard function. In the sequel we shall call a measure da on F.,+ 
completely positive, if ~0(2) defined by (0.12) is a Bernstein function. 

It is one purpose of this paper to present a unified approach to completely 
positive measures via Bernstein's theorem, simplifying and extending this way 
existing proofs. This approach is based on a new representation of Bernstein 
functions which directly employs k o and k I appearing in (0.1); this is the main result 
of Sect. 1. In Sect. 2 we then derive the characterizations of a completely positive 
measure da in terms of ~0, h, s, and also in terms of the complete symbol of (0.8) 

1 ~'a (,;t) 1 1 
a(2, p) ~ - '1+  ~'-2 --~./Ma() #+q)(A) ' 2 > 0  , (0.13) 

while Sect. 3 is devoted to the study of the solution w(t, z) of (0.8), the central subject 
of the theory. As a first consequence of this approach, we obtain in Sect. 4 a 
complete description of the domains of the generators of Feller-semigroups Tp(O in 
LP(I~), 1 <p  < ~ ,  induced by the measures dtw(., ~). This description is in terms of 
the functions f E L p (R) itself, rather than the classical one which is in terms of their 
Fourier transforms. We also compute the dual semigroups, and study the 
dependence of Tp(z) on the measure da(t). Since these semigroups have a 
representation in terms of the measures d t w(., z), it is not difficult to extend them in 
the "tensor product sense" to the spaces LP(R§ ; X), where X denotes a general 
Banach space; this is done in the first part of Sect. 5. 

Since for functions f of the form (0.4), (0.3) is equivalent to (0.5), it is natural to 
look at (0.3) as an equation of the form 

~tu + ~u=o (0.14) 

in LP(0, T; X) or in LP(R + ; X). Recently, it has been shown by Dore and Venni [12] 
that the boundedness of the imaginary powers of ~ and ~ significantly influence 
the behaviour of the solutions of (0.14), in particular their regularity. For this 
reason the second part of Sect. 5 is devoted to the study of  the boundedness of 
d it, ~, e IL Via the method of transference developed by Coifman and Weiss [11], 
certain results on "tensor product extensions" of positive linear operators, and by 
means of an abstract multiplier theorem due to McConnell [26], we prove that the 
negative generator ~/~ of the Feller semigroup 5p(~) induced by a completely 
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positive measure admits bounded imaginary powers fo rp  e (1, oo) and the estimate 

X 

I~r =<_ cp(1 + I~1 ~) el~12 " , y ~ (o.15) 

holds, provided the Banach space X is (-convex; see McConnell [26] or Dore and 
Venni [12] or Priiss and Sohr [32] for brief explanations of  this concept. In 
particular, any space LP(I2), p ~ (1, oo), where (O, .//,/~) is a a-finite measure space, 
is (-convex. If  ,Y is a Hilbert space and p = 2, or if k 1 (t) is completely monotonic, 
(0.15) can be sharpened; in fact, we prove that (0.15) holds with n/2 replaced by 

Oa = sup {larg tO 0.)1 : Re ;t > 0} < 2 " (0.16) 

This is important for applications as shown in Sect. 6. It would be interesting to 
know whether (0.15) with 7r/2 replaced by O A always holds, or whether there are 
counterexamples. 

Finally, Sect. 6 is devoted to the equations of linear heat conduction in materials 
with memory (cf. Nunziato [28]) 

bou,(t,x)+~ i b,(t-s)u(s,x)ds 
- -  o 0  

~ i =c~Au(t,x)+-~ r f(t ,x) , 

t ~ R  , x ~ t 2  , ( 0 . 1 7 )  

u(t,x)--O, t ~ ,  xedt2 ; 

here f2cP~" denotes a smooth bounded domain, and u(t,x) represents the 
temperature of  the material point x e t2 at time t. The numbers b o -> 0, coo > 0 and the 
functions b 1 (t), c 1 (t) reflect the heat conduction properties of  the material under 
consideration. We rewrite (0.17) as an abstract equation of the form 

�9 u + ~ r  = f 

in the Banach space LP(R, L~(I2)), 1 <p,  q < 0% and apply the results of  Dore and 
Venni [12] and Prilss and Sohr [32] to obtain wellposedness of  (0.17). Here the 
estimates (0.15) and its improvement involving (0.16) are crucial. Up to now there 
is no other approach to the maximal regularity of  the solutions of (0.17) in 
the L~-L ~ framework; here maximal regularity means that for f E LP(R, L~(O)) 
we obtain ueLP(R, W2'~(O)nWoI"a(f2)) and some extra time regularity, 
e.g. u~WI'P(R,L~(I2)) in case b0>0 holds. Note that since LP([0, T], 
L ~ (fl)) ~-,,L p(R +, L q (~) ~-, L p(R, L ~ (~)), our results also apply to the initial value 
problem for (0.17) with initial value u(0, x ) = 0  on finite intervals [0, T] or on the 
hairline R + .  
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1. Bernstein functions 

The theorem of Bernstein on completely monotonic functions will play a 
fundamental role in what follows. Before we state this result, recall the definition of 
a completely monotonic function on R+ 

I)ef'mition 1.1. A C~176 f :  (0, oo)--.~,, is called completely monotonic if 

(-1)"f~")(2)_->0 for a l l 2 > 0  and n ~ N  o . (1.1) 

We shall denote the class of completely monotonic functions by ft./~ 

Bernstein's theorem characterizes completely monotonic functions as Laplace 
transforms of positive measure supported on 1~+. 

Theorem 1.2 (Bernstein). A function f : (O,  o o ) ~ R  is completely monotonic i f  and 
only i f  there exists a unique function O: [0, oo )~R ,  nondecreasino, left-continuous, 
with 0 (0) = 0 such that 

f ( 2 ) = S  e-~Sdo(t) , 2 > 0  . (1.2) 
0 

Moreover 

and 

oo 

( -  t)"f~")(2)= S t"e-atdo(t) , 2 > 0  , n 6 N  o (1.3) 
0 

oo 

(--1)"fl")(0+) = I t"do(t)  , n ~ N  o . (1.4) 
0 

In the sequel we shall denote by B V ( R + )  the space of functions of  bounded 
variation on 1~ + normalized by O (0) = 0 and left-continuity, by B VIo ~ (R +) the space 
of functions which are of bounded variation on each compact interval d c P, + and 
normalized in the same way. We shall use the notation 

~OO(2)=~ e-a 'do(t)  , 2 > 0  (1.5) 
0 

for 9 e B Vlo,(F, +), whenever the integral exists in the Lebesgue-Stieltjes sense, and 
similarly 

rio 

s  S e-X'k(t)  d t ,  2 > 0  , (1.6) 
0 

whenever k e L~o~ 
It is weUknown that the class cg~r is closed under pointwise addition, 

multiplication and convergence; see [35]. However, it is not true that the 
composition of two functions f,  # e cg~tt' belongs to cg~r in general. For the 
composition, the class of Bernstein functions appears naturally. 

Definition 1.3 (Berg-Forst). A C| q~:(0, o o ) ~ R  is called a Bernstein 
function if r is positive and tp' is completely monotonic. 

Observe that Berg and Forst [2, p. 61] allow r to be nonnegative, but the only 
function we exclude in our definition is the function tp = 0. 
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Proposition 1.4 (Feller). Let f be a completely monotonic function and @, ~ be 
Bernstein functions. Then 

(i) f o tp is completely monotonic. 
(ii) ~b o tp is a Bernstein function. 

This proposition is taken from [13, p. 441], for a converse, see [4]. It is easy to 
verify that the class of Bernstein functions is closed under pointwise addition, 
multiplication with positive numbers and pointwise convergence. From Bernstein's 
theorem one can deduce the following representation of Bernstein functions. 

Theorem 1.5. A function tp is a Bernstein function i f  and only i f  there exist unique 
nonnegative constants ~, fl and a unique nonnegative measure ~ on (0, oo), not all zero, 

s d~(s) < ~ such that satisfying 
0 

q~(2)=g+fl,~+ S (1 -e -as )aT(s ) ,  2 > 0  . (1.7) 
(0, oo) 

For a proof of this theorem see for example [I 3]. This representation is not quite 
appropriate for our purposes; however, a slight modification of it appears to be of 
central importance in the following sections. 

Theorem 1.6. A function q~ is a Bernstein function iff there exist unique nonnegative 
constants k o, ko~ and a unique nonneoative, nonincreasing, left-continuous function 

1 

k I :(0, ~ ) ~ R  satisfyin 9 lira k l ( t ) = 0  and ~ k l ( t )d t< 0% not all identically zero, 
t ~ ~ 1 7 6  0 

such that 

q~(2)=2 (k0 +~-~+/~, ( 2 ) ) ,  for all 2 > 0 .  (1.8) 

We give a proof of  Theorem 1.6 which is based on Bernstein's theorem only, 
although it is possible to derive it from Theorem 1.5. 

Proof Suppose tp(2) has the form (1.8) where k0, koo and k 1 are as in the Theorem. 
Then q~ (2) is well defined for 2 > 0, is positive and belongs to C co. To prove that q~ is a 
Bernstein function, it is therefore sufficient to show that f (2) :=(2k ' l ) ' (2)  is 
completely monotonic. Assume first k 1 (0 +) < oo. Then by setting k~ (0) = 0 we have 
kt e B V ( ~ + ) ,  hence 

t t 

l ( t ) : =  --~ sdki(s)= - ~ sdkl(s) 
0 0 + 

is nondecreasing since k 1 is nonincreasing on (0, oo). We obtain 
/ N  A 

f (2) = (dkt)'(2) = - tdki (2) = ~'(3.) 

which is completely monotonic by Theorem 1.2. Ifk~ (0 +) = ~ ,  we approximate k 1 

by kl,~(t ) : = k  x ( t+e),  ~> 0, let ~o,(2)= 2 (ko +~-~+~'1.~(2)). Then q~, is a Bernstein 

function and lira q~,(2) = q~(~), for every 2 > 0, since 
~ . 0  

~'1,. (2) = ea'~'l (2) - iea( ' -  Okl (t) at . 
0 
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Conversely, assume that tp is a Bernstein function. Then 

k~ o :=  ~0(0 +) (1.9) 

exists, is nonnegative and finite. Subtracting k~ we may assume w.l.o.g, that 
koo = 0. Since q~ is positive and concave 

ko :=  lim ~o(2) = inf ~o(2) (1.10) 
l--,oo ,~ 4>0 /~ 

exists, is nonnegative and finite, and so we may also assume k o = 0. Next observe 
~o(2) 1 

that T is also completely monotonic since q~(2) = 2 ~ qr 2 > 0. Thus by 
o 

Bernstein's theorem, there exists k e B Vlo c (IR +), nondecreasing with k (0 +) = 0, such 
that q~(2)=2a'~c(2). On the other hand, since ~0' is completely monotonic, we have 
~o' (2) = ~(2) for some I e B Vlo c (~-. +) nondecreasing. Then 

[ ~o' 1 07s 2_s '=2 /~ t'~- 
2 ~ - ~ -  2 +s 

implies 

i t tk ( t )=2 k ( s ) d s - j  l(s)ds , t > 0  . (1.11) 
0 0 

From this identity and k(0+)=0,  it follows that k e  Wl'l[0, T], for every T > 0 ;  
we define 

k i : = k '  (1.12) 

This defines k 1 a.e. only, however differentiating (1.11) we obtain 

t k l ( t ) = k ( t ) - l ( t  ) , t > 0  (1.13) 

which defines ki everywhere as a left-continuous function, and in addition we have 
tk t e BVIo~(P,+); in particular k 1 e BV[e, T], for every 0 < e < T<  oo. 

We now show that kt is nonincreasing. For this purpose, let p e~g(0, oo) be 
nonnegative with compact support; we then have 

0< ~ p(t)dl( t )= ~ p ( t ) d k ( t ) -  ~ p(t)d(tkt( , ) )= - ~ p(t) tdkl( , )  . 
0 0 0 0 

Since p has been arbitrary, and the space of  continuous functions with compact 
support in (0, oo) is dense in c~(0, oo) w.r. to the compact-open topology this implies 
that k I (t) is nonincreasing. Finally, we have 

lim k t ( t )= l im  2/~1(2)=1im @(2)=0. [] 
t--, oo 2~.0 ,t~O 

Lateron,  we shall need a decomposition of k i (t) into one part k2(t ) which is 
integrable and another part k 3 (t) which is of bounded variation on F, +. We choose 
the following 

kl ( t )=k2( t )+k3( t )  , t > 0  , (1.14) 
where 

k2( t )=max(k l ( t ) - k l (1 ) ,  0) , t > 0  , (1.15) 
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and 
k3( t )=min(k l ( t ) ,  kl(1)) , t > 0  . (1.16) 

Then representation (1.8) becomes 

r , 2 > 0  . (1.17) 

As a direct consequence of (1.17) we obtain 

Corollary 1.7. Let ~p be a Bernstein function. Then cp admits a continuous extension to 
C + = {2 ~ �9 : Re 2 > 0} which is holomorphic on the interior of  IE +. 

2. C o m p l e t e l y  posit ive measures  

Let ~0 be a Bernstein function. Then by Proposition 1.4, 1/q~ is completely 
monotonic,, therefore by Bernstein's theorem, there exists a function a E BVto r ( ~  § 
such that ~aa= lflp. On the other hand, by Theorem 1.6, q~(2)=2d/~(2), where 

t 

k ( t ) = k o + k ~ t +  ~ kl(s)ds , t > 0  (2.1) 
0 

is positive, nondecreasing and concave. Thus ~da(2)~(2)=2 '  2 > 0, which implies 

that the measure da is a solution to the Volterra integral equation 

t 

k ( t - s )da ( s )  = t , t > 0 . (2.2) 
o 

Conversely, if k : (0, o o ) - ~  is positive, nondecreasing and concave, then k can 
be written in the form (2.1). Indeed k 0 :=k(O +) which exists and is nonnegative; 

k~ : = lim k( t )  = inf k( t )  which exists and is nonnegative since k is positive and 
t-,oo t ,>o t 

concave. Then k (t) - k o - koo t is the primitive o fa  nondecreasing function k I , which 
can be choosen left-continuous, and is such that lim k 1 (t) = 0. By Theorem 1.6, m(2) 

g"* O0 

defined by (1.8) is a Bernstein function. Therefore, the measure da with Laplace- 
transform a~(2) = 1/q~(2) is a solution to (2.2). Observe that da is the only measure 
solution of  (2.2). Indeed, integrating twice the equation, 

t 

k ( t - s )db( s )=O , t > 0  , (2.3) 
o 

where beBVioc(R+), and using Titchmarsh's theorem [36], we see that the only 
solution of  (2.3) is db = 0. We summarize this in the following theorem which is due 
to Gripenberg [16]. 

Theorem 2.1. Let k : (13, ~ ) ~ R  be a positive, nondecreasing concave function. Then 
there exists a unique function a E B Vlo ~ ( R  +) satisfying (2.2). Moreover, the function a 
is nondecreasino and satisfies a~a(2) < ~ for 2 > 0, 
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Remarks 2.2. (i) In case k o > 0 or equivalently k(0 +) > 0, (2.2) reduces to the simple 
Volterra equation of second kind 

k o a l + ( k ~ + k l ) . a l = l  , t > 0  , (2.4) 
t 

which has a unique solution in WIlo~ 1 ( ~  +) and there fore a (t) = S al (s) ds is the unique 
0 

solution of  (2.2). The positivity of al was observed first by Friedman [14]; see also 
Levin [24]. Reuter [33] proved that a 1 is even completely monotonic if k 1 has this 
property. 

(ii) The case where k o = 0 has been obtained in Gripenberg [16] where Fourier 
transform arguments are used. When k 1 (0 +) < Go, the measure da has a jump part 
and when kl (0+)= oo, da has no jump part, but the singular part may still be 
nontrivial as is shown in [16]. 

In case the solution of (2.2) is absolutely continuous, al =a '  is called a 
completely positive function in C16ment and Nohel [9]. More generally we 
introduce 

Definition 2.3. Let a~BVloc(F,,+). The measure da is called completely positive if 
there is a function k : (0, ~ ) ~ R ,  positive, nondecreasing and concave such that 
(2.2) is satified. 

Observe that a completely positive measure is Laplace-transformable for 2 > 0, 
~aa ().) is positive and completely monotonic. In the sequel we shall need the functions 
s(t, It), #E C, which are defined as the solutions in BVIor of the equation 

s( t )+i t  i s ( t - z ) d a ( T ) = l  , t > 0  , p > 0  . (2.5) 
o 

The main result of this section is the following theorem which contains several 
characterizations of completely positive measures. 

Theorem 2.4. Suppose a ~ B Vlo ~ ( ~  +) is Laplace transformable and such that ~aa (2) > 0 
for 2 > O. Then the following assertions are equivalent: 

(i) da is completely positive; 

(ii) cp (2) = 1/~a (2) is a Bernstein function, i.e. - ~a' (2) is completely monotonic; 

(iii) ~k,(~.)=e-~/~t~) is completely monotonic for every z > O; 

(iv) cpu(2 ) = 1 +pz//'~(2) is completely monotonic for every It > O; 

(v) the solution s(t, #) o f  (2.5) is positive and nonincreasing for every It > O. 

Remarks 2.5. (i) The equivalence between (ii), (iii), (iv) is well-known; see [13, 2]. 
A measure da satisfying (iii) is called a potential kernel in Berg and Forst [2], and if 
it is absolutely continuous, it's derivative a 1 = a' is equivalent with a multiple of a 
p-standard function (see Kingman [21]). 

(ii) For the case of absolutely continuous a, the equivalence (i) and (v) was 
observed in Cl6ment and Nobel [9]; see Cl6ment and Mitidieri [7]. 

(iii) Property (ii) is used in an essential way in Priiss [29-31] to establish various 
properties of solutions of abstract Volterra equations in Banach spaces. 
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Proof of Theorem 2.4. (i)~(ii)  has already been established. 
(ii)=~(iii) If  r is a Bernstein function, then by Proposition 1.4. e -~*erg~.  

(iii)=~ (iv) If  e - ' r  cg~t' for each z > 0, then since ~p is positive, we have 

~aa(2) = 1 = ~ e-'*Ca)e-r , IZ > 0 , 

hence this function belongs to ~r for each # > 0. 
(iv)=:- (ii) Since ~p e C oO and is positive, it is sufficient to prove ~p' e c#j/. We have 

1 pZcp, 
- -  e ~ '  for every # > 0, hence ~ + r e cg~, for every/z > 0 and by taking 
#+r 
the limit as #~oo,  we obtain q / e ~ J f .  

/ 
(ii)=-(v) For every #>0 ,  e~fJt '  by Proposition 1.4. By Bernstein's 

9 + #  1 
theorem there exists rue B Vlo c (R +), nondecreasing such that ~ ,  (2) = q~ (2) + ~u" 

1 1 
Note that r~eBV(R+)  since r~(oo)= < - .  Set s~(t)= 1-ltru(t).  Then 

~0(0+)+# = #  
clearly s~ is nonnegative and nonincreasing. We claim that s~ (t) = s(t, I~). Indeed, by 

using tp = ll~aa, 1 ., I 1 1 s (X) = ~ - #r u (2) = ~ (1 - pd~'~ (2)) = ~" 1 +/u//~(2) " Thus s u satisfies 

(2.5) and by uniqueness s~(t)=s(t, #). 
(v)~(ii) Since s u is positive, noninereasing, by Theorem 1.6, tpu(2) = 21du(2 ) is 

a Bernstein function for every 1 z > 0. On the other hand, 

~ ( 2 )  

= 1 + ud (,t) = 

1 
as /z~oo.  Hence tp (2)=~( ,0  is a Bernstein function. [] 

Corollary 2.6. Let da be completely positive and let s(t, #) denote the solution of(2.5), 
# > O. Then s( . ,  It) e BV(R+) and satisfies also the equation 

#s( t , l~)d t+(dk .ds( . ,# ) ) ( t )=dk( t )  , t > 0  , /~>0 . (2.6) 

The function ~ou(2)= 2s #) is a Bernstein function. Define r (t, #) by 

r ( t , # ) = # - x ( 1 - s ( t , # ) )  , # > 0  , t > 0  . (2.7) 

Then r(. ,  #) e BV(R+), is nondecreasino, r(O +, #) = 0 and r(. ,  #) satisfies 

#r(t, lZ)+ d ( d k , r ( . , # ) ) ( t ) = l  , t > 0  , # > 0  

and 

' 

The measures dr(., #) are completely positive. 

(2.8) 

(2.9) 
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Remarks 2.7. (i) Observe that ifda is completely positive and a o > 0 then a o 60 +da is 
also completely positive, where go denotes the Dirac measure at 0. This is immediate 
from Theorem 2.4 (v); see also Berg and Forst [2]. 

(ii) I f a  is positive, increasing and concave, then it follows from Remark 2.2 (i) 
that s(t,#)>O for every # , t > 0 .  Replace k by a and al by s in (2.4) to see this. 

(iii) Concerning the decreasingness of s, when a(t) is absolutely continuous 
(da = al dr), it follows from a result of Friedman [14], see also Miller [27], that i fa 1 is 
positive and log a 1 is convex, then s ( - , /0  is decreasing for every # > 0. Therefore the 
class of  positive, decreasing and log-convex locally integrable kernels is contained 
in the class of completely positive kernels. It was proven by Hirsch [19] that this 
class is contained in the class of  potential kernels which are by Theorem 2.5 also 
completely positive. Note that completely monotonic kernels are positive, decreas- 
ing, and log convex, hence completely positive whenever they are locally integrable. 
This is also a consequence of  Reuter's theorem [33]. 

(iv) In contrast to the class of positive, decreasing log-convex functions, the 
class of completely positive measures is not closed under addition. 

We conclude this section with a corollary which reformulates Proposition 1.4 in 
terms of completely positive measures. 

Corollary 2.8. Suppose da is a completely positive measure and beBVloc(~+) is 
Laplace transformable and nondecreasing. Then there is a unique nonneoative Laplace 
transformable measure dc such that 

~cc(2)=~(1/~a(2)) , 2 > 0  . (2.10) 

I f  moreover db is completely positive, then dc is completely positive as well. 

Remark 2.9. Corollary 2.8 is called subordination principle in Feller [13], and Berg 
and Forst [2] and chain rule in Prfiss [31], where this principle is used to derive 
existence and regularity for resolvents of Volterra equations in Banach spaces from 
semigroups or cosine families. 

3. Translation invariant Feller semigroups 

Let da be a completely positive measure. By Corollary 2.8, there exist functions 
w(., z)~ B V(R§ nondecreasing and less than one, for T >-0, such that 

~w(2,~)=e -*/~(~) , ~, >0  r > 0  . (3.1) 

From the relation 

e - (,1 + ~)/~= e - ~':9' e - +2/~ 

it follows that dw satisfies the semigroup property 

t 

w(t-s,~a)dw(s,~2)=w(t,~l  +z2) , t>=O , Xl,~2>_-O (3.2) 
0 

and 
w(t, 0 ) = l  , t > 0  . (3.3) 
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These measures {dw(., z)}~o give rise to a semigroup of operators {To(z)):~o on 
C O (JR) defined by 

(To(z)f ) ( t )=  ~ f(t-s)dw(,~, z) , t e R  , z~O , (3.4) 
0 

where f ~  Co(R ). 
It is well-known (see Hille-Phillips [18]), that the semigroup {To(z)}~>o is 

strongly continuous for z_--> 0 on Co (R) equipped with the sup-norm and enjoys the 
following properties: 

(F1) T0(z ) are contractions for all z__>0. 
(F2) TO(z) are positive for all z__>0 with respect to the standard cone Co+ (R) 

in Co(IR ). 
(F3) TO(z) commutes with the group of  translations on R. 
Such semigroups are called translation invariant Feller semi#roups in Berg and 

Forst [2]. Since the support of  the measures dw(., z) is contained in R + ,  we have the 
additional property 

(F4) (To(z)f)(t) = 0  for all x__>0 and t__<0 whenever f ( t ) = 0  for all t_<0. 
It is also known that the converse is true, namely that every translation invariant 

Feller semigroup on Co(R ) satisfying (F4) is of  the form (3.4) where the measures 
dw(., z) satisfy (3.1) for some Bernstein function ~ =  1/~a, i.e. for some completely 
positive measure da, thanks to Theorem 2.4 (see Berg and Forst [2]). 

Next we consider the map w : R + .--rBV(IR +) defined by w (z) = w (., z), z ~ O. The 
space BV(I~+) becomes a commutative Banach algebra with unit e, where the 
multiplication �9 is defined by 

t 

(a �9 b ) ( t )=  S a(t-s)db(s) , t>O (3.5) 
0 

and the norm is given by 

Hall--Vat [a; (3.6) 

see Gel'fand et al. [15]. 
The identities (3.2) and (3.3) show that w forms a semigroup in BV(F,,+), and 

Hw(~)l[ < 1, for every z=>0. We denote by B V + ( R + )  the closed c o n v e x  c o n e  of 
nondecreasing functions in BV(F,,+); then w(T)~BV+(R+),  for every z=>0. 
Consider BV(R+) as a closed subspace of B V ( R ) : =  {v:IR-~Rtv of  bounded 
variation, left-continuous, v ( - o o ) =  lira v(t)=O}, equipped with the variation 

norm, by extending w e B V(R + ) by 0 to R _ .  Then BV(R  +) is a subspace of the dual 
Co(~)* and therefore inherits the weak*-topology of Co(R)*. Then the semigroup 
w is weak*-continuous on R + .  On the other hand, we also have the identity 

O (~aae_,/~)+e~;~=O, , > 0 ,  
O~ 

from which by (3.1) and dividing by 2, we obtain 

,9 r > 0  a > 0  
(3.7) 

, t > o .  
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Defining ea(t):=e -at, 2>0 ,  t_>_0, and assuming first a e B V ( R + ) ,  identity (3.7) 
becomes after an integration 

T 

(a ~ w(~),ea)+~ (w( tr ) ,ex)da=(a,e~)  , T~0 and 2 > 0  (3.8) 
0 

where ( . , .  ) denotes the pairing between BV(IR) and C O (R). As we will show below, 
this implies that a �9 w is weakly*-continuously differentiable and 

d 
weak* dzz (a"  w)(~)+w(z)=O , z>__O 

(3.9) 
w(0)=e . 

In case a~BVlo~(R+) only, one can also define the multiplication (3.5) for 
a, beBV~c,(~+), and (3.9) still makes sense in the topology generated by the 
continuous functions with compact support Co(R). It turns out that the existence of 
a solution in B V + ( R + )  of (3.9) such that IIw( )ll _-__ a, u>__0, gives another 
characterization of  completely positive measures. This is the content of the next 
theorem. In order to state it we need the following definition. 

Let aeBVIoo(R+), and consider (3.9). 

Definition 3.1. A function w : ~ +  ~ B V ( ~  § is called a solution of (3.9) if for each 
p e Cc(~,), the function q~(r) = (w(z),  p )  is continuous, ~,(T) = (a  �9 w(~), p )  is 
continuously differentiable and 

d 
-~z ( a "  w ( z ) , p ) + ( w ( ~ ) , p ) = O  , z>=O 

(3 .10)  
w ( 0 )  = e  . 

We have 

Theorem 3.2. Let a ~ B VIo ~ ( ~  +) be Laplace transformable. Then da is completely 
positive i f  and only if (3.9) posesses a solution w ~ B V + (F,, +) satisfying II w(~)ll ---< 1, 
for all z >O. l f  this is the case, the solution is unique. 

Proof. Necessity: We only have to prove that w(z) satisfies (3.10). For  this purpose 
we rewrite (3.8) as 

(e~(a" w ( z ) ) , p ) +  S (e~w(tr) ,p)da=(e~a,p)  , z > 0  , (3.11) 
0 

where p = ez for every 2 > 0, and s > 0 is fixed. Here we used the notation 

t 

(e~a)(t):=S e~(s)da(s) , t>O . 
0 

Since the exponential polynomials are dense in Co(R), we have (3.11) with 
p c  C,(R), hence also (3.10). 

Sufficiency: Let w be a solution of  (3.9) and let a ~ B Vlo c be Laplace transformable. 
We can rewrite (3.10) as (3.11) withp ~ Cc (R), for every e > 0. Since Cc (R) is dense in 
Co (10, (3.11) also holds for p = ea, 2 > 0, hence (3.8) holds for every 2 > 0. From the 
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convolution theorem for the Laplace transform we obtain 

" & ( " ) + i  ~ w ( ' O d ~  
0 

for every ).>0. Set ~=~a(2)  and ~0(T)=~W(T). Then we have a~o'(z)+r 
~o(0) = 1, and therefore, ~ # 0  by continuity of  q~ and q~(r)=e -~/~, z>0.  Assuming 
IIwr for all z>0,  we obtain ~>0.  Assuming also w e B V + ( ~ + ) ,  we have 
e-':a'ec~dr for all T>0, by Bernstein's theorem, hence by Theorem2.4 da is 
completely positive. Since ~d(2)> 0, w is only solution. [] 

We explicit some properties of  the solution w in the next corollary. 

Corollary 3.3. Let da be completely positive, and let w denote the solution of(3.9). 
Then 

O) w(t,~:) :=w(z) ( t )  is Borel measurable on IR+ • F,+. 
(ii) w(t, ~) is nondecreasing in t and 

lim w(t, z )=e  -~/~(~ , lira w(t, 'c)=e -'/a~~ , z > 0  
| ~ o o  t ~ O +  

(iii) w(t, ~) is nonincreasin# and right-continuous in ~ and 

lim w(t ,z )=O , l imw( t , z )= l  , t > 0  . 
U-cO0 ~ "~0  

(iv) I f  s(t, #) denotes the solution of  (2.5), then 

s ( t ;10= - ~  e-~"d,w(t,z)  , t , p > 0  , (3.12) 
0 

in particular s(t; It) is completely monotonic w.r. to It > O. 

Proof. (i) follows from the Post-Widder inversion formula for the Laplace 
transform by virtue of 

w ( t , z ) = l i m w ( t - h , ~ ) = ~ i m  ~ lim n.V '~  ' 
h ~ O  n--* oo 

which holds for every t, T > 0; cf. Widder [35]. 
(ii) follows from Bernstein's theorem. 

(iii) The semigroup property (3.2) implies 

t t 

w(t, zl +z2)=~ w ( t - s ,  zl)dw(s,*2)~_~ dw(s,,z)=W(t,,2) , (3.13) 
0 0 

for all t, ~ ,  T2 >-0, since w( . ,  z) is nonnegative, nondecreasing and less than one. 
Therefore w (t, .) is nonincreasing for t > 0. On the other hand, since dw (., h)--, 6 o ( ,)  
as h ~ 0  and w(., z) is left-continuous, we obtain 

t 

w(t, * +h ) =~ w ( t - s ,  *)dw(s,h ) ~ w ( t ,  z) 
0 

as h--,0, hence w(t,  .) is also fight-continuous, w(t, T)~0 for z ~  ~ follows from 
r (:., ,) =e-*~(~/2-- ,0  for , - ,  oo. 
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(iv) To prove (3.12) observe that 

- ~ e-~d~w(t ,  z )= -e-U~w(t ,  z)l~ - #  ~ e - ~ w ( t ,  z)dz 
0 0 

= 1 - #  ~ e - ~ w ( t , z ) d z  , 
hence o 

- 

0 0 

1 --~-~ ~ e-"~ff'(~.,~)d~ 
0 

_1 /~ ~ 
e - .~ e - ~/~( a) dz J 

1 # 1 1 1 

,~ ~ ~+1/~( ,~)  = 2 " 1 + ~ ( Z )  =g('~'~) 

from this identity (3.12) follows by uniqueness of the Laplace transform. [] 

4. Generators of  Feller semigroups in L p 

Let da be a completely positive measure and let w denote the solution of (3.9). We 
already noted in Sect. 3 that w induces a Feller semigroup on C0(R ) given by 

(To(z)f)(t)=~ f ( t - s ) d s w ( s , z )  , t ~  , r>O . (4.1) 
0 

Since the positive Borel measures dsw(. ,  ~) are bounded by one, this semigroup 
extends to each homogeneous Banach space YcL~oc(R  ) (see e.g. Katznelson [20] 
for the definition of homogeneous spaces), in particular in LP(IR), 1 <p  < ov and 
B U C ( ~ )  as well as A P ( ~ ) ,  etc. In each of these spaces the semigroup is strongly 
continuous, contractive, positive and translation invariant, and the analogue of 
(F4) in Sect. 3 holds for each of these spaces. The operators T(z) are also well- 
defined in L ~176 (~.) as well as in B C ( R ) ,  all the above properties remain true except 
for the strong continuity. In L ~~ (IR), weak*-continuity holds and in B C ( ~ )  even 
continuity with respect to the compact open topology. Let p e [1, ~) .  We shall 
denote by {Tp(z)}~____ 0 the semigroup by (4.1) in LP(~) and by Ap their negative 
infinitesimal generators. In the next theorem we give a characterization of Ap in 
terms of the function k which appears in the definition of a completely positive 
measure. For this purpose, we recall the decomposition (1.14) ~ (1.16); with this we 
can rewrite (2.8) as 

d 
r ( t ) + - ~  (dl I �9 r)(t)+(dl2 . r ) ( t ) =  1 , t > 0  (4.2) 

t 

where r ( t )=r ( t ;1 ) ,  l l ( t ) = k o + S k 2 ( z ) d z  and 12(t)=koo+ka(t  ). Note that 
0 

dlt * r e  WI'~ We can now state 
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Theorem 4.1. Let da be a completely positive measure, 1 -< p < oo and { Tp ('c ) }, ~_ o be the 
semigroup as defined above. Then for its negative generator A, ,  we have the followin# 
representation. 

D(A~) = { f  e LP(R) lkof  +k2 * f e W~'P(~)} (4.3) 

A p f  = d  (ko f  + k  2 �9 f )  +koof  +dk  a �9 f (4.4) 

with k( t )  f rom (2.1), (2.2) and k2, k3 defined by (1.15), (1.16); here 
! eta 

(k 2 * f ) ( t ) =  I k 2 ( t - s ) f ( s ) d s =  J f ( t - s ) k 2 ( s ) d s  , 
- - c o  0 

and 

(dk3* f ) ( t ) -  f ( t - s ) d k 3 ( s )  , t e ~  
0 

Proof. Fix p e [ 1 , ~ )  and let r ( t )=r ( t , l ) ,  t>=O, with r(t,#) as defined in 
oD 

Corollary 2.6. Since Var [r; F..+]< 1, the operator ( R f ) ( t ) =  S f ( t - 6 ) d r ( a )  is 
0 

well-defined for every f e  LP(~), and R is a contraction in LP (F,). We first show that 
R = ( I+  Ap)- 1. Let f e Cc (0, oo). Then we can use the Laplace transform and obtain 

1 
oo 

by Corollary 2.6. On the other hand, since ( I + A p ) - l f =  ~ e - 'Tp(z ) fdz ,  we obtain 
0 

oo 

( ( I+Ap)- t  f )^ (2)  = j e - " ( ~ ( a ) f ) ^ ( 2 ) d a  
0 

Hence R f = ( I + A p ) - l f  for every feCc(O,  oo). Since both R and (I+Ap) -1 
are translation invariant, we have R f = ( I + A p ) - l f  for every f e C c ( ~  ). 
Since both R and (I+Ap) -I are bounded and C~(R) is dense in LP(IR), we have 
R = ( I+  A p) - ~. Next define A by D (A) = { f  e L p (R)[kof  + k2 * f e W ~' p (R)} and 
A f = ( k o f + k 2 , f ) ' + k |  f .  We want to show that R = ( / + A )  -1, 
from which A = A p  follows. We first claim R(I+A)=ID(a) .  Let f e D ( A ) ,  
then dl 1 �9 f ~ Wa'P(F,), hence 

dr , (dl~ , f ) ' = ( d r  * dlt * f ) ' = d ( d r  * dl~ ) * f = ( d e - d r - d l 2  , dr) , f 

by using (4.2) and noting that dr �9 dl~ e BV(R+ ). Here e(t) = 1 for t > 0 and 0 or t_-__ 0 
as before. This implies the claim. Next we prove ( I+  A)R = L Let g e LP(R) and 
let f =  dr ,  0. Then f e LP(IR) as well as dl 1 �9 f .  Moreover, convolving (4.2) with g 
we obtain 

d(dl t , d r ) , g = a - f - d l 2  , f , 

which implies dl 1 �9 f e W 1: ~(R) and ( I+  A)R# = 0. This completes the proof of the 
theorem. 13 
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Remarks 4.2. (i) The characterization of  D(Ap) given in Hille-Phillips [18] is in terms 

of  Fourier transforms, i.e. f ~ D(Ap) if and only if 1 ~daCie----- ~ f(O) is the Fourier 

transform of a L p function. Note that our characterization is in terms of the 
function itself instead of its transform. 

(ii) The m-accretiveness of  the operator Ap has been observed already in 
Clrment [5] in the case k 1 ~ L 1 (R+) and k 1 positive, decreasing, and log convex 
whenever k o =0. 

Next we consider the adjoint of  the semigroups {Tp(z)}~> o ; for this purpose we 
make the usual identification (LP(R)) * =L~(R) where ~ + ~ =  1 with the pairing 
( f , g ~ =  ~ f( t )g(t)dt  for f~LP(IR)  and geL~(iR). We shall make use of  the 

i t  
reflection operator P defined by 

( P f ) ( t ) = f ( - t )  , t~iR , yeLP(IR) . (4.5) 

Let le B V(IR), p e [1, go) and Lp e B(L p (F,)) be defined by 

(LJ ) ( t )  = S f ( t -a )d l ( t r )  , t e l (  , feLP(IR)  . (4.6) 

Then one verifies that L*, the adjoint of Lp in Lq(IR), is given by L*=PLqP.  
Therefore we have: 

Proposition 4.3. Let da be completely positive and let {Tp (~)}~_. o denote the semigroup 
in LP(IR) aiven by (4.1), 1 <p < ~ .  Then 

O) T*(z )=P~(~)P,  ~>-0, 
(ii) (f,: + Ap)-l* =P(p+  Aq)- i  P, /~>0 

(iii) A* = PAqP. 

Remark 4.4. Assertion (i) obviously holds also forp--  1, with q -- oo. Let use define 
A~ o by (4.4) wherep = ~ .  Then one verifies that assertions (ii) and (iii) also hold for 
p = 1, q = or This implies that A~o is m-accretive, however D(Ar is in general not 
dense in L~176 

We consider next the question of continuous dependerlcr of the semigroups 
{ Tp (~)},__ o on Lp (~(), associated with a completely positive measure da, with respect 
to  da. 

Theorem 4.5. Let p e  [1, ~), let {da~}n~ and da be completely po~'itive and let 
qJ, = 1/a~a~, tp = 1/ffd denote their Bernstein functions, {Tp.,(~)},___0, {T r (z)},~o the 
associated semigroups and Ap. ~, Ap their negative generators. Suppose moreover that 

lira a , ( ~ ) = a ( o o )  (4.7) 
n ~ o D  

where a,( ~ ) and a(oo) may be infinite. Then the following assertions are equivalent: 
(i) l im a,(t)=a(t) , for every t>0  such that a(s) is continuous at s=t.  

n--~ oo 

(ii) lira Sp(t)da,(t) = ~ p(t)da(t), for  every p ~ C,(IR). 
n ~ c~ IR It 

(iii) lira tp,(2)=~p(2),for every ; t>0. 
/I " *  cO 
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(iv) 2irn (1~ + A, , . ) -  t f = (# + A p)- ' f ,  for  every f ~ L p(R), It > 0 

(v) l im Tr.n(z)f= Tp(z)f, for every f ~ LP(R), uniformly on boundedz-intervats. 

Proof  The equivalence (i)r is well-known, see e.g. Feller [131. 
The equivalence (iv)c~(v) is called Trotter-Kato theorem in semigroup theory 

(see Yosida [361). 
(ii)=~(iv) follows from the density of Co(R) in LP(R), and from (ii)r for 

r(-, u). 
(iv)=~(iii). Set f ( t ) = e  -t, t>O, and f ( t ) = 0 ,  t<0 ,  and let g ,=(1  +Ar, n ) - l f  as 

well as 9=(1 + A r ) - t f .  Then 9n-~9 in LP(R) implies ~ , ( 2 ) ~ ( 2 ) ,  for all 2>0 .  
Finally observe that ~ ( 2 ) = ( 1  +2)-~,~"aa,(2)/(1 +~'aa~(2)) and similarly for 9. [] 

Remarks 4.6. (i) In assertions (iv) and (v), LP(R) can be replaced by Co(R) or 
BUC(R). 

(ii) If (iv) or (v) holds for L I (R) or BUC(F,) then (4.7) holds. 
In Sect. 3 we observed that translation invariant Feller semigroups satisfying 

(F4) in Co(R) are characterized by a completely positive measure. In the next 
proposition, we show that this is also true for LP(I(), 1 <p < o~. 

Proposition 4.7. Let p~  [1, oo), and suppose {T(z))~_~o is a translation invariant 
Co-semigrou p of  contractions in LP(R) such that T(r) is positive for each ~ >0, 
T(.  ) #8- land  (F 4) halds. Then there is a completely positive measure da such that T('c) 
is represented by (4.1). 

Proof. Let T(z) be a translation invariant Co-semigrou p of positive contractions in 
LP(R) such that (F4) holds. Then by Theorem 3.6.1 in Larsen [23], there exists a 
family of  nonnegative finite measures #~ such that 

(T(~) f ) ( t )=  ~ f ( t - s ) d # ~ ( s )  , f ~LP(~)  , t ~ R  . 
- o o  

(F4) implies s u p p # ~ l ~ + ,  therefore we may employ Laplace transforms. Let 
IX) 

h(2, ~)= f e-Xtd#,(t); then the semigroup property of T(~) implies the relation 
0 

h(,~.,zl +zz )=h(2 ,  T1)'h(2, z2) , z l , z2>0  , 2 > 0  
and 

h(2,0)=1 , 2 > 0  . 

Strong continuity of T(z) implies continuity of h (2,-) for each fixed 2 > 0, and 
therefore there is a function q~(2) such that 

h ( 2 , , ) = e  -~"~) , ,=>0 , 2 > 0  . 

From the proof of  Theorem 3.6.1 in Larsen [23] it also follows that Var [#~ ; R] _< 2 
for each z > 0, hence h(2, T) < 2 and this yields 9 (2) > 0 for all 2 > 0. Since the mea- 
sures #~ are also nonnegative, h (2, z) = e-  '~x) is completely monotonic for each z > 0, 
and so ~0 (~.) is a Bernstein function, by Theorem 2.4; note that ~0(2) 3 0  since T(z) ~I. 
Thus by Theorem 2.4 again, q3(2) = 1/t~(2) for some completely positive measure, 
and by uniqueness of the Laplace transform, T(z) is represented by (4.1). [] 
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We conclude this section with 

Corollary 4.8. Let da be a completely positive measure and let Ap be defined as in 
Theorem 4.2; for some p e [1, m). Then the foltowino assertions hold. 

(i) N(Ap)= {O}. 
(ii) Ap has a bounded inverse iff a e B V ( ~ +  ) and A~l f = d a ,  f ,  f eLP(~).  

(iii) k o > 0 iff  a ~ W 1' oo ( ~  + ), and then D (Ap) = WI'P(IR) 
(iv) Ap is bounded/f fko=0 and kl (O+ )< oo. 

Proof. (i) Let 1 < p < 2 .  If  feN(Ap)\{O}, then g : = ( l + A p ) - t f = f ;  taking the 
Fourier transform and using the representation Off)= S f ( t - s ) ~ r ( s ) ,  t e R ,  we 

obtain ~(io) .~(Q)=f(0) a.e. on ]R where f denotes the Fourier transform of f 
Since f 4= 0, this implies ~'?(io) = 1 on a set of positive measure, hence ~rr(2) = 1 for 2 

>0, contradicting ~r(2)= ~ a a ( 2 ) < I  for 2>0.  For pe(1,2],  this implies 
1 

R(Av) =LP(F,), hence N(A*)=  {0}. From Proposition 4.3 we obtain N(Aq)= {0} 
1 1 

w i t h - + - = 1 ,  i.e. N(Av)={O ) for all p e  [1, oo). 
P q 

(ii) It follows from (i) that Ap -1 exists. By using the Laplace transform, one 
obtains A ~ t f = da �9 f for every f E C c (IR). If da E B V(IR +) then clearly; A - 1 is 
bounded conversely, if A~ -1 is bounded, by Theorem 3.6.1 in Larsen [23] A;-t is 
represented as convolution with a bounded measure on IR, hence Var [a; IR + ] < oo 
by uniqueness of the Fourier transform. 

(iii) The equivalence can be seen from (2.2). I fk  o > 0, the solution o fkor+k  z �9 r 
= k z belongs to L 1 (IR) by the Paley-Wiener lemma (see e.g. Gel'land et al. [15]), 
since k 2 e L  1 (~,+), is positive, nonincreasing. It follows that D(Ap)= WL"(~,). 

(iv) If k o = 0 and k~ (0 +) < oo, then clearly Ap is bounded. Conversely, if Ap is 
bounded then by interpolation and by Proposition 4.3, A2 has to be bounded and 

therefore ~----~1 is uniformly bounded for Re 2 > 0. On the other hand 

I */* 
= 2k o + k~ + 2/~', (2) > ),k o + ! )~e- a'k, (t) dt 

>2ko+k,(1/2)( l  - e  -~) , 2 > 0  . 

This implies ko=0 and kl (0+)< m. [] 

5. "'Tensor product" extension and imaginary powers 

As is well-known, every positive linear bounded operator L :LP(f2)--*LP(O), 
p e [1, ~ ) ,  where ~ denotes a a-finite measure space, possesses a unique "tensor 
product extension" LP :LP(O; X)--,LF(f2; X), where X is a general Banach space. 
More precisely, we have 

Lemma 5.1. Let (f], Jtt, #) be a a-finite measure space, let X be a Banach space with 
norm [1.1[, p ~ [1, oo), and let L : L P(O)-+ LP(s be a bounded linear operator which is 
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positive with the respect to the standard cone LP+ (t2). Then there exists a unique 
bounded linear operator ~ : LP(I2; X) ~LP(I2; X) satisfying 

.L~(f " x ) = ( L f ) ' x  for all f ~ L ~ ( ~ )  and all x E X  . (5.1) 

Moreover we have 
}}~l}p--ILI, , (5.2) 

and ~ is leaving invariant the closed convex cone LP(I2; K) induced by any given 
closed, convex cone K in X. 

For the proof see (e. g.) Cl6ment and Egberts [6]. We can apply this lemma to the 
semigroup {T~(z)}~ ~o defined in Sect. 4. However, representation (4.1) gives a direct 
way to "extend" this semigroup to LP(I2; X), by using the Bochner integral instead 
of  the Stieltjes integral. We have 

Proposition 5.2. Let da be a completeO, positive measure, p ~ [1, ~ )  and let dw(., z) 
and dr(., 1~) denote the measures defined in Theorem 3.2 and Corollary 2.6. Then 
{Sp(x)}~_. o in L~'(IR; X) defined by 

(~-p(z)f)(t) = ~ f ( t - s )d~w(s ,  ~) , t e n  , z>=O (5.3) 
0 

forms a strongly continuous translation invariant semigroup of contractions in 
LP(~; X). I f  ~p denotes the negative generator of {9-'p(z)}~zo then we have 

oo 

((# + ~p)-  i f )  (t) = ~ f (t - s)d~r (s, p) . (5.4) 
0 

Moreover, 
(s4p) = { f  e L p (~;  X)lkof  + k2 * f e W a'p (~ ;  X)} 

(5.5) 
J 

~ p f  = ~  (kof +k2 * f ) + k ~ f  +dk3 * f ,  

for f eN(a lp ) ,  where k o, kl ,  k2, k3, k~, are as in Theorem 4.1. 

Proof. Since Var [w(., ~); N + 1 --< 1, .~ (z )  are contractions. The semigroup property 
follows from (3.2) and (3.3). Since the set 

d ' :={,=~ f~.x, l f~L~(R) ,  x,~.X, i=1 ..... n} (5.6) 

is dense in L~ (F,.; X) and {~rp(z)},~ o is strongly continuous on d~, it follows from the 
Banach-Steinhaus theorem that { oj-p(~)~ ~ ~o is strongly continuous. Define d r by 
(5.5). As in the proof of Theorem 4.1, it follows that sgp is the negative generator of 

cJ 

Remark 5.3. O) It is clear from (5.4) that {~-p(z)},__.o is analytic on some sector if 
{T~(~)}~zo is analytic there. 

(ii) It also follows that if K is a closed convex subset of X, then L~'(IR, K) is 
invariant under {~'~(z)}p~o, i fa(ov)= co, and in ease a(oo) < oo, if one assumes also 
OaK. 
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(iii) Since ]Tp(z)lp= 113-p(z)llp for all z>0,  the type COo(~r of ~r satisfies 

1 
coo (dr)  = COo (Ap) = - a ( ~ )  = - k~~ " 

- 1  
This follows from Var[w(.,T);IR+]<e -~/"{~) and s(Av)>a~- ~ ,  where s(Av) 
denotes the spectral bound of Ap. 

As an application of the subordination principle, Corollary 2.8, we consider the 
fractional powers of gp.  Let da be completely positive and a e (0, 1). Since we have 
/x 1 A 1 ( t ' - l  \ ^ 

(day=-~o(1/da) and ~ = [ x F - ~ )  (;[)is the transform of a completely mono- 

tonic, locally integrable, hence completely positive function, by Corollary 2.8, there 
are completely positive measures da, such that 

2 > 0 .  

Note that a, e BV(F,.+) iff k~ o >0 iff a(oo)< ~ .  These completely positive 
measures define the fractional powers ~ff  which in general are unbounded, 
and which are negative generators of analytic semigroups. As a special case, if 

" d "  
a(t)=t, then ~ p -  dt ' i.e. k o = l ,  k l = k ~ = 0 ,  hence ~Xaa~(2)=2-" and 

a,( t ) -  ~ - f ~ d S = F ( e +  l) , t>0.  

The study of purely imaginary powers is more difficult since the representing 
kernels are no longer completely positive. However, since the operators ~r are 
negative generators of positive contraction semigroups on LP(R; X), one can prove 
the boundedness of ~r 7 ~ R, and obtain explicit bounds in terms of 

0 0 = RsUaPolarg q~ (2) l �9 (5.7) 

We show that 0o < 1r/2. 

Prolmsition 5.4. Let da be a completely positive measure. Then Re ff'aa(2) > O for all 
R e 2 > 0 .  

Proof We show that Re 1/~aa(2)> 0. By (2.2), we have 

Re ll~"a (2) = Re (2k o + ko~ + itS1 (2)) = k o Re 2 + k~o + Re (2~'~ (4)) . 

If kt(0 +) < ~ ,  then kl EBV(I~+) and 

Re[).~(2)]=Redk~O.)=ka(O+)+Re ~ e-~dk~(t)>k~(O+)+ ~ dk~(t)=O . 
0 + 0 + 

If k~ (0 +) = ~ ,  then we approximate k~ by k~ ~(t) = k~ (t + ~), e > 0, and obtain again 
Re [2s This shows that Re~aa(2)>0/'or Re2>0 ,  however we cannot have 
Re a~a(~)~ 0, since this function is ha~'~nonic. This completes the proof. [] 

One method to obtain boundedness of .d  i~ is to use multiplier theory. 
We begin with the scalar valued case, X = R .  For p = 2 ,  this is an easy 

consequence of Plancherel's theorem, indeed the multiplier associated with A, ~ is 
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given by ~o ()0 i~, y ~ R and Re 2 > O. Hence 

][A~rll2 <RSeUPo 1~(2)'~1 = el~l~176 , (5.8) 

which is best possible. The same holds true when X is a Hilbert space. 
Next we consider the case p ~ (1, oo), p 4=2 and X =  IR. The Mikhlin multiplier 

theorem (see e.g. Bergh and L6fstr6m [3]) yields the estimate: 

Ila~ I1 p-<-- g .  soUPo (1~(~)"1 + I,Z(q~(;t)'0'l). 

ro(~'2 
Since (go(,~)ir)'=ir ~ tp(2) ~, this gives 

[ [ A T l l p < g ~ ' ( l + l r l ) e  ~176 , 7 e R  , (5.9) 

provided that 

c~--Tpo - ~ y l  < ~ .  (5.10) 

In the Banach valued case, when the space X is (-convex (or equivalently UMD), 
then by McConnell's multiplier theorem ([26]), we obtain the following estimate 

I[A71[ <M~' �9 RSUPo (Iq~(;0"l + 12(~0 (2)'0'1 + 142 (~0 (2)'D"I) . 

This yields 
[IATll<=g';"(i+lrl=)e ~176 , r ~ ,  (5,11) 

provided (5.10) holds and also 

C 2 = sup ~2 tp"(2) < oo . (5.12) 
R ~ > o  I ~o(2)  

Unfortunately, Condition (5.10) is not satisfied for all completely positive 
measures, as the Bernstein function cp(~)= 1 - e -  ~ shows. However for completely 
positive measures of  the form 

da (t) = a o 60 + a 1 (t) dt , (5.13) 

where a o > 0, and a~ E qr it can be shown that conditions (5.10) and (5.12) hold. 

Proposition 5.5. Let  da be o f  the f o r m  (5.13) with ao~O and a I e~J/ /c~Ll(O,  1). 
Then we have 

I;t"~"'(2)l<ntl~(2)l , f o r  R e 2 > 0  , n~lN . (5.14) 

Proof. Since a o > 0 and at e c~r thanks to Bernstein theorem there is b e BV, oo (l~ + ) 

nondecreasing such that da(2)= db(s). Differentiating this relation we 
obtain o s-t-,( 

(-;t)'a~'~(;~)=n! ~ rib(s), for ;~er (s+a) "+1 o 
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Since l s + ~  < l f o r R e 2 > O a n d s > O ,  w e o b t a i n w i t h 2 = a + i e  

12"~#")(2)1 z<n!z oo ~ db(s) 
(s + a) 2 + Q2 

<n,2 ~ db(s) . ~ o'2+e 2 
- o (s  + a )  2 + e 2 o (s + a)  2 + ~2 db(s) 

<n!2 a+s  db(s) +~z 
(s+aY+d} ) 

< n l 2 ((Re ~aa(2)) z + (lm ~a (2))2) = n !21~(2)12 . [ ]  

Note that Inequality (5.14) is sharp, as the example ~'d(2)=1/2, i.e, a l ( t ) = l ,  
ao=0 , shows. Estimate (5.14) implies (5.10) and (5.12), since 

-~aa  and . . . . .  (P ~a F2\~aaJ 
We consider now another method, the transference method, which leads to the 
desired result in the general case of a completely positive measure. This method is 
based on the following result. 

Theorem 5.6. Let X be a Banach space, 1 < p  < oo, {S(O), z_o be a strongly continuous 
semigroup of positive contractions on LV(12), where (f2, M/,/~) is a a-finite measure 
space. Let {5r o be its "tensor product" extension defined in Lemma 5.1 to 
LV(f2; X), and let sd denote its negative generator. Let b ~ L 1 (IR + ) and denote by 
the convolution operator on Lv(P,; X) defined by ~ f = b ,  f .  Then the operator 
defined by 

/ ~ ( d ) f = ~  b(z)6e(z)fdz , f eLV(f2;X) (5.15) 
O 

is bounded in LV(s'2; X) and the following estimate holds. 

ll -_ <_ II II. (5.16) 

Here II~llp denotes the norm of ## in Lr(IR; X). 

Remark 5.7. This theorem is an extension of a beautiful result of  Coifman and Weiss 
[11] for the case X =  IR. The extension is made possible by Lemma 5.1 where the 
positivity of the semigroups (S(T)), ~o is used. For the sake of completeness, we give 
a proof in Appendix A. 

If the space Xis (-convex, then we can combine Theorem 5.6 with McConnell's 
multiplier theorem to obtain the following result. 

T h e o r e m  5.8. Let X be a (-convex Banach space, 1 < p < o~ and {Se(z)}~ ~o, and ~ be as 

in Theorem 5.6. Assume also that N(,af) = {0} (hence also R( ~ )  = LV([2; X), since X 
is reflexive). Then the imaginary powers ~ i r  are bounded in LV(I2; X) for ? ~ ~., and 



96 Ph. Cl6ment and J. Priiss 

we have the estimate: 

+y2)elrl~- , y e ~  (5.17) 

where M~ depends only on p and X. 

Remark 5.9. (i) Comparing Estimate (5.17) with (5.11) and (5.8) we see that for 
specific semigroups, (5.17) is not sharp, and so (5.8) and (5.1 a) are still useful. 

(ii) IfXis a Hilbert space, (5.8) and (5.17) can be used to obtain better estimates 
in U' via interpolation. In particular, ~r/2 can be replaced by n/2 - e when 0 o < ~r/2. 
This is important for applications, see Sect. 6, and Prtiss and Sohr [32]. 

Proof of Theorem 5.8. It is known that a closed linear densely defined operator B in a 
Banach space Y satisfying for some constant M ~  1 

(-o~,O)=o(B) , N(B)=O , R(B)=Y, 
(5.18) 

I[(.+ B)-IlI <=M/. for all # > 0 ,  

admits fractional powers B ~ of any order z e IE, not necessarily bounded. For 
IRezl < 1, z ~=O, x e D(B)r~R(B), B=x is given by 

Bzx=SinTrz { z - I x - ( 1  + z ) - l B - l x  
7f 

§  t z+l( t§  l t z - l ( t§  ' (5.19) 

cf. Komatsu [22]. Note that the integrals in (5.19) are absolutely convergent by 
estimate (5.18). Recall also that if the operator B additionally is the negative 
generator of a Co-semigroup {T(z)},~o of  negative type then 

~ ,lTz-1 
B-=x= T(z)xdz x~ Y 0 < R e z <  1 (5.20) 

0 ~ ' ' 

see Komatsu [22]. Observe that for/~ = 0, the operators/~ + ~r satisfy (5.18) and for 
# > 0, they generate a semigroup of negative type {e- ~6 e (~)}, ~o in Y= LP(I2; X). 
Let y e ~,.\{0} be fixed, and define 

~.ly+/~- 1 
b~'(z)=e-~" F( iy+#)  ' ~>0 , # > 0  . (5.21) 

To prove the boundedness of  ~r we use the approximations (#+ ~r > 0. 
Thanks to (5.20) with B=/~+~r  and z =  - i ~ + # ,  we have (/~+~r162 
note that b# ~ L 1 (R+). From Theorem 5.6 together with McConnelrs multiplier 
theorem, we obtain the following uniform bound on G~(~r 

__<Mp .c .  (1 + ~2)el~l~ , (5.22) 

where c is independent of y and/~. 
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Next we prove the convergence of /~u(~l)f to ~r as # ~ 0 +  for 
f E D ( . r l ) c ~ R ( d ) ,  a dense subset in LV(f2; X). From Banach-Steinhaus' theorem 
the result then follows. For  this purpose, we rewrite (5.19) as 

sin Irz 
B~x = { z - I x - ( 1  + z ) - l B  -1 x 

7~ 

I oo 

+Jt -~(  1 +tB)  - I B x d t +  S t - ' - 2 (  1 +tB)  - a B - I x d t )  �9 (5.23) 
o 1 

Replace B by p + ~ r  and z by i v - g ,  in (5.23), and observe that, by (5.18), 
( # + ~ ) - l f - - * d - l f  as g ~ 0 + ,  since f e R ( s t ) .  We also have ( l + t # + t d )  -1 
--,(1 + t d )  -~ for each t > 0 and therefore by Lebesgue's dominated convergence 
theorem, we obtain 

s d ' ~ f = l i m ( # + d ) ' r - ~ f  , f eD(.et)nR(._~d) . 
g l o  

This completes the proof  of the theorem. [] 

6. Applications to heat flow with memory 

In this section we shall discuss an application of the results presented above to the 
problem of heat flow in materials with memory. 

We consider a model introduced by Nunziato [28], see also C16ment and Nobel 
[9] and Lunardi [25]. Let f2 c R" be a bounded domain with smooth boundary and 
consider the equation 

0 i b l ( t - s ) u ( s , x ) d s  bout(t, x )+-~  _ oo 

= c ~ A u ( t , x ) + ~  c t ( t - s ) A u ( s , x ) d s +  f ( t , x )  , 

t e lR  , x e f l  �9 (6.1) 

u(t ,x)=O , t ~ R  , x~Ot2 , 

where u (t, x) is the temperature of  the point x e f2 at time t e IR, and f (t, x) is the heat 
supply. I f  b t =c  1 =0  and b0, c~ are positive, (6.1) reduces to the ordinary heat 
equation. Our basic assumptions on bo, bl, coo, ca are 

b 1 is positive, of  positive type and integrable, b 0__> 0 , 
OO 

bo+ ~ b~(,)d,>O ; 
o 

(6.2) 
and 

coo >0, c 1 is positive and of  positive type . (6.3) 

Here we are interested in solutions in LJ'(R; Lq(fl)), with 1 <p,  q < 0% having the 
maximal regularity property, i.e. if feLP(R;Lq(12)) ,  then u e L P ( R ;  Wz'~(t2) 



98 Ph. Clement and J. Priiss 

c~W01'q(f2)). For this purpose we rewrite (6.1) as an equation of the form 

~ u +  Cg~Cu= f (6.4) 

in the Banach space E=LP(P,.;Lq(f2)), where the operators are defined as 
follows. We introduce an operator A by means of 

D(A)=W2.+(O)nWol,~(f2),Av=-Av for r e D ( A ) .  (6.5) 

Let ~r denote its pointwise extension to E, where D ( ~  r = LP(IR; D(A)), and D(A ) is 
equipped with the graph norm. Note that ~r is closed, - ~ generates an analytic 
semigroup of  negative type and the imaginary powers ~r 7 �9 R. are bounded and 
satisfy the estimate 

_-< c :  , 

for every ~ > 0. Let ~ be defined by 

D(~)  = {u �9 E]bou+b I * u ~ W l' P(~;  Lq(O))} , 
(.6.6) 

~u =~t (bou +bl  * u) , for u e ~ ( ~ )  . 

Then ~' is a closed densely defined operator in E. 
For simplicity we also assume c 1 �9 L 1 (~) ;  like in Theorem 4.1 this assumption 

can easily be omitted, but  we shall not do this here. 
Define cg by means of 

D(Cg) = {u �9 Elq* u �9 WI'r(IR; L~(O))} , 

d (6.7) 
Cgu=c~u+~ (cl . u )  , for ucD(~)  . 

Then ~g is a closed, linear densely defined operator in E. Assume like in Clement 
and Nohel [9], Lunardi [25], that b 1 and c I are nonincreasing. It follows that the 
functions defined by 

t 

kb(t ) =b o +~ b I (s)ds 
o t > 0  

t 

k~(t)=coot+J q(s)ds 
0 

are positive, nondecreasing and concave, and therefore give rise to completely 
positive measures da b and da,, by Theorem 2.1. Using Theorem 4.1 and Proposi- 
tion 5.2, the operators ~ and cg generate contraction semigroups in E which are 
positive with respect to the usual cone E § of positive functions. Corollary 4.8 
implies N ( ~ ) = N ( q r  and R ( ~ ) ,  R (~ )  dense in E; since c~ >0, c~ even has a 
bounded inverse, cf. Remark 5.3 (iii). 

Applying Theorem 5.8, with X=La(f~) which is (-convex (see Priiss and Sohr 
[32]), we have 

e�9 (6.8) 

and the same holds for qf.Since the operator ~ -  ~ is bounded, the operator.~ defined 
by ~ = ~ r  is closed. ~ has also bounded imaginary powers by Corollary 3 of Priiss 
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and Sohr [32], and Estimate (6.8) holds for ~ with re/2 replaced by n/2+e.  Since 
(6.4) is of the form 

~u  + ~u  = f (6.9) 

and the resolvents of ~ and ~ commute, we can apply Theorem 4 of Priiss and Sohr 
[32], provided that we can show that 0~ + 0~ < n, where 0~ is the type of  the group 
{~ ~)r E R, similarly for 0 z . We only know 0~ + 0~ < it + e, however, if cg is bounded, 
i.e. c~ (0 § < ~ ,  we have 0 r < n/2, since cg _ coo/is m-accretive, by using the Dunford 
integral representation for the imaginary powers. Hence 0~ < ~/2 as well, since e can 
be choosen arbitrary small. When c~ is unbounded, and if cl ().) satisfies (5.10) and 
(5.12) and as well as 

sup larg (c~ + 2~1 (2))1 < re/2 , R e 2 > 0  (6.10) 
Re~>O 

or bo=0,  G~(2) satisfies (5.10) and (5.12), and 

sup larg 2G1 (2)1 < rt/2 (6.11) 
R e 2 > 0  

holds, then from (5.11) and (5.7) we have 

n 7t 
0,  < ~- i.e. 0e < ~- , resp. 0~ < ~ . 

Summarizing we obtain 

Theorem 6.1. Let b o > 0, c~ o > 0 and b 1 , c I ~ L ~ ( ~  +) be nonne#ative and nonincreas- 

ino, and let bo + ~ b l ( t )d t>O.  Assume in addition c1(0+)< ~ or (6.10) or (6.11). 
0 

Then for  every f ~ L P (IR ; L q ( f2 ) ), (6.1) possesses one and only one solution u satis- 
fying u~LP(IR; we'q(f2)C~Wol'~(12)), bou+bl  *u, c 1 * AuE WI"P(F-;L~(f2)), and 
there is a constant M > 0  such that 

for f eL~(F, ;  L ' (Q) ,  where II" II denotes the norm in LP(F,; L ' (~)) .  

Since the operator ~ has a bounded inverse, (6.4) is equivalent to 

~ - l  ~ u +  s t u = ~ - l  f . (6.12) 

In general ~ f - ~  is not closed but it is closable and its closure is N ~  -~ (note that 
~ and ~f - ~ commute). Hence a solution u s N ( ~ )  such that ~ - ~u s N(.~) of  

N ~ f - ~ u +  ~ u = ~ - ~  f (6.13) 

can be considered as a mild solution of  (6.1). Note that i f ~  is bounded, then ~f - ~  
is closed and the two notions of solutions coincide. 

The operator N~f- ~ has the function 

;~(b~ + ~  (2)) ,~>0 (6.14) 
~o(2)= c~o+~,~(2) ' 



100 Ph. Clrment and J. Priiss 

as its symbol; we observe that Re~p(2)>0 for R e 2 > 0  holds. Indeed a simple 
computation shows that 

Re r (iQ) = ct (0)" (Q2 Re e 1 (iQ) (bo + Re 61 (io)) + ( - fl Im ~1 (iQ)) (c~ - Q Im ct (iQ))) 

where ~t (~?) = Ic~ + cl (ir Since bl and c I are of positive type we have, Re G 1 (ig), 
Re~I(iQ)~0 , QeP,,, and since both functions are also nonincreasing we also 
have -e lmG:( iQ) ,  - Q l m d l ( i # ) ~ 0 ,  O ~ .  This shows Retp(iQ)>0, therefore 
Re tp(2)> 0, for Re 2 > 0 by the maximum principle. Summarizing, we obtain: 

Theorem 6.2. Let bo>=0, c o > 0 ,  and let b l , c~ELl (N+)  be nonnegative, non- 
oo 

increasing, of  positive type, and such that bo + S bl (t)dt > O. Then for 
0 

f ~ L 2 (~ ;  L 2 (0)),  there is a unique miM solution u of  (6.1), such that u ~ ~ ( ~ )  and 
~ - l u e ~ ( Y l ) ,  i.e. ueLZ(~?,;W2'2(O)c'~Wol'2(['~)), v=dac*u~L2(R;L2([2)) ,  
bo v + b I * v ~ Wa'2(P-.; L2([2)), where da~ denotes the completely positive measure 
defined by coo and c I . Moreover, there exists a constant M>O, such that 

Ilu[I +llvuU + Ilv ull + 2/(b~ *v) __<Ml[fl[ , for all f ~ L Z ( R ; L 2 ( O ) )  . 

I f  & addition, ~1 and cl satisfy (5.10) and (5.12) then the theorem is true in 
LP(R;Lq(f2)) , for all 1 <p, q< oo. 

Proof. We only need to consider the case p, q 4: 2. Since the operator &ff - x has q~ as 
its symbol we can apply McConnell's theorem which shows that ~ - x has bounded 
imaginary powers and estimate (6.8) holds for ~ - 1. From Theorem 4 in Priiss and 
Solar [32] the result follows. 

Remarks 6.3. (i) First recall that/~1 and cl satisfy (5.10) and (5.12) when b 1 and c a are 
completely monotonic, see Proposition 5.5. 

(ii) Since c a is nonincreasing, we always have Re (coo + 2~ (2)) >- c o > 0, thus the 
second condition (6.10) is equivalent to 

lim larg (coo + iQ~l (iQ))I < ~z/2 . 
Q-~oo 

In case c 1 (0+)= oo, this condition holds if c 1 (t),,~ Co t~-t/F(ot) for some 0~ (0, 1); 
in fact then ~ (io)~co(iO) - ' ,  hence 

- -  . ^ ~ 

lim larg (c~ + tOc~ (io)) = lim larg (i~) ~ -'1 = (1 - ~t) ~ < ~ . 

(iii) Observe that Theorem6.1 gives much more time-regularity than 
Theorem 6.2; in particular, if bo >0  we obtain ue  W~'V(~; L~(t2)) rather then 
v=da,  �9 ue  WLv(I~; La(f2)). For  the case c I ( 0+ )  < oo, Theorem 6.1 even includes 
Theorem 6.2. 

(iv) When r defined in (6.14) is a Bernstein function, then the operator ~ - ~ is 
the negative generator of a positive contraction semigroup on Lv(R;L~(f l)) .  
Therefore Theorem 6.2 holds also in case ~1, ct do not satisfy (5.10) and (5.12) since 
in the proof  McConnell's theorem can be replaced by Theorem 5.8. On the other 
hand, since ~r 1 is a positive operator, when ~p is a Bernstein function, the mild 
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solution u is positive whenever f has this property. This was observed by Lunardi 
[25], where sufficient conditions on the kernels are given for ~p to be a Bernstein 
function; see also C16ment and Nohel [9]. 

(v) For  the sake of simplicity we considered A = - A with Dirichlet boundary 
conditions only. Other boundary conditions can be treated similarly. For  example, 

au d Ou 
if the non flux condition is imposed at the boundary, i. e. c~ ~n + ~ ca * ~n = 0 on Or2 

du 
or equivalently dnn = 0 since the operator cg is invertibte, then the operator A defined 

by 

D(A)= {u~ W2"(12)l~=o on a12} 

Au = - Au, is still m-accretive, but has a nontrivial kernel. Then one can solve (6.1) 
by projecting to the range of  A, since Lq(12)=N(A)~R(A)  holds. 

(vi) In a forthcoming paper, we shall use the results of this section to study a 
semilinear version of (6.1) with critical growth. 

7. Appendix A 

Proof of  Theorem 5.6. As in Coifman and Weiss [11 ], we will deduce Theorem 5.6 
from its discrete counterpart. Let X be a Banach space. Given a sequence {bk}k e Z in 
l 1 (Z) we denote by & the convolution operator in lP(Z; X), 1 <p  < oo, defined by 

( ~ u ) k = ( b .  U)k = ~ bk_zU i , (7.1) 

where u~lP(Z;X)  and by 11811, its norm in tP(Z;X). 

l_emma A.1. Let (12, .t#, It) be a a-finite measure space, 1 <p < 0% X be a Banach 
space and all : L p (12; X) ~ L p(12; X) be a bounded linear bijective operator satisfying: 

e = s u p  I1  1[, < (7.2) 
k~Z 

Let b~P(Z) .  Then we hare the estimate: 

l k~z bk~llk f[[p<=C2 ll~l]v]]f ]lt~ for all f ~ LP(12; X) . (7.3) 

Proof. It is sufficient to prove (A.3) for b e Coo, the space of finite sequences. Let N be 
such that b k = 0 for [k[ > N. Let e > 0 and f e LP(O; X) be given. Choose M so large 

2 M + 2 N + l  
that _~1 +e. Since for all g~LP(12;X) and l e Z ,  

2 M + l  

ILgllp__<etl 'gll,, we obtain 

lit c p 
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Let )~(n) = 1 if Inl <- M +  N, 0 otherwise; then 

M 

Z 
l=  - M  

M + N  

--I1~11 g y 
k= -(M+N) 

letting ~ 0 + ,  the result follows. [] 
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r" <-~, I bkz( l -k ) (~ l ' -k f ) (co)  d~(~o) 
t E Z  f l  

: ~ ,Ez ~ tk~Z bkz(l--k)(qgi-kf)(~176 

_-<ll~llg J E Z(k)l(~f)(co)l"d~(co) 
12 k ~ Z  

II~kf II g_<_c.(l + ~)(2M+ l)11~ II g Ilfllg 

Next we consider the analogue of Theorem 4.16 in Coifman and Weiss [11]. 

Theorem A.2. Let (12, ~' , /J)  be a a-finite measure space, 1 <p < 0% X be a Banach 
space and T:LP(f~)~LP([2) be a positive, linear contraction. Let J - : L P ( Q ; X )  
~LP(I2;X) be its extension as defined in Lemma 5.1, and let be  P (Z), such that 
b k = O, for k < O. Then we have the estimate: 

t<:~o bk'Y'"fl p<= t1~ II, I l f l l ,  (7.4) 

for all f ~ LP(t2; X). 

Proof It follows from the dilation theorem of Akcoglu and Sucheston [1 ], that there 
exist a measure space ~7, a positive invertible isometry U:LP(Z)~LP(T.), a positive 
isometric imbedding D : LP(12)-+LP(Z), a projection P:LP(Z)--+LF(T.) with norm 
1, such that 

DT" = PU"D , n ~ N o . (7.5) 

By Lemma 5.1, we extend all these operators to the X-valued case, thanks to 
positivity ! From Lemma A. 1, we obtain 

: ,  

We can now deduce Theorem 5.6 from Theorem A.2, as in [111. Observe that we 
may restrict our attention to the case where b has compact support. We shall 
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construct sequences {bN(j) } such that 

lira buU)~'-J(1/N)f = I b(e)o~-(r)fdz , 
N ~  j=O 0 

for every f ~ LP(f2; X), and 

(7.6) 

I1~,<11,~ It~11,, for all N > 0 ,  (7.7) 

where ~N denotes the convolution operators in lP(Z;X) associated with the 
sequences {bN(/) } and ~' the convolution operator with kernel b in LP(P,; X). 

Then (7.6) and (7.7) imply 

N-->~lim [i=o~ b N ( j ) 3 " s ( I l N ) f  1, 

__< l im fl  ll,llfll,  tl tl,llfll, �9 
N--~ oo 

The sequences {b N (j)} are defined as in [11 ] by means of 

buU) = I b +s (1-Nlsl)ds 
- 1 / N  

1 ( j + t - - s \  _ . 

-oo 
(7.8) 

In order to prove (7.6), observe that ifg e C(~+  ; LP(f2; X)) is piecewise linear with 
nodes at {j/N}~= o, then 

7 b(~)O(~)dT= ~ bN(j)9(jtN) �9 
0 j=O 

Thus, if gN denotes the continuous piecewise linear function with nodes at 
{j/N}~= o such that gN(j/N) = ~Y-(liN)Jf, then 

[ ib(~) f (~) fdv- j~=obN(J)gN( j /N)  

=ib(z ) (oq ' (~) f -gN(r) )d~[~O p as N-~oc , 

i.e. (7.6) holds. 
To prove (7.7) we introduce linear operators ~N :lP(Z; X)--+LP(I(; X) and 

(s :LV(I( ;X)~lP(Z;X)  by means of 

(]Ng)(t)=N1/P ~, ~[j/N,(j+I)/N)(I)o{j), t e R  

and j~z 
(j+I)/N 

(fs =N1/q S f ( t )d t  , j e  Z . 
jIN 



104 Ph. C16ment and J. Priiss 

It is then easy to show tha t  II NI[-- 1 and I[~NII--<I for  all N. F o r  the convolu t ion  
opera to rs  ~N we now have the represen ta t ion  

~l~g=bN,g=(~N(b , ~ N g ) = ~ B ~ g  ; 

this ident i ty  obvious ly  implies  (7.7). [] 
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