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Let Xx be a smooth K-scheme of finite type, where K is the field of fractions of
a discrete valuation ring R. A Néron model of Xy is a smooth R-model X which
satisfies the so-called Néron mapping property: If Z is a smooth R-scheme, any
K-morphism fx : Zx — Xx between generic fibres extends uniquely to an R-
morphism f : Z — X. In his epochal paper [12], Néron has shown the existence
and quasi-compactness of such models for abelian varieties.

In the present paper, which contains parts of the doctoral thesis of the
second author, the theory of Néron models is transferred to the context of
formal and rigid geometry, interpreting rigid spaces Xx over a complete and
discretely valued field K as generic fibres of appropriate formal R-schemes X,
so-called formal R-models; cf. [4]. The definition of formal Néron models is
quite analogous to the one we have in the classical case, although we do not
require that a Néron model U of a rigid space Xk is a formal R-model of X;
itself; it is just a formal R-model of a suitable open rigid subspace Uy C X.
As main result we show that Néron’s existence theorem remains valid for rigid
groups with a bounded set of points X (K*'), where K*" is the field of fractions
of a strict henselization of R. However, we do not restrict ourselves to quasi-
compact Néron models and investigate also the connection between a Néron
model X (or better, Néron lfi-model in the terminology of [7]) of a finite type
K-group scheme X and the Néron model U of its associated rigid K-group
Xg. As we show, one passes from X to U by means of formal completion, at
least if X is quasi-compact or if ¥x (and hence X ) are commutative. If one
wants to extend this relationship to the general case, it seems that our definition
of Néron models has to be relaxed slightly, so that it better corresponds to the
definition of Néron Ift-models in the scheme case. Namely, instead of requiring
that the generic fibre Uy of U is an open rigid subspace of Xk, one has to ask
for a monomorphism Ux — Xk, which is an open immersion on quasi-compact
open parts of Uy.
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To mention a possible application, Néron models of rigid groups may be
considered as a first step towards general structural theorems for rigid groups,
just as we have them in conjunction with semi-abelian reduction for abelian
varieties and their rigid uniformizations. On the other hand, Néron models
of rigid groups are useful in computing component groups of ordinary Néron
models. In this paper we just consider the easy case of an abelian variety Xk,
admitting a split uniformization Xx = Ex/Mx with unifornizing group Ex and
a split lattice Mx. Then the Néron model U of the rigid K-group Xx is just
the quotient E/M of the Néron models E of Ex and M of Mg so that the
component group ®y of U is isomorphic to the quotient &g/Py, where the
component group ®,; coincides with the special fibre of M. Since U is the
formal completion of the classical Néron model X of Xk, we see that the
component group @x is isomorphic to z/Py.

1 Definitions and statement of the existence theorem

In the following, let R be a complete discrete valuation ring, K its field of
fractions, and k its residue field. Then, if ¥ is an R-scheme, it consists of
two fibres, the generic fibre Xx and the special fibre X,. Furthermore, X is
called an R-model of its generic fibre Xx. The problem of constructing a Néron
model for a smooth K-scheme X of locally finite type consists in finding a
“good” R-model X of Xk.

In rigid geometry, the setting is quite similar. The analogue of an R-scheme
of locally finite type is a formal R-scheme of locally tf (topologically finite)
type; in this paper we will just say formal R-scheme, assuming tacitly that it
is of locally tf type. Local parts of such a formal R-scheme X are of type
Spf R{{y,...,{,)/a, where a is an ideal in the restricted power series ring
R{{y,...,{n). Certainly, a formal R-scheme X has a special fibre X; =X ®g k,
but, in our situation, it also has a generic fibre Xk; cf. [4]. The latter is a
classical rigid K-space in the sense of [13] or [2]. Locally, on any open affine
part Spf 4 C X, the generic fibre of X is given by the rigid K-space Sp 4 ®z XK.
Similarly as before, X is called a formal R-model of X.

In order to deal with Néron models, it must be pointed out that models of
rigid spaces have to be viewed from a slightly different way. The reason is
that for a formal R-scheme X of locally tf type, any point of the generic fibre
Xx specializes into a point of the special fibre Xj; see [4, 3.4]. On the other
hand, Néron models of (ordinary) K-schemes Xy live from the fact that one
can modify R-models by removing closed parts from the special fibre, leaving
the generic fibre intact.

Definition 1.1 Let Xx be a smooth rigid K-space. A (formal) Néron model
of Xy consists of a smooth formal R-scheme U, whose generic fibre Uy is an
open rigid subspace of Xy, and which satisfies the following universal mapping

property:
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Given a smooth formal R-scheme Z and a morphism of rigid K-spaces
fx:Zx — Xk, it extends uniquely to a morphism of formal R-schemes
f:Z-U.

Of course, in a more precise way, we would have to say that fx : Zx — Xk
restricts to a morphism of rigid K-spaces Zx — Uy and that the latter extends
uniquely to a morphism of formal R-schemes f :Z — U. Also note that the
uniqueness of such extensions is automatic; see for example [4, assertion (b)
in the proof of 4.1]. It is clear that the Néron model U of Xk, if it exists, is
unique and that the formation of U is compatible with étale base change on
R. Furthermore, U will be separated if Xk is separated (use [4, 4.7]). Dealing
with group objects, U is a formal R-group scheme if Xx is a rigid K-group.
Also note that formal R-group schemes and rigid K-groups are automatically
separated.

To state the main result to be proved in this paper, let R" be a strict
henselization of R, and let K*" be the field of fractions of R*". Although R
might not be complete, we can consider R*"-valued points of formal R-schemes,
using the fact that R*" is a direct limit of complete discrete valuation rings
which are étale and, hence, finite over R. Similarly, there is the notion of
K*h-valued points of rigid K-spaces.

Theorem 1.2 A smooth rigid K-group Xy admits a quasi-compact formal
Néron model U if and only if the group Xx(K™) of its K®-valued points is
bounded, i.e., contained in a quasi-compact rigid subspace of Xx.

The only if part is trivial. To prove the if part, the first step is to construct a
weak Néron model, just as in the classical case.

Definition 1.3 Let Xx be a smooth rigid K-space. A weak (formal) Néron
model of Xx is a smooth formal R-scheme U, whose generic fibre Uy is an
open rigid subspace of Xy, and which has the property that the cononical
map U(R™P) — Xg(K™) is bijective.

It is clear that any formal Néron model satisfies the mapping property required
for a weak Néron model, whereas a converse of this assertion is true for groups:

Criterion 1.4 Let Xy be a smooth rigid K-group, and let U be a smooth
Sformal R-group scheme whose generic fibre Uk is a retrocompact open rigid
subgroup of Xx. Then U is a Néron model of X if and only if it is a weak
Néron model of X.

Recall that an open rigid subspace Uy C Xk is called retrocompact if the in-
clusion map Ux — Xy is quasi-compact; i.e., if Ux N Vx is quasi-compact for
any quasi-compact open rigid subspace Vx C Xx. This is a technical condi-
tion which is automatically satisfied if Uy is quasi-compact and Xk is quasi-
separated. We will prove the criterion 1.4 in Sect. 2, using it later in Sect. 5
to derive the assertion of Theorem 1.2. More precisely, in the situation of 1.2,
we will first construct a weak Néron model of Xx and then modify it in such
a way that it becomes a formal R-group scheme.
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2 Weak Néron models and their mapping property

Just as for ordinary R-schemes, there is the notion of R-rational or R-birational
maps between formal R-schemes X and Y; we will only consider the case,
where X and Y are smooth, which is enough for our purposes. By an R-
rational map X --» ¥ we understand an equivalence class of R-morphisms X’ —
Y, where X’ is R-dense open in X. Any R-rational map f : X --» Y has a domain
of definition dom(f), and there is a well-defined morphism dom(f) — Y in
case Y is separated.
Let us start by recalling some technical facts, which will be needed.

Lemma 2.1 Consider a flat morphism u: X' — X, as well as an R-rational
map f : X ->Y of smooth formal R-schemes X',X,Y. Assume that Y is sep-
arated. Then f ou is an R-rational map satisfying

dom(f ou) =u"'(domf).

In particular, f is defined everywhere if u is faithfully flat and f o u is defined
everywhere.

Proof. Reduce modulo powers of a uniformizing element 7 € R and apply
[7, 2.5/5). a

Lemma 2.2 Let X,Y be flat formal R-schemes and fx :Xx — Yx a K-
morphism between associated generic fibres. Assume that the special fibre
X is reduced.

(i) If X is non-empty, there is a non-empty open part X' C X, such that
[kl X! extends to a morphism of formal R-schemes f . X' — Y.

(ii) If Y is affine, assertion (i) is true for X = X'; ie, fx extends to a
morphism of formal R-schemes f: X — Y.

Proof. In order to verify assertion (i), we may assume that X is quasi-compact.
Then it follows from {4, 2.5 and 4.1] that there is an admissible formal blowing-
up X’ — X of some coherent open ideal # on X such that fx : Xy — Y
extends to a morphism of formal R-schemes f : X' — Y. If we divide # by
an appropriate power of a uniformizing element n of R, we can assume that ¢
is not contained in n0x. Since X; is reduced, the ideal n0y equals its radical.
So the center of the blowing-up X’ — X is strictly contained in the special
fibre X}, and there is a non-empty open part ¥ C X, over which the blowing-
up of # is an isomorphism. Restricting f : X' — Y to the inverse image of V'
with respect to the blowing-up X’ — X, we get the desired extension of f.

In the situation of assertion (ii), we may assume that both, X and Y are
affine, say X = SpfA4 and Y = SpfB. Then we have to show that any K-
homomorphism ¢k : B ® K — A ®g K maps the subring B C B ®g K into the
subring 4 C 4 ®g K. However, the latter is clear, since ¢k is contractive with
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respect to the supremum semi-norm, and since 4 ®z k is reduced, so that 4
consists of all elements of 4 ®g K having supremum semi-norm £ 1. a

We can draw some interesting conclusions from assertion (i) of 2.2.

Proposition 2.3 Let Xy be a rigid K-group which extends to a smooth formal
R-group scheme X. Then X is unique, up to canonical isomorphism.

Proposition 2.4 Let X,Y be formal R-group schemes, where X is smooth,
and let fx : Xgx — Yx be a morphism of rigid K-groups. Then fx extends
uniguely to a morphism of formal R-group schemes f:X — Y.

Proofs of 2.3 and 2.4 Since 2.3 is a consequence of 2.4, we need only verify
2.4, Using 2.2(i), we know that fx extends to an R-morphism X’ — Y on
some non-empty open part X' C X. If X contains enough R-valued points, we
can use translations in order to show that fx extends to a morphism of R-
group schemes f : X — Y which, automatically, is unique. In the general case,
we must replace the ground field X by a finite separable extension in order to
extend fx to the identity component or some other component of X. Faithfully
flat descent, applied to the situation obtained after reducing modulo powers
of a uniformizing element n € R, shows then that the extension is defined
over R. |

The assertion of 2.4 says that we can view the category of smooth formal R-
group schemes as a full subcategory of the category of rigid K-groups. This is
why we will sometimes make no difference in our notation between a smooth
formal R-group scheme X and its associated rigid K-group Xx.

Next we want to show that weak Néron models satisfy a mapping property
which is similar to the one of Néron models.

Proposition 2.5 Let Xy be a smooth rigid K-space, and let U be a smooth
Jormal R-model of some retrocompact open rigid subspace Ux C Xx. Then
the following are equivalent:

(i) U is a weak Néron model of Xy; i.e., U (is smooth and) the canonical
map U(R™) — Xg(K™) is bijective.

(i) Any rigid K-morphism fx : Zxy — Xk, where Zx is the generic fibre of a
smooth formal R-scheme Z, extends uniquely to an R-rational map f : Z--» U.

Proof. We only have to show that condition (i) implies condition (ii), the
converse is trivial. So assume (i) and consider a rigid K-morphism fg : Zx —
Xk with Z being a smooth formal R-model of Zgx; we may assume that Z is
affine and irreducible. Applying 2.2(i) and replacing Z by some non-empty open
part, there is an open affinoid subspace Vx C Xx with fx(Zx) C V. Since
Vk N Uy is quasi-compact by our assumption on Uk, we can find a formal R-
model ¥ of Vg, containing an open formal subscheme V', whose generic fibre
coincides with Vx N Ug; see [4, 4.4). Using 2.2(i), we can restrict Z again
and thereby assume that fx : Zx — Fk extends to an R-morphism f:Z — V.
Now Z, as a smooth formal scheme over R, contains an R*"-valued point a.
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Then f(a) is an R*M-valued point of ¥V, since its generic fibre belongs to
Uk. Thus, replacing Z by f~!(V’), we can assume that fx maps Zx into
Uk. Applying 2.2(i) once more, we see that fx extends to an R-rational map
f:Z-->U. The uniqueness of f is automatic; see [4, statement (b) in the
proof of 4.1]. O

Next we want to adapt an extension theorem of Weil for rational maps into
group schemes to our situation; for the corresponding result which is used in
the case of ordinary Néron models, see [7, 4.4/1].

Theorem 2.6 Let U be a smooth formal R-group scheme, whose generic
fibre Uk is an open rigid subgroup of some rigid K-group Xi. Furthermore,
consider a smooth formal R-scheme Z and a K-morphism vk : Zxy — Xk, and
assume that vk extends to an R-rational map v:Z--»U. Then vg(Zx) C Uk
and v is defined everywhere; ie., is a morphism of formal R-schemes.

Proof- We may assume that Z is quasi-compact and connected. Consider the
morphism

wk : Zx Xk Zx — Xk, (21,22) = vg(z)vk(z2) ',
as well as its R-rational extension
w:ZxgZ--»U, (21,22)— v(z))o(z2)"" .

Let ¥ (resp. W) be the domain of definition of v (resp. w), where V xz V C
W. We want to show that ¥ contains the diagonal 4 of Z xz Z. Proceeding
indirectly, let us assume that the latter is not the case. Then there exists a
closed point z€ 4 — W.

Let U’ C U be an affine open formal subscheme containing the unit section
of U. Since w|yny factors through the unit section and, hence, through U’,
there is a formal open neighborhood W' C W of W N 4 such that w(W') C U’.
Then we have

WNA=WnNAD(Vxz¥V)N4

and, identifying 4 with Z, we see that W' N 4 is R-dense in 4 since V is R-
dense in Z. Now consider the closed subset (Z xz Z) — W' C Z xz Z, and let
F be the union of all its irreducible components which do not contain z. Then
Y =(Z xg Z) — F is an open formal subscheme of Z xz Z which contains W’
and the point z. If d is the relative dimension of Z over R, there are functions
Sis-.os f24—1 € Oy, vanishing at z, such that, locally at z,

(i) the closed formal subscheme ANY of Y is defined by f\,...,f4,

(ii) the functions f\,..., f24-1 define a closed formal subscheme M C Y of
relative dimension 1,

(iii) writing N =Y — W', we have M NN = {z} (use that W' 0\ 4 is R-dense
in A).
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Let Y/ C Y be an affine formal neighborhood of z such that the above is
true on Y'. If we switch to the associated rigid situation, we see that wx maps
Y, N dg onto the unit section of Xx. Then, by [10, 1.6], there is a tubular
neighborhood Y (e~ f1,...,e7! f4) of ¥{ N Ak, which is mapped by wx into
Ug. In particular, wx maps the “Hartogs figure”

Ye(e ™ fryeoe” faa D)UY =Nk

into Uy, and the continuation theorem [1, Sect. 3], or [11, Theorem 7], shows
that, in fact, all of ¥y is mapped into Ug. But then, by 2.2(ii), the morphism
Yx — Ug extends to a morphism of formal R-schemes Y’ — U’, and we see
that ¥’ is contained in the domain of definition of w:Z xg Z--» U. In partic-
ular, w is defined at z which, however, contradicts the fact that z € 4 — W.
Thus, we have shown 4 C W,

Now, in order to show that v:Z--» U is defined everywhere, it is enough
to construct a faithfully flat morphism f : Z' — Z of smooth formal R-schemes
such that vo f is defined everywhere; cf. 2.1. Setting Z' = WN(Z xz V), we
can consider the morphism f : 2’ — Z which is induced from the projection
of Z xg Z onto the first factor. Then f is smooth and, in particular, flat. Fur-
thermore, f is surjective. To verify this, we may look at special fibres and,
thus, think in terms of k-schemes. Fixing a point z € Z, we can apply the
base change k& — k(z) and thereby assume that z is a k-valued point of Z.
Then W N(z x Z) is an open neighborhood of (z,z) in z x Z, and it must
meet z x V, since V is dense in Z. Hence, Z' N (z x Z) is non-empty and is
mapped by f onto z.

It remains to show that v o f is defined everywhere. But this is clear, since
it coincides on ¥ Xz V' with the morphism

Z' - U (z2)—wizz)u).
So vo f is defined everywhere, and the same is true for v. a

As a corollary, we see that 2.5 and 2.6 imply the assertion of the criterion 1.4.
We want to use the criterion in order to determine the formal Néron model of
the multiplicative group Gpx.

Example 2.7 Consider the multiplicative group Gmx as a rigid K-group and the
formal multiplicative group Gz as an open rigid subgroup of Guk. Then,
if m € R is a uniformizing element, G = (J,,7" + Gmz makes sense as a
smooth formal R-group scheme and as an open rigid subgroup of G k. Since G
contains all K**-valued points of Gk, we see by 1.4 that it is the Néron model
of Gx. We can describe the component group &g of G in an intrinsic way. If
Y is the group of characters of Gk, there is a canonical pairing &g x ¥ — Z
by evaluating characters y € ¥ on components of G C Gk and taking values
in the value group Z of K. The pairing gives rise to an identification &g = Y*,
where Y* = Hom(Y,Z) is the dual of Y.
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3 The construction of weak Néron models

Just as in the case of ordinary Néron models, the first step of the proof of 1.2
is the construction of weak Néron models via Néron’s smoothening process.
Since this process, as presented in [7, Chap. 3], carries over almost literally
from R-schemes to formal R-schemes, we restrict ourselves to just giving a
sketch. Of course, we will use freely standard facts about smoothness; for
example, see [5, Sect. 1], for smoothness in terms of formal schemes and [6,
Sect. 2] for smoothness in terms of classical rigid spaces.

The smoothening process, in its classical sense, involves blowing-ups with
centers in the special fibres of R-schemes. The corresponding notion in the
formal scheme setting is the one of formal blowing-up with centers in special
fibres of formal R-schemes; see [4, Sect. 2], where, more generally, (admissible)
formal blowing-ups of coherent open ideals on quasi-compact formal R-schemes
are defined. If X’ — X is such a formal blowing-up with center ¥; C X; and
corresponding ideal # C @y, the open formal subscheme of X', where £0,
is generated by a uniformizing element © € R, is called the dilatation of Y; in
X; it is denoted by X. As in the classical case, see [7, 3.2/1], X is uniquely
characterized as a flat formal R-scheme over X, whose special fibre (X)), lies
over Y, and which satisfies the following mapping property:

If v:Z — X is a morphism of formal R-schemes with Z R-flat and v, fac-
toring through Y, then v lifts uniquely to a morphism of formal R-schemes
Z - X

In particular, in place of v we can consider an R*"-valued point of X. Since
a formal blowing-up X’ — X is an isomorphism over the complement of its
center, it follows that the canonical map X'(R*") — X(R™) is bijective. An
alternative way to see this is by using [4, 3.3]. Now let us formulate the
assertion of the smoothening process.

Theorem 3.1 Let X be a quasi-compact formal R-scheme, whose generic fibre
Xk is smooth. Then there is a morphism of formal R-schemes f :X' — X,
which is the composition of a sequence of formal blowing-ups with centers in
the corresponding special fibres, such that any R-valued point of X factors
through the smooth locus of X'.

Since, by 2.2(ii), any K*"-valued point of Xk extends uniquely to an R*"-valued
point of X, we see:

Corollary 3.2 In the situation of 3.1, the smooth locus of X' is a weak Néron
model of Xx = Xy.

Furthermore, if we use the existence of formal R-models of quasi-compact and
quasi-separated rigid K-spaces, see [4, 4.1], we obtain an existence assertion
for weak Néron models:
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Corollary 3.3 Let Xx be a smooth rigid K-space, which is quasi-separated.
Assume that the set of K*'-valued points of Xx is bounded. Then X admits
a weak Néron model, which is quasi-compact.

To sketch the proof of 3.1, let 2}, be the Ux-module of differential 1-forms
on X. Fixing an R*'-valued point a of X, let a*Q/'\,/R be its pull-back to R°h.
We will view a*Q/'\,/R as a true R*"-module and write §(a) for the length of its
torsion part. The latter measures the defect of smoothness of X at a. In fact,
one shows as in [7, 3.3/1]:

The point a factors through the smooth locus of X if and only if 6(a) = 0.

Using the Jacobi criterion, one can characterize d(a) in terms of minors of
Jacobi matrices and then show as in [7, 3.3/3] that d(a) is bounded as a
function on X(R*").

Next, write k, for the residue field of R*", so that & is a separable algebraic
closure of k. Consider the following condition for closed subschemes Y, C X; :

(N) The family of all ks-valued points of Yi, which lift to R*"-valued points
of X, is schematically dense in Y.

If Y, C X, satisfies this condition, it follows that Y; is geometrically reduced
and, in particular, that its smooth locus is dense in Y; cf. [7, 3.3/4]. Now we
can formulate the key lemma, which allows to lower the defect of smoothness
of X.

Lemma 3.4 In the situation of 3.1, let Y, C Xy be a closed subscheme satis-
Jfying condition (N), and let Uy be an open subscheme of Yy such that Uy is
smooth and the pull-back @ glu, is locally free. Let X, — X be the dilata-
tion of Yy in X. Then, if a € X(R*) specializes into a point ay € Uy(k,), its
unique lifting a' € X(R™) satisfies

8(a’) £ max{0,6(a) — 1} .

In particular, we have &(a’) < d(a) if a is not contained in the smooth locus
of X and specializes into a point of U.

For the proof of this assertion, one follows literally the same argumentation,
as given in [7, 3.3/5], just replacing polynomials by restricted power series.
This being done, one uses the stratification technique of [7, Sect. 3.4] in order
to derive the assertion of 3.1 from the lemma. Also here, the procedure is by
literal translation. This concludes our sketch of proof of 3.1,

4 From weak Néron models to birational group laws

Having constructed weak Néron models, the next step in the proof of 1.2
consists in selecting so-called minimal components from those models, where
the minimality is defined using orders of invariant differential forms. To make
the machinery of [7, Sect. 4.3] work, we need some technical resulits.
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Lemma 4.1 Let Z be a smooth formal R-scheme. Then, for any generic point
{ of the special fibre Zy, the local ring Oz is a discrete valuation ring. Any
uniformizing element n € R is a uniformizing element for Oz

Proof. Let m be a uniformizing element of R. Then 0,;/(n) is isomorphic to
Oz, and the latter is a field, due to the fact that Z; is smooth over k. Thus,
7 generates a maximal ideal in 0z, and we see that Oz, being an integral
domain, is a discrete valuation ring. 0

Lemma 4.2 Let X be a formal R-scheme with geometrically reduced special
fibre, and let U C X be an R-dense open subscheme. Then any two sections

h,er(Us@X)’ hKEF(XKa(OXK)9

coinciding on Uy, extend uniquely to a section h € I'(X,Ux).
Proof. See [6, 5.4]. |

Lemma 4.3 Let Z be a smooth and irreducible formal R-scheme and { the
generic point of the special fibre Z;. Furthermore, consider a line bundle &
on Z, and a global section fx of Lk, the line bundle induced from £ on
the generic fibre Zx of Z. Assume that fx does not vanish identically on Z,
and let 1 be a uniformizing element of R.

(i) There is a unique integer n € Z such that " fx extends to a generator
of & as Oz;-module.

(ii) If nis as in (i), n™" fx extends to a global section f of ¥. Furthermore,
if fx has no zeros on Zy, the same is true for f on Z.

In the above situation, the integer a is called the order of fx at { € Z;; we
write n = ord; fx.

Proof of 4.3 We may work locally on Z and thereby assume ¥ = ¢z with Z
being affine. Writing

Oz; = lim ;e14;,

where (SpfA,)ies is the system of all affine open formal neighborhoods of { in
Z, all restriction maps A4; — A; are injective, since all maps 4; ®zk — 4; ®x k
are injective, due to the fact that Z is irreducible. Thus, fx induces a non-zero
element fg; in

Oz; Or K = li_rp ic1(4i®r K) .

Using 4.1, there is a well-defined integer n € Z, such that 7" f, is a unit in
0z;. This shows assertion (i).

We just have seen that 7" fx extends to a section f of ¢z on some open
formal neighborhood 2’ C Z of {. But then, using 4.2, we see that 77" fx is
defined on all of Z. If fx has no zeros on Zg, the same reasoning applies to
7" f¢", and it follows that n~"fx is invertible on Z. O
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Let us return now to the situation of 1.2. So we consider a smooth rigid K-
group Xx, whose set of K*-valued points is bounded; let d = dimXx. As in
the case of ordinary K-group schemes, there is a left-invariant differential form
o of degree d on Xk, which generates the differential module Qj,K xs see [7,
4.2/3]). Furthermore, w is unique, up to a constant in K*. For any open rigid
subspace Uy C Xx admitting a smooth formal R-model U, we can restrict w
to Uk and talk about the order of w at generic points of the special fibre Uj
or, in other words, at irreducible components of U. We write ordyw for this
order if U is irreducible.

For the rest of this section, let us fix Xx and w as before, and let n € R
be a uniformizing element. Frequently, we will have to consider a smooth and
irreducible formal R-model U of some open rigid subspace Ux C Xx. To have
a simple language, let us call U a weak Néron component of Xyx. For example,
if U is a weak Néron model of Xk, the connected components of U are weak
Néron components of Xk.

Lemma 4.4 Let U’',U” be two weak Néron components of Xy, and let
f U -->U" be an R-rational map which, on generic fibres, extends to an
isomorphism fx : Xx->X. In particular, there must be a unit a € I'(Xg, Oy, )
satisfying f3(w) = aw. Assume for some point xgx € Xx(K™), which extends
to a point x € U'(R™), that a(xx) is a unit in R C K. Then:

(i) » :=ordyrew = ordyrw =: n”.

(i) If V' is the domain of definition of f, the morphism V' — U" given by
f is an open immersion if and only if n' = n".

Proof. We know from 4.3 that " w generates Q‘{,, & and ' w generates
Q‘f,,,/R. Thus, there is a section b € I'(V', 0y ) satisfying f*(n"’"w) =bn"w

on ¥’. Then we have b = 7" =""q on Vi, and it follows from 4.2, that b extends
to a section on U’. Writing n == ordy-a, we see from 4.3 that 7~"a extends to
a unit on U’. However, a(xx) being a unit in R*", we must have n = 0. Thus

n —n" =ordyb =0,

which proves (i).

It remains to verify assertion (ii). The morphism v: V' — U” is étale if
and only if the associated map v*Q‘(’,,, R Ly is bijective; use [S, 1.2] and
(7, 2.2/10]. The latter is the case if and only if b is invertible over ¥’ and,
hence, over U’; i.e., if and only if n’ —n” = 0. On the other hand, we claim
that v: V' — U” is étale if and only if it is an open immersion. To verify
this, assume that v is étale. Then v is flat and, thus, open. So we may assume
that v: V' — U" is surjective and, hence, faithfully flat. As a consequence, its
generic fibre vx : Vi — U{ is surjective and, hence, an isomorphism. In order
to show that v is an isomorphism also, it is enough to show that vi' : U{ — Vg
extends to an R-morphism U” — ¥’. To do this, we may assume that U" and
V' are affine. But then 2.2(ji) implies that vy' extends to an R-morphism
U — V', and the latter is an inverse of v. O
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Considering a special case, we can apply the assertion of 4.4 to the identity
map idg : Xx — Xk in place of fx. Let us call two weak Néron components
U, U" of Xx equivalent if the identity map idx extends to an R-birational
map U’--» U”. Clearly, if U’ and U” are equivalent, we must have ordy w =
OI'dul/(,U.

Proposition 4.5 There is a largest integer ny such that ordyw = ny for all
weak Néron components U of Xx. We call U minimal or, more precisely,
o-minimal if ordyw = ny. Up to equivalence, there are only finitely many

weak Néron components of Xy, which are minimal.

Proof. Choose a weak Néron model U of Xk, and let U;,i=1...r, be its
components. Then, if U’ is an arbitrary weak Néron component of Xy, we see
from 2.5 that the identity on Xy extends to an R-rational map U’--»U; for
some i. Thus, by 4.4(i), the first assertion of the proposition holds for

.....

If U’ is minimal, then, by 4.4(i), U; is minimal also, and 4.4 (ii) shows that
U’ --» U; is R-birational in this case. Thus, up to equivalence, the minimal weak
Néron components of X are given by the finitely many minimal components
of any weak Néron model U of Xx. |

It remains to say that the notion of w-minimality is independent of the choice
of w, since w, as a left-invariant differential form on a smooth rigid K-group,
is unique, up to a constant in K*.

Lemma 4.6 Let R’ be a complete discrete valuation ring with field of frac-
tions K', such that the extension R'/R is étale. Let o' be the left-invariant
differential form on Xy = Xx Qi K’ induced from o.

(1) If U is a weak Néron component of Xy, then U ®g R’ decomposes into

finitely many weak Néron components U] of Xy, where ordUi/ o’ = ordyw for
all i.
(ii) If U is a weak Néron model of Xy, then U Qg R’ is a weak Neéron model
Of Xyr.
(iii) If U is a smooth formal R-model of some open rigid subspace Ux C Xx,
whose components represent all w-minimal weak Néron components of Xy,
the same is true for U @z R’ in terms of w'-minimal weak Néron components
Of XK"

Proof. Assertion (i) is true, since 7 is a uniformizing element for R and R',
whereas (ii) follows directly from the definition of weak Néron models. Finally,
(iii) is a combination of (i) and (ii). O

Next we want to show that we can apply the assertion of 4.4 to the case where
Sk is a translation on Xk.

Proposition 4.7 Consider a point g : Tx — Xx of Xx with values in some rigid
K-space Tx. Denote by v, (resp. t;) the left (resp. right) translation with g on
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Xx. Then t;0 = w, and there is an invertible global section y(g) in Or, such
that 1} w = x(g)w. Varying g, we see that y defines a character Xx — Gm.

In particular, if g € Xx(K™) and the set of these points is bounded (which
we are assuming in the situation of 1.2), then x(g) is a unit in R,

Proof. Clearly, we have 7,0 = w, since w is left-invariant. On the other hand,
T, w is left-invariant so that there is an invertible global section x(g) in Or,
satisfying r;*w = y(g)w. Varying g, we see that y is a functorial homomor-
phism from the points of Xx to the points of Gy, the latter being viewed as
a rigid K-group; thus, x is a character Xy — G .

Now look at the group of K*M-valued points of Xx which, by our assump-
tion, is contained in some quasi-compact open rigid subspace of Xx. Then
2(Xg(K*")) is contained in some quasi-compact open rigid subspace of Gy, X
and, thus, must be contained in the subgroup of “units” of G, k> 1€, in the
subgroup which is induced by the formal multiplicative group G . a

Later, in Sect. 5, we will finish the proof of 1.2 by constructing a weak Néron
model of X, which is a formal R-group scheme. The latter is done by remov-
ing non-minimal components from a weak Néron model of Xy and taking its
“closure” in the sense of generating groups. A first step in this direction is the
construction of an R-birational group law.

Proposition 4.8 Let Xy be a smooth rigid K-group such that the set of its K*"-
valued points is bounded. Choose a weak Néron model V of Xy and denote
by U the smooth formal R-scheme consisting of all minimal components of
V. Then the group structure on Xy extends to an R-birational group law
on U.

More precisely, the multiplication myg : Xg xx Xx — Xx extends to an R-
rational map m : U xg U --» U such that the universal translations

D:UxgU--»UxpU, (x,y)— (x,m(x,y))
V. UxpU->UxgU, (x,3)— (mx,y),y)

are R-birational. Furthermore, m is associative.

Proof. Let d = dimXg, and fix a non-trivial left-invariant differential form
weE Qf(,K/K. Then, writing p;, p; for the projections of Xx xx Xx onto its

factors, @2 = p}w A pjw is a non-trivial left-invariant differential form on
Xx %Xk Xx. Furthermore, it is clear that ¥ xz F is a weak Néron model of
Xy xx Xk and that U xx U is the open part consisting of all w"2-minimal
components. Now consider the universal left and right translations

Dy Xg xx Xg — Xx Xx Xg, (%, y) = (x,mx(x,y)),

YIKZ/YK XKXK—‘)XK XKXKy (xa}’)'_’(ml((x’)’),)’)’

as well as their inverses, which are given by
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(x,y) — (mx(x™', ), resp. (x,y) > (mg(x,y™"),y).

By 2.5, the morphism g extends to an R-rational map U xg U--»¥V xzg V.
Since @}(w"?) = w™?, we see from 4.4 that it is targeted to U xz U so that
Dk extends to an R-rational map @ : U xg U--» U xg U. Applying 4.4 again, it
follows that @ is an open immersion if we restrict the map to any component of
U xg U. Applying the same reasoning to @y ', it follows that & is R-birational.

In a similar way we can show that ¥y extends to an R-birational map
V.U xgU-»U xg U. Viewing w; = pjw as a left-invariant differential form
on Xy xg Xk, relatively over the second factor X, we see that P (w,) is again
a relative left-invariant differential form on Xx x x Xy. Thus, there is an invert-
ible global section a in Oy, satisfying Y¢w; = aw,. Viewing everything over
the base K, we can write ¥}(w"?) = aw"?. Now, in each connected compo-
nent of U, we can choose an R*"-valued point x. Using the right translation

kol . on Xy, we see from 4.7 that a(xg) is a unit in R, So 4.4 is applicable

X,

as before, and ¥k extends to an R-birational map ¥ : U xzp U--»U xzg U.
Finally, composing @ with the projection of U xg U onto the second factor

and ¥ with the projection of U xz U onto the first factor, we obtain two

R-rational maps U xg U--» U extending mg. Thus, they must coincide, and,

writing m for this map, we see that @ and ¥ are as stated in the assertion.

From the associativity of mx one concludes that m is associative. O

5 End of construction of Néron models

In this section, we want to finish the proof of 1.2. It basically remains to show
that an R-birational group law, as obtained in 4.8, can be enlarged in such a
way that it becomes a group law in the sense of formal R-group schemes. To
do this, we can, in principle, follow the general procedure, as explained in [7,
Chap. 5]; we may even use the general result of M. Artin in [8, exp. XVIII,
3.13]. However, things can be substantially simplified by using the fact that,
on the generic fibre, the birational group law is part of a rigid K-group.

An R-birational group law m : U xg U --» U on a smooth and quasi-compact
formal R-scheme U is called strict if m is defined on a U-dense open formal
subscheme W C U xz U such that the universal translations ¢ and ¥ define
isomorphisms from W onto U-dense open formal subschemes @(W') and ¥(W)
of U xz U. In this context, an open formal subscheme W C U xz U is called
U-dense if it is U-dense with respect to the two projections py, p» of U xx U
onto its factors; i.e., if for any u € U the fibre p;'(u) contains W N p;'(u)
as a dense open subset.

Lemma 5.1 Let m: U xg U--»U be an R-birational group law on a smooth
and quasi-compact formal R-scheme U. Then there is an R-dense open formal
subscheme U’'C U such that m restricts to a strict R-birational group law
on U'.
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Proof. Looking at special fibres, m induces a birational group law on w; which,
using [7, 5.2/2], can be restricted to a strict birational group law. 0

Theorem 5.2 Let Xy be a rigid K-group, and let U be a smooth and quasi-
compact formal R-scheme, whose generic fibre Uk is an open rigid subspace
of Xix. Assume that the group multiplication mx of Xx extends to an R-
birational group law m on U. Then there is a smooth and gquasi-compact
formal R-scheme U such that
(i) U contains U as an R-dense open formal subscheme,
(ii) m extends to a morphism m : U xzg U — U of formal R-schemes, which
defines a structure of a formal R-group scheme on U.

Any U of this type is unique up to canonical isomorphism, and its generic
fibre Ux is in a natural way an open rigid subgroup of Xx.

Proof. Any formal R-scheme U can be identified with the projective limit of
ordinary schemes lim ,U ®g (R/(n'*')), where n is a uniformizing element of

R. Thus, for the uniqueness of associated formal group laws, we can use the
corresponding uniqueness assertion in the scheme case; cf. [7, 5.1/3]. Further-
more, to show the existence of (U, ), we claim it is enough to consider the
case, where m defines a strict R-birational group law on U. In fact, using 5.1
we can find an R-dense open formal subscheme U’ C U such that m restricts
to a strict R-birational group law m’ on U’. Now, assume that the assertion of
the theorem holds for (m’,U"); let (U', /') be the associated formal R-group
scheme. Then 2.6 shows that the R-rational map U --» U’ given by the inclu-
sion U D U’ extends to a morphism 1: U — U'. Let w be a differential form
generating Q‘:j, pe It follows that 1*w generates the differential module Q‘{J/R

over U’ and over the generic fibre Uy. But then, using 4.2 as in the proof of
4.3(ii), 1" w must generate Q’{,/R overall of U. So1: U — U is ¢tale, and we
see as in the proof of 4.4(ii) that 1 is an open immersion.

Thus, in the following, we can assume that m defines a strict R-birational
group law on U. Let W C U xg U be a U-dense open formal subscheme
such that, on W, the universal translations @, ¥ : U xg U --» U xg U are open
immersions onto U-dense open parts of U xg U. For any a € U(R), set

We=p(WN(axgU)), W,=p(WNU xga)),

where p; is the projection of U xz U onto its i-th factor. Then W, and W]
are R-dense open formal subschemes of U. Furthermore, the left translation
with ax on Xk extends to an open immersion 7, : W, — U and, likewise, the
right translation with ax on Xy extends to an open immersion 1, : W, — U;
let W, = 1,(W,) and W; = t,(W}). In particular, we can interpret 7, and T,
as R-birational maps U --» U.

On a smooth formal R-scheme like U, one does not know much about the
existence of R-valued points. However, the set of R*'-valued points is dense. To
verify this, just use the fact that the points with values in the separable closure
of k lie dense in X; and apply the lifting property for smooth morphisms. In the
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following, we will need the existence of enough R-valued points. So, without
changing notations, we will replace R by the completion R of R*" and thereby
assume that R itself is strictly henselian. At the end a descent argument is
used in order to handle the general case.

Identifying the set of R-valued points U(R) with Ug(K), we can consider
the group H which is generated by U(R); it corresponds to the subgroup of
Xx(K) which is generated by Ux(K). Writing the group law as multiplication,
any a € H is of type a=af' - ... - aF' with a),...,a, € U(R). Since the
left translation with each a; is defined as an R-birational map U --»U, we
see that the left translation with a, which is defined on Xk, extends to an R-
birational map U --» U; the latter will be denoted by 7,. In a similar way, there
is the right translation 7, on U. Now, the crucial point of our proof consists
in showing the following assertion for points a € H:

The left translation t, : U --» U is defined at a point u € U(R) if and only if
ag - ux € Ug. It is an open immersion on its domain of definition.

The only if part is clear. So assume ax - ugx € Ug. Then this point gives rise
to an R-valued point of U, which, in a suggestive way, will be denoted by au.
Now let 7/, be defined on some R-dense open formal subscheme ¥ C U and
choose an R-valued point

zed\WwhHnvnw,.
Writing za instead of 7/(z), we have
za€e W), ze W),

or, equivalently,
ueE W, aueWw,.

Then consider . .
Uu) = (tua) (W N W)\ W,

Uau) =17\ (WQa N WO W,
as R-dense open neighborhoods of u, resp. au in U. In fact, these sets satisfy
Ta(U(4)) = 1:(U(au)) ,

and the points t,,(1) € 1,,(U(%)), 1,(au) € U(au) coincide, since they coincide
on the generic fibre.
Looking at generic fibres, we have

zk + agx - U(u)x =z + Ulau)g

and, hence,
ag » U(u)x = U(au)x .

If we combine 4.2 with the fact that the left translation 7, is defined on the
generic fibre as well as on an R-dense open part of U, we see, in particular,
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that 7, is defined on U(u) and, hence, at u. Since the same reasoning applies
to 1, I our claim above is justified.

For any point a € H, we can interpret U as a formal R-model of ayx Uy
via the left translation Ux—SaxUx with ag. Suggestively, this formal model
of ax Uy is denoted by alU. Now, due to the assertion we just proved, there
are canonical gluing data for the translates al,a € H. For example, to glue
U and a translate alU, consider the left translation t, : U --» U, which is an
open immersion on its domain of definition U’ C U, as we have seen. Writing
aU’ C aU for the open formal subscheme induced from U’ C U, the canonical
isomorphism 7, : U’ = 1,(U’) gives rise to an isomorphism alU’ = 1,(U’),
which is the one we use for gluing al/ to U. Then, again due to the assertion
of above, we see that the gluing data on all translates U extend the gluing
data we have on generic fibres. In particular, the cocycle condition for triple
overlaps is satisfied. Thus,

U= \JaU

is a well-defined formal R-scheme. By our construction, it has the property that
all left translations 1,,a € H, extend to isomorphisms U=U.

We want to show that U is the formal R-scheme we are looking for. So
we claim that the R-rational multiplication m on U extends to an R-morphism
m: U xg U — U. To justify this claim, start with a closed point in U xz U.
Using [4, 3.5], we can extend it to a point ¢ of U xz U with values in a discrete
valuation ring R’ which is finite flat over R; let ¢ = a x & with o,b € U(R').
Now, using R'/R as base change, consider the R'-dense open subscheme

T\ WHNW, C Uy .

Its image under the projection Uy — U is an R-dense open formal subscheme
of U. Thus, there is a point z € U(R) such that zg € t.~'(W}) N W,. Writing
za instead of t/(zxr), we have za € W] so that Mg is defined at za x b. But
then, due to the construction of U, we see that g is defined at ¢ = a x b,
and 2.1 shows that m is defined at c.

Next we show that all right translations ,a € H, are isomorphisms on U.
To see that 7/ is defined at some closed point u € U, we may apply a left
translation and thereby assume u € U. Proceeding similarly as before, we can
choose a point z € U(R) such that t,(u) € W,. But then, clearly, 7, is defined
at u. The same is true for 7/_,.

Finally, to show that i : U xg U --»U is defined everywhere, it is enough
to show that /1 is defined on all products of type alU xz bU with a,b € H or,
using the associativity of /7, on all products of type (aUb) Xz U. However, the
latter is clear, since m is defined on U xz U and since U is invariant under
left and right translations with points in H.

In particular, our argumentation shows, that the universal translations &, ¥ :
U xg U--3»U xz U extend to morphisms

@,'P:UXRO-—)UXR[].
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Since a similar reasoning applies to their inverses, we thereby see that /i defines
on U the structure of a formal R-group scheme. By [8, exp. Vlg, corollaire
3.6] the identity component of U is quasi-compact. Hence, since U contains
U as a quasi-compact open part, U itself is quasi-compact, and it follows from
our construction that the associated rigid K-group Uy is canonically an open
rigid subgroup of Xx. Thus, we have proved the assertion of 5.2 for a strictly
henselian base R.

If R is not strictly henselian, we have to replace R by the completion R of
its strict henselization R*". Thus, to end the proof of 5.2, it remains to show that
any solution (U z,z), we have found over R, descends to a solution over R.
Choosing a uniformizing element 7 € R, let us introduce the residue rings R; =
R/(m'*') and R; = R/(n*!) for i € N, and set ROzR = lim :R; ®g R;. Then,

pulling back (U, ;) with respect to the two projections from Spf R®zR
onto SpfR, we get two solutions of a problem obtained from (U,m) via base
change Spf R®zR — SpfR. However, both solutions are canonically isomorphic
after reducing modulo powers of n, due to the uniqueness assertion of [7,
5.1/3]. Thus, using a similar argument on triple products, it follows that we
have descent data on all solutions (U,m) ®x R;, and that these are related to
each other by reduction modulo powers of n. To see that all descent data are
effective, is it enough to know that they are effective after reducing modulo
7. However, R/(n) — R/(n) is an extension of fields, and in this case the
effectiveness of descent data on group schemes of finite type is well-known.
So any solution (U 7 Mz) ®r R; descends to a solution of (U,m) ®g R; over R;
and it follows that (U, ;) descends to a solution of (U,m) over R. O

Finally, to obtain the assertion of 1.2, let us go back to the R-birational
group law (U, m) constructed in 4.8, and let (U,m) be the associated formal
R-group scheme, whose existence has been proved above. Applying the cri-
terion 1.4, it is enough to show that (U,m) is a weak Néron model of Xg.
So let R’ be a complete discrete valuation ring, which is finite étale over R,
and consider a point ax € Xx(K’), where K’ is the field of fractions of R’.
Then, on Xx ®x K’, we can consider the left translation tx with ax. Using 4.4
and 4.6, it extends to an R'-rational map U ®z R’ --» U ®g R’ and, hence, to an
R'-rational map 7 : U ®g R’ --» U ®z R'. The latter is a morphism due to 2.6.

But then we can compose the unit section SpfR’ — U ®z R’ with 7 and,
furthermore, with the projection U ®r R — U, thereby obtaining an R’-valued
point a of U extending ax. Thus, U is a weak Néron model of Xk, and the
proof of 1.2 is complete.

6 Formal Néron models versus ordinary ones

As before, let R be a complete discrete valuation ring with field of fractions
K and residue field k. Starting with a smooth K-group scheme Xy of finite
type, we can ask if there is a Néron model X of Xk, by which we mean a
(quasi-compact) Néron model in the sense of {7, 1.2/1] or a (not necessarily
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quasi-compact) Néron Ift-model in the sense of [7, 10.1/1]. On the other hand,
we can pass from Xg to the rigid K-group Xy, which is associated to X¥x via
Serre’s GAGA functor, and try to construct a formal Néron model U of Xg.
As we will see, the relationship between X and U is quite simple, at least
if we restrict ourselves to quasi-compact Néron models. We know from [7,
1.3/1] that Xx admits a quasi-compact Néron model if and only if the set of
its K*P-valued points Xx(K*™") is bounded in the sense of [7, 1.1/2], and we
have shown the analogous fact for formal Néron models in 1.2. Thus, since we
can identify Xx(K") with Xx(K*") and since boundedness in both situations
amounts to the same, we obtain the following fact:

Proposition 6.1 Let Xx be a smooth K-group scheme of finite type and Xx
the associated rigid K-group. Then X admits a quasi-compact Néron model
if and only if Xy admits a quasi-compact formal Néron model.

Next we want to show that a formal Néron model of Xx can be obtained from
a Néron model of Xx by means of formal completion.

Theorem 6.2 Let X be a smooth K-group scheme of finite type with Néron
model ¥ . Let Xy be the rigid K-group associated to Xx and X the formal
completion of X along the special fibre X;. Then, if X is quasi-compact or
if Xx is commutative, the canonical morphism Xy — Xy of rigid K-groups
defines X as a retrocompact open rigid subgroup of Xy, and X is a formal
Néron model of Xy.

Proof. There are canonical bijections
X(K™) 5 X (K™) 5 X (R™) S X(RM),

and we see from the criterion 1.4 that X is a formal Néron model of Xy,
provided the canonical morphism Xy — Xy defines Xi as a retrocompact open
rigid subgroup of Xk. Due to the construction of associated rigid K-spaces, the
latter is clear if X is quasi-compact or, to mention an example which is needed
below, if X is the Néron model of a split torus Xx.

So it remains to show that X is a retrocompact open rigid subgroup of X .
To do this, we can assume that Xy is commutative and, since the formation
of Néron models is compatible with extensions R’/R of ramification index 1,
see [7, 10.1/3], that R is strictly henselian. We will use the criteria of [7,
10.2/1 and 10.2/2], which say in our situation that ¥x admits a Néron model
X if and only if Xx does not contain subgroups of type G, and that such
an X is quasi-compact if and only if X¥x does not contain subgroups of type
Gp,. Proceeding similarly as in the proofs of [7, 10.1/7 and 10.2/2], choose a
maximal torus Tx in Xx and consider the associated exact sequence

0 - Ty -2 Xk = Hx —0.

Since Xk cannot contain subgroups of type G,, we see that Hx cannot contain
subgroups of type G, and G, and, hence, that Hx admits a quasi-compact
Néron model $.
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Let us first look at the case, where the torus Ix is split. Viewing Xg as
a Tx-torsor over Hg, we can use the fact that such a torsor is locally trivial
and, thus, is given by a set of primitive line bundles on $g. Since the local
rings of § are factorial, these line bundles extend to primitive line bundles on
the identity component $°. Proceeding as in the proof of [7, 10.1/7] and using
the fact that each connected component of § admits an R-valued point since
R = R*, the above exact sequence gives rise to an exact sequence between
associated Néron models

0-FT -X -H—0

and, hence, to an exact sequence between the corresponding formal completions

0T >X—>H-0.

Switching to the associated rigid situation and identifying T,X,H with their
associated rigid K-groups, we have the following commutative diagram of exact
sequences

0 - T - X - H - 0
! 1 !
0 - Tx — Xx — H¢y — 0,

where the vertical maps are open immersions, except possibly for Xx — Xk,
which is an open immersion on any quasi-compact open rigid subspace of Xx
and, thus, in particular, a monomorphism. Since the components of X are
quasi-compact, the same is true for the connected components of X. In partic-
ular, we can view the connected components of X as open rigid subspaces of
Xx, and X itself at least as a subset of Xk. Thus, to see that X is a retrocom-
pact open rigid subgroup of Xk, it remains to show that any quasi-compact
open rigid subspace of Xy meets only finitely many connected components
of X.

Since H is quasi-compact, the above sequences say that there is a finite
union X’ of connected components of .¥ such that, writing Z” for a set of rep-
resentatives of R-valued points of the components of T, we have X = Z’ - X'
Now, using the fact that Xy is locally trivial as a Tx-torsor over Hy, con-
sider a quasi-compact open rigid subspace Vx C Hk such that, over Vi, the
torsor Xk is trivial and, thus, of type Tx xx Vk. Then X"=X'n (Tx xx Vi)
is quasi-compact, and we have

XnTxxxVe)=2" - X"

From this it follows that any quasi-compact part of Tx xx Fx can meet only
finitely many translates of X " by points in Z" and, varying Vx over a suitable
admissible open covering of Hx, we see that X is a retrocompact open rigid
subgroup of Xk, as claimed.
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If the torus Tx is not split, we can find a finite separable extension K’'/K
such that Tk splits over K. Then, using [14, Chap. IV, Proposition 4.1.4]
and proceeding as in the proof of [7, 10.2/2], the group Xx ®x K’ does not
contain subgroups of type G,, since this is true for Xg. Consequently, the group
Hx Bk K’ still admits a quasi-compact Néron model and, replacing K’ by some
finite unramified extension, we can assume that, in addition, the components
of Hx Rk K’ are split. Thus, we are reduced to the case, where there exists a
finite separable extension K'/K such that the assertion of 6.2 holds for the group
Xk ®x K’ and its Néron model ¥’, which exists. In general, X’ will be different
from X ®z R’, where R’ is the integral closure of R in KX’. To obtain the
assertion of 6.2 for X, we consider the canonical map X ®z R’ — X’ and write
9 for the union of all components X; of X (which are split by our assumption
on the residue field of K) such that X; ®z R’ is mapped into X0, the identity
component of X’. The latter is quasi-compact. Writing R/ p for the Weil
restriction with respect to the base change R'/R, the morphism 9 ®z R’ — X0
corresponds to a morphism 9 — Ry /R(Z{’O). Then this map factors through the
schematic closure of the closed subgroup Xx C Ry x(¥x ®« K'), where we
view Ry x(Xx ®x K') as the generic fibre of Rp/r(X/°). Let 3 be a group
smoothening of this group; cf. [7, 7.1/5]. Then 3 is quasi-compact, and it
follows that ¥ — ERR//R(x’O) factors through 3. On the other hand, using the
Néron mapping property for X , there is a canonical map 3 — X which must
factor through 9). Thereby we see that 9 — 3 is an isomorphism and, thus,
that 9 is quasi-compact since the same is true for 3.

As a result, we have shown that the canonical map from the component
group of X ®z R’ to the component group of X’ has finite kernel. From this
one easily concludes that ¥ ®z R’ induces a retrocompact open rigid subgroup
of Xy, the rigid K’-group associated to X4 ®x K’, and that, likewise, ¥ gives
rise to a retrocompact open rigid subgroup X in X. O

As an application of 6.2, we want to describe the formal Néron model of an
abelian variety, having a split uniformization in the sense of rigid geometry.

Example 6.3 Consider an exact sequence of smooth K-group schemes of finite
type
0—’1K_'6K“’%K'_)07
where Ty ~ G% x 1s a split torus, and where By is an abelian variety with
good reduction. As in the proof of 6.2, the associated sequence between Néron
models
0-FT -E—-B—-0

is exact, and the same is true for the sequence

0-I° - -8B-0

between identity components. So €° is an extension of the abelian scheme B
by the split torus T ° = G, 5. Furthermore, the component group of € is the
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same as the one of I, namely the dual Y* of the group of characters Y of
I; cf. 2.7.

Next, let us switch to the associated rigid situation, let Tk, Ex,Bx be the
rigid K-groups associated to the above K-group schemes, and, using 6.2, let
T,E,B be their formal Néron models. Furthermore, let us consider a split
lattice My C Ex of rank d; i.e., a closed rigid subgroup, which is isomor-
phic to Z? as a constant group. Then the quotient Ax = Ex/My makes sense
as a proper rigid K-group. Writing M C E for the closed formal subgroup
scheme induced from My or, in other words, for the Néron model of Mg,
we can construct the quotient E/M as a formal R-group scheme. Using the
criterion 1.4, it follows that E/M coincides with the formal Néron model 4
of Ax. Hence, the projection E — A restricts to an isomorphism E? - 4° be-
tween identity components. Furthermore, the group of connected components of
A ~ E/M equals the quotient @g/P,,, where @ = Y™ is the group of connected
components of E and ¢, is the group of connected components of M; the lat-
ter coincides with the special fibre of M. In particular, if Ax is algebraizable
and, thus, an abelian variety, we have determined the component group of the
classical Néron model of Ax. A similar description has been given in [9, Chap.
111, 8.2].

Finally, let us return to the general assertion of 6.2. Presumably it is not
possible to avoid the commutativity assumption for the Néron model X of X
in the non-quasi-compact case. However, in order to extend 6.2 to any type of
Néron model of Xy, we modify the notion of formal Néron models slightly.

Definition 6.4 4 (formal) Néron quasi-model of a smooth rigid K-group X
consists of a smooth formal R-group scheme U with generic fibre Ux and of a
morphism of rigid K-groups 1x : Ux — Xy such that the following conditions
are satisfied:

(1) 1k, restricted to any quasi-compact open part of Uy, is an open immersion
of rigid K-spaces; we say that 1 is a quasi-open immersion.

(ii) The pair (U, 1) satisfies the Néron mapping property; i.e., given a smooth
Jormal R-scheme Z and a morphism of rigid K-spaces fx : Zy — Xk, there is
a unique morphism of formal R-schemes g : Z — U satisfying fx = 1x o gk.

Any formal Néron model is a formal Néron quasi-model, and both notions
coincide in the quasi-compact case. To deal with Néron quasi-models, the fol-
lowing analogue of the criterion 1.4 is useful:

Criterion 6.5 Let Xy be a smooth rigid K-group, and consider a smooth
formal R-group scheme U together with a quasi-open immersion 1 : Ux —
Xx of rigid K-groups. Then the following are equivalent:

(1) U is a Néron quasi-model of X.

(il) Given a smooth formal R-scheme Z and a morphism of rigid K-spaces
vk : Zx — Xk, there is a wunique rational map w:Z-->U satisfying
Vg = 1Ilx © Wk.
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Proof. To show that condition (ii) implies condition (i), just realize that the
assertion of 2.6 remains valid, if we consider a quasi-open immersion Uy — Xk
instead of an open immersion Uy < Xk; the proof is unchanged. O

Now let us state the analogue of 6.2 for Néron quasi-models.

Theorem 6.6 Let Xy be a smooth K-group scheme of finite type, and let Xk
be the associated rigid K-group.

(i) Xx admits a Néron model if and only if Xx admits a formal Néron
quasi-model.

(ii) If X is a Néron model of X, its formal completion X is a Néron quasi-
model of Xy via the canonical morphism Xg — X.

Proof. We start with assertion (ii). Let Z be a smooth formal R-scheme, and
consider a morphism of rigid K-spaces vg : Zx — Xk. Then, by 6.5, we have
only to show that vx extends to an R-rational map Z--»X. In particular, we
can replace Z by an R-dense open part. Furthermore, we can assume that Z is
irreducible. If { is the generic point of the special fibre Z,, it follows from 4.1
that the local ring R’ = Oz is a discrete valuation ring; in fact, the extension
R’'/R is of ramification index 1 in the sense of [7, 3.6/1].

Now consider a finite affine open covering of Xk. It induces an admissible
open covering of Xx and, thus, by pull-back, an admissible open covering of
Zy. Using an argument as in the proof of 2.2(i), we can replace Z by an R-
dense open part and thereby assume that vg : Zy — Xx maps Zx into an open
part Vi C Xy which is the analytification of an affine open part B¢ = Spec Ux
of Xx. Assuming Z affine, Z = Spf C, the morphism vg gives rise to the
composition of homomorphisms

WUy —» Cx - R @K,

and the latter corresponds to a morphism Spec(R’ ®g K) — Xx of K-schemes.
Since the formation of Néron models commutes with a base change R'/R of
ramification index 1, cf. [7, 10.1/3], we see that this morphism extends uniquely
to an R-morphism Spec R — X or, if we shrink Z if necessary, to an R-
morphism SpecC — X . Since C is complete, the latter gives rise to a mor-
phism of formal R-schemes Z = SpfC — X, which is the extension of vg we
are looking for. This settles assertion (ii).

Finally, it remains to verify the if part of assertion (i), namely, that Xg
admits a Néron model ¥ if Xx admits a Néron quasi-model X. This is done
by constructing X via algebraization from X, proceeding in the spirit of the
paper [3], in particular, using [3, 1.6] (the notion of open immersion, men-
tioned at that place, corresponds to our notion of quasi-open immersion). We
give only a sketch. As in [3, 3.5), one first constructs an R-dense open part
X' of the future Néron model X and shows by means of [3, 1.6] that the
group law of X induces an R-birational group law on X’. Then one can pass
to the associated R-group scheme X or, at least, to its identity component,
cf. [7, 5.1/5], and use 6.5 in conjunction with [3, 1.6] to show that X is a
Néron mode! of Xg. a



362 S. Bosch, K. Schidter

References

1. Bartenwerfer, W.: Der Kontinuitdtssatz fir reindimensionale k-affinoide Riume. Math.
Ann. 193, 139-170 (1971)

2. Bosch, 8., Giintzer, U., Remmert, R.: Non-Archimedean Analysis. Grundlehren Bd. 261.
Berlin Heidelberg New York: Springer (1984)

3. Bosch, 8., Liitkebohmert, W.: Néron models from the rigid analytic viewpoint. J. Reine
Angew. Math. 368, 69-84 (1986)

4. Bosch, S., Liitkebohmert, W.: Formal and rigid geometry I. Rigid spaces. Math. Ann.
295, 291-317 (1993)

5. Bosch, S., Liitkebohmert, W.: Formal and rigid geometry II. Flattening techniques. Math.
Ann. 296, 403-429 (1993)

6. Bosch, 8., Liitkebohmert, W., Raynaud, M.: Formal and rigid geometry III. The relative
maximum principle. To appear in Math. Ann.

7. Bosch, 8., Liitkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Math., 3.
Folge, Bd. 21. Berlin Heidelberg New York: Springer (1990)

8. Demazure, M., Grothendieck, A.: Séminaire de Géométrie Algébrique. Schémas en
groupes (SGA 3). Lect. Notes Math. 151-153. Berlin Heidelberg New York: Springer
(1970)

9. Faltings, G., Chai, Ch.-L.: Degeneration of abelian varieties. Ergeb. Math., 3. Folge, Bd.
22. Berlin Heidelberg New York: Springer (1990)

10. Kiehl, R.: Die De Rham Kohomologie algebraischer Mannigfaltigkeiten iiber einem be-
werteten Korper. Publ. Math, Inst. Hautes Etud. Sci. 33 (1967)

11. Liitkebohmert, W.: Fortsetzbarkeit k-meromorpher Funktionen. Math. Ann. 220, 273-284
(1976)

12. Néron, A.: Modéles minimaux des variétés abéliennes. Publ. Math., Inst. Hautes Etud.
Sci. 21 (1964)

13. Tate, J.: Rigid analytic spaces. Invent. Math, 12, 257-289 (1971)

14. Tits, J.: Lectures on algebraic groups. Yale University, New Haven (1967)



