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Let Xx be a smooth K-scheme of finite type, where K is the field of fractions of 
a discrete valuation ring R. A Nrron model of XK is a smooth R-model X which 
satisfies the so-called Nrron mapping property: If Z is a smooth R-scheme, any 
K-morphism fK : ZK ~ XK between generic fibres extends uniquely to an R- 
morphism f : Z ~ X. In his epochal paper [12], Nrron has shown the existence 
and quasi-compactness of such models for abelian varieties. 

In the present paper, which contains parts of the doctoral thesis of the 
second author, the theory of Nrron models is transferred to the context of 
formal and rigid geometry, interpreting rigid spaces XK over a complete and 
discretely valued field K as generic fibres of appropriate formal R-schemes X, 
so-called formal R-models; cf. [4]. The definition of formal Nrron models is 
quite analogous to the one we have in the classical case, although we do not 
require that a Nrron model U of  a rigid space Xr is a formal R-model of Xk 
itself; it is just a formal R-model of a suitable open rigid subspace Ux C Xx. 
As main result we show that Nrron's existence theorem remains valid for rigid 
groups with a bounded set of points XK(K sh), where K sh is the field of fractions 
of a strict henselization of R. However, we do not restrict ourselves to quasi- 
compact Nrron models and investigate also the connection between a Nrron 
model X (or better, Nrron lft-model in the terminology of [7]) of a finite type 
K-group scheme 3Ex and the Nrron model U of its associated rigid K-group 
XA-. As we show, one passes from �9 to U by means of formal completion, at 
least if 3~ is quasi-compact or if ~tc (and hence 3s ) are commutative. If one 
wants to extend this relationship to the general case, it seems that our definition 
of Nrron models has to be relaxed slightly, so that it better corresponds to the 
definition of  Nrron lft-models in the scheme case. Namely, instead of requiring 
that the generic fibre UK of U is an open rigid subspace of Xx, one has to ask 
for a monomorphism UK ~ XK, which is an open immersion on quasi-compact 
open parts of Ux. 
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To mention a possible application, Nrron models of rigid groups may be 
considered as a first step towards general structural theorems for rigid groups, 
just as we have them in conjunction with semi-abelian reduction for abelian 
varieties and their rigid uniformizations. On the other hand, Nrron models 
of rigid groups are useful in computing component groups of ordinary Nrron 
models. In this paper we just consider the easy case of an abelian variety 3s 
admitting a split uniformization XK = Er/MK with uniformizing group Er and 
a split lattice ME. Then the Nrron model U of the rigid K-group Xr is just 
the quotient E/M of the Nrron models E of Er and M of MK so that the 
component group ~ of U is isomorphic to the quotient ~E/~M, where the 
component group ~ g  coincides with the special fibre of M. Since U is the 
formal completion of the classical Nrron model 3s of 3s we see that the 
component group ~x is isomorphic to ~E/q~M. 

1 Definitions and statement of the existence theorem 

In the following, let R be a complete discrete valuation ring, K its field of 
fractions, and k its residue field. Then, if 3s is an R-scheme, it consists of 
two fibres, the generic fibre 3s and the special fibre 3s Furthermore, 3s is 
called an R-model of its generic fibre 3s The problem of constructing a Nrron 
model for a smooth K-scheme 3s of locally finite type consists in finding a 
"good" R-model 3s of 3s 

In rigid geometry, the setting is quite similar. The analogue of an R-scheme 
of locally finite type is a formal R-scheme of locally tf (topologically finite) 
type; in this paper we will just say formal R-scheme, assuming tacitly that it 
is of locally tf  type. Local parts of such a formal R-scheme X are of type 
Spf R((l .... ,(n)/a, where a is an ideal in the restricted power series ring 
R((I . . . . .  (,). Certainly, a formal R-scheme X has a special fibre Xk = X | k, 
but, in our situation, it also has a generic fibre Xr; cf. [4]. The latter is a 
classical rigid K-space in the sense of [13] or [2]. Locally, on any open affine 
part SpfA C X, the generic fibre of X is given by the rigid K-space Sp A | K. 
Similarly as before, X is called a formal R-model of Xr. 

In order to deal with Nrron models, it must be pointed out that models of 
rigid spaces have to be viewed from a slightly different way. The reason is 
that for a formal R-scheme X of locally tf type, any point of the generic fibre 
Xr specializes into a point of the special fibre Xk; see [4, 3.4]. On the other 
hand, Nrron models of (ordinary) K-schemes Xr live from the fact that one 
can modify R-models by removing closed parts from the special fibre, leaving 
the generic fibre intact. 

Definition 1.1 Let Xr be a smooth rioid K-space. A (formal) Niron model 
of Xr consists of  a smooth formal R-scheme U, whose generic fibre UK is an 
open rigid subspace of  Xr, and which satisfies the following universal mapping 
property: 
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Given a smooth formal R-scheme Z and a morphism of rigM K-spaces 
f x : ZK --~Xx, it extends uniquely to a morphism of formal R-schemes 
f : Z ~ U .  

Of course, in a more precise way, we would have to say that fK : Zx --~ XK 
restricts to a morphism of rigid K-spaces ZK --' UK and that the latter extends 
uniquely to a morphism of  formal R-schemes f : Z ~ U. Also note that the 
uniqueness of  such extensions is automatic; see for example [4, assertion (b) 
in the proof of  4.1]. It is clear that the N~ron model U of XK, if it exists, is 
unique and that the formation of U is compatible with 6tale base change on 
R. Furthermore, U will be separated if XK is separated (use [4, 4.7]). Dealing 
with group objects, U is a formal R-group scheme if XK is a rigid K-group. 
Also note that formal R-group schemes and rigid K-groups are automatically 
separated. 

To state the main result to be proved in this paper, let R sh be a strict 
henselization of R, and let K sh be the field of fractions of R sh. Although R sh 
might not be complete, we can consider RSh-valued points of formal R-schemes, 
using the fact that R sh is a direct limit of complete discrete valuation rings 
which are 6tale and, hence, finite over R. Similarly, there is the notion of 
KSh-valued points of rigid K-spaces. 

Theorem 1.2 A smooth rigid K-group XK admits a quasi-compact formal 
N&on model U if  and only i f  the 9roup XK(K sh) of its KSh-valued points is 
bounded; i.e., contained in a quasi-compact rigid subspace of Xx. 

The only if part is trivial. To prove the if part, the first step is to construct a 
weak Nrron model, just as in the classical case. 

Definition 1.3 Let XK be a smooth rigid K-space. A weak (formal) Nrron 
model of XK is a smooth formal R-scheme U, whose generic fibre Ux is an 
open rigid subspace of  XK, and which has the property that the cononical 
map U(R ~h) ~ XK(K sh) is b(/ective. 

It is clear that any formal Nrron model satisfies the mapping property required 
for a weak Nrron model, whereas a converse of this assertion is true for groups: 

Criterion 1.4 Let XK be a smooth riyid K-group, and let U be a smooth 
formal R-group scheme whose generic fibre UK is a retrocompact open rigid 
subgroup Of XK. Then U is a Nbron model Of XK if and only if it is a weak 
Ndron model of  Xx. 

Recall that an open rigid subspace UK C XK is called retroeompaet if the in- 
clusion map UK -* XK is quasi-compact; i.e., if UK N VK is quasi-compact for 
any quasi-compact open rigid subspace VK C XK. This is a technical condi- 
tion which is automatically satisfied if UK is quasi-compact and XK is quasi- 
separated. We will prove the criterion 1.4 in Sect. 2, using it later in Sect. 5 
to derive the assertion of Theorem 1.2. More precisely, in the situation of 1.2, 
we will first construct a weak Nrron model of XK and then modify it in such 
a way that it becomes a formal R-group scheme. 
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2 Weak N~ron models and their mapping property 

Just as for ordinary R-schemes, there is the notion of R-rational or R-birational 
maps between formal R-schemes X and Y; we will only consider the case, 
where X and Y are smooth, which is enough for our purposes. By an R- 
rational map X--~ Y we understand an equivalence class of  R-morphisms X '  --~ 
Y, where X ~ is R-dense open in X. Any R-rational map f : X --§ Y has a domain 
of definition dora( f ) ,  and there is a well-defined morphism d o m ( f )  ~ Y in 
case Y is separated. 

Let us start by recalling some technical facts, which will be needed. 

Lemma 2.1 Consider a fiat morphism u : X '  ~ X,  as well as an R-rational 
map f : X --* Y o f  smooth formal R-schemes X' ,X,  Y. Assume that Y is sep- 
arated Then f o u is an R-rational map satisfyin9 

d o m ( f  o u) = u - I ( d o m f )  . 

In particular, f is defined everywhere i f  u is faithfully fiat and f o u is defined 
everywhere. 

Proof Reduce modulo powers of  a uniformizing element rr E R and apply 
[7, 2.5/5]. [] 

Lemma 2.2 Let X, Y be flat formal R-schemes and f r :XK ~ YK a K- 
morphism between associated 9eneric fibres. Assume that the special fibre 
Xk is reduced. 
(i) I f  X is non-empty, there is a non-empty open part X '  C X, such that 
f K [X;r extends to a morphism of  formal R-schemes f : X '  --* Y. 

(ii) I f  Y is affine, assertion (i) is true for X = X'; i.e., f K extends to a 
morphism of  formal R-schemes f : X ~ Y. 

Proof In order to verify assertion (i), we may assume that X is quasi-compact. 
Then it follows from [4, 2.5 and 4.1] that there is an admissible formal blowing- 
up X '  ~ X of some coherent open ideal J on X such that fK  :Xr  ~ Yx 
extends to a morphism of formal R-schemes f : X ~ ~ Y. If  we divide J by 
an appropriate power of  a uniformizing element n of  R, we can assume that J 
is not contained in n(gx. Since X~ is reduced, the ideal n6x equals its radical. 
So the center of  the blowing-up X '  ~ X is strictly contained in the special 
fibre Xk, and there is a non-empty open part V C X, over which the blowing- 
up of J is an isomorphism. Restricting f : X '  ~ Y to the inverse image of V 
with respect to the blowing-up X '  ---, X, we get the desired extension of f t .  

In the situation of  assertion (ii), we may assume that both, X and Y are 
affine, say X = SpfA and Y = SpfB. Then we have to show that any K- 
homomorphism <OK : B | K ---* A | K maps the subring B c B | K into the 
subring A C A | K. However, the latter is clear, since q~K is contractive with 



Nrron models in the setting of formal and rigid geometry 343 

respect to the supremum semi-norm, and since A | k is reduced, so that A 
consists of  all elements of  A | K having supremum semi-norm < 1. [] 

We can draw some interesting conclusions from assertion (i) of  2.2. 

Proposition 2.3 Let XK be a rigid K-group which extends to a smooth formal 
R-group scheme X. Then X is unique, up to canonical isomorphism. 

Proposition 2.4 Let X, Y be formal R-group schemes, where X is smooth, 
and let f K : XK ~ YK be a morphism of  rigid K-groups. Then f K extends 
uniquely to a morphism of  formal R-group schemes f : X --~ Y. 

Proofs of  2.3 and 2.4 Since 2.3 is a consequence of 2.4, we need only verify 
2.4. Using 2.2(i), we know that f r  extends to an R-morphism X '  ~ Y on 
some non-empty open part X '  C X. I f  X contains enough R-valued points, we 
can use translations in order to show that f r  extends to a morphism of  R- 
group schemes f : X ~ Y which, automatically, is unique. In the general case, 
we must replace the ground field K by a finite separable extension in order to 
extend fK to the identity component or some other component of X. Faithfully 
fiat descent, applied to the situation obtained after reducing modulo powers 
of a uniformizing element ~ E R, shows then that the extension is defined 
over R. [] 

The assertion of 2.4 says that we can view the category of smooth formal R- 
group schemes as a full subcategory of the category of rigid K-groups. This is 
why we will sometimes make no difference in our notation between a smooth 
formal R-group scheme X and its associated rigid K-group XK. 

Next we want to show that weak Nrron models satisfy a mapping property 
which is similar to the one of Nrron models. 

Proposition 2.5 Let Xx be a smooth rigid K-space, and let U be a smooth 
formal R-model of  some retrocompact open rigid subspace Ux C XK. Then 
the following are equivalent: 
(i) U is a weak Nkron model of XK; i.e., U (is smooth and) the canonical 
map U(R sh) ~ XK(K sh) is bijective. 
(ii) Any rigid K-morphism f K : ZK ~ Xr, where ZK is the generic fibre of  a 
smooth formal R-scheme Z, extends uniquely to an R-rational map f : Z--* U. 

Proof. We only have to show that condition (i) implies condition (ii), the 
converse is trivial. So assume (i) and consider a rigid K-morphism f r  : ZK 
XK with Z being a smooth formal R-model of  ZK; we may assume that Z is 
affine and irreducible. Applying 2.2(i) and replacing Z by some non-empty open 
part, there is an open affinoid subspace Vr C Xr with fK(Zr)  C Vr. Since 
VK n UK is quasi-compact by our assumption on UK, we can find a formal R- 
model V of  VK, containing an open formal subscheme V', whose generic fibre 
coincides with VK N U r ;  see [4, 4.4]. Using 2.2(i), we can restrict Z again 
and thereby assume that fK  : ZK ~ Vr extends to an R-morphism f : Z ~ V. 
Now Z, as a smooth formal scheme over R, contains an RSh-valued point a. 
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Then f ( a )  is an RSh-valued point of  V', since its generic fibre belongs to 
Ur. Thus, replacing Z by f - I ( V ' ) ,  we can assume that f r  maps Zr into 
UK. Applying 2.2(i) once more, we see that fK  extends to an R-rational map 
f : Z - - *  U. The uniqueness of  f is automatic; see [4, statement (b) in the 
proof of  4.1 ]. [] 

Next we want to adapt an extension theorem of Weil for rational maps into 
group schemes to our situation; for the corresponding result which is used in 
the case of ordinary N&on models, see [7, 4.4/1]. 

Theorem 2.6 Let U be a smooth formal R-group scheme, whose generic 
fibre Ur is an open rigid subgroup of  some rigid K-group XK. Furthermore, 
consider a smooth formal R-scheme Z and a K-morphism vK : ZK --o XK, and 
assume that VK extends to an R-rational map v : Z --~ U. Then VK(ZK) C UK 
and v is defined everywhere; i.e., is a morphism of  formal R-schemes. 

Proof. We may assume that Z is quasi-compact and connected. Consider the 
morphism 

wK : ZK • z x  -~ Xx ,  ( z l , z2 )  ~ v K ( z l ) v x ( z z ) - '  , 

as well as its R-rational extension 

w : Z x R Z- -*  U, ( z l , zz  ) ~ V(zl )v(z2 ) - l  . 

Let V (resp. W) be the domain of definition of v (resp. w), where V xR V C 
W. We want to show that W contains the diagonal A of Z xR Z. Proceeding 
indirectly, let us assume that the latter is not the case. Then there exists a 
closed point z E A - W. 

Let U' C U be an affine open formal subscheme containing the unit section 
of  U. Since w[wn~ factors through the unit section and, hence, through U',  
there is a formal open neighborhood W' C W of W 71A such that w(W')  C U'. 
Then we have 

W' NA = w n , J  ~ ( v  • V ) N A  

and, identifying A with Z, we see that W ' N  A is R-dense in A since V is R- 
dense in Z. Now consider the closed subset (Z • Z) - W' C Z xR Z, and let 
F be the union of all its irreducible components which do not contain z. Then 
Y = (Z xR Z)  - F is an open formal subscheme of Z xR Z which contains W' 
and the point z. I f  d is the relative dimension of Z over R, there are functions 
f l  . . . . .  f ~ - l  ~ 6r~ vanishing at z, such that, locally at z, 

(i) the closed formal subscheme A N g of  Y is defined by f ~ . . . . .  f a, 
(ii) the functions f t . . . . .  f 2a-I define a closed formal subscheme M C Y of  
relative dimension 1, 
(iii) writing N = Y - W', we have M N N = {z} (use that W' n A is R-dense 
in A). 
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Let Y' C Y be an affine formal neighborhood of z such that the above is 
true on Y'. I f  we switch to the associated rigid situation, we see that WK maps 
Yt~ N AK onto the unit section of  XK. Then, by [10, 1.6], there is a tubular 
neighborhood Yk (e - l  f l . . . . .  e - l  f a) of Y[r n AK, which is mapped by WK into 
Uk. In particular, wK maps the "Hartogs figure" 

Yk(e - l  f l . . . . .  c - t  f 2a_t ) t.) (Y '  - N)K 

into Uk, and the continuation theorem [1, Sect. 3], or [11, Theorem 7], shows 
that, in fact, all of  Yk is mapped into Uk. But then, by 2.2(ii), the morphism 
Yt~ ~ U~ extends to a morphism of formal R-schemes Y' ~ U', and we see 
that Y' is contained in the domain of definition of w : Z xR Z--~ U. In partic- 
ular, w is defined at z which, however, contradicts the fact that z E A - W. 
Thus, we have shown A C W. 

Now, in order to show that v : Z - - .  U is defined everywhere, it is enough 
to construct a faithfully fiat morphism f : Z' ---, Z of smooth formal R-schemes 
such that v o f is defined everywhere; cf. 2.1. Setting Z' = W N (Z xR V), we 
can consider the morphism f : Z' ~ Z which is induced from the projection 
of  Z xR Z onto the first factor. Then f is smooth and, in particular, fiat. Fur- 
thermore, f is surjective. To verify this, we may look at special fibres and, 
thus, think in terms of  k-schemes. Fixing a point z E Z, we can apply the 
base change k ~ k(z)  and thereby assume that z is a k-valued point of  Z. 
Then W A (z x Z)  is an open neighborhood of (z ,z)  in z • Z, and it must 
meet z • V, since V is dense in Z. Hence, Z '  n (z • Z) is non-empty and is 
mapped by f onto z. 

It remains to show that v o f is defined everywhere. But this is clear, since 
it coincides on V • V with the morphism 

Z' ~ U, (z, z ' )  ~ w ( z , z ' ) v ( z ' ) .  

So v o f is defined everywhere, and the same is true for v. [] 

As a corollary, we see that 2.5 and 2.6 imply the assertion of the criterion 1.4. 
We want to use the criterion in order to determine the formal Nrron model of 
the multiplicative group ~3m~. 

Example 2. 7 Consider the multiplicative group ~;mar as a rigid K-group and the 
formal multiplicative group (~m,R as an open rigid subgroup of ~m,K. Then, 
if n C R is a uniformizing element, ~ = U,,~z n" �9 ~m,R makes sense as a 
smooth formal R-group scheme and as an open rigid subgroup of 113m.K. Since G 
contains all KSh-valued points of  6rag,  we see by 1.4 that it is the Nrron model 
of  ~m~.  We can describe the component group ~a  of G in an intrinsic way. If  
Y is the group of  characters of  ~Jm,K, there is a canonical pairing ~/'6 x Y ~ 7/. 
by evaluating characters y E Y on components of G C IIJm,K and taking values 
in the value group Z of  K. The pairing gives rise to an identification q~o = Y*, 
where Y* = Hom(Y,Z) is the dual of  Y. 
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3 The construction of weak N6ron models 

Just as in the case of ordinary N6ron models, the first step of the proof of 1.2 
is the construction of weak N6ron models via N6ron's smoothening process. 
Since this process, as presented in [7, Chap. 3], carries over almost literally 
from R-schemes to formal R-schemes, we restrict ourselves to just giving a 
sketch. Of course, we will use freely standard facts about smoothness; for 
example, see [5, Sect. 1], for smoothness in terms of formal schemes and [6, 
Sect. 2] for smoothness in terms of classical rigid spaces. 

The smoothening process, in its classical sense, involves blowing-ups with 
centers in the special fibres of R-schemes. The corresponding notion in the 
formal scheme setting is the one of formal blowing-up with centers in special 
fibres of formal R-schemes; see [4, Sect. 2], where, more generally, (admissible) 
formal blowing-ups of coherent open ideals on quasi-compact formal R-schemes 
are defined. If  X'  ---* X is such a formal blowing-up with center Y, c Xk and 
corresponding ideal J C Cx, the open formal subscheme of X', where Jd?x, 
is generated by a uniformizing element n E R, is called the dilatation of Yk in 
X; it is denoted by X~. As in the classical case, see [7, 3.2/1], X n' is uniquely 
characterized as a flat formal R-scheme over X, whose special fibre (X'~)k lies 
over Yk and which satisfies the following mapping property: 

I f  v : Z ---+ X is a morphism of  formal R-schemes with Z R-fiat and vk fac- 
torin9 through Yk, then v lifts uniquely to a morphism of formal R-schemes 
Z - ,  X ' .  

In particular, in place of v we can consider an RSh-valued point of X. Since 
a formal blowing-up X'  ~ X is an isomorphism over the complement of its 
center, it follows that the canonical map X'(R sh) -+ X(R sh) is bijective. An 
alternative way to see this is by using [4, 3.3]. Now let us formulate the 
assertion of the smoothening process. 

Theorem 3.1 Let X be a quasi-compact formal R-scheme, whose 9eneric fibre 
Xr is smooth. Then there is a morphism of formal R-schemes f : X '  --* X, 
which is the composition of  a sequence of formal blowing-ups with centers in 
the correspondin9 special fibres, such that any RSh-valued point of  X factors 
through the smooth locus of  X p. 

Since, by 2.2(ii), any KSh-valued point of Xr extends uniquely to an RSh-valued 
point of X, we see: 

Corollary 3.2 In the situation of  3.1, the smooth locus of X'  is a weak N~ron 
model o f  X r  = Xk. 

Furthermore, if we use the existence of formal R-models of quasi-compact and 
quasi-separated rigid K-spaces, see [4, 4.1], we obtain an existence assertion 
for weak N6ronmodels: 
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Corollary 3.3 Let Xx be a smooth rigid K-space, which is quasi-separated. 
Assume that the set of  KSh-valued points of  XK is bounded Then XK admits 
a weak NOron model, which is quasi-compact. 

To sketch the proof of 3.1, let f2Jc/R be the Cx-module of differential 1-forms 
on X. Fixing an RSh-valued point a of X, let a*12Jc/R be its pull-back to R sh. 
We will view �9 i a f2J/R as a true RSh-module and write 6(a) for the length of its 
torsion part. The latter measures the defect of smoothness of X at a. In fact, 
one shows as in [7, 3.3/1]: 

The point a factors through the smooth locus of X if and only if 6(a) = O. 

Using the Jacobi criterion, one can characterize 6(a) in terms of minors of 
Jacobi matrices and then show as in [7, 3.3/3] that 6(a) is bounded as a 
function on X(RSh). 

Next, write ks for the residue field of R sh, so that ks is a separable algebraic 
closure of k. Consider the following condition for closed subschemes Yk C Xk : 

(N) The family of  all ks-valued points of  Yk, which lift to RSh-valued points 
of X, is schematically dense in Yk. 

If Yk C Xk satisfies this condition, it follows that Yk is geometrically reduced 
and, in particular, that its smooth locus is dense in Yk; cf. [7, 3.3/4]. Now we 
can formulate the key lemma, which allows to lower the defect of smoothness 
of X. 

Lemma 3.4 In the situation of 3.1, let Yk c Xk be a closed subscheme satis- 
fying condition (N), and let Uk be an open subscheme of Yk such that Uk is 
smooth and the pull-back f21X/R[Uk is locally free. Let X~ ~ X be the dilata- 
tion of  Yk in X. Then, if  a EX(R sh) specializes into a point ak E Uk(ks), its 
unique lifting a' E X~(R sh) satisfies 

6(a') < m a x { 0 , f ( a ) -  1}. 

In particular, we have 6(a I) < 6(a) if a is not contained in the smooth locus 
of  X and specializes into a point of Uk. 

For the proof of this assertion, one follows literally the same argumentation, 
as given in [7, 3.3/5], just replacing polynomials by restricted power series. 
This being done, one uses the stratification technique of [7, Sect. 3.4] in order 
to derive the assertion of 3.1 from the lemma. Also here, the procedure is by 
literal translation. This concludes our sketch of proof of 3.1. 

4 From weak N~ron models to birational group laws 

Having constructed weak N~ron models, the next step in the proof of 1.2 
consists in selecting so-called minimal components from those models, where 
the minimality is defined using orders of invariant differential forms. To make 
the machinery of [7, Sect. 4.3] work, we need some technical results. 
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Lemma 4.1 Let Z be a smooth formal R-scheme. Then, .['or any generic point 
of the special fibre Zk, the local ring CPz,( is a discrete valuation ring. Any 

uniformizing element n E R is a uniformizin9 element for r162 

Proof Let n be a uniformizing element of R. Then 6,,r is isomorphic to 
(gzk,~, and the latter is a field, due to the fact that Zk is smooth over k. Thus, 
n generates a maximal ideal in r162 and we see that t~z,~, being an integral 
domain, is a discrete valuation ring. [] 

Lemma 4.2 Let X be a formal R-scheme with geometrically reduced special 
fibre, and let U C X be an R-dense open subscheme. Then any two sections 

h' E F(U, Cx), hK E F(XK, C)x K ) ,  

coinciding on UK, extend uniquely to a section h E F(X,r 

Proof See [6, 5.4]. [] 

Lemma 4.3 Let Z be a smooth and irreducible formal R-scheme and ~ the 
generic point of the special fibre Zk. Furthermore, consider a line bundle 
on Z, and a global section f g of .SYr, the line bundle induced from 5Y on 
the generic fibre Zx of Z. Assume that f K does not vanish identically on ZK, 
and let zt be a uniformizin9 element of R. 
(i) There is a unique integer n E Z such that n-n f K extends to a generator 
of _~ as ~z,r 
(ii) I f  n is as in (i), n-n f r extends to a global section f of .LP. Furthermore, 
if f K has no zeros on ZK, the same is true for f on Z. 

In the above situation, the integer n is called the order o f f x  at ~ E Zk; we 
write n = ord~ fK. 

Proof of 4.3 We may work locally on Z and thereby assume ~ = 6z with Z 
being affine. Writing 

Cz,r = lim iE lAi  , 

where (SpfAi)i~l is the system of all affine open formal neighborhoods of ( in 
Z, all restriction maps Ai ~ Aj are injective, since all maps Ai | k ~ Aj | k 
are injective, due to the fact that Z is irreducible. Thus, fK induces a non-zero 
element fK,r in 

~z,~ | K = lim iEl(Ai  | K) .  

Using 4.1, there is a well-defined integer n E Z, such that ~-nfK,~ is a unit in 
Cz,~. This shows assertion (i). 

We just have seen that n - " f r  extends to a section f of r on some open 
formal neighborhood Z' c Z of  (. But then, using 4.2, we see that n-"fx is 
defined on all o f  Z. If f x  has no zeros on ZK, the same reasoning applies to 
n " f r  I, and it follows that n - " f r  is invertible on Z. [] 
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Let us return now to the situation o f  1.2. So we consider a smooth rigid K-  
group XK, whose set o f  KSh-valued points is bounded; let d = dimXr.  As in 
the case o f  ordinary K-group schemes, there is a left-invariant differential form 
co of  degree d on XK, which generates the differential module f2~cK/r; see [7, 
4.2/3]. Furthermore, co is unique, up to a constant in K*. For any open rigid 
subspace UK C XK admitting a smooth formal R-model U, we can restrict co 
to Ur and talk about the order of  co at generic points of  the special fibre Uk 
or, in other words, at irreducible components of  U. We write orduco for this 
order if  U is irreducible. 

For the rest o f  this section, let us fix XK and co as before, and let n E R 
be a uniformizing element. Frequently, we will have to consider a smooth and 
irreducible formal R-model U of  some open rigid subspace Ur C XK. To have 
a simple language, let us call U a weak Nrron  component of Xx. For example, 
if  U is a weak Nrron  model of  Xx, the connected components of  U are weak 
N~ron components o f  Xx. 

L e m m a  4.4 Let U t, U tt be two weak N&on components of  XK, and let 
f : U t --* U 't be an R-rational map which, on generic fibres, extends to an 
isomorphism f x : X~c--~Xx. In particular, there must be a unit a c F(Xx, 6xx ) 
satisfying f~c(co) = aco. Assume for some point xx E XK(KSh), which extends 
to a point x E U'(RSh), that a(xx) is a unit in R sh C K sh. Then: 
(i) n'  :=  ordv,  co _~ ordu,,co =:  n". 
(ii) I f  V' is the domain o f  definition of  f ,  the morphism V' --o U" given by 
f is an open immersion i f  and only i f  n' = n". 

Proof. We know from 4.3 that rr-n'co generates f~v,/R and rr-n"co generates 

Od,,/R. Thus, there is a section b E F(V' ,  Or ,  ) satisfying f * ( n - ~ " c o )  = bn-n'co 

on V'. Then we have b = n " ' - n " a  on V~, and it follows from 4.2, that b extends 
to a section on U' .  Writing n = ordv,a,  we see from 4.3 that n -~a  extends to 
a unit on U' .  However,  a(xK) being a unit in R sh, we must have n = 0. Thus 

n' - n It = ordv,b > 0 ,  

which proves (i). 
It remains to verify assertion (ii). The morphism v : V' ~ U t' is &ale if  

and only if  the associated map V*flV,,/Rd --~ fldv,/R is bijective; use [5, 1.2] and 

[7, 2.2/10]. The latter is the case if and only if b is invertible over V' and, 
hence, over U ' ;  i .e. ,  if  and only if n ' - n  't = 0. On the other hand, we claim 
that v : V t ~ U t' is 6tale if  and only if  it is an open immersion. To verify 
this, assume that v is &ale. Then v is flat and, thus, open. So we may assume 
that v : V' ~ U" is surjective and, hence, faithfully flat. As a consequence, its 
generic fibre vK : V~ -~ Uff is surjective and, hence, an isomorphism. In order 
to show that v is an isomorphism also, it is enough to show that v r  1 : Uff --, V~ 
extends to an R-morphism U" ~ V'. To do this, we may assume that U"  and 
V' are affine. But then 2.2(ii) implies that v~ I extends to an R-morphism 
U 't ~ V t, and the latter is an inverse of  v. [] 
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Considering a special case, we can apply the assertion of 4.4 to the identity 
map idr :Xr -* Xr in place of  f t .  Let us call two weak N6ron components 
U', U" of  Xr equivalent if  the identity map idr extends to an R-birational 
map U'--* U '1. Clearly, if U' and U" are equivalent, we must have ordu,~o = 
o r d u -  ~.o. 

Proposition 4.5 There is a largest integer no such that ordvo~ >- no for all 
weak N~ron components U of  Xr. We call U minimal or, more precisely, 
to-minimal i f  ordvco = no. Up to equivalence, there are only fnitely many 
weak NOron components Of XK, which are minimal. 

Proof Choose a weak N6ron model U of Xx, and let Ui, i =  1...r, be its 
components. Then, if U'  is an arbitrary weak N6ron component of Xx, we see 
from 2.5 that the identity on Xr extends to an R-rational map U'--* U; for 
some i. Thus, by 4.4(i), the first assertion of the proposition holds for 

no = min {ordvi, tn} . 
i= I,...,r 

I f  U'  is minimal, then, by 4.4(i), Ui is minimal also, and 4.4 (ii) shows that 
U'  --* Ui is R-birational in this case. Thus, up to equivalence, the minimal weak 
N6ron components of  XK are given by the finitely many minimal components 
of  any weak N6ron model U of ,Yr. [] 

It remains to say that the notion of o~-minimality is independent of  the choice 
of  w, since a~, as a leit-invariant differential form on a smooth rigid K-group, 
is unique, up to a constant in K*. 

Lemma 4.6 Let R' be a complete discrete valuation rin9 with fieM of  frac- 
tions K', such that the extension R'/R is ktale. Let to' be the left-invariant 
differential form on Xr, = Xx | K' induced from co. 

(i) I f  U is a weak N~ron component of  Xx, then U | R ~ decomposes into 
finitely many weak N~ron components U[ of XK,, where ordv, co' = ordvto for 
all i. 
(ii) I f  U is a weak Nkron model of  Xx, then U | R I is a weak N~ron model 
of  XK,. 
(iii) I f  U is a smooth formal R-model o f  some open rioid subspace (Jr c XK, 
whose components represent all o~-minimal weak NOron components of Xx, 
the same is true for U | R' in terms of w'-minimal weak N~ron components 
of Xx,. 

Proof Assertion (i) is true, since ~ is a uniformizing element for R and R ~, 
whereas (ii) follows directly from the definition of weak N6ron models. Finally, 
(iii) is a combination of  (i) and (ii). [] 

Next we want to show that we can apply the assertion of  4.4 to the case where 
f r  is a translation on Xx. 

Proposition 4'-7 Consider a point 9 : Tr --* Xx of  Xx with values in some rioid 
K-space Ix. Denote by zg (resp. ~o) the left (resp. rioht) translation with O on 
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XK. Then ~o9 = o9, and there is an invertible global section z(g) in Crx such 
that i. z o oJ = z(g)w. Varying 9, we see that ~ defines a character Xx --* ~m~. 

In particular, i f  g E XK(K sh) and the set of  these points is bounded (which 
we are assuming in the situation o f  1.2), then z(g) is a unit in R sh. 

Proof Clearly, we have z~o9 = w, since 09 is left-invariant. On the other hand, 
t*  zg o9 is left-invariant so that there is an invertible global section z(g) in d~rK 

satisfying '* T o o9 = Z(g)og. Varying g, we see that X is a functorial homomor- 
phism from the points of XK to the points of ~m~r, the latter being viewed as 
a rigid K-group; thus, Z is a character XK ---, ~3m,K. 

Now look at the group of KSh-valued points of Xx which, by our assump- 
tion, is contained in some quasi-compact open rigid subspace of XK. Then 
z(Xx(Ksh)) is contained in some quasi-compact open rigid subspace of II~m,X 
and, thus, must be contained in the subgroup of "units" of ~m~; i.e., in the 
subgroup which is induced by the formal multiplicative group ~m,n. [] 

Later, in Sect. 5, we will finish the proof of 1.2 by constructing a weak Nrron 
model of  XK, which is a formal R-group scheme. The latter is done by remov- 
ing non-minimal components from a weak Nrron model of Xx and taking its 
"closure" in the sense of generating groups. A first step in this direction is the 
construction of an R-birational group law. 

Proposition 4.8 Let Xr  be a smooth rigid K-group such that the set of  its K sh- 
valued points is bounded. Choose a weak Nbron model V of  XK and denote 
by U the smooth formal R-scheme consisting of  all minimal components o f  
V. Then the group structure on XK extends to an R-birational group law 
on U. 

More precisely, the multiplication mK : XK X K XK ~ XK extends to an R- 
rational map m : U x n U--~ U such that the universal translations 

~ :  U x n U - - , U  xRU, (x,y)~--~(x,m(x,y)) 

~ : U x l e U - - * U x R U ,  (x,y)~--*(m(x,y),y) 

are R-birational. Furthermore, m is associative. 

Proof  Let d = dimXx, and fix a non-trivial left-invariant differential form 
to E Oaxx/r. Then, writing Pl,P2 for the projections of Xx XKXx onto its 

factors, c0^2= p~'o9 A p~o9 is a non-trivial left-invariant differential form on 
Xr  x x X x .  Furthermore, it is clear that V xn V is a weak Nrron model of  
Xx XK XK and that U xn U is the open part consisting of all co^Z-minimal 
components. Now consider the universal left and right translations 

~x  :Xx  x x X x  ---~Xx X x X r ,  (x,y)~--~(x, mK(x,y)) ,  

~K :XK x x X x  ---~Xx • (x,y)~--~(mK(x,y),y),  

as well as their inverses, which are given by 



352 S. Bosch, K. Schl&er 

( x , y )  ~ (x, m r ( x - l , y ) ) ,  resp. (x ,y )  ~ ( m r ( x , y - l ) , y ) .  

By 2.5, the morphism ~ r  extends to an R-rational map U xR U--* V xR V. 
Since ~ ( o 9  ^2) = co ̂ 2, we see from 4.4 that it is targeted to U xR U so that 
~ r  extends to an R-rational map �9 : U xR U - - .  U xR U. Applying 4.4 again, it 
follows that �9 is an open immersion if we restrict the map to any component of  
U x R U. Applying the same reasoning to ~ r  l, it follows that �9 is R-birational. 

In a similar way we can show that ~ r  extends to an R-birational map 
: U xR U --+ U xR U. Viewing ~o2 = p~co as a left-invariant differential form 

on Xr  •  Xr ,  relatively over the second factor Xr,  we see that ~:(o92)  is again 
a relative left-invariant differential form on Xr  x r Xr .  Thus, there is an invert- 
ible global section a in r  satisfying 7 '~o2 = a092. Viewing everything over 
the base K, we can write ~c(o9  ̂ 2) = aco ̂ 2. Now, in each connected compo- 
nent o f  U, we can choose an RSh-valued point x. Using the fight translation 

I z~x on Xr,  we see from 4.7 that a(xr)  is a unit in R sh. So 4.4 is applicable 
as before, and ~ x  extends to an R-birational map 7/:  U • U--+ U xR U. 

Finally, composing �9 with the projection of  U xR U onto the second factor 
and ~ with the projection of  U xR U onto the first factor, we obtain two 
R-rational maps U • U--+ U extending mr .  Thus, they must coincide, and, 
writing m for this map, we see that ~/' and ~ are as stated in the assertion. 
From the associativity of  mr one concludes that m is associative. [] 

5 End of construction of N~ron models 

In this section, we want to finish the proof  of  1.2. It basically remains to show 
that an R-birational group law, as obtained in 4.8, can be enlarged in such a 
way that it becomes a group law in the sense of  formal R-group schemes. To 
do this, we can, in principle, follow the general procedure, as explained in [7, 
Chap. 5]; we may  even use the general result o f  M. Artin in [8, exp. XVIII,  
3.13]. However,  things can be substantially simplified by using the fact that, 
on the generic fibre, the birational group law is part o f  a rigid K-group. 

An R-birational group law m : U xR U--* U on a smooth and quasi-compact 
formal R-scheme U is called strict if  m is defined on a U-dense open formal 
subscheme I4," C U x R U such that the universal translations ~ and ~ define 
isomorphisms from W onto U-dense open formal subschemes ~ ( W )  and ~ ( W )  
o f  U xR U. In this context, an open formal subscheme W C U xR U is called 
U-dense if  it is U-dense with respect to the two projections Pl,  P2 o f  U xR U 
onto its factors; i.e., i f  for any u E U the fibre p~l(u)  contains W N pTl(u)  
as a dense open subset. 

L e m m a  5.1 Let m : U x R U-- .  U be an R-birational group law on a smooth 
and quasi-compact formal  R-scheme U. Then there is an R-dense open formal  
subscheme U ~ 'C U such that m restricts to a strict R-birational group law 
on U'. 
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Proof Looking at special fibres, m induces a birational group law on uk which, 
using [7, 5.2/2], can be restricted to a strict birational group law. [] 

Theorem 5.2 Let XK be a rigid K-group, and let U be a smooth and quasi- 
compact formal R-scheme, whose generic fibre UK is an open rigid subspace 
of  Xr. Assume that the group multiplication mK of  Xr extends to an R- 
birational group law m on U. Then there is a smooth and quasi-compact 
formal R-scheme (J such that 
(i) O contains U as an R-dense open formal subscheme, 
(ii) m extends to a morphism ffl : (J XR (1 ~ (1 of formal R-schemes, which 
defines a structure of  a formal R-group scheme on O. 

Any (] of  this type is unique up to canonical isomorphism, and its generic 
fibre UK is in a natural way an open rigid subgroup of  XK. 

Proof Any formal R-scheme 0 can be identified with the projective limit o f  
ordinary schemes lim i~J @R (R/( 7~i+1 )), where n is a uniformizing element of  

R. Thus, for the uniqueness of  associated formal group laws, we can use the 
corresponding uniqueness assertion in the scheme case; cf. [7, 5.1/3]. Further- 
more, to show the existence of  (O,  th), we claim it is enough to consider the 
case, where m defines a strict R-birational group law on U. In fact, using 5.1 
we can find an R-dense open formal subscheme U' C U such that rn restricts 
to a strict R-birational group law m r on U I. Now, assume that the asseaion of  

the theorem holds for (m r, Ur); let ((J',rh') be the associated formal R-group 
scheme. Then 2.6 shows that the R-rational map U--* U'  given by the inclu- 

sion U ~ U' extends to a morphism z : U ~ 0 ' .  Let co be a differential form 
generating 12 d It follows that t*o9 generates the differential module Oau/R 

O'IR" 
over U I and over the generic fibre Ux. But then, using 4.2 as in the proof  of  

4.3(ii), z'co must generate O~/R over all of  U. So i : U ~ U '  is 6tale, and we 
see as in the proof  of  4.4(ii) that t is an open immersion. 

Thus, in the following, we can assume that m defines a strict R-birational 
group law on U. Let W C U xR U be a U-dense open formal subscheme 
such that, on W, the universal translations ~, kg : U • U--~ U XR U are open 
immersions onto U-dense open parts o f  U • U. For any a E U(R), set 

W a = p 2 ( W N ( a •  W ~ = p I ( W n ( U •  

where Pi is the projection of  U xR U onto its i-th factor. Then Wa and W 2 
are R-dense open formal subschemes of  U. Furthermore, the left translation 
with aK on XK extends to an open immersion za : Wa ~ U and, likewise, the 

! t right translation with ax on XK extends to an open immersion z~ : W,~ ~ U; 

let /,P,, "ra(Wa) and ff.i = , , = %(W,~). In particular, we can interpret za and z~ 
as R-birational maps U--* U. 

On a smooth formal R-scheme like U, one does not know much about the 
existence of  R-valued points. However, the set o f  RSh-valued points is dense. To 
verify this, just use the fact that the points with values in the separable closure 
of  k lie dense in Xk and apply the lifting property for smooth morphisms. In the 
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following, we will need the existence of enough R-valued points. So, without 
changing notations, we will replace R by the completion k of R sh and thereby 
assume that R itself is strictly henselian. At the end a descent argument is 
used in order to handle the general ease. 

Identifying the set of  R-valued points U(R) with UK(K), we can consider 
the group H which is generated by U(R); it corresponds to the subgroup of 
XK(K)  which is generated by UK(K). Writing the group law as multiplication, 
any a E H  is of  type a = a ~  I �9 . . . . a ~  1 with al . . . . .  a r E U ( R ) .  Since the 
left translation with each ai is defined as an R-birational map U--* U, we 
see that the left translation with a, which is defined on Xx,  extends to an R- 
birational map U --, U; the latter will be denoted by %. In a similar way, there 

! is the right translation % on U. Now, the crucial point of  our proof consists 
in showing the following assertion for points a E H: 

The left translation ~ : U --* U is defined at a point u E U(R) i f  and only i f  

ax �9 UK E Ux. It  is an open immersion on its domain o f  definition. 

The only if part is clear. So assume ax �9 UK E Ux. Then this point gives rise 
to an R-valued point of  U, which, in a suggestive way, will be denoted by au. 

' be defined on some R-dense open formal subscheme V C U and Now let % 
choose an R-valued point 

t - I  t t z e t a  (W~lnVnW;. .  

Writing za instead of x'(z),  we have 

za E Wtu, 

or, equivalently, 

Then consider 

z~ W'. 

U~W~a, a u ~ W z .  

U(u) = ('Cza)-l(l'~'za N I'Vz) n Wza , 

U(au) = z;-~(~'== n ~'~) n w~ 

as R-dense open neighborhoods of u, resp. au in U. In fact, these sets satisfy 

Xza(U(u)) = %(U(au))  , 

and the points ~:z,,(u) ~ Xza(U(u)),xz(au) E U(au) coincide, since they coincide 
on the generic fibre. 

Looking at generic fibres, we have 

ZK �9 ax �9 U ( U ) K = Z x  �9 U(au)x 

and, hence, 

ax �9 U(u)K = U(aU)K . 

I f  we combine 4.2 with the fact that the left translation % is defined on the 
generic fibre as well as on an R-dense open part of  U, we see, in particular, 
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that Za is defined on U(u) and, hence, at u. Since the same reasoning applies 
to z~ -I, our claim above is justified. 

For any point a E H ,  we can interpret U as a formal R-model of  arUr  
via the left translation Ur--Z}axUr with at .  Suggestively, this formal model 
o f  arUr  is denoted by aU. Now, due to the assertion we just proved, there 
are canonical gluing data for the translates aU, a E H. For example, to glue 
U and a translate aU, consider the left translation za : U--* U, which is an 
open immersion on its domain of  definition U '  c U, as we have seen. Writing 
aU' C aU for the open formal subscheme induced from U' C U, the canonical 
isomorphism za :U ' - z~za(U '  ) gives rise to an isomorphism a U ' - ~ a ( U ' ) ,  
which is the one we use for gluing aU to U. Then, again due to the assertion 
of  above, we see that the gluing data on all translates aU extend the gluing 
data we have on generic fibres. In particular, the cocycle condition for triple 
overlaps is satisfied. Thus, 

0= UaU 
aEH 

is a well-defined formal R-scheme. By our construction, it has the property that 
all left translations za, a E H ,  extend to isomorphisms 0 ~ O. 

We want to show that U is the formal R-scheme we are looking for. So 
we claim that the R-rational multiplication m on U extends to an R-morphism 
r~ : U xR U --~ U. To justify this claim, start with a closed point in U xR U. 
Using [4, 3.5], we can extend it to a point c o f  U xR U with values in a discrete 
valuation ring R j which is finite flat over R; let c = a x b with a,b E U(R'). 
Now, using R'/R as base change, consider the R'-dense open subscheme 

/ - - 1  / t ~. (w;)nw;  c se,. 

Its image under the projection UR, -~ U is an R-dense open formal subscheme 
/ - - I  t ! of  U. Thus, there is a point z E U(R) such that zR, E z a (W~)n  W'. Writing 

za instead o f  z'(zR,), we have za E W~ so that n~ R, is defined at za x b. But 
then, due to the construction of  U, we see that r~ s, is defined at c = a x b, 
and 2.1 shows that r~ is defined at c. 

Next we show that all right translations z ' ,  a C H,  are isomorphisms on O. 
To see that z" is defined at some closed point u E U, we may apply a left 
translation and thereby assume u E U. Proceeding similarly as before, we can 

' is defined choose a point z E U(R) such that zz(u) E W'. But then, clearly, z a 
at u. The same is true for Z'a_ ~. 

Finally, to show that ~ : 0 xR U--+ U is defined everywhere, it is enough 
to show that r~ is defined on all products o f  type aU xR bU with a,b E H or, 
using the associativity of  n~, on all products o f  type (aUb) xR U. However, the 
latter is clear, since r~ is defined on U xg U and since 0 is invariant under 
left and right translations with points in H.  

In particular, our argumentation shows, that the universal translations ~, ~ : 
U xg  U--§ U xR U extend to morphisms 

~,~:OxRO--~OxRO. 
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Since a similar reasoning applies to their inverses, we thereby see that nq defines 
on O the structure of  a formal R-group scheme. By [8, exp. VIB, eorollaire 
3.6] the identity component of 0 is quasi-compact. Hence, since 0 contains 
U as a quasi-compact open part, 0 itself is quasi-compact, and it follows from 
our construction that the associated rigid K-group Ux is canonically an open 
rigid subgroup of  XK. Thus, we have proved the assertion of 5.2 for a strictly 
henselian base R. 

If R is not strictly henselian, we have to replace R by the completion k of 
its strict henselization R sh. Thus, to end the proof of 5.2, it remains to show that 
any solution (0,~, ~ ) ,  we have found over R, descends to a solution over R. 
Choosing a uniformizing element n E R, let us introduce the residue rings Ri = 
R/(rr i+t ) and Ri =/~/(n i+l ) for i E IN, and set k~,~k = lim iRi | Then, 

pulling back (Ok, n~)  with respect to the two projections from Spf k~Rk 
onto SpfR, we get two solutions of a problem obtained from (U,m) via base 
change Spf k~Rk ~ SpfR. However, both solutions are canonically isomorphic 
after reducing modulo powers of zr, due to the uniqueness assertion of [7, 
5.1/3]. Thus, using a similar argument on triple products, it follows that we 
have descent data on all solutions (U, rh)| and that these are related to 
each other by reduction modulo powers of n. To see that all descent data are 
effective, is it enough to know that they are effective after reducing modulo 
it. However, R/(rt)--, R/(zt) is an extension of fields, and in this case the 
effectiveness of descent data on group schemes of finite type is well-known. 
So any solution (O,~,nq~)| Ri descends to a solution of (U,m)| Ri o v e r  Ri 
and it follows that (0~, ~ )  descends to a solution of (U, m) over R. [] 

Finally, to obtain the assertion of 1.2, let us go back to the R-birational 
group law (U,m) constructed in 4.8, and let (O, rh) be the associated formal 
R-group scheme, whose existence has been proved above. Applying the cri- 
terion 1.4, it is enough to show that (U, nq) is a weak N6ron model of XK. 
So let R' be a complete discrete valuation ring, which is finite &ale over R, 
and consider a point aK E XK(K'), where K' is the field of fractions of R'. 
Then, on XK |  K', we can consider the left translation zr with ax. Using 4.4 
and 4.6, it extends to an R'-rational map U | R' --§ U | R' and, hence, to an 
R'-rational map z '  t.)| R'--* 0 | R'. The latter is a morphism due to 2.6. 

But then we can compose the unit section SpfR' ~ 0 | R' with z and, 
furthermore, with the projection U | R' ---, 0, thereby obtaining an Rt-valued 
point a o f / . )  extending aK. Thus, U is a weak N6ron model of XK, and the 
proof of 1.2 is complete. 

6 Formal N~ron models versus ordinary ones 

As before, let R be a complete discrete valuation ring with field of fractions 
K and residue field k. Starting with a smooth K-group scheme ~x of finite 
type, we can ask if there is a N~ron model X of 3~x, by which we mean a 
(quasi-compact) N6ron model in the sense of [7, 1.2/1] or a (not necessarily 



N6ron models in the setting of formal and rigid geometry 357 

quasi-compact) Nrron lfi-model in the sense of  [7, 10.1/1]. On the other hand, 
we can pass from XK to the rigid K-group Xx, which is associated to 3s via 
Serre's GAGA functor, and try to construct a formal Nrron model U of Xx. 
As we will see, the relationship between X and U is quite simple, at least 
if we restrict ourselves to quasi-compact Nrron models. We know from [7, 
1.3/1] that 3s162 admits a quasi-compact Nrron model if and only if the set of 
its KSh-valued points 3s sh) is bounded in the sense of [7, 1.1/2], and we 
have shown the analogous fact for formal Nrron models in 1.2. Thus, since we 
can identify 3s sh) with XI((K sh) and since boundedness in both situations 
amounts to the same, we obtain the following fact: 

Proposition 6.1 Let 3s be a smooth K-grou p scheme of finite type and Xr 
the associated rigid K-group. Then 3s admits a quasi-compact N&on model 
if and only if Xr admits a quasi-compact formal NOron model. 

Next we want to show that a formal Nrron model of Xr can be obtained from 
a Nrron model of  3s by means of formal completion. 

Theorem 6.2 Let 3s be a smooth K-group scheme of finite type with N&on 
model 3s Let Xr be the rigid K-group associated to 3s and X the formal 
completion of  3s alon9 the special fibre 3s Then, if 3s is quasi-compact or 
if 3s162 is commutative, the canonical morphism Xg --~ Xr of  rigM K-groups 
defines -~K as a retrocompact open rigid subgroup of Xx, and X is a formal 
Ndron model Of XK. 

Proof There are canonical bijections 

XK(K sh ) --~ 3s sh ) .-% 3s (R sh ) --~)((RSh), 

and we see from the criterion 1.4 that .~ is a formal Nrron model of Xx, 
provided the canonical morphism )(K --~ Xx defines )(x as a retrocompact open 
rigid subgroup of  XK. Due to the construction of associated rigid K-spaces, the 
latter is clear if 3s is quasi-compact or, to mention an example which is needed 
below, if 3s is the Nrron model of a split torus 3s 

So it remains to show that )(K is a retrocompact open rigid subgroup of Xx. 
To do this, we can assume that 3s is commutative and, since the formation 
of Nrron models is compatible with extensions R'/R of ramification index 1, 
see [7, 10.1/3], that R is strictly henselian. We will use the criteria of [7, 
10.2/1 and 10.2/2], which say in our situation that 3s admits a Nrron model 
3s if and only if 3s does not contain subgroups of type Ga and that such 
an 3s is quasi-compact if and only if 3s does not contain subgroups of type 
Gin. Proceeding similarly as in the proofs of [7, 10.1/7 and 10.2/2], choose a 
maximal torus ZK in 3s and consider the associated exact sequence 

0 --, ZK --* XK --' ~ r  --~ 0.  

Since XK cannot contain subgroups of type Ga, we see that -~K cannot contain 
subgroups of  type Ga and ~Dm and, hence, that -~r admits a quasi-compact 
Nrron model .~. 
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Let us first look at the case, where the torus Z r  is split. Viewing 3EK as 
a ~:/-torsor over -~K, we can use the fact that such a torsor is locally trivial 
and, thus, is given by a set of primitive line bundles on -~K. Since the local 
rings of .~ are factorial, these line bundles extend to primitive line bundles on 
the identity component .~0. Proceeding as in the proof of [7, 10.1/7] and using 
the fact that each connected component of ~ admits an R-valued point since 
R = R sh, the above exact sequence gives rise to an exact sequence between 
associated Nrron models 

0 ~ :  - - . ~  ~ . ~ - - , 0  

and, hence, to an exact sequence between the corresponding formal completions 

o ~ ? - - , ) ?  ~ , q  --. o .  

Switching to the associated rigid situation and identifying T,X ,H with their 
associated rigid K-groups, we have the following commutative diagram of exact 
sequences 

o - .  ? --, )?  ~ ,~ - .  o 

o --, TK ~ XK ~ HK --, O,  

where the vertical maps are open immersions, except possibly for )?K "--* Xr, 
which is an open immersion on any quasi-compact open rigid subspace of)?K 
and, thus, in particular, a monomorphism. Since the components of X are 
quasi-compact, the same is tree for the connected components of)? .  In partic- 
ular, we can view the connected components o f ) ?  as open rigid subspaces of 
XK, and R itself at least as a subset of  XK. Thus, to see that X is a retrocom- 
pact open rigid subgroup of  Xr,  it remains to show that any quasi-compact 
open rigid subspace of  XK meets only finitely many connected components 
o f ) ? .  

Since H is quasi-compact, the above sequences say that there is a finite 
union )?' of  connected components o f ) ?  such that, writing 7. r for a set of rep- 
resentatives of  R-valued points of the components of T, we have )? = 77.. r �9 )?'. 
Now, using the fact that Xr is locally trivial as a TK-torsor over HK, con- 
sider a quasi-compact open rigid subspace Vr c HK such that, over VK, the 

torsor Xr is trivial and, thus, of type Tr • r Vr. Then 2 "  = )?' n ( Tr x r Vr ) 
is quasi-compact, and we have 

)? n(rK x ~  r'K) = z r �9 # ' .  

From this it follows that any quasi-compact part of Tr x g VK can meet only 

finitely many translates o f ) ? "  by points in 2g r and, varying Vr over a suitable 
admissible open covering of Hr, we see that )? is a retrocompact open rigid 
subgroup of  XK, as claimed. 
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If  the toms ZK is not split, we can find a finite separable extension KI/K 
such that ZK splits over K. Then, using [14, Chap. IV, Proposition 4.1.4] 
and proceeding as in the proof of [7, 10.2/2], the group XK | K'  does not 
contain subgroups of type ~3a, since this is true for XK. Consequently, the group 
-CAr | K' still admits a quasi-compact Nrron model and, replacing K'  by some 
finite unramified extension, we can assume that, in addition, the components 
of -~r | K I are split. Thus, we are reduced to the case, where there exists a 
finite separable extension K'/K such that the assertion of 6.2 holds for the group 
3s @K K' and its Nrron model X', which exists. In general, 3s be different 
from 3E @R R', where R ~ is the integral closure of R in K ~. To obtain the 
assertion of  6.2 for 3s we consider the canonical map 3s | R' ~ 3s and write 
o0 for the union of all components 3s of 3s (which are split by our assumption 
on the residue field of K) such that 3s | R 1 is mapped into 3s the identity 
component of  3U. The latter is quasi-compact. Writing 91R,/R for the Well 
restriction with respect to the base change RI/R, the morphism r | R' ~ 3s 
corresponds to a morphism ~ ~ ~R,/R(3s Then this map factors through the 
schematic closure of the closed subgroup 3s C 9~K'/K(3s | KI), where we 
view 9~x,/K(3s | K') as the generic fibre of 9~R,/R(3s Let 3 be a group 
smoothening of this group; cf. [7, 7.1/5]. Then 3 is quasi-compact, and it 
follows that r -* ~RR,/R(3s '~ factors through 3.  On the other hand, using the 
Nrron mapping property for 3s there is a canonical map 3 ~ 3s which must 
factor through ~.  Thereby we see that ~ --~ 3 is an isomorphism and, thus, 
that ~} is quasi-compact since the same is true for 3.  

As a result, we have shown that the canonical map t~om the component 
group of 3s | R I to the component group of 3s has finite kernel. From this 
one easily concludes that 3s | R' induces a retrocompact open rigid subgroup 
of X~, the rigid K'-group associated to 3s |  K I, and that, likewise, 3s gives 
rise to a retrocompact open rigid subgroup ~" in Xr. [] 

As an application of 6.2, we want to describe the formal Nrron model of an 
abelian variety, having a split uniformization in the sense of rigid geometry. 

Example 6.3 Consider an exact sequence of smooth K-group schemes of finite 
type 

0 --"~ ~'~X ~ ~K --~ ~ K  --'* 0 , 

where ~ r  -~ ~am,K is a split toms, and where ~3K is an abelian variety with 
good reduction. As in the proof of 6.2, the associated sequence between Nrron 
models 

0 ~ Z  ~ ~ ~ - - , 0  

is exact, and the same is true for the sequence 

0 ~ 2:~ ~ ~- - - ,  ~ ~ 0 

between identity components. So (~0 is an extension of the abelian scheme 
by the split toms �9 0 = ~3dm~. Furthermore, the component group of (~ is the 
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same as the one of Z ,  namely the dual Y* of the group of characters Y of 
Z ;  cf. 2.7. 

Next, let us switch to the associated rigid situation, let Tr,Ex,BK be the 
rigid K-groups associated to the above K-group schemes, and, using 6.2, let 
T,E,B be their formal N6ron models. Furthermore, let us consider a split 
lattice Mr C Ex of rank d; i.e., a closed rigid subgroup, which is isomor- 
phic to Z d as a constant group. Then the quotient AK = Er/Mr makes sense 
as a proper rigid K-group. Writing M C E for the closed formal subgroup 
scheme induced from MK or, in other words, for the N6ron model of  Mr, 
we can construct the quotient ElM as a formal R-group scheme. Using the 
criterion 1.4, it follows that ElM coincides with the formal N6ron model A 
of  AK. Hence, the projection E ~ A restricts to an isomorphism E ~ _z~ A 0 be- 
tween identity components. Furthermore, the group of connected components of 
A ~_ ElM equals the quotient ~e/~g,  where ff~E = Y* is the group of connected 
components of E and ~m is the group of connected components of M; the lat- 
ter coincides with the special fibre of M. In particular, if AK is algebraizable 
and, thus, an abelian variety, we have determined the component group of the 
classical N6ron model of AK. A similar description has been given in [9, Chap. 
III, 8.2]. 

Finally, let us return to the general assertion of 6.2. Presumably it is not 
possible to avoid the commutativity assumption for the N6ron model 3~ of ~K 
in the non-quasi-compact case. However, in order to extend 6.2 to any type of 
N6ron model of 3s we modify the notion of formal N6ron models slightly. 

Definition 6.4 A (formal) N~ron quasi-model of a smooth rigid K-group XK 
consists of a smooth formal R-ffroup scheme U with generic fibre irk and of a 
morphism of rigid K-groups 1K : UK --~ Xx such that the following conditions 
are satisfied: 
(i) ~r, restricted to any quasi-compact open part of Ux, is an open immersion 
of rigid K-spaces; we say that IK is a quasi-open immersion. 
(ii) The pair (U, tK) satisfies the Niron mapping property; i.e., given a smooth 
formal R-scheme Z and a morphism of rigid K-spaces f K : ZIC ~ XK, there is 
a unique morphism o f formal R-schemes g : Z ---, U satisfying fK = tK o gK. 

Any formal N6ron model is a formal N6ron quasi-model, and both notions 
coincide in the quasi-compact case. To deal with N6ron quasi-models, the fol- 
lowing analogue of  the criterion 1.4 is useful: 

Criterion 6.5 Let XK be a smooth rigid K-group, and consider a smooth 
formal R-group scheme U together with a quasi-open immersion Zx : Ux 
Xx of rigid K-groups. Then the following are equivalent: 
(i) U is a Niron quasi-model Of XK. 
(ii) Given a smooth formal R-scheme Z and a morphism of rigid K-spaces 
VK :ZK ~ X x ,  there is a unique rational map w : Z - - . U  satisfying 
t)K = IK 0 W K .  
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Proof To show that condition (ii) implies condition (i), just realize that the 
assertion of 2.6 remains valid, if we consider a quasi-open immersion Ur ~ Xr 
instead of an open immersion Ux ~-o Xr; the proof is unchanged. [] 

Now let us state the analogue of 6.2 for Nrron quasi-models. 

Theorem 6.6 Let 3EK be a smooth K-grou p scheme of finite type, and let Xr  
be the associated rigid K-group. 
(i) 3EK admits a N~ron model i f  and only i f  XK admits a formal NOron 
quasi-model. 
(ii) I f  3E is a Nbron model of  3s its formal completion .~ is a N~ron quasi- 
model o f  Xr  via the canonical morphism XK --~ Xr. 

Proof We start with assertion (ii). Let Z be a smooth formal R-scheme, and 
consider a morphism of  rigid K-spaces VK : ZK --o ,Yr. Then, by 6.5, we have 
only to show that VK extends to an R-rational map Z--*.~'. In particular, we 
can replace Z by an R-dense open part. Furthermore, we can assume that Z is 
irreducible. If  ( is the generic point of the special fibre Zk, it follows from 4.1 
that the local ring R' = (gz,( is a discrete valuation ring; in fact, the extension 
R'/R is of ramification index 1 in the sense of [7, 3.6/1]. 

Now consider a finite affine open covering of 3EK. It induces an admissible 
open covering of Xr and, thus, by pull-back, an admissible open covering of 
Zx. Using an argument as in the proof of 2.2(i), we can replace Z by an R- 
dense open part and thereby assume that vr : Zx ~ XK maps Zr into an open 
part Vr C Xr which is the analytification of an affine open part ~Br = Spec ~X 
of 3EK. Assuming Z affine, Z = Spf C, the morphism vr gives rise to the 
composition of homomorphisms 

9JK --* CK --* R' | K , 

and the latter corresponds to a morphism Spec(R' | K) --~ 3EK of K-schemes. 
Since the formation of Nrron models commutes with a base change R'/R of 
ramification index l, cf. [7, 10.1/3], we see that this morphism extends uniquely 
to an R-morphism Spec R' --~ 3s or, if we shrink Z if necessary, to an R- 
morphism Spec C---* 3~. Since C is complete, the latter gives rise to a mor- 
phism of  formal R-schemes Z = SpfC --~ .~, which is the extension of vx we 
are looking for. This settles assertion (ii). 

Finally, it remains to verify the if part of assertion (i), namely, that 3EK 
admits a Nrron model 3E if XK admits a Nrron quasi-model X. This is done 
by constructing 3s via algebraization from X, proceeding in the spirit of  the 
paper [3], in particular, using [3, 1.6] (the notion of open immersion, men- 
tioned at that place, corresponds to our notion of quasi-open immersion). We 
give only a sketch. As in [3, 3.5], one first constructs an R-dense open part 
�9 ' of  the future Nrron model .~ and shows by means of [3, 1.6] that the 
group law of X induces an R-birational group law on ~ ' .  Then one can pass 
to the associated R-group scheme 3E or, at least, to its identity component, 
cf. [7, 5.1/5], and use 6.5 in conjunction with [3, 1.6] to show that 3E is a 
Nrron model of 3EK. [] 
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