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Introduction

In this paper, we fix once for all an n-dimensional compact complex connected
manifold X with a Kihler class y € HM'(X, R) := HY'(X) N H*(X,R). For
any complex variety Y, we denote by Aut’(Y) the identity component of the
group of holomorphic automorphisms of Y. Then the Albanese map of X to
the Albanese variety Alb(X) induces a Lie group homomorphism

ax : Aut’(X) — Aut’(AIb(X))(= Alb(X)),

and the identity component G := Ker%ay of the kemel of ay is a linear al-
gebraic group (see [4]). Let R, be the unipotent radical of G, and by setting
K¢ := G/R,, we have a reductive algebraic group K¢ which is a complexifica-
tion of a maximal compact subgroup X of G/R,. Then the Chevalley decompo-
sition allows us to obtain an algebraic group isomorphism 1 : K¢ = (K¢) C G,
unique up to conjugacy in G, such that it gives a splitting to the exact sequence
1 —R,—G— Kg— 1, ie, G is written as a semidirect product

G:]qul><Ru,

where we put K¢ := 1(K¢) and K := 1(K) for the splitting 1. Since K is just
the image of K under the projection of G onto G/R,, it is easily seen that the
pair (K, 1) is uniquely determined by K. Let g,f,fc be the Lie algebras of G,
K, K¢, respectively. Put f:= 1.1 and I¢ := 1.Ic. We now take a K-invariant
Kéhler metric  in the class 7, and write

W/ —1 a =
= -'i— %gaﬂ-dl /\dzﬂ

in terms of a system (z',z%,...,2") of holomorphic local coordinates on X.
In this paper, a Kéhler metric and the associated Kéhler form are used inter-
changeably. If we move 1 and K, then our w runs through .4, (+ ¢), where
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#, denotes the set of all Kéhler metrics in the class y such that the associated
groups of the isometries, when intersected with G, are maximal compact in G.
Let Oy =), gg”“ “2/6z°‘6246 denote the complex Laplacian for functions on
the Kiahler manifold (X, w). To each complex-valued smooth function ¢ on X,
we associate a complex vector field gradfal 0)(p on X of type (1,0) by

" a0
/—"_ Zg” 59 5 -

grad(l 0

Let 5, be the space of all complex smooth functions ¢ on X such that
gradg’o)q) is in f¢ and that fXgo o"/n! = 0. Then we have Ig = 3, by
associating to each % ¢ f¢ a function 4y in #,, called the Hamiltonian
function for %, by

@ = grad"ng

where # := 1,%. Note that, if % € I, then hy is a real-valued function on X.
We now define a symmetric C-bilinear form B, ¢ fc xIc —» C by

By (¥.2)= ){hg S w'/n!,

where the restriction of By, to T is obviously positive definite. In particular,

B, . is a nondegenerate C-bilinear form. We shall first show that

Theorem A. For a given class y, the bilinear form B, = depends neither on

the choice of a maximal compact subgroup K in G, nor on the choice of a
K-invariant Kihler metric w in the class 7.

Hence, we write B, : I¢c x I¢c — C simply as B, : ¢ x f¢ — C. For the
reductive Lie algebra ¢, its commutator subalgebra [f¢,Ic] is written as a
direct sum 7 s_15¢ of complex simple Lie algebras s,. Therefore,

P
Ic=3 ollc.ic]l=3 @ (I@W) ,
=1

where 3 is the center of the Lie algebra f¢. Let By : s, xs, — € be the Killing
form for s,, and let B; :3 x3 — C be the restriction of the bilinear form B,
to 3 . Then the structure of the bilinear form B, is given by the following:

Theorem B. For some negative real constants a;, B, = B; & (@}_,asB;). In
particular, By, a\, aa,...,a, are invariants of the Kdhler class y on X.

Consider the scalar curvature g, 1= ), ﬂg-“Ral, of the Kéhler metric w, where
R,; = —0.05log w". Note that Ha,, := ncy(X)y"™ "[X1/¥"[X] is the harmonic
part of a,,. Let C>(X) be the space of all complex smooth functions on X
endowed with the Hermitian inner product (¢, 92)12(xw) = f @1 @y "/n!. Let
pr: C®(X) — 3, be the orthogonal projection. Now, we put

¥, = gradg‘o)pr(ow) cic.
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If the vector field gradg’o)aw is holomorphic, i.e., ¥, = gradful’o)ow, then w
is called an extremal Kahler metric (see [2, 3]), and as observed by Calabi
in {3], any extremal Kahler metric in the class y is always in .#,. As long
as w is in .#,, by abuse of terminology, we call ¥,, an extremal Kiihler
vector field even when  is not an extremal Kéhler metric. Since pr(gy,) is
r~eal-va1ued, ¥, belongs to I, so that we can define an element ¥, in | by
Yo = 1.¥g. Slightly modifying the Futaki character, let us now define a Lie
algebra character F, : Lie(G/R,)(= I¢) — € by

Fy (@) = (V1) [(@ fo)o"n!, ¥e€lc,
X

where f,, is a real-valued function in C°°(X) satisfying 6, — Hop, = Uy f -
Note that F, is independent of the choice of w in .#,. Now, for every w in
#,, we shall show the following uniqueness of extremal Kihler vector fields:

Theorem C. F(¥) = B(¥,¥,) for all % € t¢. Hence, if we identify (Ic)*
with t¢ by the nondegenerate bilinear form B, : I¢ xI¢ — C, then F, coincides
with V.

Corollary D. The element ¥, in I¢ belongs to the center 3, and is inde-
pendent of the choice of w in M, In particular, F(V,)(= By(¥Ve, 7w))
is independent of the choice of w in vy, and is an invariant of the Kdihler
class v.

Corollary E. For any w,w; in #., there exists a g € R, such that g, "17,1“ =

For each % € g, let FR = 1.% +1,% denote the real vector field on X asso-
ciated with % = 1,%. Then for y = ¢,(X), we obtain the following periodicity
of extremal Kahler vector fields:

Theorem F. If we€ #.x), then exp(an%m)zidX for some integer
m> 0.

Corollary G. If w € M. (x), then both maxy pr(d,) and miny pr(c,,) are ra-
tional numbers independent of w.

This paper consists of three sections and two appendices. We organize these
as follows. Section 1 is devoted to the study of the bilinear form B, and
in particular, we prove Theorems A and B. Then in Sect. 2, we show the
uniqueness of extremal Kihler vector fields, so that we prove Theorem C,
Corollaries D and E. In Sect. 3, results in [6, 14] together with Theorem
C will allow us to obtain the periodicity of extremal Kahler vector fields for
y = ¢|(X), and it in particular proves Theorem F and Corollary G. In Appendix
1, we complete the arguments in Sect, 1 by showing how a result in [13] can
be applicable to Sect. 1. Finally in Appendix 2, another direct proof for the
independence of the bilinear form Blf,w on the choice of w in y will be given.
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1 The symmetric C-bilinear form B, on I¢

(1.1) In view of the isomorphism H'(X,R) = H'(X,|0*|?), we consider the
real line bundle % on X associated with the Kahler class y (cf. {13]). For
the nowhere vanishing section 7 to ¥* as in Appendix 1, the holomorphic
Kg-action on X lifts to a quasi-holomorphic K¢-action on % such that the
associated infinitesimal action of f¢ on & satisfies

(V=10)'@t=h8, ¥cic.

We now choose a maximal algebraic torus Te(= GJ,) in K¢ such that its
maximal compact subgroup T(= (S')") is contained in K. Let t be the real
Lie subalgebra of  associated with the subgroup T of K. Put T := (T) and
f:= 1.t. Then the moment map p, : X — t* (cf. [13, Sect. 4]) associated to
the T-action on X sends each x € X to the associated element uu,(x) € t*
defined by

(Ho(x),¥) = hg(x), ¥ et.

Note that the image u(X) in t* of X under the map u is a compact convex
polyhedron independent of the choice of the K-invariant K#hler metric w in the
class y (cf. [1, 71; see also [14]). Let u, (w"/n!) be the measure on p,(X)
obtained as the push-forward, by the map u,, of the measure w”"/n! on X.
Then by [13, Corollary 5.2], the measure p, ("/n!) is also independent of
the choice of w. Therefore, the restriction of the bilinear form Bk,w to t (hence

to tc),
By (2. %2) = [hg hg.o"/nt = [ yiyapu®/nt), @), ¥ €et,
X Ho(X)
is independent of the choice of w, where the inclusion p,(X) C t* allows us
to regard %, and %, as functions on u,(X), denoted respectively by y; and
y2, such that u3y, = hy, and pugy, = hy,.
Remark. For every positive integer m, the symmetric C-multilinear form Bﬁz’"zj :

t" — C defined by BY) (U1, ¥s,..., Un) = [h§ by, ... by o"/nl, U € 1, is
more generally independent of the choice of w. Moreover, by the argument in
(1.2) below, BZ”Z) is independent also of the choice of K.

(1.2) In place of K, we choose another maximal compact subgroup K of G.
Then there exists an element g of G such that & = Ad(g~")K = g~'Kyg. Since
G is connected, the form o' := g*w is cohomologous to w, and is therefore
in the class y. Note also that

o =g'hs, el
and it implies Bk,’w,(@,ﬂ’) = Bk’w(@,fl’) for all ¥, < I¢ by

Thg b o' nt = @ HX@ Ky )" ! = ){hf-,?/h‘féw"/n! :
X .
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Thus, in proving Theorems A and B, we may fix a K once for all, and it
suffices to show (i) the independence of B, on  and (ii) the identity in
Theorem B.

(1.3) In view of (1.2), we fix a K once for all. Note that both 1 and K are
uniquely determined by K. We now take ¢, @, 03 € C¥(X) and ¥, %, %3 €

tc. Put [¢1, 0] = V-1 ngﬁ“(aa(plaﬁ(pz - 65(/)16(,(02), called the Poisson
bracket of ¢; and ¢, relative to w. Recall the following standard fact (see for
instance [13]):

(13.1) hey ag = (B9, B9, 15

(13.2) ){[(Pl,fpz]wa «"/n! =A[<P1[<P2,<03]w"/"! .

Combining (1.3.1) and (1.3.2), we obtain

Km([@l’@2] @3) = fh[g/l @] @/3 w"/n! -[[hjyl 1 ] gs (,U"/n!

= fha/l 9, g, ] 0" /n! :,{h@x A
If,w(qyla[@b @3]) .

Hence, if %3 € 3, then B, ([%1,92], %3) = 0 by [#¥,,%1] = 0. Therefore,
the bilinear form Bkw is written in the form

(1.3.3) B = Bi s @ By itetel -

Put h := [, f] and m := v/—1h. We further set m¢ := h+ m = [I¢,I¢c] =
@/_5,. In view of the identity B, ((%,%2],%3) = By (¥%,[%1,%;])
above, the restriction of the symmetric bilinear form Bk,w to m is ad(h)-
invariant, hence (cf. [9, p. 257]),

P
(BKw)I"l ,;a(Bllm

for some constants a, € IR possibly depending on the choice of w. Complexi-
fying this, we now obtain

(13.4) By o litete] = E“’B’

Since the restriction of B, Ko © f is positive definite, and since B, is the Killing

form for s, it follows that a, are all negative. Finally, the proof of Theorems

A and B is reduced to showing that (8 “’)I in (1.3.3) and all a, in (1.3.4) are
Ko’y

independent of the choice of w with K fixed once for all. But such indepen-
dence is straightforward from (1.1), and this completes the proof of Theorems
A and B.
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2 Uniqueness of extremal Kihler vector fields

(2.1) We shall first prove Theorem C and Corollary D. Let (, ), denote the
pointwise Hermitian pairing, relative to the Kéhler metric w, on the space of
all smooth differentiable 1-forms on X. Then, for & ¢ f¢, we obtain (see also
LeBrun and Simanca [11]):

F®) = (V1) [ @ fo) o nt = (V=1)7" [(gradSVhg)(f o) 0" /n!
X X
= — [T g 05h50, fo " [n! = ~ [ (5, 8f w)ue"n!
X o X
= [hy Cufo)o"/n! = [hy(o, — Ho,)w"n! = [hy0,0"/n!
X X X

= [hy pr(o,)"/nt = [hGhS, o /n! = B(¥,7,),
X X

which completes the proof of Theorem C. Since B,([Ic, Ic), 7o) = Fy([fc, fc]) =
{0}, Theorem B yields ¥;, € 3. Then, Corollary D is straightforward from
Theorem C.

(2.2) Next, we shall prove Corollary E. Let w;,w, be extremal Kéhler metrics
in the same class y. Then by Corollary D, there exists a unique element ¥~ in
the center 3 for the Lie algebra I¢ of K¢ = G/R, such that

“//t'mz’V:“//wZ,

Therefore, we have isomorphisms 1, : K¢ & (K¢) C G and 1, : K¢ =
1(K¢) € G such that 17“,‘ = (11 «¥ and “/7(,,2 = (12)«¥ . Since these isomor-
phisms coincide up to conjugacy in G, there exists an element g of G such
that 1; = Ad(g) o 1;. Note that G = 11(K¢) * R, = R, + 11(K¢). Then we can
write g as ¢’ - 11(k) for some ¢’ € R, and k € K¢. Therefore,

Van = ()% = {Ad(g) 0 n}.7 = {Ad(g") 0 Ad(1(k)) 0 n}.¥"
= g\ {Ad(n (k) o u}¥ = g {(n).(Ad(k)Y)}
= gu(n),Y =gV, .

3 Periodicity of extremal Kiihler vector fields

(3.1) Let T,T¢ be as in (1.1). Write T¢ = G, = {(z1,22,...,2,);z; € C*
for all i}. Then by setting 2; := /~12,8/0z; and &7 := (vV—12;)"'dz;, we
can regard t,t* as 3| |RZ;, 3, ,IRZ} respectively. Then t and t* admit
natural Z-structures

,
SZ%; =1tz = {¥ € t;exp(2n¥) = 1},
iz
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r
YZZ; =tz ={0et;< 0, tz >CZ}.
i=1

We then put tg 1= tz®Q = Y|, QZ; and {5, :=t;0Q = 3_/_,QZ7. Recall
the following fact:

Fact (see [14]) Suppose y € H*(X,Q). Then the restriction of By to t is
defined over Q, i.e., B(Z, %) € Q for all i and j.

Hence, if y € H*(X,Q), then Theorem B is stated in a more refined way.
Namely, if y € H*(X,Q), then a|, a,, ...ap are all rational numbers, and B,
is defined over Q.

(3.2) We now consider the case where y = ¢1(X)g. Then the G-action on
X naturally lifts to a bundle G-action on the anticanonical bundle Ky of X.
Note that the associated infinitesimal action of g on Ky (or more generally
on the space of smooth differential forms on X) is just the Lie differentiation,
Consider the complex Lie algebra t¢ =t ® € for T¢. For each & € t¢, let

L@:=d0i@;+i@;0d

denote the Lie differentiation with respect to %. Note also that, by y = ¢;(X )o;
the nowhere vanishing section 7 to #* in Appendix | is naturally regarded as
a smooth volume form on X. In order to prove the periodicity, we need the
following:

Lemma. If y=c(X)g, then Fy(¥)= fx(\/—lr)”‘(L@r)w"/n! Sor all
% € t¢.

Proof. Consider the real-valued smooth function f, := log(t/w") on X. It
satisfies the identity 6, — Ho,, =0, f,, since

dologw”" — ddlogt = 83 [, ie., Ryj = 9uj = 0205f 0 -
Then by w” = exp(— f,,)t, we obtain the required equality as follows:

VEInF@) = [(@f)" = [(@fu)e + [Lifexp(~fu))
X
= [exp(—fo)lgt = [t Ly .
X X

(3.3) Proof of Theorem F. Let w € M. x). Put & := (V-1 y~'%;. Since
o is T-invariant, so is 7. In particular, we have ijr = 0, where as in the

introduction, #g denotes the real vector field 1,%+1.% on X for every ¥ € {c.
Therefore,

Ly t=(/-1)"'Q2Ls1).
iR
Hence, by [6, (5.4.a)], the above lemma in (3.2) yields

F(Z) = %Xft“‘(LQ::Rt)w”/n! eqQ,
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for all i. Then by the above fact in (3.1), we see from Theorem C that ¥, €
tg, ie, ¥, € ELIQ.”Z,-. Therefore, for some positive integer m, we have
2nmY,, € Z;,Zﬁ’ ;. Since exp(2am¥y,) = 1 in T, we now conclude that
exp(27zm“/7wm) = idy.

(3.4) Proof of Corollary G. In the above proof of Theorem F, let ¢ be the
smallest positive rational number such that g¥,, € Z:zllﬂ" ;. Therefore, the

group W¢ = exp(d:q"f/w) is an algebraic torus (& Gp,). We may write Wg =
{w;w € €*} in such a way that

q¥e = V—1w/ow .

Since the maximal compact subgroup W(=2 S') of W¢ is a subgroup of T
above, W acts isometrically on (X, ). Note also that

hgy, = ghy, = qpr(o,) .

The basis g¥,,(= v/—1wd/dw) for the Lie algebra w of W allows us to identify
w with R, and therefore the moment map x” : X — w* associated with the
W -action on X is expressible as

piX =R, x— kg (x) = qpr(o,)(x).

Then a modification (see [14]) of a result of Guillemin and Sternberg [7] shows
that the vertices of the image of the moment map u! are Q-rational points,
ie.,

max{q pr(s,)} € Q and min{gpr(su)} € Q.

Hence, both max, pr(o,,) and miny pr(o,,) are rational numbers, as required.

Remark. If w € M, (x) is an extremal Kahler metric in Corollary G, then by
pr(6s) = 04, — n, Corollary G asserts that maxy ¢, € @ and miny g, € Q.

Appendix 1

Let £ be the real line bundle as in Sect. 1, and 1 be the nowhere vanishing
section to .#* defined below. In this appendix, we shall show that the holo-
morphic K¢-action on X lifts to a quasi-holomorphic (cf. [13]) K¢-action on
& such that the associated infinitesimal action of f¢ on £* satisfies

@er—lhgt, ¥ cic.

More generally, such a quasi-holomorphic lifting can be obtained also for the
G-action, though we do not go into details. Take a sufficiently fine Stein cover
X = U,.e, U; such that % admits a collection of local bases e¢; over U;, i €1,
with positive real-valued transition functions

0 = eife; € HUiNUL|0*P), ijel.
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Let e be the basis for £, dual to ¢;. We then have a smooth section t for
&* on X, unique up to positive constant multiple, such that t is written as
7;¢f on each U; with a positive smooth function 1; and that the first Chern
form ¢((&£;1) for ¥ with respect to t coincides with w (cf. [13]). We now
define a smooth function ¥4, on U; by

Ya; = Ylogt, — vV—1hY

Then dYrz,; = {iz(0log 1:)}—v—1 ig(2nw) = —iz(6dlog 1:)—v—1 iz(2nw) =
0. Hence, Y%, is holomorphic. Define an infinitesimal action of % on & v, by
He; 1= Yuie, i €1. In view of ¢; = §;¢; and 1; = 0;;7;, we have

(@ei)|U,ﬂU, = lp?y,iei“jlnuj = {@7108(90‘1} V—1hg}0;e

#Eiuny,

= {Oijn//ay,j + @gij}eflu,ﬁU, = Hij(@ej)w,muj + (@Oij)ejwmul .

Hence, the infinitesimal actions of % on Z\u,» i € I, glue together to form a
global infinitesimal action of % on .%. Then %1 = /=1 hyt follows from

—V=1% log1; +(\/—1e,’-*)_1@~ef
= — v—l‘g/logt;-#v——ll//@,,- =h% .

(V=Trer) 'Y (rie))

Let J be the complex structure of X, and put f%"" = {¥R;¥ € I}, where
@y is as in the introduction. Then by sending # € ¢ to ¥R € I we have
the complex Lie algebra isomorphism

(fc, \/'_) ~ (freal

with & = (@m —v=1J @R)/Z. Now, from the actiqn of % on &, we can
globally define an infinitesimal action of #g on & by Wge; := (Yo, +V¥4,)ei.
If % €1, then hj is real-valued, and in particular

Urt = Fr(vel) = (Iru)e} — (Vo +Va,)ef
= Jr1; — (g log ;i — V—1 hy + V-1 }?,;}) =0

Therefore, we can lift the K-action on X naturally to a K-action on % in
such a way that it leaves the section 7 of #* invariant. Now, regarding f'“'
as the Lie algebra of K¢, we can further lift the K¢-action on X to a global
Kg-action on £ by setting

exp(sHR) - e; = |exp(sya, )’ e;, i€l

on UN {exp(s@m)}(U,»), for all s € R and % € f¢. Then this K ¢-action on
% is quasi-holomorphic in the sense of [13].
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Appendix 2

Let ., be the space of all complex smooth functions ¢ on X such that
grad"¢ is holomorphic and that Jy@w"/n! = 0. Then we have the complex
Lie algebra isomorphism

n

#y=g oo gradVe,

where #, has a Lie algebra structure by [¢1, 03] := \/—121,},55;51(@1@1@5(92—
33¢104¢2). We then define a symmetric C-bilinear form B,:gxg—C by

Bw(m;%):: f(pl(prn/n!’ (pl’¢2€~1?wa
X

where #] = gradS’O)(pl and #; = gradg’o)q)z. We shall now show the
following:

Theorem H. The C-bilinear form B, on g is independent of the choice of w
in .

Proof. We choose another Kahler metric ' on X cohomologous to the original
. Then there exists a real-valued smooth function ¥ on X such that o' = w,,
where we set

w,:=w+—;]t65|//, 0t
2n

Let %, := gradg‘o)(pv, v = 1,2, be arbitrary elements in g with ¢, € .%;w. We
can then find ¢,, € #,, such that ¥#; = gradg"o)(pv’,. It now suffices to show

[e0,0"/nl = [@,0,00/nt, 0<t=<1.
X X

Write o, = (,/—I/ZR)Za)ﬂgmﬁdz“ AdzP in terms of a system (z',2%,...,2") of

holomorphic local coordinates on X. By iy(27w) = 0@, and iy, (2nm,) = a_(pv’,,
we have

iw {210 + V=1td(—8%)} = 60, + V—16{tin(0y)}

i%(znw,)

1

I

oy +V-1t#y} = 5{(1)\, + tzgﬁ“al;quvéad/} ,
¥}

ie., ¢,, coincides with n,, 1= ¢, + tz,,,,gﬁaaﬁq;vaa‘p on X up to an additive
constant. Since z‘;gﬁxawvaaw ==y = Zﬂg{’“@,;cpv,,aad/, we obtain
a, : a,

d fun  a
'&f’?v,{w?/”! = f{ (Zgﬁaoﬁq)voalp) + (pv,IDw,‘p}w?/”!
X X ap

- ){{ (zﬂg?“a,;q;v,,aaw) + (pv,,l:lw,w}w,"/n!

= (5%,,, 5$)L2(x,w) + (%,an,!;)LZ(x,w) =0,
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where (, )z2(xe) denotes the Hermitian L? inner product, relative to «, for
smooth functions or differential forms on X. Therefore, fxnvowo/n' =

Jyov0"/n! = 0 implies [yn, w]/n! =0 for all 0 < ¢ < 1, hence ¢,, = 1,
for all v and . We now obtain the required identity by

d d
E;fwl,l(pltw:l/n! = z/{m,ﬂlz,pw;'/n!

= { (Egﬁaaﬁ'@Zaﬂw) + (Zgﬁaag@laa‘#) @20+ (/’I,tﬁoz,z[jw:'l'}w?/”!

II

{ lz(zgt 0p§02:0al//> (ng’“égwl,ﬁ«w)wz,,+<pl,,<pz,,Dm.¢}wi'/n!

{ (th 0/}((/’11(021)(71‘/’) +@1,902, o, '/’}w?/"!

= ( (01 I(pZt) ‘3l//)L2(Xw)+((Pl z‘PZan,lﬁ)Lz(Xw) =0.

Remark. By Theorem H, we write the bilinear form B, : g x ¢ — € just
as é}. :gxg — C. Then by the same argument as in (1.3), we obtain
By([W 1, W), W3) = By(W 1,[ W2, W3]) for all W, %2, %3 in g. Moreover
the bilinear forms B, : f¢ x I¢ — € and B, : g x g — € are related by

B}’(@17@2) = éy(l*@lslto«yZ)’ @15@2 € ff »

where 1 : G/R, (= K¢) & 1(G/R,) C G is an isomorphism as in the introduction.
It is easily checked that the independence of B; ~on w can be proved also by
Theorem H. ,

Remark. Let 0 < m € Z. Define a symmetric C-multilinear form BZ") cg” —
C by setting Bf,:")(‘tl/,‘llfz,...,“llf,,,) = fxfp](pz...(pma)"/n!, @ € # ., where
W = gradg’o)goj. Then a slight modification of the above arguments shows

that éfum) is also independent of the choice of w in y. As in the Remark just
above, this induces a multilinear form on f¢ depending only on the class y,
and when restricted to t, it coincides with the multilinear form in remark of

(1.1).
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