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Introduction 

In this paper, we fix once for all an n-dimensional compact complex connected 
manifold X with a K/ihler class 7 E HI'I(X, IR) := HI'I(x)AH2(X,  IR). For 
any complex variety Y, we denote by Aut~ the identity component of the 
group of holomorphic automorphisms of  Y. Then the Albanese map of X to 
the Albanese variety AIb(X) induces a Lie group homomorphism 

ax : Aut~ ~ Aut~ Alb(X)) ,  

and the identity component G := Ker~ of the kernel of  ax is a linear al- 
gebraic group (see [4]). Let Ru be the unipotent radical of G, and by setting 
Kr := G/Ru, we have a reductive algebraic group Kr which is a complexifica- 
tion of a maximal compact subgroup K of G/R,. Then the Chevalley decompo- 
sition allows us to obtain an algebraic group isomorphism l : Kr -~ ffKr C G, 
unique up to conjugacy in G, such that it gives a splitting to the exact sequence 
1 ~ Ru ~ G --~ Kr ~ 1, i.e., G is written as a semidirect product 

G = Ke  ~'< R~ , 

where we pu t /~c  := t(Kr and k := I(K) for the splitting ~. Since K is just 
the image of  k under the projection of G onto G/R~, it is easily seen that the 
pair (K, l) is uniquely determined by/r  Let g, ~, ~: be the Lie algebras of G, 
K, Ke, respectively. Put ~" := t.~ and ~'c := t.fr We now take a K-invariant 
K/ihler metric co in the class V, and write 

co = 2--'--Z ~ g~ dz~ /x dz~ 
a,~8 

in terms of  a system (zl,z 2 . . . . .  z n) of holomorphic local coordinates on X. 
In this paper, a K/ihler metric and the associated K~hler form are used inter- 
changeably. If we move t and K, then our co runs through .Ar (4:~b), where 
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.A/y denotes the set of all K~ihler metrics in the class ? such that the associated 
groups of the isometries, when intersected with G, are maximal compact in G. 
Let U~ := )--~a,~ g#~'~2/dz~'c3z ~ denote the complex Laplacian for functions on 
the K~ihler manifold (X, co). To each complex-valued smooth function tp on X, 

(I 0) we associate a complex vector field grad,,' q~ on X of type (1,0) by 

- 
0 o) 1 ~ g ~ 3 ~ p  ~ z  v . grad~o' tp := x/ST ~,p=L 

Let .r176 be the space of all complex smooth functions ~o on X such that 
(i 0) grad~o' tp is in ['r and that fx(pco'/n! = O. Then we have fr ~ J~f~o by 

associating to each ~ E [r a function h~ in ~(fco, called the Hamiltonian 
function for ~ ,  by 

= ,*r~A(l,0)/, o 

where ~ := z,aJ, Note that, if  aj E ~, then h~ is a real-valued function on X. 
We now define a symmetric ~E-bilinear form Bg,, ~ : [r x [r --~ ~E by 

B g,,o( ~ ,  ~ ) = f h~/h~z co'/n! , 
x 

where the restriction of Bg,, o to [ is obviously positive definite. In particular, 
Bg,, ~ is a nondegenerate ~E-bilinear form. We shall first show that 

Theorem A. For a given class ?, the bilinear form Bg,, ~ depends neither on 

the choice o f  a maximal compact subgroup ff  in G, nor on the choice o f  a 
I~-invariant Kdhler metric co in the class 7. 

Hence, we write Bg,, ~ : ~r x [r ~ C simply as By : [r x [r ~ ~E. For the 

reductive Lie algebra [r its commutator subalgebra [[r162 is written as a 
direct sum ~ P = t s l  of  complex simple Lie algebras ~t. Therefore, 

where ~ is the center of the Lie algebra [r Let Be : st x ~r --~ ~ be the Killing 
form for sr and let B~ : ] x ] ~ ~E be the restriction of the bilinear form By 
to ~. Then the structure of the bilinear form By is given by the following: 

Theorem B. For some negative real constants at, By = Bs @ (~P=~atBr In 
particular, B~, a~, a~ .. . .  ,ap are invariants o f  the Kiihler class ? on X. 

Consider the scalar curvature a~o := ~']~,#g~Rv~ of the K~ihler metric co, where 

R~ := -dvO~ log coL Note that Ha,o := nc~(X)y~-~[X]/y~[X] is the harmonic 
part of  a,o. Let Coo(X) be the space of all complex smooth functions on X 
endowed with the Hermitian inner product (~p~, r := fXqh O~ co'/n!. Let 
pr : C~176 --~ ,~o~ be the orthogonal projection. Now, we put 

(1 o) ~,o := grad,o' pr(ao~) E ~r 
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If the vector field grad~'~ is holomorphic, i.e., ~7~o (10) -- grad,o' ero,, then co 
is called an extremal K/ihler metric (see [2, 3]), and as observed by Calabi 
in [3], any extremal K~ihler metric in the class 7 is always in ./t'~. As long 
as co is in ..r162 by abuse of  terminology, we call ~P',o an extremal K/ihler 
vector field even when co is not an extremal K/~ler metric. Since pr(ao~) is 
real-valued, ~/7- belongs to ~, so that we can define an element ~ in 3 by 
~/7~o, = l.~/~. Slightly modifying the Futaki character, let us now define a Lie 
algebra character F~ : Lie(G/R~)(= re) ~ ff~ by 

Fr(q/) := (v/-Zl)- t  f (~ /  f~,)co~/n!, q/ E ~r , 
x 

where fco is a real-valued function in C~176 satisfying a~ - Hao~ = [3,of~,. 
Note that F~ is independent of  the choice of co in .//~. Now, for every co in 
.,gr, we shall show the following uniqueness of extremal K~ihler vector fields: 

Theorem C. F.t(~) = B.r ~ )  for all q~ C re. Hence, i f  we identify (~r 
with 3r by the nondegenerate bilinear form B.~ : 3r • tr ~ C, then F./ coincides 
with 3e'~. 

Corollary D. The element ~ in tr belongs to the center 3, and is inde- 
pendent of  the choice of co in J/lr. In particular, F ~ ( ~ ) ( =  B r ( ~ ,  $~o)) 
is independent o f  the choice o f  co in 7, and is an &variant of  the Kiihler 
class V. 

Corollary E. For any col,co2 in Jl.~, there exists a g C Ru such that g.~lT'~, = 
~,o2. 

For each ~ E to:, let o ~  := l , ~  + t , ~  denote the real vector field on X asso- 
ciated with ~ := ~.~. Then for 7 = cl(X), we obtain the following periodicity 
of extremal K~ihler vector fields: 

Theorem F. I f  co E JCc~(X), then exp(2nm~/~) = idx for some integer 
m > 0 .  

Corollary G. I f  co E ./gcl(X), then both max x pr0r,o) and min x pr(cro~) are ra- 
tional numbers independent o f  co. 

This paper consists of three sections and two appendices. We organize these 
as follows. Section 1 is devoted to the study of the bilinear form B~ and 
in particular, we prove Theorems A and B. Then in Sect. 2, we show the 
uniqueness of  extremal K/ihler vector fields, so that we prove Theorem C, 
Corollaries D and E. In Sect. 3, results in [6, 14] together with Theorem 
C will allow us to obtain the periodicity of extremal K/ihler vector fields for 
7 = cl(X),  and it in particular proves Theorem F and Corollary G. In Appendix 
1, we complete the arguments in Sect. 1 by showing how a result in [13] can 
be applicable to Sect. 1. Finally in Appendix 2, another direct proof for the 
independence of  the bilinear form Bg,, ~ on the choice of co in ~, will be given. 
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1 The symmetric C-bilinear form B~ on [r 

(1.1) In view of the isomorphism H l ' l ( X , ~ x ) ~  HI(X,  tr we consider the 
real line bundle ~ on X associated with the K~ihler class 7 (cf. [13]). For 
the nowhere vanishing section z to ~*  as in Appendix 1, the holomorphic 
Kc-action on X lifts to a quasi-holomorphic Ke-action on .~ such that the 
associated infinitesimal action of ~'r on .~ satisfies 

We now choose a maximal algebraic toms Tr in Kr such that its 
maximal compact subgroup T(-- (St) r) is contained in K. Let t be the real 
Lie subalgebra of ~ associated with the subgroup T of K. Put IF := t(T) and 
t ' :=  t,t. Then the moment map P,o : X ~ t* (of. [13, Sect. 4]) associated to 
the IF-action on X sends each x E X to the associated element go(x) E t* 
defined by 

(gco(x),~) := h~/(x), ~ E t .  

Note that the image p(X) in t* of X under the map /~ is a compact convex 
polyhedron independent of the choice of the R-invariant K~ler  metric co in the 
class 7 (cf. [1, 7]; see also [14]). Let go~.(cot//n!) be the measure on po~(X) 
obtained as the push-forward, by the map #co, of the measure cot//n! on X. 
Then by [13, Corollary 5.2], the measure po~.(cot//n!) is also independent of 
the choice of co. Therefore, the restriction of the bilinear form Bg:o to t (hence 
to 1r 

Bg,o~(~ = fh~/,h~6cot//n! = f y l y 2 p , ( c o t / / n ! ) ,  alJl, ~12 ~ t ,  
X #~(X) 

is independent of the choice of co, where the inclusion #co(X) C i* allows us 
to regard ~ l  and ~2 as functions on #,o(X), denoted respectively by yt and 
y2, such that * e6 e6 #~oYl = h ~~ and #o~*Y2 = h ~~ 

Remark. For every positive integer m, the symmetric IE-multilinear form B~m,~ : 

I m --~ ~E defined by B(m)(o'ffl,~162 . . . .  ~m)  = f h ~ ~o~ h~/cot//n!, ~ j  E t, is , " J X  q l l  " q / 2  " " " 

more generally independent of the choice of co. Moreover, by the argument in 
(1.2) below, B~?m~ is independent also of the choice of K. 

(1.2) In place of R, we choose another maximal compact subgroup R' of G. 
Then there exists an element 9 of G such that R'  = Ad(9 -1 )R = 9-1R9.  Since 
G is connected, the form co' := g'co is cohomologous to co, and is therefore 
in the class 7- Note also that 

h~' ,fro = g  ~, ~ E ~ r  

and it implies BR, , (~,  ~ )  = Bg.,o(~J, .~) for all q/, ~ ~ 1r by 

t t I t  / 

f h ~  h~,co /n! = f(g*h~/)(o*h~,)(O*o:)/n! = fh~/h~,co'/n!. 
x x X 
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Thus, in proving Theorems A and B, we may fix a /( once for all, and it 
suffices to show (i) the independence of  Bg,~ on 09 and (ii) the identity in 
Theorem B. 

(1.3) In view of  (1.2), we fix a / ~  once for all. Note that both t and K are 
uniquely determined by/~. We now take (01, (02, (03 E C~ and ~ ~2, ~3 E 

~r Put [(01,(02] = x/-Zl}-]~,p9~(O~(010~(02- 0~(013~(02), called the Poisson 
bracket of (01 and (02 relative to co. Recall the following standard fact (see for 
instance [13]): 

(1.3.1) h a) co co ; [e,,e21 = [he;,he~] 

( 1 . 3 . 2 )  f[(0b (02](03 r.on/n! = f (01 [(02, (03]O)n/n! �9 
X X 

Combining (1.3.1) and (1.3.2), we obtain 

rh~O h ~ rrh,o h ~ lh~, Bg,o~([~ --'-- J [e , ,e2]  e3 ('on/n! = J t  e , ,  e~J e3 ~ 
x x 

o) o~ ~o o) n I = fhe,  Ibex, h~,] o:/n! = fhe,  hte~.e:~/n. 
x x 

= B g , ~ ( ~ , [ ~ 2 , ~ 3 ] ) .  

Hence, if ~ 6 3, then Bg:o([~l ,  8?o/2] , ~/3 ) = 0 by [~162 ~ = 0. Therefore, 
the bilinear form Bg,o is written in the form 

(1.3.3) B g,, ~ = ( B g.,o )13 @ ( B g,,o )l[t~,~r ] . 

Put b := [[,[] and m := x/%-lb. We further set mr := b + m = [[r162 = 
p 

@t=l~:. In view of the identity Bg,~([~l,aJ2],~3) = Bg,o~(~1,[~2,~3] ) 

above, the restriction of the symmetric bilinear form Bg,o ~ to m is ad(i)-  
invariant, hence (cf. [9, p. 257]), 

p 

(Bg.o , ) l . .  = F,a:B6,~ 
~'=1 

for some constants a: E IR possibly depending on the choice of 09. Complexi- 
fying this, we now obtain 

P 
(1.3.4) (Bg,~)ltt~,M = ~ a : B : "  

:=1 

Since the restriction of  Bg,, ~ to r is positive definite, and since B: is the Killing 

form for ~:, it follows that at  are all negative. Finally, the proof of Theorems 
A and B is reduced to showing that (Bg:o)l 3 in (1.3.3) and all a: in (1.3.4) are 

independent of the choice of  09 wi th / (  fixed once for all. But such indepen- 
dence is straightforward from (1.1), and this completes the proof of Theorems 
A and B. 
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2 Uniqueness of extremal K~ihler vector fields 

(2.1) We shall first prove Theorem C and Corollary D. Let (,)o~ denote the 
pointwise Hermitian pairing, relative to the K~ihler metric co, on the space of  
all smooth differentiable 1-forms on X.  Then, for ~ C ~r we obtain (see also 
LeBrun and Simanca [11]): 

F.~(ag) = (x/-L-f )-~ f ( ~  f ,o) con~n! = (x/'L--f )-~ f (grad~'~ ~) of~n! 
X X 

= - fY~g#~a~h~/O~fo~ con/n! = -f(Oh~/,  dfo~)o~con/n! 
X a,fl X 

= fh~/ ( [~ f~o)  co"/n! = fh~/(a,, - Hero,)con/n! = fh~ao~coUnt 
x x x 

oJ oo n 1 = f h ~  pr(ao,)oo'/n! = fh~/hf,,,co/n. = Br(~,  ~ o ) ,  
x x 

which completes the proof  of  Theorem C. Since Br([Ic,  [r ~o~) = Fr([Ir Ir = 
{0}, Theorem B yields ~ E 3.  Then, Corollary D is straightforward from 
Theorem C, 

(2.2) Next,  we shall prove Corollary E. Let col,co2 be extremal K~ihler metrics 
in the same class 7. Then by Corollary D, there exists a unique element ~e- in 
the center 3 for the Lie algebra [c of  Kc  = G/Ru such that 

~,,, = ~ = ~,o~ 

Therefore, we have isomorphisms q : Kr '~ h(Kr  C G and 12 : Kc  
~2(Kr C G such that ~'co, = (tt).~/r and ~'o,2 = (~2). ' / ' .  Since these isomor- 
phisms coincide up to conjugacy in G, there exists an element g of  G such 
that ~2 = Ad(g)  o q.  Note that G = h ( K c )  �9 Ru = R~ �9 q(Ka:). Then we can 
write g as g' �9 q ( k )  for some g' E R~ and k E K r  Therefore, 

t7"r 2 = (t2).':r = {Ad(9) o ,l}.~F" = {Ad(9 ' )  o A d ( h ( k ) )  o q}.~r 

= g ' . { A d ( q ( k ) )  o q}.q/"  = 9 ' .{( t , ) . (Ad(k)" / / ' ) )  

o ' . ( . ) . ~  ' " 
= = g . ~ / r .  

3 Periodicity of extremal Kiihler vector fields 

(3.1) Let T, Tc be as in (1.1). Write T~: = ~ = {(zl,z2 . . . . .  zr);zi E C* 
for all i}. Then by setting -~r := x/"Z-lzic3/c3zt and Lr.* := (v/-Z~zi)-ldzi ,  we 
can regard t,t* as ~ l lR~i ,  r * = ~_,i=llR~i respectively. Then t and t* admit 
natural Z-structures 

r 

i=1 
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~ T Z ~ * = t  z* = {O 6 t*; < O, t z > C T z }  
i=1 

We then put IQ := t z |  = E i = , ~  i and t~ := t~| = ET=III~.~;. Recall 
the following fact: 

Fact (see [14]) Suppose V E H2(X, II~). Then the restrktion of Br to t is 
defined over Q, ie., Br (~ i ,~ j )  E II) for all i and j. 

Hence, if 7 E H2(X, ff~), then Theorem B is stated in a more refined way. 
Namely, if 7 E H2(X, II~), then al, a2 . . . .  ap are all rational numbers, and B~ 
is defined over ~.  

(3.2) We now consider the case where y = c~(X)~. Then the G-action on 
X naturally litts to a bundle G-action on the anticanonical bundle Kx of X. 
Note that the associated infinitesimal action of g on Kx (or more generally 
on the space of  smooth differential forms on X)  is just the Lie differentiation. 
Consider the complex Lie algebra 1r = t | IE for To. For each ~ E re, let 

L~ : = d o  i,~ + ir o d 

denote the Lie differentiation with respect to ~ .  Note also that, by y = cl(X)Q, 
the nowhere vanishing section z to ~ *  in Appendix 1 is naturally regarded as 
a smooth volume form on X. In order to prove the periodicity, we need the 
following: 

Lemma. I f  y=c l (X)~ ,  then F.t(q/)=fx(v/-S-fz)-I(L~z)co"/n! for all 

Proof Consider the real-valued smooth function f~o := log(z/co") on X. It 
satisfies the identity tro~ - Ha,o = EE~ f ~, since 

t3O log co" - t~O log z = &~fo~, i.e., R~ - 9~/~ = 0~t3~fco. 

Then by co" = exp(- f ,o)z ,  we obtain the required equality as follows: 

v/Z-ln!Fr(~l) = f ( ~  f,,)co" = f(~l f,o)co" + fL~{exp(-fo,)z} 
x x x 

= f exp(- f~o)Le:  = f~-t(Le?z)of. 
x x 

(3.3) Proof of Theorem F Let co E .-r Put ~ := (x/-21")-l~i.  Since 
co is T-invariant, so is z. In particular, we have L & z  = 0, where as in the 

introduction, ~ denotes the real vector field t.~ on X for every ~ [r 
Therefore, 

L~,;z = (x/-~)-~(ZL~:). 

Hence, by [6, (5.4.a)], the above lemma in (3.2) yields 

~ ( ~ i )  = l fz-l(La?: z)co"/n! E Q 
2 x ~ ' 
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for all i. Then by the above fact in (3.1), we see from Theorem C that ~ E 
tQ, i.e., ~eo, E Y'~i~lff~.~i. Therefore, for some positive integer m, we have 
2nm~r'~ E ~-'~=lZ.~i. Since exp(2nm~/r~) = 1 in T, we now conclude that 
exp(2~zm~lT"~) = idx. 

(3.4) Proof  o f  Corollary G. In the above proof of Theorem F, let q be the 
smallest positive rational number such that q~,o E ~ = l Z . ~ i .  Therefore, the 
group We := exp(Cq~o) is an algebraic toms (-~ ~m). We may write We = 
{w; w ~ C*} in such a way that 

= v wa/ w. 

Since the maximal compact subgroup W ( -  S 1 ) of We is a subgroup of T 
above, W acts isometrically on (X, 09). Note also that 

hq~- = q h ~  = q pr(ao~). 

The basis q~7- ( =  x/"ZTwd/dw) for the Lie algebra w of W allows us to identify 
m with N, and therefore the moment map p w : X  ~ to* associated with the 
W-action on X is expressible as 

p : X  ~ IR, x ~ hq~(x)  = qpr(a~) (x ) .  

Then a modification (see [14]) of a result of Guillemin and Stemberg [7] shows 
that the vertices of  the image of the moment map pw are Q-rational points, 
i.e., 

rnxax{qpr(ao~) } E ~ and min{qpr(a~)}x E I~. 

Hence, both max x pr(ao~) and min x pr(a~) are rational numbers, as required. 

Remark. If  co E Jgc,(x) is an extremal K/ihler metric in Corollary G, then by 
pr(a~) = a~, - n, Corollary G asserts that max x a~, E Q and min x a,o E ~ .  

Appendix 1 

Let A a be the real line bundle as in Sect. 1, and t be the nowhere vanishing 
section to L/'* defined below. In this appendix, we shall show that the holo- 
morphic/~c-action on X lifts to a quasi-holomorphic (cf. [13]) Ke-action on 
.L,e such that the associated infinitesimal action of ~'e on .o~e* satisfies 

More generally, such a quasi-holomorphic lifting can be obtained also for the 
G-action, though we do not go into details. Take a sufficiently fine Stein cover 
X = Uiet u,- such that ~ admits a collection of local bases ei over Ui, i E I, 
with positive real-valued transition functions 

0/j := ei/ej E H~ f3 Uj, 1 *12), i , j  E I .  
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Let e 7 be the basis for Ae*lu ' dual to el. We then have a smooth section z for 
s on X,  unique up to positive constant multiple, such that z is written as 
zie 7 on each Ui with a positive smooth function zi and that the first Chern 
form cl (Aa;z)  for ~ with respect to z coincides with ~o (cf. [13]). We now 
define a smooth function ~',~r on Ui by 

~k~,i := # log zi - x/-L-]'h~ . 

Then t~,~,i = O{ig/(8 log z i ) } -  x/Z-(Gg(2nco) = - i~(~8 log z i ) -  ~ i~(21t~o) = 

0. Hence, ~b~r is holomorp.hic. Define an infinitesimal action of  # on .LPlu ' by 

#ei  :=  ~ll~r i E I. In view of  ei = Oijej and zi = Oijzj, we have 

(#ei)lu, nu , = ~b~/,ieilu, nu , = {#1og(Oqz j ) -  ~'L'~h~}Oijej .nu ,  

= { o i j r  + # O ~ j } % u ,  nu, = O i j ( # e j ) l u ,  n u  , + (#O~j)e j lu ,  n u  ' . 

Hence, the infinitesimal actions of  # on s ,, i G I ,  glue together to form a 

global infinitesimal action o f  # on .L a. Then # z  = ff-L~h~,z follows from 

( x/-STzie~ ) - '  #(zie~ ) = - v/L-I-# log ri + (v/-L-]ei * ) - l #e~ '  

= - x/Z-i-# log zi + ~ r162 = h ~ .  

Let J be the complex structure o f  X, and put ~'[~al := {q/~; o2/ E [~;}, where 

~ is as in the introduction. Then by sending # E ~'r to # a  E ~'[~al, we have 
the complex Lie algebra isomorphism 

(~c v ~ )  ~ 'P"J J '  , = K  ~ , ) 

with # = ( # ~  - v/-Z1J . # ~ ) / 2 .  Now, from the action of  # on ~ ,  we can 
globally define an infinitesimal action o f  # ~  on .Z by #~e i  :=  ( r  
I f  ~ E ~, then h~ is real-valued, and in particular 

# R T  = #R(Tie~)  = (#Rzi )e*  -- "[i(~J~l,i -~ ~I@,i)e i -  * 

= # ~ , -  - r ~ ( # a  logz~ - x/-YTh~ + x / -ZTh~)  = O. 

Therefore, we can lift the /~-action on X naturally to a /~-action on .2 ~ in 
such a way that it leaves the section z of  .~e* invariant. Now, regarding ~a~ 
as the Lie algebra o f / ~ ,  we can further lift the/~r  on X to a global 

/ ~ : - a c t i o n  on . Z  by setting 

exp(s#~t )  �9 e i  = ]exp(s~,i)12 ei, i E I ,  

on Ui M {exp(s#~)}(Ui) ,  for all s E IR and ~ E [r Then th is /~c-act ion on 
Aa is quasi-holomorphic in the sense o f  [13]. 
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Appendix 2 

Let ~o~ be the space of  all complex smooth functions q~ on X such that 
(i 0) grado/ q~ is holomorphic and that fxqgco"/n! = O. Then we have the complex 

Lie algebra isomorphism 

~., (1,0) 
~ c o = g ,  ~o~gradco q~, 

where ~ has a Lie algebra structure by [~ol, q32] :=  v/-L-l~,#gB~(O~olO~02 - 
c3~r We then define a symmetric C-bilinear form/~,o " g x g ~ C by 

Bo,("#/i,~2) := f~ol~O2con/n!, r E ~ o ~ ,  
x 

oo)  (to) where ~ := grad,o' qh and ~ := grad,o' ~o2. We shall now show the 
following: 

Theorem H.  The IE-bilinear form Bco on g is independent of  the choice of  co 
inv. 

Proof We choose another K/ihler metric co' on X cohomologous to the original 
co. Then there exists a real-valued smooth function ~ on X such that co~ = col, 
where we set 

c o z : = c o +  t0cO~b, 0 < t < I .  

Let ~ := grad~'~ v = 1,2, be arbitrary elements in g with ~o~ E 9~co. We 
(t 0) can then find ~o~, t E ~'~o, such that ~ := grad,o; ~o~, z. It now suffices to show 

n | _ _  _ _  . fqh~o2 to"In! = fqJl,t~o2,tco,/n., 0 < t < 1 
x x 

Write cot = (v:-~/2rc)~--]~,#gta~dz~A dz ~ in terms of  a system (zt ,z  2 . . . . .  z n) o f  

holomorphic local coordinates on X.  By i~(2nco) = ~q~ and i~(2ncot) = Oq~v,t, 
we have 

i~(2rtcoz) = i~;{2rcco + v/"Z~tt~(- t~)} = t~q~v + v/-L-lt~{ti~(tg~k)} 

. 

i.e., q)v,z coincides wi th */~,z :=  q)~ + t~7~.,.~gO~Ojq~O,~b on X up to an additive 

constant. Since ~o# 'O:e~O.~ = v'-s-[~rv~ = ~Co,#'O:e~O.~,, we obtain 

d n 
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where (,)~2(x,,o) denotes the Hemaitian L 2 inner product, relative to co, for 
smooth functions or differential forms on X. Therefore, fxrlv,oCog/n! = 
fxqo~c:/n! = 0 implies fxrl~,,co~/n! = 0 for all 0 < t < 1, hence (0~, t = r/~: 
for all v and t. We now obtain the required identity by 

d 
. .~ f  ~91 tq92tcot/n ! = d f , , -'~x~]l,tl~2,tcot /n~ 

A 

0(~o,,,~o2,t) =0 +~oL,~o~,,~,O co,/n. 

= (8(~Ol,t ~o2,,), ~)t2r + (~o,,:o2,,, ~,o, ~,)L2(x,,o) = 0. 

Remark. By Theorem H, we write the bilinear form /~o : g x g --, (E just 
as B>. : g x 9 --* (E. Then by the same argument as in (1.3), we obtain 

B~([~r ~/F'z], ~q:s) =/~r(~r [r162 ~r for all ~ : l ,  ~r ~r in g. Moreover, 
the bilinear forms B~, : ~r x [r ---* IE and/~7 : g x g ~ C are related by 

Br(~162 0-/o/2) ~---/~(/*a-ffl,/*0if2), 0~l, ~r E [~ , 

where z : G/Ru(= Kr ~- f iG/R,)  C G is an isomorphism as in the introduction. 
It is easily checked that the independence o f  Bs ~ on co can be proved also by 

Theorem H. 

Remark. Let 0 < m E 7I. Define a symmetric C-multilinear form R(") g" 
~(m) 

C by setting B,o (~r162 :=  fx(olq92...(OmOfl/n!, r E a'~o), where 
(Lo) ~//j :=  grad,o ~oj. Then a slight modification o f  the above arguments shows 

that/~(ff) is also independent o f  the choice o f  co in ~. As in the Remark just 
above, this induces a multilinear form on [c depending only on the class 7, 
and when restricted to t, it coincides with the multilinear form in remark of  
(1.1). 
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