Bilinear forms and extremal Kähler vector fields associated with Kfihler classes

Akito Futaki¹, Toshiki Mabuchi²

¹ Faculty of Science, Tokyo Institute of Technology, Meguro, Tokyo, 152 Japan (e-mail: futaki@math.titech.ac.jp)

2 College of General Education, Osaka University, Toyonaka, Osaka, 560 Japan (e-mail: g62030a@center.osaka-u.ac.jp)

Received: 20 September 1993/In revised form: 28 February 1994

Mathematics Subject Classification (1991): 53C55, 14J45, 14J50, 32J25

Introduction

In this paper, we fix once for all an n -dimensional compact complex connected manifold X with a Kähler class $\gamma \in H^{1,1}(X,\mathbb{R}) := H^{1,1}(X) \cap H^2(X,\mathbb{R})$. For any complex variety Y, we denote by $Aut^0(Y)$ the identity component of the group of holomorphic automorphisms of Y. Then the Albanese map of X to the Albanese variety $\mathrm{Alb}(X)$ induces a Lie group homomorphism

$$
a_X
$$
: Aut⁰ (X) \rightarrow Aut⁰ $(\text{Alb}(X))$ $(\cong \text{Alb}(X))$,

and the identity component $G := \text{Ker}^{0} a_{X}$ of the kernel of a_{X} is a linear algebraic group (see [4]). Let R_u be the unipotent radical of G , and by setting $K_{\mathbb{C}} := G/R_u$, we have a reductive algebraic group $K_{\mathbb{C}}$ which is a complexification of a maximal compact subgroup K of G/R_n . Then the Chevalley decomposition allows us to obtain an algebraic group isomorphism $\iota : K_{\mathbb{C}} \cong \iota(K_{\mathbb{C}}) \subset G$, unique up to conjugacy in G , such that it gives a splitting to the exact sequence $1 \rightarrow R_u \rightarrow G \rightarrow K_{\mathbb{C}} \rightarrow 1$, i.e., G is written as a semidirect product

$$
G=\tilde{K}_{\mathbb{C}}\!\Join\!R_u\,,
$$

where we put $\tilde{K}_{\mathbb{C}} := \iota(K_{\mathbb{C}})$ and $\tilde{K} := \iota(K)$ for the splitting ι . Since K is just the image of \tilde{K} under the projection of G onto G/R_u , it is easily seen that the pair (K, ι) is uniquely determined by \tilde{K} . Let g, f, $f_{\mathbb{C}}$ be the Lie algebras of G, K, $K_{\mathbb{C}}$, respectively. Put $\tilde{f} := t_* f$ and $\tilde{f}_{\mathbb{C}} := t_* f_{\mathbb{C}}$. We now take a \tilde{K} -invariant Kähler metric ω in the class γ , and write

$$
\omega=\frac{\sqrt{-1}}{2\pi}\sum_{\mathbf{x},\beta}g_{\mathbf{x}\bar{\beta}}dz^{\mathbf{x}}\wedge dz^{\bar{\beta}}
$$

in terms of a system (z^1, z^2, \ldots, z^n) of holomorphic local coordinates on X. In this paper, a Kähler metric and the associated Kähler form are used interchangeably. If we move t and K, then our ω runs through \mathcal{M}_{γ} ($\neq \phi$), where

 \mathcal{M}_{γ} denotes the set of all Kähler metrics in the class γ such that the associated groups of the isometries, when intersected with G , are maximal compact in G . Let $\Box_{\omega} := \sum_{\alpha, \beta} g^{\mu \alpha} \partial^2 / \partial z^{\alpha} \partial z^{\beta}$ denote the complex Laplacian for functions on the Kähler manifold (X, ω) . To each complex-valued smooth function φ on X, we associate a complex vector field grad $\binom{1,0}{r}$ on X of type (1,0) by

grad_{*ω*}^(1,0)
$$
\varphi := \frac{1}{\sqrt{-1}} \sum_{\alpha,\beta=1}^{n} g^{\tilde{\beta}\alpha} \partial_{\tilde{\beta}} \varphi \frac{\partial}{\partial z^{\alpha}}
$$
.

Let \mathcal{H}_{ω} be the space of all complex smooth functions φ on X such that $\text{grad}_{\omega}^{(1,0)}\varphi$ is in $\tilde{f}_{\mathbb{C}}$ and that $\int_{X}\varphi \omega^{n}/n! = 0$. Then we have $f_{\mathbb{C}} \cong \mathscr{H}_{\omega}$ by associating to each $\mathscr{Y} \in \mathfrak{k}_{\mathbb{C}}$ a function $h^{\omega}_{\mathscr{Y}}$ in \mathscr{H}_{ω} , called the **Hamiltonian function** for \mathscr{Y} , by

$$
\tilde{\mathscr{Y}}=\mathrm{grad}^{(1,0)}_{\omega}h^{\omega}_{\mathscr{Y}}\,,
$$

where $\tilde{\mathcal{Y}} := \iota_* \mathcal{Y}$. Note that, if $\mathcal{Y} \in \mathfrak{k}$, then $h_{\mathcal{Y}}^{\omega}$ is a real-valued function on X. We now define a symmetric C-bilinear form $B_{\vec{K},\omega}$: $f_{\mathbb{C}} \times f_{\mathbb{C}} \to \mathbb{C}$ by

$$
B_{\tilde{K},\omega}(\mathscr{Y},\mathscr{Z})=\int\limits_X h_\mathscr{Y}^\omega h_\mathscr{Z}^\omega \omega^n/n!\;,
$$

where the restriction of $B_{\vec{k},\omega}$ to $\hat{\tau}$ is obviously positive definite. In particular, $B_{\vec{k},\omega}$ is a nondegenerate \mathbb{C} -bilinear form. We shall first show that

Theorem A. For a given class γ , the bilinear form $B_{\vec{K},\omega}$ depends neither on *the choice of a maximal compact subgroup* \tilde{K} *in G, nor on the choice of a* \tilde{K} -invariant Kähler metric ω in the class γ .

Hence, we write $B_{\vec{K},\omega}$: $f_{\mathbb{C}} \times f_{\mathbb{C}} \to \mathbb{C}$ simply as B_{γ} : $f_{\mathbb{C}} \times f_{\mathbb{C}} \to \mathbb{C}$. For the reductive Lie algebra $f_{\mathbb{C}}$, its commutator subalgebra $[f_{\mathbb{C}}, f_{\mathbb{C}}]$ is written as a direct sum $\bigoplus_{\ell=1}^p$ s_{ℓ} of complex simple Lie algebras s_{ℓ} . Therefore,

$$
\mathbf{f}_{\mathbb{C}} = \mathbf{g} \oplus [\mathbf{f}_{\mathbb{C}}, \mathbf{f}_{\mathbb{C}}] = \mathbf{g} \oplus \left(\bigoplus_{\ell=1}^{p} \mathbf{s}_{\ell} \right),
$$

where α is the center of the Lie algebra $f_{\mathcal{C}}$. Let $B_{\ell}: s_{\ell} \times s_{\ell} \to \mathbb{C}$ be the Killing form for s_ℓ , and let $B_3 : 3 \times 3 \rightarrow \mathbb{C}$ be the restriction of the bilinear form B_γ to α . Then the structure of the bilinear form B_{γ} is given by the following:

Theorem B. For some negative real constants a_{ℓ} , $B_{\gamma} = B_{\gamma} \oplus (\bigoplus_{\ell=1}^{p} a_{\ell}B_{\ell})$. In particular, B_3 , a_1 , a_2 ,..., a_p are invariants of the Kähler class γ on X.

Consider the scalar curvature $\sigma_{\omega} := \sum_{\alpha,\beta} g^{\beta \alpha} R_{\alpha \beta}$ of the Kähler metric ω , where $R_{\alpha\bar{\beta}} := -\partial_{\alpha}\partial_{\bar{\beta}}\log \omega^n$. Note that $H\sigma_{\omega} := nc_1(X)\gamma^{n-1}[X]/\gamma^n[X]$ is the harmonic part of σ_{ω} . Let $C^{\infty}(X)$ be the space of all complex smooth functions on X endowed with the Hermitian inner product $(\varphi_1, \varphi_2)_{L^2(X,\omega)} := \int_X \varphi_1 \bar{\varphi}_2 \omega^n/n!$. Let pr : $C^{\infty}(X) \to \mathcal{H}_{\omega}$ be the orthogonal projection. Now, we put

$$
\tilde{\mathscr{V}}_{\omega} := \mathrm{grad}_{\omega}^{(1,0)} \mathrm{pr}(\sigma_{\omega}) \in \mathfrak{k}_{\mathbb{C}}.
$$

If the vector field grad^(1,0) σ_{ω} is holomorphic, i.e., $\tilde{\mathcal{V}}_{\omega} = \text{grad}_{\omega}^{(1,0)} \sigma_{\omega}$, then ω is called an extremal Kähler metric (see $[2, 3]$), and as observed by Calabi in [3], any extremal Kähler metric in the class γ is always in \mathcal{M}_{γ} . As long as ω is in \mathcal{M}_{ν} , by abuse of terminology, we call $\tilde{\mathcal{V}}_{\omega}$ an extremal Kähler vector field even when ω is not an extremal Kähler metric. Since pr(σ_{ω}) is real-valued, $\tilde{\mathcal{V}}_{\omega}$ belongs to \tilde{f} , so that we can define an element \mathcal{V}_{ω} in \tilde{f} by $\tilde{\mathcal{V}}_{\omega} = I_{*}\mathcal{V}_{\omega}$. Slightly modifying the Futaki character, let us now define a Lie algebra character F_v : Lie(G/R_u)(= $f_{\mathbb{C}}$) $\rightarrow \mathbb{C}$ by

$$
F_{\gamma}(\mathscr{Y}):=(\sqrt{-1})^{-1}\underset{X}{\int}(\tilde{\mathscr{Y}}f_{\omega})\omega^{n}/n!,\quad \mathscr{Y}\in \mathfrak{k}_{\mathbb{C}}\;,
$$

where f_{ω} is a real-valued function in $C^{\infty}(X)$ satisfying $\sigma_{\omega} - H\sigma_{\omega} = \Box_{\omega} f_{\omega}$. Note that F_γ is independent of the choice of ω in \mathcal{M}_γ . Now, for every ω in \mathcal{M}_{γ} , we shall show the following uniqueness of extremal Kähler vector fields:

Theorem C. $F_{\gamma}(\mathscr{Y}) = B_{\gamma}(\mathscr{Y}, \mathscr{V}_{\omega})$ for all $\mathscr{Y} \in \mathfrak{k}_{\mathbb{C}}$. Hence, if we identify $(\mathfrak{k}_{\mathbb{C}})^*$ *with* $f_{\mathbb{C}}$ *by the nondegenerate bilinear form B_y:* $f_{\mathbb{C}} \times f_{\mathbb{C}} \to \mathbb{C}$ *, then F_y coincides with* V_{ω} .

Corollary D. The element \mathcal{V}_{ω} in $\mathfrak{t}_{\mathbb{C}}$ belongs to the center 3, and is inde*pendent of the choice of* ω *in* M_{γ} *. In particular,* $F_{\gamma}(\mathscr{V}_{\omega})(= B_{\gamma}(\mathscr{V}_{\omega}, \mathscr{V}_{\omega}))$ is independent of the choice of ω in γ , and is an invariant of the Kähler *class V.*

Corollary E. For any ω_1, ω_2 in \mathcal{M}_γ , there exists a $g \in R_u$ such that $g_*\tilde{\mathcal{V}}_{\omega_1} =$ $\tilde{\mathscr{V}}_{an}$.

For each $\mathscr{Y} \in \mathfrak{k}_{\mathbb{C}}$, let $\tilde{\mathscr{Y}}_{\mathbb{R}} := \iota_* \mathscr{Y} + \iota_* \tilde{\mathscr{Y}}$ denote the real vector field on X associated with $\tilde{\mathcal{Y}} := \iota_* \mathcal{Y}$. Then for $\gamma = c_1(X)$, we obtain the following periodicity of extremal Kähler vector fields:

Theorem F. *If* $\omega \in M_{c_1(X)}$, then $exp(2\pi m \tilde{V}_{\omega R}) = id_X$ for some integer $m>0$.

Corollary G. If $\omega \in M_{c_1(X)}$, then both $\max_X \text{pr}(\sigma_{\omega})$ and $\min_X \text{pr}(\sigma_{\omega})$ are ra*tional numbers independent of* ω *.*

This paper consists of three sections and two appendices. We organize these as follows. Section 1 is devoted to the study of the bilinear form B_y and in particular, we prove Theorems A and B. Then in Sect. 2, we show the uniqueness of extremal Kähler vector fields, so that we prove Theorem C, Corollaries D and E. In Sect. 3, results in [6, 14] together with Theorem C will allow us to obtain the periodicity of extremal K/ihler vector fields for $\gamma = c_1(X)$, and it in particular proves Theorem F and Corollary G. In Appendix 1, we complete the arguments in Sect. 1 by showing how a result in [13] can be applicable to Sect. 1. Finally in Appendix 2, another direct proof for the independence of the bilinear form $B_{\vec{k},\omega}$ on the choice of ω in γ will be given.

1 The symmetric C-bilinear form B_y **on** t_C

(1.1) In view of the isomorphism $H^{1,1}(X,\mathbb{R}) \cong H^1(X, |\mathcal{O}^*|^2)$, we consider the real line bundle $\mathscr L$ on X associated with the Kähler class γ (cf. [13]). For the nowhere vanishing section τ to \mathscr{L}^* as in Appendix 1, the holomorphic $\tilde{K}_{\mathbb{C}}$ -action on X lifts to a quasi-holomorphic $\tilde{K}_{\mathbb{C}}$ -action on \mathscr{L} such that the associated infinitesimal action of \tilde{t}_C on $\mathscr L$ satisfies

$$
(\sqrt{-1}\,\tau)^{-1}\tilde{\mathscr Y}\tau=h^\omega_{\mathscr Y},\quad \mathscr Y\in {\mathfrak k}_{\mathbb C} \;.
$$

We now choose a maximal algebraic torus $T_{\mathbb{C}} (\cong \mathbb{G}_m^r)$ in $K_{\mathbb{C}}$ such that its maximal compact subgroup $T(\cong (S^1)')$ is contained in K. Let t be the real Lie subalgebra of $\mathfrak k$ associated with the subgroup T of K. Put $\tilde{T} := \iota(T)$ and $\tilde{t} := t_*t$. Then the moment map $\mu_\omega : X \to t^*$ (cf. [13, Sect. 4]) associated to the \tilde{T} -action on X sends each $x \in X$ to the associated element $\mu_{\omega}(x) \in \mathfrak{t}^*$ defined by

$$
\langle \mu_{\omega}(x), \mathscr{Y} \rangle := h_{\mathscr{Y}}^{\omega}(x), \quad \mathscr{Y} \in \mathfrak{t}.
$$

Note that the image $\mu(X)$ in t^{*} of X under the map μ is a compact convex polyhedron independent of the choice of the \tilde{K} -invariant Kähler metric ω in the class γ (cf. [1, 7]; see also [14]). Let $\mu_{\omega*}(\omega^n/n!)$ be the measure on $\mu_{\omega}(X)$ obtained as the push-forward, by the map μ_{ω} , of the measure $\omega^{n}/n!$ on X. Then by [13, Corollary 5.2], the measure $\mu_{\omega*}(\omega^n/n!)$ is also independent of the choice of ω . Therefore, the restriction of the bilinear form $B_{\vec{k},\omega}$ to t (hence to $t_{\rm f}$).

$$
B_{\tilde{K},\omega}(\mathscr{Y}_1,\mathscr{Y}_2)=\int\limits_X h_{\mathscr{Y}_1}^{\omega}h_{\mathscr{Y}_2}^{\omega}\omega^n/n!=\int\limits_{\mu_{\omega}(X)}y_1y_2\mu_*(\omega^n/n!),\quad \mathscr{Y}_1,\mathscr{Y}_2\in\mathfrak{t},
$$

is independent of the choice of ω , where the inclusion $\mu_{\omega}(X) \subset \mathfrak{t}^*$ allows us to regard \mathscr{Y}_1 and \mathscr{Y}_2 as functions on $\mu_\omega(X)$, denoted respectively by y_1 and y_2 , such that $\mu_{\omega}^* y_1 = h_{\mathcal{Y}_1}^{\omega}$ and $\mu_{\omega}^* y_2 = h_{\mathcal{Y}_2}^{\omega}$.

Remark. For every positive integer m, the symmetric C-multilinear form $B_{\vec{K}, \omega}^{(m)}$: $I^m \to \mathbb{C}$ defined by $B_{\vec{K},\omega}^{(m)}(\mathscr{Y}_1,\mathscr{Y}_2,\ldots,\mathscr{Y}_m) = \int_X h_{\mathscr{Y}_1}^{(m)} h_{\mathscr{Y}_2}^{(m)} \ldots h_{\mathscr{Y}_m}^{(m)} \omega^n/n!, \mathscr{Y}_j \in \mathfrak{t}$, is more generally independent of the choice of ω . Moreover, by the argument in (1.2) below, $B_{\vec{k},\omega}^{(m)}$ is independent also of the choice of \tilde{K} .

(1.2) In place of \tilde{K} , we choose another maximal compact subgroup \tilde{K}' of G. Then there exists an element g of G such that $\tilde{K}' = Ad(g^{-1})\tilde{K} = g^{-1}\tilde{K}g$. Since G is connected, the form $\omega' := g^*\omega$ is cohomologous to ω , and is therefore in the class γ . Note also that

$$
h^{\omega'}_{\mathscr{Y}}=g^*h^{\omega}_{\mathscr{Y}},\quad \mathscr{Y}\in \mathfrak{k}_\mathbb{C}
$$

and it implies $B_{\vec{K}',\omega'}(\mathscr{Y},\mathscr{Z}) = B_{\vec{K},\omega}(\mathscr{Y},\mathscr{Z})$ for all $\mathscr{Y},\mathscr{Z} \in \mathfrak{k}_\mathbb{C}$ by

$$
\int_{X} h_{\mathscr{Y}}^{\omega'} h_{\mathscr{Z}}^{\omega''}/n! = \int_{X} (g^* h_{\mathscr{Y}}^{\omega})(g^* h_{\mathscr{Z}}^{\omega})(g^* \omega^n)/n! = \int_{X} h_{\mathscr{Y}}^{\omega} h_{\mathscr{Z}}^{\omega} \omega^n/n! .
$$

Thus, in proving Theorems A and B, we may fix a \tilde{K} once for all, and it suffices to show (i) the independence of $B_{\hat{\kappa}^{(n)}}$ on ω and (ii) the identity in Theorem B.

(1.3) In view of (1.2), we fix a \tilde{K} once for all. Note that both t and K are uniquely determined by \tilde{K} . We now take $\varphi_1, \varphi_2, \varphi_3 \in C^{\infty}(X)$ and $\mathscr{Y}_1, \mathscr{Y}_2, \mathscr{Y}_3 \in$ τ Put $[\varphi_1,\varphi_2] = \sqrt{-1} \sum_{\alpha,\beta} g^{\rho\alpha} (\partial_\alpha \varphi_1 \partial_{\bar{\beta}} \varphi_2 - \partial_{\bar{\beta}} \varphi_1 \partial_\alpha \varphi_2)$, called the Poisson bracket of φ_1 and φ_2 relative to ω . Recall the following standard fact (see for instance [13]):

(1.3.1)
$$
h^{\omega}_{[\mathscr{Y}_1,\mathscr{Y}_2]} = [h^{\omega}_{\mathscr{Y}_1}, h^{\omega}_{\mathscr{Y}_2}];
$$

(1.3.2)
$$
\int\limits_X[\varphi_1,\varphi_2]\varphi_3\,\omega^n/n! = \int\limits_X\varphi_1[\varphi_2,\varphi_3]\omega^n/n! .
$$

Combining $(1.3.1)$ and $(1.3.2)$, we obtain

$$
B_{\tilde{K},\omega}([\mathcal{Y}_1,\mathcal{Y}_2],\mathcal{Y}_3) = \int_X h^{\omega}_{[\mathcal{Y}_1,\mathcal{Y}_2]} h^{\omega}_{\mathcal{Y}_3} \omega^n/n! = \int_X h^{\omega}_{\mathcal{Y}_1} h^{\omega}_{\mathcal{Y}_2} h^{\omega}_{\mathcal{Y}_3} \omega^n/n!
$$

\n
$$
= \int_X h^{\omega}_{\mathcal{Y}_1} [h^{\omega}_{\mathcal{Y}_2}, h^{\omega}_{\mathcal{Y}_3}] \omega^n/n! = \int_X h^{\omega}_{\mathcal{Y}_1} h^{\omega}_{[\mathcal{Y}_2,\mathcal{Y}_3]} \omega^n/n!
$$

\n
$$
= B_{\tilde{K},\omega}(\mathcal{Y}_1, [\mathcal{Y}_2,\mathcal{Y}_3]) .
$$

Hence, if $\mathscr{Y}_3 \in \mathfrak{z}$, then $B_{\hat{K},\omega}(\mathscr{Y}_1,\mathscr{Y}_2],\mathscr{Y}_3) = 0$ by $[\mathscr{Y}_2,\mathscr{Y}_3] = 0$. Therefore, the bilinear form $B_{\vec{k},\omega}$ is written in the form

(1.3.3)
$$
B_{\vec{K},\omega} = (B_{\vec{K},\omega})_{|3} \oplus (B_{\vec{K},\omega})_{|[{\bf 1_C},{\bf 1_C}]}\ .
$$

Put $b := [f, f]$ and $m := \sqrt{-1}b$. We further set $m_{\mathbb{C}} := b + m = [f_{\mathbb{C}}, f_{\mathbb{C}}] =$ $\bigoplus_{\ell=1}^p$ $\tilde{\mathfrak{s}}_{\ell}$. In view of the identity $B_{\tilde{K},\omega}((\mathscr{Y}_1,\mathscr{Y}_2],\mathscr{Y}_3) = B_{\tilde{K},\omega}(\mathscr{Y}_1,[\mathscr{Y}_2,\mathscr{Y}_3])$ above, the restriction of the symmetric bilinear form $B_{\vec{K},\omega}$ to m is ad(b)invariant, hence (cf. [9, p. 257]),

$$
(B_{\tilde{K},\omega})_{|\mathfrak{m}} = \sum_{\ell=1}^p a_{\ell} B_{\ell_{|\mathfrak{m}}}
$$

for some constants $a_i \in \mathbb{R}$ possibly depending on the choice of ω . Complexifying this, we now obtain

(1.3.4)
$$
(B_{\hat{K},\omega})_{|[{\bf 1}_{\mathbb{C}}, {\bf 1}_{\mathbb{C}}]} = \sum_{\ell=1}^p a_{\ell} B_{\ell}.
$$

Since the restriction of $B_{\vec{k},\omega}$ to f is positive definite, and since B_{ℓ} is the Killing form for s_{ℓ} , it follows that a_{ℓ} are all negative. Finally, the proof of Theorems A and B is reduced to showing that $(B_{\vec{k},\omega})_{|_{\lambda}}$ in (1.3.3) and all a_{ℓ} in (1.3.4) are independent of the choice of ω with \tilde{K} fixed once for all. But such independence is straightforward from (1.1), and this completes the proof of Theorems A and B.

2 Uniqueness of extremal K~ihler vector fields

(2.1) We shall first prove Theorem C and Corollary D. Let $(,)_{\omega}$ denote the pointwise Hermitian pairing, relative to the Kähler metric ω , on the space of all smooth differentiable 1-forms on X. Then, for $\mathscr{Y} \in \mathfrak{k}_{\mathbb{C}}$, we obtain (see also LeBrun and Simanca [11]):

$$
F_{\gamma}(\mathscr{Y}) = (\sqrt{-1})^{-1} \int_{X} (\tilde{\mathscr{Y}}f_{\omega}) \omega^{n}/n! = (\sqrt{-1})^{-1} \int_{X} (\text{grad}_{\omega}^{(1,0)} h_{\mathscr{Y}}^{\omega}) (f_{\omega}) \omega^{n}/n!
$$

\n
$$
= - \int_{X} \sum_{\alpha,\beta} \int_{\beta}^{\beta} h_{\mathscr{Y}}^{\alpha} \partial_{\beta} f_{\omega}^{\alpha} \omega^{n}/n! = - \int_{X} (\tilde{\partial}h_{\mathscr{Y}}^{\alpha}, \tilde{\partial} f_{\omega})_{\omega} \omega^{n}/n!
$$

\n
$$
= \int_{X} h_{\mathscr{Y}}^{\alpha} (\Box_{\omega} f_{\omega}) \omega^{n}/n! = \int_{X} h_{\mathscr{Y}}^{\alpha} (\sigma_{\omega} - H\sigma_{\omega}) \omega^{n}/n! = \int_{X} h_{\mathscr{Y}}^{\alpha} \sigma_{\omega} \omega^{n}/n!
$$

\n
$$
= \int_{X} h_{\mathscr{Y}}^{\alpha} \text{pr}(\sigma_{\omega}) \omega^{n}/n! = \int_{X} h_{\mathscr{Y}}^{\alpha} h_{\mathscr{Y}_{\omega}}^{\omega} \omega^{n}/n! = B_{\gamma}(\mathscr{Y}, \mathscr{V}_{\omega}),
$$

which completes the proof of Theorem C. Since $B_{\gamma}([\mathfrak{k}_{\mathbb{C}}, \mathfrak{k}_{\mathbb{C}}], \mathscr{V}_{\omega}) = F_{\gamma}([\mathfrak{k}_{\mathbb{C}}, \mathfrak{k}_{\mathbb{C}}]) =$ ${0}$, Theorem B yields $\mathscr{V}_{\omega} \in \mathfrak{z}$. Then, Corollary D is straightforward from Theorem C,

(2.2) Next, we shall prove Corollary E. Let ω_1,ω_2 be extremal Kähler metrics in the same class γ . Then by Corollary D, there exists a unique element $\mathscr V$ in the center 3 for the Lie algebra \bar{t}_C of $K_C = G/R_u$ such that

$$
\mathscr{V}_{\omega_1}=\mathscr{V}=\mathscr{V}_{\omega_2}.
$$

Therefore, we have isomorphisms $\iota_1 : K_{\mathbb{C}} \cong \iota_1(K_{\mathbb{C}}) \subset G$ and $\iota_2 : K_{\mathbb{C}} \cong$ $u_2(K_{\mathbb{C}}) \subset G$ such that $\tilde{\mathcal{V}}_{\omega_1} = (t_1)_* \mathcal{V}$ and $\tilde{\mathcal{V}}_{\omega_2} = (t_2)_* \mathcal{V}$. Since these isomorphisms coincide up to conjugacy in G , there exists an element g of G such that $a_2 = \text{Ad}(g) \circ a_1$. Note that $G = a_1(K_{\mathbb{C}}) \cdot R_u = R_u \cdot a_1(K_{\mathbb{C}})$. Then we can write g as $g' \cdot i_1(k)$ for some $g' \in R_u$ and $k \in K_{\mathbb{C}}$. Therefore,

$$
\tilde{\mathscr{V}}_{\omega_2} = (\iota_2)_* \mathscr{V} = \{ \mathrm{Ad}(g) \circ \iota_1 \}_* \mathscr{V} = \{ \mathrm{Ad}(g') \circ \mathrm{Ad}(\iota_1(k)) \circ \iota_1 \}_* \mathscr{V}
$$
\n
$$
= g'_* \{ \mathrm{Ad}(\iota_1(k)) \circ \iota_1 \}_* \mathscr{V} = g'_* \{ (\iota_1)_* (\mathrm{Ad}(k) \mathscr{V}) \}
$$
\n
$$
= g'_*(\iota_1)_* \mathscr{V} = g'_* \tilde{\mathscr{V}}_{\omega_1} .
$$

3 Periodicity of extremal Kiihler vector fields

(3.1) Let $T, T_{\mathbb{C}}$ be as in (1.1). Write $T_{\mathbb{C}} = \mathbb{G}_m^r = \{(z_1, z_2, ..., z_r); z_i \in \mathbb{C}^*$ for all *i*. Then by setting $\mathscr{L}_i := \sqrt{-1}z_i\partial/\partial z_i$ and $\mathscr{L}_i^* := (\sqrt{-1}z_i)^{-1}dz_i$, we can regard t, t^{*} as $\sum_{i=1}^r R\mathscr{Z}_i, \sum_{i=1}^r R\mathscr{Z}_i^*$ respectively. Then t and t^{*} admit natural Z-structures

$$
\sum_{i=1}^r \mathbb{Z} \mathscr{Z}_i = \mathfrak{t}_{\mathbb{Z}} = \{ \mathscr{Y} \in \mathfrak{t}; \exp(2\pi \mathscr{Y}) = 1 \},
$$

Extremal Kähler vector fields 205

$$
\sum_{i=1}^{\prime} \mathbb{Z} \mathscr{Z}_i^* = \mathfrak{t}_{\mathbb{Z}}^* = \{ \theta \in \mathfrak{t}^*; < \theta, \ \mathfrak{t}_{\mathbb{Z}} > \subset \mathbb{Z} \}.
$$

We then put $t_{\mathbb{Q}} := t_{\mathbb{Z}} \otimes \mathbb{Q} = \sum_{i=1}^{r} \mathbb{Q} \mathscr{Z}_i$ and $t_{\mathbb{Q}}^* := t_{\mathbb{Z}}^* \otimes \mathbb{Q} = \sum_{i=1}^{r} \mathbb{Q} \mathscr{Z}_i^*$. Recall the following fact:

Fact (see [14]) *Suppose* $\gamma \in H^2(X, \mathbb{Q})$. Then the restriction of B_{γ} to t is *defined over* Q, *i.e.*, $B_{\nu}(\mathscr{Z}_i, \mathscr{Z}_i) \in \mathbb{Q}$ for all i and j.

Hence, if $\gamma \in H^2(X, \mathbb{Q})$, then Theorem B is stated in a more refined way. Namely, if $\gamma \in H^2(X, \mathbb{Q})$, then a_1, a_2, \ldots, a_p are all rational numbers, and B_3 is defined over Q .

(3.2) We now consider the case where $\gamma = c_1(X)_{\mathbb{Q}}$. Then the G-action on X naturally lifts to a bundle G-action on the anticanonical bundle K_X of X. Note that the associated infinitesimal action of g on K_X (or more generally on the space of smooth differential forms on X) is just the Lie differentiation. Consider the complex Lie algebra $t_{\mathbb{C}} = t \otimes \mathbb{C}$ for $T_{\mathbb{C}}$. For each $\mathscr{Y} \in t_{\mathbb{C}}$, let

$$
L_{\tilde{w}} := d \circ i_{\tilde{w}} + i_{\tilde{w}} \circ d
$$

denote the Lie differentiation with respect to $\tilde{\mathcal{Y}}$. Note also that, by $\gamma = c_1(X)_{\mathbf{0}},$ the nowhere vanishing section τ to \mathscr{L}^* in Appendix 1 is naturally regarded as a smooth volume form on X . In order to prove the periodicity, we need the following:

Lemma. *If* $\gamma = c_1(X)_{\mathbb{Q}}$, then $F_{\gamma}(\mathcal{Y}) = \int_{Y} (\sqrt{-1} \tau)^{-1} (L_{\tilde{\mathcal{Y}}} \tau) \omega^{n} / n!$ for all $\mathscr{Y} \in \mathfrak{t}_{\mathbb{C}}$.

Proof. Consider the real-valued smooth function $f_\omega := \log(\tau/\omega^n)$ on X. It satisfies the identity $\sigma_{\omega} - H\sigma_{\omega} = \Box_{\omega} f_{\omega}$, since

$$
\bar{\partial}\partial \log \omega^{n} - \bar{\partial}\partial \log \tau = \partial \bar{\partial} f_{\omega}, \text{i.e., } R_{\alpha\bar{\beta}} - g_{\alpha\bar{\beta}} = \partial_{\alpha}\partial_{\bar{\beta}} f_{\omega} .
$$

Then by $\omega'' = \exp(-f_{\omega})\tau$, we obtain the required equality as follows:

$$
\sqrt{-1}n!F_{\gamma}(\mathscr{Y}) = \int_{X} (\tilde{\mathscr{Y}}f_{\omega})\omega^{n} = \int_{X} (\tilde{\mathscr{Y}}f_{\omega})\omega^{n} + \int_{X} L_{\tilde{\mathscr{Y}}} \{\exp(-f_{\omega})\tau\}
$$

$$
= \int_{X} \exp(-f_{\omega})L_{\tilde{\mathscr{Y}}} \tau = \int_{X} \tau^{-1}(L_{\tilde{\mathscr{Y}}} \tau)\omega^{n}.
$$

(3.3) *Proof of Theorem F.* Let $\omega \in \mathcal{M}_{c_1(X)}$. Put $\mathcal{Z}'_i := (\sqrt{-1})^{-1} \mathcal{Z}_i$. Since ω is T-invariant, so is τ . In particular, we have $L_{\hat{\mathcal{X}}_{i}} = 0$, where as in the introduction, $\tilde{\mathcal{Y}}_{\mathbb{R}}$ denotes the real vector field $\iota_* \mathcal{Y} + \iota_* \overline{\mathcal{Y}}$ on X for every $\mathcal{Y} \in \mathfrak{t}_{\mathbb{C}}$. Therefore,

$$
L_{\tilde{\mathscr{Z}}'_{i_{\mathbf{R}}}}\tau = (\sqrt{-1})^{-1}(2L_{\tilde{\mathscr{Z}}_{i}}\tau).
$$

Hence, by $[6, (5.4.a)]$, the above lemma in (3.2) yields

$$
F_{\gamma}(\mathscr{Z}_i) = \frac{1}{2} \int_{X} \tau^{-1}(L_{\hat{\mathscr{Z}}'_{i_{\mathbb{R}}}} \tau) \omega^{n}/n! \in \mathbb{Q},
$$

for all i. Then by the above fact in (3.1), we see from Theorem C that $\mathcal{V}_{\omega} \in$ $t_{\mathbb{Q}}$, i.e., $\mathcal{V}_{\omega} \in \sum_{i=1}^{r} \mathbb{Q} \mathcal{Z}_i$. Therefore, for some positive integer m, we have $2\pi m\mathscr{V}_{\omega} \in \sum_{i=1}^{r} \mathbb{Z} \overline{\mathbb{Z}}_{i}$. Since $\exp(2\pi m\mathscr{V}_{\omega}) = 1$ in T, we now conclude that $\exp(2\pi m\tilde{\mathscr{V}}_{\scriptscriptstyle{\text{O}}\mathbb{R}}) = id_{Y}$.

(3.4) *Proof of Corollary G.* In the above proof of Theorem F, let q be the smallest positive rational number such that $q\mathcal{V}_{\omega} \in \sum_{i=1}^{r} \mathbb{Z} \mathscr{Z}_{i}$. Therefore, the group $W_{\mathbb{C}} := \exp(\mathbb{C}q\tilde{\mathscr{V}}_{\omega})$ is an algebraic torus ($\cong \mathbb{G}_{m}$). We may write $W_{\mathbb{C}} =$ $\{w; w \in \mathbb{C}^*\}\$ in such a way that

$$
q\tilde{\mathscr{V}}_{\omega}=\sqrt{-1}w\partial/\partial w.
$$

Since the maximal compact subgroup $W(\cong S^1)$ of $W_{\mathbb{C}}$ is a subgroup of T above, W acts isometrically on (X, ω) . Note also that

$$
h^{\omega}_{q\gamma_{\omega}}=qh^{\omega}_{\gamma_{\omega}}=q\operatorname{pr}(\sigma_{\omega}).
$$

The basis $q\tilde{\mathcal{V}}_{\omega} = \sqrt{-1}w\partial/\partial w$ for the Lie algebra w of W allows us to identify m with R, and therefore the moment map μ_{ω}^{W} : $X \to \omega^*$ associated with the W-action on X is expressible as

$$
\mu: X \to \mathbb{R}, \quad x \mapsto h^{\omega}_{q\gamma_{\omega}'}(x) = q \operatorname{pr}(\sigma_{\omega})(x).
$$

Then a modification (see [14]) of a result of Guillemin and Stemberg [7] shows that the vertices of the image of the moment map μ_{ω}^{W} are Q-rational points, i.e.,

$$
\max_{X} \{ q \operatorname{pr}(\sigma_{\omega}) \} \in \mathbb{Q} \text{ and } \min_{X} \{ q \operatorname{pr}(\sigma_{\omega}) \} \in \mathbb{Q} .
$$

Hence, both max $_Y$ pr(σ_{ω}) and min $_Y$ pr(σ_{ω}) are rational numbers, as required.

Remark. If $\omega \in \mathcal{M}_{c_1(X)}$ is an extremal Kähler metric in Corollary G, then by $pr(\sigma_{\omega}) = \sigma_{\omega} - n$, Corollary G asserts that $\max_{X} \sigma_{\omega} \in \mathbb{Q}$ and $\min_{X} \sigma_{\omega} \in \mathbb{Q}$.

Appendix 1

Let $\mathscr L$ be the real line bundle as in Sect. 1, and τ be the nowhere vanishing section to \mathscr{L}^* defined below. In this appendix, we shall show that the holomorphic $\tilde{K}_{\mathbb{C}}$ -action on X lifts to a quasi-holomorphic (cf. [13]) $\tilde{K}_{\mathbb{C}}$ -action on $\mathscr L$ such that the associated infinitesimal action of $\tilde{f}_{\mathbb C}$ on $\mathscr L^*$ satisfies

$$
\tilde{\mathscr Y} \tau = \sqrt{-1} \, h^\omega_{\mathscr Y} \tau, \quad \mathscr Y \in \mathfrak{k}_\mathbb{C} \; .
$$

More generally, such a quasi-holomorphic lifting can be obtained also for the G-action, though we do not go into details. Take a sufficiently fine Stein cover $X = \bigcup_{i \in I} U_i$ such that $\mathscr L$ admits a collection of local bases e_i over U_i , $i \in I$, with positive real-valued transition functions

$$
\theta_{ij} := e_i/e_j \in H^0(U_i \cap U_j, |\mathcal{O}^*|^2), \quad i, j \in I.
$$

Let e_i^* be the basis for $\mathscr{L}_{|U_i}^*$ dual to e_i . We then have a smooth section τ for \mathscr{L}^* on X, unique up to positive constant multiple, such that τ is written as $\tau_i e_i^*$ on each U_i with a positive smooth function τ_i and that the first Chern form $c_1(\mathscr{L};\tau)$ for $\mathscr L$ with respect to τ coincides with ω (cf. [13]). We now define a smooth function $\psi_{\mathscr{U},i}$ on U_i by

$$
\psi_{\mathscr{Y},i}:=\tilde{\mathscr{Y}}\log\tau_i-\sqrt{-1}h^\omega_{\mathscr{Y}}.
$$

Then $\bar{\partial}\psi_{\mathscr{Y},i} = \bar{\partial}\{i_{\hat{\mathscr{Y}}}(\partial \log \tau_i)\}-\sqrt{-1}i_{\hat{\mathscr{Y}}}(2\pi\omega) = -i_{\hat{\mathscr{Y}}}(\bar{\partial}\partial \log \tau_i)-\sqrt{-1}i_{\hat{\mathscr{Y}}}(2\pi\omega) =$ 0. Hence, $\psi_{\mathscr{Y},i}$ is holomorphic. Define an infinitesimal action of $\tilde{\mathscr{Y}}$ on $\mathscr{L}_{|U_i}$ by $\tilde{\mathcal{Y}}e_i := \psi_{\mathcal{Y},i}e_i, i \in I$. In view of $e_i = \theta_{ii}e_j$ and $\tau_i = \theta_{ii}\tau_j$, we have

$$
(\tilde{\mathcal{Y}}e_i)_{|U_i \cap U_j} = \psi_{\mathcal{Y},i} e_{i|U_i \cap U_j} = {\tilde{\mathcal{Y}} \log(\theta_{ij} \tau_j) - \sqrt{-1} h_{\mathcal{Y}}^{\omega} \theta_{ij} e_{j|U_i \cap U_j}}
$$

=
$$
\{\theta_{ij} \psi_{\mathcal{Y},j} + \tilde{\mathcal{Y}} \theta_{ij} \} e_{j|U_i \cap U_j} = \theta_{ij} (\tilde{\mathcal{Y}}e_j)_{|U_i \cap U_j} + (\tilde{\mathcal{Y}} \theta_{ij}) e_{j|U_i \cap U_j}.
$$

Hence, the infinitesimal actions of $\tilde{\mathcal{Y}}$ on $\mathcal{L}_{|U_i}$, $i \in I$, glue together to form a global infinitesimal action of $\tilde{\mathcal{Y}}$ on \mathcal{L} . Then $\tilde{\mathcal{Y}}\tau = \sqrt{-1} h_{\mathcal{Y}}^{\omega} \tau$ follows from

$$
(\sqrt{-1}\tau_i e_i^*)^{-1}\tilde{\mathscr{Y}}(\tau_i e_i^*) = -\sqrt{-1}\tilde{\mathscr{Y}}\log \tau_i + (\sqrt{-1}e_i^*)^{-1}\tilde{\mathscr{Y}}e_i^*
$$

= $-\sqrt{-1}\tilde{\mathscr{Y}}\log \tau_i + \sqrt{-1}\psi_{\mathscr{Y},i} = h_{\mathscr{Y}}^{\omega}.$

Let J be the complex structure of X, and put $\tilde{f}_{\tilde{g}}^{real} := \{ \mathscr{Y}_{\mathbb{R}}; \mathscr{Y} \in \mathfrak{f}_{\mathbb{C}} \}$, where $\mathscr{Y}_{\mathbb{R}}$ is as in the introduction. Then by sending $\tilde{\mathscr{Y}} \in \tilde{f}_{\mathbb{C}}$ to $\tilde{\mathscr{Y}}_{\mathbb{R}} \in \tilde{f}_{\mathbb{C}}^{real}$, we have the complex Lie algebra isomorphism

$$
(\tilde{\mathfrak{k}}_{\mathbb{C}},\sqrt{-1})\cong(\tilde{\mathfrak{k}}_{\mathbb{C}}^{\mathrm{real}},J)
$$

with $\tilde{\mathcal{Y}} = (\tilde{\mathcal{Y}}_{\mathbb{R}} - \sqrt{-1}J \cdot \tilde{\mathcal{Y}}_{\mathbb{R}})/2$. Now, from the action of $\tilde{\mathcal{Y}}$ on \mathcal{L} , we can globally define an infinitesimal action of $\tilde{\mathcal{Y}}_{\mathbb{R}}$ on \mathcal{L} by $\tilde{\mathcal{Y}}_{\mathbb{R}}e_i := (\psi_{\mathcal{Y},i} + \tilde{\psi}_{\mathcal{Y},i})e_i$. If $\mathscr{Y} \in \mathfrak{k}$, then $h^{\omega}_{\mathscr{U}}$ is real-valued, and in particular

$$
\tilde{\mathscr{Y}}_{\mathbb{R}}\tau = \tilde{\mathscr{Y}}_{\mathbb{R}}(\tau_i e_i^*) = (\tilde{\mathscr{Y}}_{\mathbb{R}}\tau_i)e_i^* - \tau_i(\psi_{\mathscr{Y},i} + \bar{\psi}_{\mathscr{Y},i})e_i^*
$$

=
$$
\tilde{\mathscr{Y}}_{\mathbb{R}}\tau_i - \tau_i(\tilde{\mathscr{Y}}_{\mathbb{R}}\log\tau_i - \sqrt{-1}h_{\mathscr{Y}}^{\omega} + \sqrt{-1}\bar{h}_{\mathscr{Y}}^{\omega}) = 0.
$$

Therefore, we can lift the \tilde{K} -action on X naturally to a \tilde{K} -action on $\mathscr L$ in such a way that it leaves the section τ of \mathcal{L}^* invariant. Now, regarding \tilde{f}_C^{real} as the Lie algebra of $\tilde{K}_{\mathbb{C}}$, we can further lift the $\tilde{K}_{\mathbb{C}}$ -action on X to a global $\bar{K}_{\mathbb{C}}$ -action on \mathscr{L} by setting

$$
\exp(s\tilde{\mathscr{Y}}_{\mathbb{R}})\cdot e_i=|\exp(s\psi_{\mathscr{Y},i})|^2e_i, \quad i\in I\;,
$$

on $U_i \cap \{ \exp(s\tilde{\mathcal{Y}}_{\mathbb{R}}) \} (U_i)$, for all $s \in \mathbb{R}$ and $\mathcal{Y} \in \mathfrak{k}_{\mathbb{C}}$. Then this $\tilde{K}_{\mathbb{C}}$ -action on $\mathscr L$ is quasi-holomorphic in the sense of [13].

Appendix 2

Let ${\cal H}_{\omega}$ be the space of all complex smooth functions φ on X such that $\text{grad}_{\omega}^{(1,0)}\varphi$ is holomorphic and that $\int_{X}\varphi\omega^{n}/n! = 0$. Then we have the complex Lie algebra isomorphism

$$
\hat{\mathscr{H}}_{\omega} \cong \mathfrak{g}, \quad \varphi \leftrightarrow \text{grad}_{\omega}^{(1,0)} \varphi ,
$$

where $\hat{\mathcal{H}}_{\omega}$ has a Lie algebra structure by $[\varphi_1, \varphi_2] := \sqrt{-1} \sum_{\alpha, \beta} g^{\tilde{\beta} \alpha} (\partial_{\alpha} \varphi_1 \partial_{\tilde{\beta}} \varphi_2 \partial_{\bar{\beta}}\varphi_1\partial_{\alpha}\varphi_2$). We then define a symmetric C-bilinear form \hat{B}_{ω} : $g \times g \to \mathbb{C}$ by

$$
\hat{B}_{\omega}(\mathscr{W}_1,\mathscr{W}_2):=\int\limits_X\varphi_1\varphi_2\,\omega^n/n!,\quad \varphi_1,\varphi_2\in\hat{\mathscr{H}}_{\omega},
$$

where $\mathscr{W}_1 := \text{grad}_{\omega}^{(1,0)} \varphi_1$ and $\mathscr{W}_2 := \text{grad}_{\omega}^{(1,0)} \varphi_2$. We shall now show the following:

Theorem H. *The C-bilinear form* \hat{B}_{ω} *on g is independent of the choice of* ω *in* γ.

Proof. We choose another Kähler metric ω' on X cohomologous to the original ω . Then there exists a real-valued smooth function ψ on X such that $\omega' = \omega_1$, where we set

$$
\omega_t := \omega + \frac{\sqrt{-1}}{2\pi} t \partial \bar{\partial} \psi \ , \quad 0 \leq t \leq 1 \ .
$$

Let $\mathscr{W}_v := \text{grad}_{\omega}^{(1,0)} \varphi_v$, $v = 1,2$, be arbitrary elements in g with $\varphi_v \in \hat{\mathscr{H}}_{\omega}$. We can then find $\varphi_{v,t} \in \hat{\mathcal{H}}_{\omega_t}$ such that $\mathcal{W}_v := \text{grad}_{\omega_t}^{(1,0)} \varphi_{v,t}$. It now suffices to show

$$
\int\limits_X \varphi_1 \varphi_2 \, \omega^n / n! = \int\limits_X \varphi_{1,t} \varphi_{2,t} \omega^n_t / n!, \quad 0 \leq t \leq 1.
$$

Write $\omega_t = (\sqrt{-1}/2\pi)\sum_{\alpha,\beta}g_{\alpha\beta}dz^{\alpha}\wedge dz^{\bar{\beta}}$ in terms of a system (z^1, z^2, \dots, z^n) of holomorphic local coordinates on X. By $i_{\mathscr{H}}(2\pi\omega) = \overline{\partial}\varphi_{v}$ and $i_{\mathscr{H}}(2\pi\omega_{t}) = \overline{\partial}\varphi_{v,t}$, we have

$$
i_{\mathscr{W}_v}(2\pi\omega_t) = i_{\mathscr{W}_v}\{2\pi\omega + \sqrt{-1}t\overline{\partial}(-\partial\psi)\} = \overline{\partial}\varphi_v + \sqrt{-1}\overline{\partial}\{t i_{\mathscr{W}_v}(\partial\psi)\}
$$

$$
= \overline{\partial}\{\varphi_v + \sqrt{-1}t\mathscr{W}_v\psi\} = \overline{\partial}\left\{\varphi_v + t\sum_{\alpha,\beta}\overline{\partial}^{\alpha}\partial_{\overline{\beta}}\varphi_v\partial_{\alpha}\psi\right\},
$$

i.e., φ_{v} , coincides with $\eta_{v} := \varphi_{v} + t \sum_{\alpha} \alpha g^{\beta \alpha} \partial_{\beta} \varphi_{v} \partial_{\alpha} \psi$ on X up to an additive constant. Since $\sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_{\nu} \partial_{\alpha} \psi = \sqrt{-1} \mathcal{W}_{\nu} \psi = \sum_{\alpha,\beta} g_t^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_{\nu} \partial_{\alpha} \psi$, we obtain

$$
\frac{d}{dt} \int_{X} \eta_{\nu,\iota} \omega_{\iota}^{n} / n! = \int_{X} \left\{ \left(\sum_{\alpha,\beta} g^{\tilde{\beta}\alpha} \partial_{\tilde{\beta}} \varphi_{\nu} \partial_{\alpha} \psi \right) + \varphi_{\nu,\iota} \Box_{\omega_{\iota}} \psi \right\} \omega_{\iota}^{n} / n!
$$
\n
$$
= \int_{X} \left\{ \left(\sum_{\alpha,\beta} g_{\iota}^{\tilde{\beta}\alpha} \partial_{\tilde{\beta}} \varphi_{\nu,\iota} \partial_{\alpha} \psi \right) + \varphi_{\nu,\iota} \Box_{\omega_{\iota}} \psi \right\} \omega_{\iota}^{n} / n!
$$
\n
$$
= (\bar{\partial} \varphi_{\nu,\iota}, \bar{\partial} \bar{\psi})_{L^{2}(X, \omega)} + (\varphi_{\nu,\iota}, \Box_{\omega_{\iota}} \bar{\psi})_{L^{2}(X, \omega)} = 0 ,
$$

where (, $)_{L^2(X,\omega)}$ denotes the Hermitian L^2 inner product, relative to ω , for smooth functions or differential forms on X. Therefore, $\int_X \eta_{y,0} \omega_0^n/n! =$ $f_X \varphi_v \omega^n / n! = 0$ implies $f_X \eta_{v,t} \omega_t^n / n! = 0$ for all $0 \le t \le 1$, hence $\varphi_{v,t} = \eta_{v,t}$ for all v and t . We now obtain the required identity by

$$
\frac{d}{dt} \int_{X} \varphi_{1,t} \varphi_{2,t} \omega_{t}^{n}/n! = \frac{d}{dt} \int_{X} \eta_{1,t} \eta_{2,t} \omega_{t}^{n}/n!
$$
\n
$$
= \int_{X} \left\{ \varphi_{1,t} \left(\sum g^{\tilde{\beta}x} \partial_{\tilde{\beta}} \varphi_{2} \partial_{\alpha} \psi \right) + \left(\sum g^{\tilde{\beta}x} \partial_{\tilde{\beta}} \varphi_{1} \partial_{\alpha} \psi \right) \varphi_{2,t} + \varphi_{1,t} \varphi_{2,t} \Box_{\omega_{t}} \psi \right\} \omega_{t}^{n}/n!
$$
\n
$$
= \int_{X} \left\{ \varphi_{1,t} \left(\sum g_{t}^{\tilde{\beta}x} \partial_{\tilde{\beta}} \varphi_{2,t} \partial_{\alpha} \psi \right) + \left(\sum g_{t}^{\tilde{\beta}x} \partial_{\tilde{\beta}} \varphi_{1,t} \partial_{\alpha} \psi \right) \varphi_{2,t} + \varphi_{1,t} \varphi_{2,t} \Box_{\omega_{t}} \psi \right\} \omega_{t}^{n}/n!
$$
\n
$$
= \int_{X} \left\{ \left(\sum g_{t}^{\tilde{\beta}x} \partial_{\tilde{\beta}} (\varphi_{1,t} \varphi_{2,t}) \partial_{\alpha} \psi \right) + \varphi_{1,t} \varphi_{2,t} \Box_{\omega_{t}} \psi \right\} \omega_{t}^{n}/n!
$$
\n
$$
= (\bar{\partial} (\varphi_{1,t} \varphi_{2,t}), \bar{\partial} \bar{\psi})_{L^{2}(X, \omega)} + (\varphi_{1,t} \varphi_{2,t}, \Box_{\omega_{t}} \psi)_{L^{2}(X, \omega)} = 0.
$$

Remark. By Theorem H, we write the bilinear form \hat{B}_{ω} : $g \times g \rightarrow \mathbb{C}$ just as \hat{B}_y : $g \times g \to \mathbb{C}$. Then by the same argument as in (1.3), we obtain $\hat{B}_{\gamma}([\mathscr{W}_1, \mathscr{W}_2], \mathscr{W}_3) = \hat{B}_{\gamma}(\mathscr{W}_1, [\mathscr{W}_2, \mathscr{W}_3])$ for all $\mathscr{W}_1, \mathscr{W}_2, \mathscr{W}_3$ in g. Moreover, the bilinear forms B_y : $\mathfrak{k}_\mathbb{C} \times \mathfrak{k}_\mathbb{C} \to \mathbb{C}$ and \hat{B}_y : $g \times g \to \mathbb{C}$ are related by

$$
B_{\gamma}(\mathscr{Y}_1,\mathscr{Y}_2)=\hat{B}_{\gamma}(\iota_*\mathscr{Y}_1,\iota_*\mathscr{Y}_2),\quad \mathscr{Y}_1,\mathscr{Y}_2\in\mathfrak{k}_{\mathbb{C}}\;,
$$

where ι : $G/R_u (= K_{\mathbb{C}}) \cong \iota(G/R_u) \subset G$ is an isomorphism as in the introduction. It is easily checked that the independence of $B_{\vec{k},\omega}$ on ω can be proved also by Theorem H.

Remark. Let $0 < m \in \mathbb{Z}$. Define a symmetric C-multilinear form $\hat{B}_{\omega}^{(m)}$: $g^{m} \rightarrow$ **C** by setting $\hat{B}_{\omega}^{(m)}(\mathscr{W}_1, \mathscr{W}_2, \dots, \mathscr{W}_m) := \int_{\mathcal{X}} \varphi_1 \varphi_2 \dots \varphi_m \omega^n/n!, \varphi_j \in \hat{\mathcal{H}}_{\omega}, \text{ where}$ $\mathscr{W}_j := \text{grad}_{\omega}^{(1,0)} \varphi_j$. Then a slight modification of the above arguments shows that $\hat{B}_{\omega}^{(m)}$ is also independent of the choice of ω in γ . As in the Remark just above, this induces a multilinear form on f_c depending only on the class γ , and when restricted to t, it coincides with the multilinear form in remark of (1.1).

References

- 1. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1-15 (1982)
- 2. Calabi, E.: Extremal Kähler metrics. In: Yau, S.T. (ed.): Seminars on differential geometry. (Ann. Math. Stud., vol. 18-I, pp. 259-290) Princeton: Princeton Univ. Press 1982
- 3. Calabi, E.: Extremal K/ihler metrics II. In: Chavel, I., Farkas, H.M. (eds.): Differential geometry and complex analysis, pp. 95-114. Berlin Heidelberg New York: Springer 1985
- 4. Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math. 44, 225-258 (1978)
- 5. Futaki, A.: Kähler-Einstein metrics and integral invariants. (Lect. Notes Math., vol. 1314) Berlin Heidelberg New York: Springer 1988
- 6. Futaki, A., Mabuchi, T.: An obstruction class and a representation of holomorphic automorphisms. In: Sunada, T. (ed.): Geometry and analysis on manifolds. (Lect. Notes Math., vol. 1339, pp. 127-141) Berlin Heidelberg New York: Springer 1988
- 7. Guillemin, V., Sternberg, S.: Convex properties of the moment mapping. Invent. Math. 67, 491-513 (1982)
- 8. Hwang, A., Mabuchi, T.: A conjecture on the group of biholomorphisms of a nonsingular Fano variety. Int. J. Math (to appear).
- 9. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. (Tracts Math., vol. 15-II) New York: Wiley-Interscience 1963
- 10. Kobayashi, S.: Transformation groups in differential geometry. (Ergeb. Math. Grenzgeb., Bd. 70) Berlin Heidelberg New York: Springer 1972
- 11. LeBrun, C., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. (to appear)
- 12. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds (I). Osaka J. Math. 24, 227-252 (1987)
- 13. Mabuchi, T.: An algebraic character associated with the Poisson brackets. In: Ochiai, T. (ed.): Recent topics in differential and analytic geometry. (Adv. Stud. Pure Math., vol. 18-I, pp. 339-358) Tokyo and Boston: Kinokuniya and Academic Press 1990
- 14. Mabuchi, T.: Q-rationality of moment maps. Proc. Japan Acad. 69 (A), 392-394 (1993)