Bilinear forms and extremal Kähler vector fields associated with Kähler classes

Akito Futaki¹, Toshiki Mabuchi²

¹ Faculty of Science, Tokyo Institute of Technology, Meguro, Tokyo, 152 Japan (e-mail: futaki@math.titech.ac.jp)

² College of General Education, Osaka University, Toyonaka, Osaka, 560 Japan (e-mail: g62030a@center.osaka-u.ac.jp)

Received: 20 September 1993 / In revised form: 28 February 1994

Mathematics Subject Classification (1991): 53C55, 14J45, 14J50, 32J25

Introduction

In this paper, we fix once for all an *n*-dimensional compact complex connected manifold X with a Kähler class $\gamma \in H^{1,1}(X, \mathbb{R}) := H^{1,1}(X) \cap H^2(X, \mathbb{R})$. For any complex variety Y, we denote by $\operatorname{Aut}^0(Y)$ the identity component of the group of holomorphic automorphisms of Y. Then the Albanese map of X to the Albanese variety Alb(X) induces a Lie group homomorphism

$$a_X : \operatorname{Aut}^0(X) \to \operatorname{Aut}^0(\operatorname{Alb}(X)) \cong \operatorname{Alb}(X)),$$

and the identity component $G := \operatorname{Ker}^0 a_X$ of the kernel of a_X is a linear algebraic group (see [4]). Let R_u be the unipotent radical of G, and by setting $K_{\mathbb{C}} := G/R_u$, we have a reductive algebraic group $K_{\mathbb{C}}$ which is a complexification of a maximal compact subgroup K of G/R_u . Then the Chevalley decomposition allows us to obtain an algebraic group isomorphism $\iota : K_{\mathbb{C}} \cong \iota(K_{\mathbb{C}}) \subset G$, unique up to conjugacy in G, such that it gives a splitting to the exact sequence $1 \to R_u \to G \to K_{\mathbb{C}} \to 1$, i.e., G is written as a semidirect product

$$G = \tilde{K}_{\mathbb{C}} \bowtie R_u ,$$

where we put $\tilde{K}_{\mathbb{C}} := \iota(K_{\mathbb{C}})$ and $\tilde{K} := \iota(K)$ for the splitting ι . Since K is just the image of \tilde{K} under the projection of G onto G/R_u , it is easily seen that the pair (K, ι) is uniquely determined by \tilde{K} . Let $g, \mathfrak{k}, \mathfrak{k}_{\mathbb{C}}$ be the Lie algebras of G, $K, K_{\mathbb{C}}$, respectively. Put $\tilde{\mathfrak{k}} := \iota_* \mathfrak{k}$ and $\tilde{\mathfrak{k}}_{\mathbb{C}} := \iota_* \mathfrak{k}_{\mathbb{C}}$. We now take a \tilde{K} -invariant Kähler metric ω in the class γ , and write

$$\omega = rac{\sqrt{-1}}{2\pi}\sum_{lpha,eta}g_{lphaareta}dz^{lpha}\wedge dz^{areta}$$

in terms of a system $(z^1, z^2, ..., z^n)$ of holomorphic local coordinates on X. In this paper, a Kähler metric and the associated Kähler form are used interchangeably. If we move i and K, then our ω runs through $\mathcal{M}_{\gamma}(\neq \phi)$, where \mathcal{M}_{γ} denotes the set of all Kähler metrics in the class γ such that the associated groups of the isometries, when intersected with *G*, are maximal compact in *G*. Let $\Box_{\omega} := \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \partial^2 / \partial z^{\alpha} \partial z^{\bar{\beta}}$ denote the complex Laplacian for functions on the Kähler manifold (X, ω) . To each complex-valued smooth function φ on *X*, we associate a complex vector field $\operatorname{grad}_{\omega}^{(1,0)} \varphi$ on *X* of type (1,0) by

$$\operatorname{grad}_{\omega}^{(1,0)} \varphi := rac{1}{\sqrt{-1}} \sum_{\alpha,\beta=1}^n g^{\tilde{\beta}\alpha} \partial_{\tilde{\beta}} \varphi \, rac{\partial}{\partial z^{\alpha}} \; .$$

Let \mathscr{H}_{ω} be the space of all complex smooth functions φ on X such that $\operatorname{grad}_{\omega}^{(1,0)}\varphi$ is in $\tilde{\mathfrak{t}}_{\mathbb{C}}$ and that $\int_{X}\varphi\omega^{n}/n! = 0$. Then we have $\mathfrak{t}_{\mathbb{C}} \cong \mathscr{H}_{\omega}$ by associating to each $\mathscr{Y} \in \mathfrak{t}_{\mathbb{C}}$ a function $h_{\mathscr{Y}}^{\omega}$ in \mathscr{H}_{ω} , called the Hamiltonian function for \mathscr{Y} , by

$$\tilde{\mathscr{Y}} = \operatorname{grad}_{\omega}^{(1,0)} h_{\mathscr{Y}}^{\omega}$$

where $\tilde{\mathscr{Y}} := \iota_* \mathscr{Y}$. Note that, if $\mathscr{Y} \in \mathfrak{k}$, then $h_{\mathscr{Y}}^{\omega}$ is a real-valued function on X. We now define a symmetric \mathbb{C} -bilinear form $B_{\tilde{\mathcal{K}},\omega} : \mathfrak{k}_{\mathbb{C}} \times \mathfrak{k}_{\mathbb{C}} \to \mathbb{C}$ by

$$B_{\tilde{K},\omega}(\mathscr{Y},\mathscr{Z}) = \int_{X} h_{\mathscr{Y}}^{\omega} h_{\mathscr{Z}}^{\omega} \omega^{n}/n!$$

where the restriction of $B_{\tilde{K},\omega}$ to t is obviously positive definite. In particular, $B_{\tilde{K},\omega}$ is a nondegenerate C-bilinear form. We shall first show that

Theorem A. For a given class γ , the bilinear form $B_{\tilde{K},\omega}$ depends neither on the choice of a maximal compact subgroup \tilde{K} in G, nor on the choice of a \tilde{K} -invariant Kähler metric ω in the class γ .

Hence, we write $B_{\check{K},\omega}$: $\mathfrak{k}_{\mathbb{C}} \times \mathfrak{k}_{\mathbb{C}} \to \mathbb{C}$ simply as B_{γ} : $\mathfrak{k}_{\mathbb{C}} \times \mathfrak{k}_{\mathbb{C}} \to \mathbb{C}$. For the reductive Lie algebra $\mathfrak{k}_{\mathbb{C}}$, its commutator subalgebra $[\mathfrak{k}_{\mathbb{C}}, \mathfrak{k}_{\mathbb{C}}]$ is written as a direct sum $\bigoplus_{\ell=1}^{p} \mathfrak{s}_{\ell}$ of complex simple Lie algebras \mathfrak{s}_{ℓ} . Therefore,

$$\mathfrak{f}_{\mathbb{C}} = \mathfrak{z} \oplus [\mathfrak{l}_{\mathbb{C}}, \mathfrak{l}_{\mathbb{C}}] = \mathfrak{z} \oplus \left(\bigoplus_{\ell=1}^{p} \mathfrak{s}_{\ell} \right) ,$$

where \mathfrak{z} is the center of the Lie algebra $\mathfrak{f}_{\mathbb{C}}$. Let $B_{\ell} : \mathfrak{s}_{\ell} \times \mathfrak{s}_{\ell} \to \mathbb{C}$ be the Killing form for \mathfrak{s}_{ℓ} , and let $B_{\mathfrak{z}} : \mathfrak{z} \times \mathfrak{z} \to \mathbb{C}$ be the restriction of the bilinear form B_{γ} to \mathfrak{z} . Then the structure of the bilinear form B_{γ} is given by the following:

Theorem B. For some negative real constants a_{ℓ} , $B_{\gamma} = B_3 \oplus (\bigoplus_{\ell=1}^p a_{\ell}B_{\ell})$. In particular, B_3 , a_1 , a_2 ,..., a_p are invariants of the Kähler class γ on X.

Consider the scalar curvature $\sigma_{\omega} := \sum_{\alpha,\beta} g^{\beta\alpha} R_{\alpha\beta}$ of the Kähler metric ω , where $R_{\alpha\beta} := -\partial_{\alpha}\partial_{\beta} \log \omega^n$. Note that $H\sigma_{\omega} := nc_1(X)\gamma^{n-1}[X]/\gamma^n[X]$ is the harmonic part of σ_{ω} . Let $C^{\infty}(X)$ be the space of all complex smooth functions on X endowed with the Hermitian inner product $(\varphi_1, \varphi_2)_{L^2(X,\omega)} := \int_X \varphi_1 \, \overline{\varphi}_2 \, \omega^n/n!$. Let pr : $C^{\infty}(X) \to \mathscr{H}_{\omega}$ be the orthogonal projection. Now, we put

$$\tilde{\mathscr{V}}_{\omega} := \operatorname{grad}_{\omega}^{(1,0)} \operatorname{pr}(\sigma_{\omega}) \in \mathfrak{l}_{\mathbb{C}}$$

If the vector field $\operatorname{grad}_{\omega}^{(1,0)}\sigma_{\omega}$ is holomorphic, i.e., $\tilde{\mathscr{V}}_{\omega} = \operatorname{grad}_{\omega}^{(1,0)}\sigma_{\omega}$, then ω is called an **extremal Kähler metric** (see [2, 3]), and as observed by Calabi in [3], any extremal Kähler metric in the class γ is always in \mathscr{M}_{γ} . As long as ω is in \mathscr{M}_{γ} , by abuse of terminology, we call $\tilde{\mathscr{V}}_{\omega}$ an **extremal Kähler vector field** even when ω is not an extremal Kähler metric. Since $\operatorname{pr}(\sigma_{\omega})$ is real-valued, $\tilde{\mathscr{V}}_{\omega}$ belongs to $\tilde{\mathfrak{t}}$, so that we can define an element \mathscr{V}_{ω} in \mathfrak{t} by $\tilde{\mathscr{V}}_{\omega} = \iota_* \mathscr{V}_{\omega}$. Slightly modifying the Futaki character, let us now define a Lie algebra character F_{γ} : Lie $(G/R_{u})(=\mathfrak{t}_{\mathbb{C}}) \to \mathbb{C}$ by

$$F_{\gamma}(\mathcal{Y}) := (\sqrt{-1})^{-1} \int_{X} (\tilde{\mathcal{Y}} f_{\omega}) \omega^{n} / n!, \quad \mathcal{Y} \in \mathfrak{t}_{\mathbb{C}} ,$$

where f_{ω} is a real-valued function in $C^{\infty}(X)$ satisfying $\sigma_{\omega} - H\sigma_{\omega} = \Box_{\omega}f_{\omega}$. Note that F_{γ} is independent of the choice of ω in \mathcal{M}_{γ} . Now, for every ω in \mathcal{M}_{γ} , we shall show the following uniqueness of extremal Kähler vector fields:

Theorem C. $F_{\gamma}(\mathcal{Y}) = B_{\gamma}(\mathcal{Y}, \mathscr{V}_{\omega})$ for all $\mathcal{Y} \in \mathfrak{t}_{\mathbb{C}}$. Hence, if we identify $(\mathfrak{t}_{\mathbb{C}})^*$ with $\mathfrak{t}_{\mathbb{C}}$ by the nondegenerate bilinear form $B_{\gamma} : \mathfrak{t}_{\mathbb{C}} \times \mathfrak{t}_{\mathbb{C}} \to \mathbb{C}$, then F_{γ} coincides with \mathscr{V}_{ω} .

Corollary D. The element \mathscr{V}_{ω} in $\mathfrak{t}_{\mathbb{C}}$ belongs to the center \mathfrak{z} , and is independent of the choice of ω in \mathscr{M}_{γ} . In particular, $F_{\gamma}(\mathscr{V}_{\omega})(=B_{\gamma}(\mathscr{V}_{\omega},\mathscr{V}_{\omega}))$ is independent of the choice of ω in γ , and is an invariant of the Kähler class γ .

Corollary E. For any ω_1, ω_2 in \mathcal{M}_{γ} , there exists a $g \in R_u$ such that $g_* \tilde{\mathcal{V}}_{\omega_1} = \tilde{\mathcal{V}}_{\omega_2}$.

For each $\mathscr{Y} \in \mathfrak{f}_{\mathbb{C}}$, let $\tilde{\mathscr{Y}}_{\mathbb{R}} := \iota_* \mathscr{Y} + \overline{\iota_* \mathscr{Y}}$ denote the real vector field on X associated with $\tilde{\mathscr{Y}} := \iota_* \mathscr{Y}$. Then for $\gamma = c_1(X)$, we obtain the following periodicity of extremal Kähler vector fields:

Theorem F. If $\omega \in \mathcal{M}_{c_1(X)}$, then $\exp(2\pi m \tilde{\mathcal{V}}_{\omega \mathbb{R}}) = \operatorname{id}_X$ for some integer m > 0.

Corollary G. If $\omega \in \mathcal{M}_{c_1(X)}$, then both $\max_X \operatorname{pr}(\sigma_{\omega})$ and $\min_X \operatorname{pr}(\sigma_{\omega})$ are rational numbers independent of ω .

This paper consists of three sections and two appendices. We organize these as follows. Section 1 is devoted to the study of the bilinear form B_{γ} and in particular, we prove Theorems A and B. Then in Sect. 2, we show the uniqueness of extremal Kähler vector fields, so that we prove Theorem C, Corollaries D and E. In Sect. 3, results in [6, 14] together with Theorem C will allow us to obtain the periodicity of extremal Kähler vector fields for $\gamma = c_1(X)$, and it in particular proves Theorem F and Corollary G. In Appendix 1, we complete the arguments in Sect. 1 by showing how a result in [13] can be applicable to Sect. 1. Finally in Appendix 2, another direct proof for the independence of the bilinear form $B_{\hat{K},\omega}$ on the choice of ω in γ will be given.

1 The symmetric C-bilinear form B_{γ} on $\mathfrak{t}_{\mathbb{C}}$

(1.1) In view of the isomorphism $H^{1,1}(X, \mathbb{R}) \cong H^1(X, |\mathcal{O}^*|^2)$, we consider the real line bundle \mathscr{L} on X associated with the Kähler class γ (cf. [13]). For the nowhere vanishing section τ to \mathscr{L}^* as in Appendix 1, the holomorphic $\tilde{K}_{\mathbb{C}}$ -action on X lifts to a quasi-holomorphic $\tilde{K}_{\mathbb{C}}$ -action on \mathscr{L} such that the associated infinitesimal action of $\tilde{\mathfrak{t}}_{\mathbb{C}}$ on \mathscr{L} satisfies

$$(\sqrt{-1}\,\tau)^{-1}\tilde{\mathscr{Y}}\tau=h^{\omega}_{\mathscr{Y}},\quad \mathscr{Y}\in\mathfrak{t}_{\mathbb{C}}$$

We now choose a maximal algebraic torus $T_{\mathbb{C}} \cong \mathbb{G}_m^r$ in $K_{\mathbb{C}}$ such that its maximal compact subgroup $T(\cong (S^1)^r)$ is contained in K. Let t be the real Lie subalgebra of t associated with the subgroup T of K. Put $\tilde{T} := \iota(T)$ and $\tilde{t} := \iota_* t$. Then the moment map $\mu_{\omega} : X \to t^*$ (cf. [13, Sect. 4]) associated to the \tilde{T} -action on X sends each $x \in X$ to the associated element $\mu_{\omega}(x) \in t^*$ defined by

$$\langle \mu_{\omega}(x), \mathscr{Y} \rangle := h_{\mathscr{Y}}^{\omega}(x), \quad \mathscr{Y} \in \mathfrak{t}$$

Note that the image $\mu(X)$ in t^{*} of X under the map μ is a compact convex polyhedron independent of the choice of the \tilde{K} -invariant Kähler metric ω in the class γ (cf. [1, 7]; see also [14]). Let $\mu_{\omega*}(\omega^n/n!)$ be the measure on $\mu_{\omega}(X)$ obtained as the push-forward, by the map μ_{ω} , of the measure $\omega^n/n!$ on X. Then by [13, Corollary 5.2], the measure $\mu_{\omega*}(\omega^n/n!)$ is also independent of the choice of ω . Therefore, the restriction of the bilinear form $B_{\tilde{K},\omega}$ to t (hence to $t_{\mathbb{C}}$),

$$B_{\tilde{K},\omega}(\mathscr{Y}_1,\mathscr{Y}_2) = \int_X h^{\omega}_{\mathscr{Y}_1} h^{\omega}_{\mathscr{Y}_2} \omega^n / n! = \int_{\mu_{\omega}(X)} y_1 y_2 \mu_*(\omega^n / n!), \quad \mathscr{Y}_1, \mathscr{Y}_2 \in \mathfrak{t} ,$$

is independent of the choice of ω , where the inclusion $\mu_{\omega}(X) \subset t^*$ allows us to regard \mathscr{Y}_1 and \mathscr{Y}_2 as functions on $\mu_{\omega}(X)$, denoted respectively by y_1 and y_2 , such that $\mu^*_{\omega} y_1 = h^{\omega}_{\mathscr{Y}_1}$ and $\mu^*_{\omega} y_2 = h^{\omega}_{\mathscr{Y}_2}$.

Remark. For every positive integer *m*, the symmetric C-multilinear form $B_{\vec{k},\omega}^{(m)}$: $t^m \to \mathbb{C}$ defined by $B_{\vec{k},\omega}^{(m)}(\mathscr{Y}_1, \mathscr{Y}_2, \dots, \mathscr{Y}_m) = \int_X h_{\mathscr{Y}_1}^{\omega} h_{\mathscr{Y}_2}^{\omega} \dots h_{\mathscr{Y}_m}^{\omega} \omega^n / n!, \ \mathscr{Y}_j \in \mathfrak{t}$, is more generally independent of the choice of ω . Moreover, by the argument in (1.2) below, $B_{\vec{k},\omega}^{(m)}$ is independent also of the choice of \tilde{K} .

(1.2) In place of \tilde{K} , we choose another maximal compact subgroup \tilde{K}' of G. Then there exists an element g of G such that $\tilde{K}' = \operatorname{Ad}(g^{-1})\tilde{K} = g^{-1}\tilde{K}g$. Since G is connected, the form $\omega' := g^*\omega$ is cohomologous to ω , and is therefore in the class γ . Note also that

$$h_{\mathscr{Y}}^{\omega'} = g^* h_{\mathscr{Y}}^{\omega}, \quad \mathscr{Y} \in \mathfrak{l}_{\mathbb{C}}$$

and it implies $B_{\check{\mathcal{K}}',\omega'}(\mathscr{Y},\mathscr{Z}) = B_{\check{\mathcal{K}},\omega}(\mathscr{Y},\mathscr{Z})$ for all $\mathscr{Y},\mathscr{Z} \in \mathfrak{f}_{\mathbb{C}}$ by

$$\int_{X} h_{\mathscr{Y}}^{\omega'} h_{\mathscr{Z}}^{\omega'} {\omega'}^n / n! = \int_{X} (g^* h_{\mathscr{Y}}^{\omega}) (g^* h_{\mathscr{Z}}^{\omega}) (g^* \omega^n) / n! = \int_{X} h_{\mathscr{Y}}^{\omega} h_{\mathscr{Z}}^{\omega} {\omega}^n / n! .$$

Thus, in proving Theorems A and B, we may fix a \tilde{K} once for all, and it suffices to show (i) the independence of $B_{\tilde{K},\omega}$ on ω and (ii) the identity in Theorem B.

(1.3) In view of (1.2), we fix a \tilde{K} once for all. Note that both i and K are uniquely determined by \tilde{K} . We now take $\varphi_1, \varphi_2, \varphi_3 \in C^{\infty}(X)$ and $\mathscr{Y}_1, \mathscr{Y}_2, \mathscr{Y}_3 \in \mathfrak{f}_{\mathbb{C}}$. Put $[\varphi_1, \varphi_2] = \sqrt{-1} \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} (\partial_{\alpha} \varphi_1 \partial_{\bar{\beta}} \varphi_2 - \partial_{\bar{\beta}} \varphi_1 \partial_{\alpha} \varphi_2)$, called the Poisson bracket of φ_1 and φ_2 relative to ω . Recall the following standard fact (see for instance [13]):

(1.3.1)
$$h^{\omega}_{[\mathscr{Y}_1,\mathscr{Y}_2]} = [h^{\omega}_{\mathscr{Y}_1}, h^{\omega}_{\mathscr{Y}_2}];$$

(1.3.2)
$$\int_{X} [\varphi_1, \varphi_2] \varphi_3 \, \omega^n / n! = \int_{X} \varphi_1[\varphi_2, \varphi_3] \omega^n / n! \, .$$

Combining (1.3.1) and (1.3.2), we obtain

$$\begin{split} B_{\tilde{K},\omega}([\mathscr{Y}_1,\mathscr{Y}_2],\mathscr{Y}_3) &= \int_X h^{\omega}_{[\mathscr{Y}_1,\mathscr{Y}_2]} h^{\omega}_{\mathscr{Y}_3} \, \omega^n/n! = \int_X [h^{\omega}_{\mathscr{Y}_1}, h^{\omega}_{\mathscr{Y}_2}] h^{\omega}_{\mathscr{Y}_3} \, \omega^n/n! \\ &= \int_X h^{\omega}_{\mathscr{Y}_1} [h^{\omega}_{\mathscr{Y}_2}, h^{\omega}_{\mathscr{Y}_3}] \, \omega^n/n! = \int_X h^{\omega}_{\mathscr{Y}_1} h^{\omega}_{[\mathscr{Y}_2,\mathscr{Y}_3]} \omega^n/n! \\ &= B_{\tilde{K},\omega}(\mathscr{Y}_1, [\mathscr{Y}_2, \mathscr{Y}_3]) \, . \end{split}$$

Hence, if $\mathscr{Y}_3 \in \mathfrak{z}$, then $B_{\check{\mathcal{K}},\omega}([\mathscr{Y}_1, \mathscr{Y}_2], \mathscr{Y}_3) = 0$ by $[\mathscr{Y}_2, \mathscr{Y}_3] = 0$. Therefore, the bilinear form $B_{\check{\mathcal{K}},\omega}$ is written in the form

(1.3.3)
$$B_{\check{K},\omega} = (B_{\check{K},\omega})_{|\mathfrak{z}|} \oplus (B_{\check{K},\omega})_{|[\mathfrak{l}_{\mathfrak{C}},\mathfrak{l}_{\mathfrak{C}}]}.$$

Put $\mathfrak{h} := [\mathfrak{k}, \mathfrak{k}]$ and $\mathfrak{m} := \sqrt{-1}\mathfrak{h}$. We further set $\mathfrak{m}_{\mathbb{C}} := \mathfrak{h} + \mathfrak{m} = [\mathfrak{k}_{\mathbb{C}}, \mathfrak{k}_{\mathbb{C}}] = \bigoplus_{\ell=1}^{p} \mathfrak{s}_{\ell}$. In view of the identity $B_{\tilde{K},\omega}([\mathscr{Y}_1, \mathscr{Y}_2], \mathscr{Y}_3) = B_{\tilde{K},\omega}(\mathscr{Y}_1, [\mathscr{Y}_2, \mathscr{Y}_3])$ above, the restriction of the symmetric bilinear form $B_{\tilde{K},\omega}$ to \mathfrak{m} is ad(\mathfrak{h})-invariant, hence (cf. [9, p. 257]),

$$(B_{\tilde{K},\omega})_{|\mathfrak{m}} = \sum_{\ell=1}^{p} a_{\ell} B_{\ell_{|\mathfrak{m}}}$$

for some constants $a_{\ell} \in \mathbb{R}$ possibly depending on the choice of ω . Complexifying this, we now obtain

(1.3.4)
$$(B_{\hat{K},\omega})_{[[t_{\mathfrak{C}},t_{\mathfrak{C}}]} = \sum_{\ell=1}^{p} a_{\ell} B_{\ell} .$$

Since the restriction of $B_{\tilde{K},\omega}$ to f is positive definite, and since B_{ℓ} is the Killing form for \mathfrak{s}_{ℓ} , it follows that a_{ℓ} are all negative. Finally, the proof of Theorems A and B is reduced to showing that $(B_{\tilde{K},\omega})_{|_{3}}$ in (1.3.3) and all a_{ℓ} in (1.3.4) are independent of the choice of ω with \tilde{K} fixed once for all. But such independence is straightforward from (1.1), and this completes the proof of Theorems A and B.

2 Uniqueness of extremal Kähler vector fields

(2.1) We shall first prove Theorem C and Corollary D. Let $(,)_{\omega}$ denote the pointwise Hermitian pairing, relative to the Kähler metric ω , on the space of all smooth differentiable 1-forms on X. Then, for $\mathscr{Y} \in \mathfrak{k}_{\mathbb{C}}$, we obtain (see also LeBrun and Simanca [11]):

$$F_{\gamma}(\mathscr{Y}) = (\sqrt{-1})^{-1} \int_{X} (\tilde{\mathscr{Y}} f_{\omega}) \omega^{n} / n! = (\sqrt{-1})^{-1} \int_{X} (\operatorname{grad}_{\omega}^{(1,0)} h_{\mathscr{Y}}^{\omega}) (f_{\omega}) \omega^{n} / n!$$

$$= - \int_{X} \sum_{\alpha,\beta} g^{\beta\alpha} \partial_{\beta} h_{\mathscr{Y}}^{\omega} \partial_{\alpha} f_{\omega} \omega^{n} / n! = - \int_{X} (\bar{\partial} h_{\mathscr{Y}}^{\omega}, \bar{\partial} f_{\omega})_{\omega} \omega^{n} / n!$$

$$= \int_{X} h_{\mathscr{Y}}^{\omega} (\Box_{\omega} f_{\omega}) \omega^{n} / n! = \int_{X} h_{\mathscr{Y}}^{\omega} (\sigma_{\omega} - H\sigma_{\omega}) \omega^{n} / n! = \int_{X} h_{\mathscr{Y}}^{\omega} \sigma_{\omega} \omega^{n} / n!$$

$$= \int_{X} h_{\mathscr{Y}}^{\omega} \operatorname{pr}(\sigma_{\omega}) \omega^{n} / n! = \int_{X} h_{\mathscr{Y}}^{\omega} h_{\mathscr{Y}_{\omega}}^{\omega} \omega^{n} / n! = B_{\gamma}(\mathscr{Y}, \mathscr{Y}_{\omega}) ,$$

which completes the proof of Theorem C. Since $B_{\gamma}([\mathfrak{t}_{\mathbb{C}},\mathfrak{t}_{\mathbb{C}}],\mathscr{V}_{\omega}) = F_{\gamma}([\mathfrak{t}_{\mathbb{C}},\mathfrak{t}_{\mathbb{C}}]) = \{0\}$, Theorem B yields $\mathscr{V}_{\omega} \in \mathfrak{z}$. Then, Corollary D is straightforward from Theorem C.

(2.2) Next, we shall prove Corollary E. Let ω_1, ω_2 be extremal Kähler metrics in the same class γ . Then by Corollary D, there exists a unique element \mathscr{V} in the center \mathfrak{z} for the Lie algebra $\mathfrak{k}_{\mathbb{C}}$ of $K_{\mathbb{C}} = G/R_u$ such that

$$\mathscr{V}_{\omega_1} = \mathscr{V} = \mathscr{V}_{\omega_2}$$
 .

Therefore, we have isomorphisms $\iota_1 : K_{\mathbb{C}} \cong \iota_1(K_{\mathbb{C}}) \subset G$ and $\iota_2 : K_{\mathbb{C}} \cong \iota_2(K_{\mathbb{C}}) \subset G$ such that $\tilde{\mathscr{V}}_{\omega_1} = (\iota_1)_* \mathscr{V}$ and $\tilde{\mathscr{V}}_{\omega_2} = (\iota_2)_* \mathscr{V}$. Since these isomorphisms coincide up to conjugacy in G, there exists an element g of G such that $\iota_2 = \operatorname{Ad}(g) \circ \iota_1$. Note that $G = \iota_1(K_{\mathbb{C}}) \cdot R_u = R_u \cdot \iota_1(K_{\mathbb{C}})$. Then we can write g as $g' \cdot \iota_1(k)$ for some $g' \in R_u$ and $k \in K_{\mathbb{C}}$. Therefore,

$$\begin{split} \tilde{\mathscr{V}}_{\omega_2} &= (\iota_2)_*\mathscr{V} = \{\mathrm{Ad}(g) \circ \iota_1\}_*\mathscr{V} = \{\mathrm{Ad}(g') \circ \mathrm{Ad}(\iota_1(k)) \circ \iota_1\}_*\mathscr{V} \\ &= g'_*\{\mathrm{Ad}(\iota_1(k)) \circ \iota_1\}_*\mathscr{V} = g'_*\{(\iota_1)_*(\mathrm{Ad}(k)\mathscr{V})\} \\ &= g'_*(\iota_1)_*\mathscr{V} = g'_*\widetilde{\mathscr{V}}_{\omega_1} \;. \end{split}$$

3 Periodicity of extremal Kähler vector fields

(3.1) Let $T, T_{\mathbb{C}}$ be as in (1.1). Write $T_{\mathbb{C}} = \mathbb{G}_m^r = \{(z_1, z_2, \dots, z_r); z_i \in \mathbb{C}^*$ for all $i\}$. Then by setting $\mathscr{Z}_i := \sqrt{-1}z_i\partial/\partial z_i$ and $\mathscr{Z}_i^* := (\sqrt{-1}z_i)^{-1}dz_i$, we can regard t, t^* as $\sum_{i=1}^r \mathbb{R}\mathscr{Z}_i, \sum_{i=1}^r \mathbb{R}\mathscr{Z}_i^*$ respectively. Then t and t* admit natural \mathbb{Z} -structures

$$\sum_{i=1}^{r} \mathbb{Z} \mathscr{Z}_{i} = \mathfrak{t}_{\mathbb{Z}} = \{ \mathscr{Y} \in \mathfrak{t}; \exp(2\pi \mathscr{Y}) = 1 \} ,$$

Extremal Kähler vector fields

$$\sum_{i=1}^{\prime} \mathbb{Z} \mathscr{Z}_i^* = \mathfrak{t}_{\mathbb{Z}}^* = \{ \theta \in \mathfrak{t}^*; < \theta, \ \mathfrak{t}_{\mathbb{Z}} > \subset \mathbb{Z} \} .$$

We then put $t_{\mathbf{Q}} := t_{\mathbf{Z}} \otimes \mathbf{Q} = \sum_{i=1}^{r} \mathbf{Q} \mathscr{Z}_{i}$ and $t_{\mathbf{Q}}^{*} := t_{\mathbf{Z}}^{*} \otimes \mathbf{Q} = \sum_{i=1}^{r} \mathbf{Q} \mathscr{Z}_{i}^{*}$. Recall the following fact:

Fact (see [14]) Suppose $\gamma \in H^2(X, \mathbb{Q})$. Then the restriction of B_{γ} to t is defined over \mathbb{Q} , i.e., $B_{\gamma}(\mathcal{Z}_i, \mathcal{Z}_j) \in \mathbb{Q}$ for all i and j.

Hence, if $\gamma \in H^2(X, \mathbb{Q})$, then Theorem B is stated in a more refined way. Namely, if $\gamma \in H^2(X, \mathbb{Q})$, then $a_1, a_2, \ldots a_p$ are all rational numbers, and B_3 is defined over \mathbb{Q} .

(3.2) We now consider the case where $\gamma = c_1(X)_{\mathbb{Q}}$. Then the *G*-action on *X* naturally lifts to a bundle *G*-action on the anticanonical bundle K_X of *X*. Note that the associated infinitesimal action of g on K_X (or more generally on the space of smooth differential forms on *X*) is just the Lie differentiation. Consider the complex Lie algebra $\mathfrak{t}_{\mathbb{C}} = \mathfrak{t} \otimes \mathbb{C}$ for $T_{\mathbb{C}}$. For each $\mathscr{Y} \in \mathfrak{t}_{\mathbb{C}}$, let

$$L_{\tilde{\mathscr{A}}} := d \circ i_{\tilde{\mathscr{A}}} + i_{\tilde{\mathscr{A}}} \circ d$$

denote the Lie differentiation with respect to $\tilde{\mathscr{Y}}$. Note also that, by $\gamma = c_1(X)_{\mathbb{Q}}$, the nowhere vanishing section τ to \mathscr{L}^* in Appendix 1 is naturally regarded as a smooth volume form on X. In order to prove the periodicity, we need the following:

Lemma. If $\gamma = c_1(X)_{\mathbb{Q}}$, then $F_{\gamma}(\mathcal{Y}) = \int_X (\sqrt{-1}\tau)^{-1} (L_{\tilde{\mathcal{Y}}}\tau) \omega^n / n!$ for all $\mathcal{Y} \in \mathfrak{t}_{\mathbb{C}}$.

Proof. Consider the real-valued smooth function $f_{\omega} := \log(\tau/\omega^n)$ on X. It satisfies the identity $\sigma_{\omega} - H\sigma_{\omega} = \Box_{\omega}f_{\omega}$, since

$$\bar{\partial}\partial \log \omega^n - \bar{\partial}\partial \log \tau = \partial \bar{\partial} f_\omega$$
, i.e., $R_{\alpha\beta} - g_{\alpha\beta} = \partial_\alpha \partial_\beta f_\omega$.

Then by $\omega^n = \exp(-f_{\omega})\tau$, we obtain the required equality as follows:

$$\begin{split} \sqrt{-1}n!F_{\gamma}(\mathscr{Y}) &= \int_{X} (\tilde{\mathscr{Y}}f_{\omega})\omega^{n} = \int_{X} (\tilde{\mathscr{Y}}f_{\omega})\omega^{n} + \int_{X} L_{\tilde{\mathscr{Y}}} \{\exp(-f_{\omega})\tau\} \\ &= \int_{X} \exp(-f_{\omega})L_{\tilde{\mathscr{Y}}}\tau = \int_{X} \tau^{-1}(L_{\tilde{\mathscr{Y}}}\tau)\omega^{n} \,. \end{split}$$

(3.3) Proof of Theorem F. Let $\omega \in \mathcal{M}_{c_1(X)}$. Put $\mathscr{Z}'_i := (\sqrt{-1})^{-1} \mathscr{Z}_i$. Since ω is T-invariant, so is τ . In particular, we have $L_{\mathscr{Z}_{i\mathbb{R}}} \tau = 0$, where as in the introduction, $\mathscr{Y}_{\mathbb{R}}$ denotes the real vector field $\iota_* \mathscr{Y} + \overline{\iota_*} \mathscr{Y}$ on X for every $\mathscr{Y} \in \mathfrak{l}_{\mathbb{C}}$. Therefore,

$$L_{\tilde{\mathscr{Z}}'_{i_{\mathbf{R}}}}\tau = (\sqrt{-1})^{-1}(2L_{\tilde{\mathscr{Z}}'_{i}}\tau).$$

Hence, by [6, (5.4.a)], the above lemma in (3.2) yields

$$F_{\gamma}(\mathscr{Z}_i) = \frac{1}{2} \int_{X} \tau^{-1} (L_{\mathscr{Z}'_{iR}} \tau) \omega^n / n! \in \mathbb{Q} ,$$

for all *i*. Then by the above fact in (3.1), we see from Theorem C that $\mathscr{V}_{\omega} \in t_{\mathbb{Q}}$, i.e., $\mathscr{V}_{\omega} \in \sum_{i=1}^{r} \mathbb{Q}\mathscr{Z}_{i}$. Therefore, for some positive integer *m*, we have $2\pi m \mathscr{V}_{\omega} \in \sum_{i=1}^{r} \mathbb{Z}\mathscr{Z}_{i}$. Since $\exp(2\pi m \mathscr{V}_{\omega}) = 1$ in *T*, we now conclude that $\exp(2\pi m \widetilde{\mathscr{V}}_{\omega\mathbb{R}}) = \mathrm{id}_{X}$.

(3.4) Proof of Corollary G. In the above proof of Theorem F, let q be the smallest positive rational number such that $q\mathscr{V}_{\omega} \in \sum_{i=1}^{r} \mathbb{Z}\mathscr{Z}_{i}$. Therefore, the group $W_{\mathbb{C}} := \exp(\mathbb{C}q\widetilde{\mathscr{V}}_{\omega})$ is an algebraic torus ($\cong \mathbb{G}_{\mathrm{m}}$). We may write $W_{\mathbb{C}} = \{w; w \in \mathbb{C}^*\}$ in such a way that

$$q\tilde{\mathscr{V}}_{\omega} = \sqrt{-1}w\partial/\partial w$$
.

Since the maximal compact subgroup $W \cong S^1$ of $W_{\mathbb{C}}$ is a subgroup of T above, W acts isometrically on (X, ω) . Note also that

$$h^{\omega}_{q\mathscr{V}_{\omega}} = qh^{\omega}_{\mathscr{V}_{\omega}} = q\operatorname{pr}(\sigma_{\omega})$$

The basis $q\tilde{\mathcal{V}}_{\omega}(=\sqrt{-1}w\partial/\partial w)$ for the Lie algebra \mathfrak{w} of W allows us to identify \mathfrak{w} with \mathbb{R} , and therefore the moment map $\mu_{\omega}^{W}: X \to \mathfrak{w}^{*}$ associated with the W-action on X is expressible as

$$\mu: X \to \mathbb{R}, \quad x \mapsto h^{\omega}_{q \mathscr{V}_{\omega}}(x) = q \operatorname{pr}(\sigma_{\omega})(x).$$

Then a modification (see [14]) of a result of Guillemin and Sternberg [7] shows that the vertices of the image of the moment map μ_{ω}^{W} are Q-rational points, i.e.,

$$\max_{\chi} \{q \operatorname{pr}(\sigma_{\omega})\} \in \mathbb{Q} \text{ and } \min_{\chi} \{q \operatorname{pr}(\sigma_{\omega})\} \in \mathbb{Q}.$$

Hence, both $\max_X pr(\sigma_\omega)$ and $\min_X pr(\sigma_\omega)$ are rational numbers, as required.

Remark. If $\omega \in \mathcal{M}_{c_1(X)}$ is an extremal Kähler metric in Corollary G, then by $\operatorname{pr}(\sigma_{\omega}) = \sigma_{\omega} - n$, Corollary G asserts that $\max_X \sigma_{\omega} \in \mathbb{Q}$ and $\min_X \sigma_{\omega} \in \mathbb{Q}$.

Appendix 1

Let \mathscr{L} be the real line bundle as in Sect. 1, and τ be the nowhere vanishing section to \mathscr{L}^* defined below. In this appendix, we shall show that the holomorphic $\tilde{K}_{\mathbb{C}}$ -action on X lifts to a quasi-holomorphic (cf. [13]) $\tilde{K}_{\mathbb{C}}$ -action on \mathscr{L} such that the associated infinitesimal action of $\tilde{\mathfrak{t}}_{\mathbb{C}}$ on \mathscr{L}^* satisfies

$$ilde{\mathscr{Y}} au = \sqrt{-1} h^\omega_{\mathscr{Y}} au, \quad \mathscr{Y} \in \mathfrak{l}_{\mathbb{C}}$$
 .

More generally, such a quasi-holomorphic lifting can be obtained also for the G-action, though we do not go into details. Take a sufficiently fine Stein cover $X = \bigcup_{i \in I} U_i$ such that \mathscr{L} admits a collection of local bases e_i over U_i , $i \in I$, with positive real-valued transition functions

$$\theta_{ij} := e_i/e_j \in H^0(U_i \cap U_j, |\mathcal{O}^*|^2), \quad i, j \in I.$$

Let e_i^* be the basis for $\mathscr{L}_{|U_i}^*$ dual to e_i . We then have a smooth section τ for \mathscr{L}^* on X, unique up to positive constant multiple, such that τ is written as $\tau_i e_i^*$ on each U_i with a positive smooth function τ_i and that the first Chern form $c_1(\mathscr{L};\tau)$ for \mathscr{L} with respect to τ coincides with ω (cf. [13]). We now define a smooth function $\psi_{\mathscr{G},i}$ on U_i by

$$\psi_{\mathscr{Y},i} := \tilde{\mathscr{Y}} \log \tau_i - \sqrt{-1} h_{\mathscr{Y}}^{\omega}.$$

Then $\bar{\partial}\psi_{\mathscr{Y},i} = \bar{\partial}\{i_{\hat{\mathscr{Y}}}(\partial\log\tau_i)\} - \sqrt{-1}i_{\hat{\mathscr{Y}}}(2\pi\omega) = -i_{\hat{\mathscr{Y}}}(\bar{\partial}\partial\log\tau_i) - \sqrt{-1}i_{\hat{\mathscr{Y}}}(2\pi\omega) = 0$. Hence, $\psi_{\mathscr{Y},i}$ is holomorphic. Define an infinitesimal action of $\hat{\mathscr{Y}}$ on $\mathscr{L}_{|U_i}$ by $\tilde{\mathscr{Y}}e_i := \psi_{\mathscr{Y},i}e_i, i \in I$. In view of $e_i = \theta_{ij}e_j$ and $\tau_i = \theta_{ij}\tau_j$, we have

$$\begin{split} (\tilde{\mathscr{Y}}e_i)_{|U_i\cap U_j} &= \psi_{\mathscr{Y},i}e_{i|U_i\cap U_j} = \{\tilde{\mathscr{Y}}\log(\theta_{ij}\tau_j) - \sqrt{-1}h_{\mathscr{Y}}^{\omega}\}\theta_{ij}e_{j|U_i\cap U_j} \\ &= \{\theta_{ij}\psi_{\mathscr{Y},j} + \tilde{\mathscr{Y}}\theta_{ij}\}e_{j|U_i\cap U_j} = \theta_{ij}(\tilde{\mathscr{Y}}e_j)_{|U_i\cap U_j} + (\tilde{\mathscr{Y}}\theta_{ij})e_{j|U_i\cap U_j} \} \end{split}$$

Hence, the infinitesimal actions of $\tilde{\mathscr{Y}}$ on $\mathscr{L}_{|U_i}$, $i \in I$, glue together to form a global infinitesimal action of $\tilde{\mathscr{Y}}$ on \mathscr{L} . Then $\tilde{\mathscr{Y}}\tau = \sqrt{-1} h_{\mathscr{Y}}^{\omega}\tau$ follows from

$$\begin{aligned} (\sqrt{-1}\tau_i e_i^*)^{-1} \tilde{\mathscr{Y}}(\tau_i e_i^*) &= -\sqrt{-1} \tilde{\mathscr{Y}} \log \tau_i + (\sqrt{-1}e_i^*)^{-1} \tilde{\mathscr{Y}} e_i^* \\ &= -\sqrt{-1} \tilde{\mathscr{Y}} \log \tau_i + \sqrt{-1} \psi_{\mathscr{Y},i} = h_{\mathscr{Y}}^{\omega} \end{aligned}$$

Let J be the complex structure of X, and put $\tilde{\mathfrak{t}}_{\mathbb{C}}^{\text{real}} := \{\mathscr{Y}_{\mathbb{R}}; \mathscr{Y} \in \mathfrak{t}_{\mathbb{C}}\}$, where $\mathscr{Y}_{\mathbb{R}}$ is as in the introduction. Then by sending $\tilde{\mathscr{Y}} \in \tilde{\mathfrak{t}}_{\mathbb{C}}$ to $\tilde{\mathscr{Y}}_{\mathbb{R}} \in \tilde{\mathfrak{t}}_{\mathbb{C}}^{\text{real}}$, we have the complex Lie algebra isomorphism

$$(\tilde{\mathfrak{f}}_{\mathbb{C}},\sqrt{-1})\cong (\tilde{\mathfrak{f}}^{\mathrm{real}}_{\mathbb{C}},J)$$

with $\tilde{\mathscr{Y}} = (\tilde{\mathscr{Y}}_{\mathbb{R}} - \sqrt{-1}J \cdot \tilde{\mathscr{Y}}_{\mathbb{R}})/2$. Now, from the action of $\tilde{\mathscr{Y}}$ on \mathscr{L} , we can globally define an infinitesimal action of $\tilde{\mathscr{Y}}_{\mathbb{R}}$ on \mathscr{L} by $\tilde{\mathscr{Y}}_{\mathbb{R}}e_i := (\psi_{\mathscr{Y},i} + \tilde{\psi}_{\mathscr{Y},i})e_i$. If $\mathscr{Y} \in \mathfrak{k}$, then $h_{\mathscr{Y}}^{\omega}$ is real-valued, and in particular

$$\begin{split} \tilde{\mathscr{Y}}_{\mathbb{R}} \tau &= \tilde{\mathscr{Y}}_{\mathbb{R}} (\tau_i e_i^*) = (\tilde{\mathscr{Y}}_{\mathbb{R}} \tau_i) e_i^* - \tau_i (\psi_{\mathscr{Y},i} + \bar{\psi}_{\mathscr{Y},i}) e_i^* \\ &= \tilde{\mathscr{Y}}_{\mathbb{R}} \tau_i - \tau_i (\tilde{\mathscr{Y}}_{\mathbb{R}} \log \tau_i - \sqrt{-1} h_{\mathscr{Y}}^\omega + \sqrt{-1} \bar{h}_{\mathscr{Y}}^\omega) = 0 \; . \end{split}$$

Therefore, we can lift the \tilde{K} -action on X naturally to a \tilde{K} -action on \mathscr{L} in such a way that it leaves the section τ of \mathscr{L}^* invariant. Now, regarding $\tilde{f}_{\mathbb{C}}^{\text{real}}$ as the Lie algebra of $\tilde{K}_{\mathbb{C}}$, we can further lift the $\tilde{K}_{\mathbb{C}}$ -action on X to a global $\tilde{K}_{\mathbb{C}}$ -action on \mathscr{L} by setting

$$\exp(s\tilde{\mathscr{Y}}_{\mathbb{R}}) \cdot e_i = |\exp(s\psi_{\mathscr{Y},i})|^2 e_i, \quad i \in I,$$

on $U_i \cap \{\exp(s\tilde{\mathscr{Y}}_{\mathbb{R}})\}(U_i)$, for all $s \in \mathbb{R}$ and $\mathscr{Y} \in \mathfrak{l}_{\mathbb{C}}$. Then this $\tilde{K}_{\mathbb{C}}$ -action on \mathscr{L} is quasi-holomorphic in the sense of [13].

Appendix 2

Let $\hat{\mathscr{H}}_{\omega}$ be the space of all complex smooth functions φ on X such that $\operatorname{grad}_{\omega}^{(1,0)}\varphi$ is holomorphic and that $\int_{X}\varphi\omega^{n}/n!=0$. Then we have the complex Lie algebra isomorphism

$$\hat{\mathscr{H}}_{\omega} \cong \mathfrak{g}, \quad \varphi \leftrightarrow \operatorname{grad}_{\omega}^{(1,0)} \varphi$$

where $\hat{\mathscr{H}}_{\omega}$ has a Lie algebra structure by $[\varphi_1, \varphi_2] := \sqrt{-1} \sum_{\alpha, \beta} g^{\bar{\beta}\alpha} (\partial_{\alpha} \varphi_1 \partial_{\bar{\beta}} \varphi_2 - \partial_{\bar{\beta}} \varphi_1 \partial_{\alpha} \varphi_2)$. We then define a symmetric \mathbb{C} -bilinear form $\hat{B}_{\omega} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ by

$$\hat{B}_{\omega}(\mathscr{W}_1,\mathscr{W}_2) := \int_X \varphi_1 \varphi_2 \, \omega^n/n!, \quad \varphi_1, \varphi_2 \in \hat{\mathscr{H}}_{\omega},$$

where $\mathscr{W}_1 := \operatorname{grad}_{\omega}^{(1,0)} \varphi_1$ and $\mathscr{W}_2 := \operatorname{grad}_{\omega}^{(1,0)} \varphi_2$. We shall now show the following:

Theorem H. The C-bilinear form \hat{B}_{ω} on g is independent of the choice of ω in γ .

Proof. We choose another Kähler metric ω' on X cohomologous to the original ω . Then there exists a real-valued smooth function ψ on X such that $\omega' = \omega_1$, where we set

$$\omega_t := \omega + \frac{\sqrt{-1}}{2\pi} t \partial \bar{\partial} \psi , \quad 0 \leq t \leq 1 .$$

Let $\mathscr{W}_{\nu} := \operatorname{grad}_{\omega}^{(1,0)} \varphi_{\nu}, \nu = 1, 2$, be arbitrary elements in g with $\varphi_{\nu} \in \hat{\mathscr{H}}_{\omega}$. We can then find $\varphi_{\nu,t} \in \hat{\mathscr{H}}_{\omega_t}$ such that $\mathscr{W}_{\nu} := \operatorname{grad}_{\omega_t}^{(1,0)} \varphi_{\nu,t}$. It now suffices to show

$$\int_X \varphi_1 \varphi_2 \, \omega^n / n! = \int_X \varphi_{1,t} \varphi_{2,t} \omega_t^n / n!, \quad 0 \leq t \leq 1.$$

Write $\omega_t = (\sqrt{-1/2\pi}) \sum_{\alpha,\beta} g_{t\alpha\bar{\beta}} dz^{\alpha} \wedge dz^{\bar{\beta}}$ in terms of a system $(z^1, z^2, ..., z^n)$ of holomorphic local coordinates on X. By $i_{W_v}(2\pi\omega) = \bar{\partial}\varphi_v$ and $i_{W_v}(2\pi\omega_t) = \bar{\partial}\varphi_{v,t}$, we have

$$\begin{split} i_{\mathscr{W}_{v}}(2\pi\omega_{t}) &= i_{\mathscr{W}_{v}}\{2\pi\omega + \sqrt{-1}t\bar{\partial}(-\partial\psi)\} = \bar{\partial}\varphi_{v} + \sqrt{-1}\bar{\partial}\{ti_{\mathscr{W}_{v}}(\partial\psi)\}\\ &= \bar{\partial}\{\varphi_{v} + \sqrt{-1}t\mathscr{W}_{v}\psi\} = \bar{\partial}\left\{\varphi_{v} + t\sum_{\alpha,\beta}g^{\bar{\beta}\alpha}\partial_{\bar{\beta}}\varphi_{v}\partial_{\alpha}\psi\right\},\end{split}$$

i.e., $\varphi_{\nu,t}$ coincides with $\eta_{\nu,t} := \varphi_{\nu} + t \sum_{\alpha,\beta} g^{\beta\alpha} \partial_{\beta} \varphi_{\nu} \partial_{\alpha} \psi$ on X up to an additive constant. Since $\sum_{\alpha,\beta} g^{\beta\alpha} \partial_{\beta} \varphi_{\nu} \partial_{\alpha} \psi = \sqrt{-1} \mathscr{W}_{\nu} \psi = \sum_{\alpha,\beta} g^{\beta\alpha}_{t} \partial_{\beta} \varphi_{\nu,t} \partial_{\alpha} \psi$, we obtain

$$\begin{split} \frac{d}{dt} \int_{X} \eta_{\nu,t} \omega_{t}^{n}/n! &= \int_{X} \left\{ \left(\sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_{\nu} \partial_{\alpha} \psi \right) + \varphi_{\nu,t} \Box_{\omega_{t}} \psi \right\} \omega_{t}^{n}/n! \\ &= \int_{X} \left\{ \left(\sum_{\alpha,\beta} g_{t}^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_{\nu,t} \partial_{\alpha} \psi \right) + \varphi_{\nu,t} \Box_{\omega_{t}} \psi \right\} \omega_{t}^{n}/n! \\ &= (\bar{\partial} \varphi_{\nu,t}, \bar{\partial} \bar{\psi})_{L^{2}(X,\omega)} + (\varphi_{\nu,t}, \Box_{\omega_{t}} \bar{\psi})_{L^{2}(X,\omega)} = 0 \;, \end{split}$$

where $(,)_{L^2(X,\omega)}$ denotes the Hermitian L^2 inner product, relative to ω , for smooth functions or differential forms on X. Therefore, $\int_X \eta_{v,0} \omega_0^n/n! = \int_X \varphi_v \omega^n/n! = 0$ implies $\int_X \eta_{v,t} \omega_t^n/n! = 0$ for all $0 \le t \le 1$, hence $\varphi_{v,t} = \eta_{v,t}$ for all v and t. We now obtain the required identity by

$$\begin{split} \frac{d}{dt_X} \varphi_{1,t} \varphi_{2,t} \omega_t^n / n! &= \frac{d}{dt_X} \int \eta_{1,t} \eta_{2,t} \omega_t^n / n! \\ &= \int_X \left\{ \varphi_{1,t} \left(\sum g^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_2 \partial_\alpha \psi \right) + \left(\sum g^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_1 \partial_\alpha \psi \right) \varphi_{2,t} + \varphi_{1,t} \varphi_{2,t} \Box_{\omega_t} \psi \right\} \omega_t^n / n! \\ &= \int_X \left\{ \varphi_{1,t} \left(\sum g_t^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_{2,t} \partial_\alpha \psi \right) + \left(\sum g_t^{\bar{\beta}\alpha} \partial_{\bar{\beta}} \varphi_{1,t} \partial_\alpha \psi \right) \varphi_{2,t} + \varphi_{1,t} \varphi_{2,t} \Box_{\omega_t} \psi \right\} \omega_t^n / n! \\ &= \int_X \left\{ \left(\sum g_t^{\bar{\beta}\alpha} \partial_{\bar{\beta}} (\varphi_{1,t} \varphi_{2,t}) \partial_\alpha \psi \right) + \varphi_{1,t} \varphi_{2,t} \Box_{\omega_t} \psi \right\} \omega_t^n / n! \\ &= (\bar{\partial} (\varphi_{1,t} \varphi_{2,t}), \bar{\partial} \bar{\psi})_{L^2(X,\omega)} + (\varphi_{1,t} \varphi_{2,t}, \Box_{\omega_t} \psi)_{L^2(X,\omega)} = 0 \,. \end{split}$$

Remark. By Theorem II, we write the bilinear form $\hat{B}_{\omega} : g \times g \to \mathbb{C}$ just as $\hat{B}_{\gamma} : g \times g \to \mathbb{C}$. Then by the same argument as in (1.3), we obtain $\hat{B}_{\gamma}([\mathscr{W}_1, \mathscr{W}_2], \mathscr{W}_3) = \hat{B}_{\gamma}(\mathscr{W}_1, [\mathscr{W}_2, \mathscr{W}_3])$ for all $\mathscr{W}_1, \mathscr{W}_2, \mathscr{W}_3$ in g. Moreover, the bilinear forms $B_{\gamma} : \mathfrak{t}_{\mathbb{C}} \times \mathfrak{t}_{\mathbb{C}} \to \mathbb{C}$ and $\hat{B}_{\gamma} : g \times g \to \mathbb{C}$ are related by

$$B_{\gamma}(\mathscr{Y}_1, \mathscr{Y}_2) = \hat{B}_{\gamma}(\iota_* \mathscr{Y}_1, \iota_* \mathscr{Y}_2), \quad \mathscr{Y}_1, \mathscr{Y}_2 \in \mathfrak{t}_{\mathbb{C}},$$

where $\iota: G/R_u(=K_{\mathbb{C}}) \cong \iota(G/R_u) \subset G$ is an isomorphism as in the introduction. It is easily checked that the independence of $B_{\vec{K},\omega}$ on ω can be proved also by Theorem H.

Remark. Let $0 < m \in \mathbb{Z}$. Define a symmetric \mathbb{C} -multilinear form $\hat{B}_{\omega}^{(m)}: g^m \to \mathbb{C}$ by setting $\hat{B}_{\omega}^{(m)}(\mathscr{W}_1, \mathscr{W}_2, \ldots, \mathscr{W}_m) := \int_X \varphi_1 \varphi_2 \ldots \varphi_m \omega^n / n!, \varphi_j \in \hat{\mathscr{H}}_{\omega}$, where $\mathscr{W}_j := \operatorname{grad}_{\omega}^{(1,0)} \varphi_j$. Then a slight modification of the above arguments shows that $\hat{B}_{\omega}^{(m)}$ is also independent of the choice of ω in γ . As in the Remark just above, this induces a multilinear form on $\mathfrak{t}_{\mathbb{C}}$ depending only on the class γ , and when restricted to \mathfrak{t} , it coincides with the multilinear form in remark of (1.1).

References

- Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982)
- Calabi, E.: Extremal Kähler metrics. In: Yau, S.T. (ed.): Seminars on differential geometry. (Ann. Math. Stud., vol. 18-I, pp. 259–290) Princeton: Princeton Univ. Press 1982
- Calabi, E.: Extremal Kähler metrics II. In: Chavel, I., Farkas, H.M. (eds.): Differential geometry and complex analysis, pp. 95-114. Berlin Heidelberg New York: Springer 1985
- Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math. 44, 225-258 (1978)

- 5. Futaki, A.: Kähler-Einstein metrics and integral invariants. (Lect. Notes Math., vol. 1314) Berlin Heidelberg New York: Springer 1988
- Futaki, A., Mabuchi, T.: An obstruction class and a representation of holomorphic automorphisms. In: Sunada, T. (ed.): Geometry and analysis on manifolds. (Lect. Notes Math., vol. 1339, pp. 127-141) Berlin Heidelberg New York: Springer 1988
- 7. Guillemin, V., Sternberg, S.: Convex properties of the moment mapping. Invent. Math. 67, 491-513 (1982)
- 8. Hwang, A., Mabuchi, T.: A conjecture on the group of biholomorphisms of a nonsingular Fano variety. Int. J. Math (to appear).
- 9. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. (Tracts Math., vol. 15-II) New York: Wiley-Interscience 1963
- Kobayashi, S.: Transformation groups in differential geometry. (Ergeb. Math. Grenzgeb., Bd. 70) Berlin Heidelberg New York: Springer 1972
- 11. LeBrun, C., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. (to appear)
- 12. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds (I). Osaka J. Math. 24, 227-252 (1987)
- Mabuchi, T.: An algebraic character associated with the Poisson brackets. In: Ochiai, T. (ed.): Recent topics in differential and analytic geometry. (Adv. Stud. Pure Math., vol. 18-I, pp. 339-358) Tokyo and Boston: Kinokuniya and Academic Press 1990
- 14. Mabuchi, T.: Q-rationality of moment maps. Proc. Japan Acad. 69 (A), 392-394 (1993)