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Introduction 

Let H ~ = H~ be the Banach algebra of  all bounded analytic functions in 
the open disk ID = {z E ~ : [z I < 1}. Its spectrum or maximal ideal space is 
denoted by M ( H ~ ) .  Carleson's famous corona theorem says that ID is dense 
in M ( H  ~ An equivalent algebraic formulation tells us that the ideal 

I = l ( f l  . . . . .  f N )  = : hj E 

generated by the functions f j  C H cc equals the whole algebra if and only if 

EY=, Ifjl 6 > 0 in Let 

J = J ( f l  . . . . .  f N )  = f E H ~ : 3C = C ( f )  with Ifl  --< c~lfjl in ID . 
j=l  

It is obvious that J is an ideal containing I. 
Carleson's theorem implies that whenever J = H ~ ,  then I = J .  However, 

a well known example due to Rao (see below or p. 365 of  [5]) shows that, 
in general, the inclusion is proper. For example, one can take the functions 

( 1 -  z) 2 and (e-~+~) 2 as generators and let f be the function (1 - z ) e - -  ll~_zz . 

Von Renteln [17] showed that there exist finitely generated ideals I + H  ~ 

for which I = J .  In fact, if I contains an interpolating Blaschke product B, 
then I = J .  This result was later extended by Tolokonnikov [18], who proved 
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Spain 
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that I = J provided that J contains an interpolating Blaschke product. An easy 
proof of this latter result can be found in [15]. 

It is therefore a natural question to ask for a necessary and sufficient condi- 
tion on the generators f l  . . . . .  fN  in order that I = J.  In [15] it was conjectured 
that this holds if and only if I contains an interpolating Blaschke product (pro- 
vided, of course, that the generators have no common factor). This conjecture 
may also be rephrased as an analytic condition on the generators (see Theorem 
1.10). It is the aim of this paper to confirm this conjecture for the case of two 
generators. To our surprise, however, this does not remain true for more than 
two generators (see Proposition 1.11 ). 

In the second section of this paper we solve Wolff's f2-problem ([21] 
and [5, p. 329]) under the additional hypothesis that the generators do not all 
vanish on any point ~p in the spectrum of H ~ where the Gleason part of ~o is 
trivial. This hypothesis may also be rephrased as an analytic condition on the 
generators (see Corollary 2.7). For related material see [1, 2, 3, 4, 12, 13]. 

We assume that the reader is familiar with the theory of bounded analytic 
functions which is nicely presented in Gamett's book [5]. 

0 Preliminaries 

A sequence {z,} in ID is said to be an interpolating sequence if for every 
bounded sequence (w~) of complex numbers there exists f E H ~ with f(z, ,)  = 
wn for every n E IN. A Blaschke product 

aj - z 
B(z) = I1 I~1 1 - ~jz 

j = l  

whose zero sequence is an interpolating sequence is called an interpolating 
Blasehke product. 

By Carleson's theorem {z,} is interpolating if and only if 

inf 1--[ p(zj, z.)  > 6 > O, 
nEN j_l 

j•n 

where p(z,w) = ~ z -  w denotes the pseudohyperbolic distance in ID. As 

usual, the extension of p to the whole spectrum of H ~ is defined by 

p(x,y)  = sup{lf(x)l : f e n~176 Ilfllo~ ~ l , f ( y )  = 0}.  

Here f denotes the Gelfand transform of f defined by f ( m )  = m ( f )  (m E 
M(H~ We shall always identify f with f .  

If  f E H ~ then Z ( f )  = {m E M(H ~ : f ( m )  = 0} denotes its zero set; 
Z ~ ( f )  = Z ( f ) M ~ .  I f / i s  an ideal, then Z(I)  = N f e t Z ( f )  is the hull or zero 
set of the ideal I. 
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Following Hoffman, define for every m E M(H ~ )  and f E H a with 
f ( m )  = 0 the order o f  the zero m of  f by 

o r d ( f , m )  = sup{n E lN : f = f l ... f~, f j  C H ~176 f )(m) = O(j  = 1 , . . . ,n )}  . 

I f  f (m)4:0 ,  then o r d ( f , m )  = 0. 
Using the fact that for every m E M(H ~176 there exists an analytic map 

Lm o f l D  onto the Gleason part P(m) = {x E M(H ~ )  : p(m,x) < 1} o f m  
with Lm(O) = m, we see that o r d ( f , m )  is the usual multiplicity of  the zero o f  
the analytic function f o Lm at the origin. Note that the latter is infinite if f 
vanishes identically on P(m). 

I f  f , g  E H ~176 then gcd ( f ,  9) denotes a greatest common divisor of  the 
functions f and g. It is well known that in contrast to the disk algebra, a 
greatest common divisor always exists and is uniquely determined modulo in- 
vertible functions. It is easy to prove that whenever gcd ( f ,  h) = 1 and h divides 
f �9 g, then h divides g. 

The following results will be used throughout this paper. 

Hoffman 's  lemma 0.1 ([9, p. 86], and [5, p. 404]). Let 0 < 6 < 1, 0 < ~/ < 
(1 - x/1 - 62)/6, i.e., 0 < ~ < p(6, r/), and let 

6 - ~  
0 < e < e ( 6 ) : =  1 - 6 ~  q" 

I f  b is any interpolating Blaschke product with zeros {zn} such that 

6(b) = in f ( l  -Iz~12)lb'(z~)l > 6 
n E N  ~-- ' 

then 

{z ~ ~ : Ib(z)l < e} c_ {z ~ ~ : p ( z , Z ( b ) )  < ,7} 

c {z c ~ : Ib(z)l < ,7). (1) 

It is easily shown that (1 - ~1 - 32)/6 is a monotone increasing function o f  
6 E (0, 1), that r < r/ < 6 and that 0 < (1 - x/1 - 62)/6 < 6. We shall also 
use the fact that r/ < 2q/(l+q 2) < 6 is equivalent to 0 < r/ < ( 1 - x / l  - 62)/fi. 

Using ( I )  and Schwarz's  lemma [5, Exercise 1, p. 41] we have 

i Zq6  p(z,z~) <= Ib(z)[ =< p(z,z~) (2) 

whenever p(z,z~) < ~/and b is an interpolating Blaschke product with 6(b) >= 
6 and zeros z~. Finally, we note that the pseudohyperbolic disks D(zn, q) = 
{z C ID : p(z, zn) < q} are pairwise disjoint. 

Lemma 0.2 [5, p. 310]. Let {zn} be an interpolatin9 sequence in D with 
inf,  ~ j , ~ p ( z j , z , )  >= 6 > O. Let 0 < ~ < (1 - x/1 - 62)/6, and let w, E D 
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satisfy p ( z . ,w . )  < q for every n E N. Then {wn} is an interpolatin9 sequence 
with 

inf  11 p(wj, Wn ) >--__ 
n j:~n 1 --  6 . - - ~  " 

l + n  , 

1 Necessary and sufficient conditions for I = J 

Our first objective is to give necessary conditions in terms of  the order of  the 
zeros of  the generators which guarantee that I = J .  Using these results together 
with the fact that an ideal 1 4 : H  ~176 is generated by interpolating Blaschke prod- 
ucts if  and only if ord(/, m) = 1 for every m E Z(1) (see Proposition 1.8), we 
will prove that, for two generators, I = J if  and only if I contains an inter- 
polating Blaschke product times the greatest common divisor of  the generators. 

The proof  of  the main result will be divided into two major steps. First 
we shall be concerned with finitely generated ideals whose zero sets contain a 
point m with 2 < ord( / ,m)  < oo; the second case deals with ideals for which 
ord( / ,m)  = oo for some m E Z(1). 

L e m m a  1.1 Let f j, gj E H ~ ( j  = 1,2). Assume that the functions f lgl and 
f z92 have no common factors. Then 

I ( f l g l , f 2 9 2 ) = J ( f l g l , f 2 9 2 )  

implies that 

l ( f l , f 2 )  = J ( f i , f 2 ) .  

Proof  Let f E J ( f  i , f2) .  Then Iglgzfl ~ C(Igl f  il + Igzfzl)  for some con- 
stant C. By hypothesis, there exist xi,x2 E H ~176 such that 

g ig2 f  = x i f  igi + x 2 f  292 �9 

Thus g l ( g 2 f - x l f t )  -= x2f292. Since gcd(g l , f2g2)= 1, dividing by gi yields 
g 2 f - X l f l  = YEfEg2, for some Y2 C H ~ .  Similarly, since gcd(g2, f ig i )  = 
1, dividing by g2 yields f = . f i f l  + 52f2 for some J?t,.f2 E H ~ .  Hence 
J ( f t , f 2 )  C I ( f t , f 2 ) ,  from which we get our assertion. [] 

L e m m a  1.2 [9, p. 100]. Let f E H ~ and let m E M ( H  ~176 be a point with 
f ( m )  = O. Then either f has a zero o f  infinite order at m or there exists an 
interpolatin9 subsequence o f  the zero sequence o f  f in ID which captures m 
in its closure. 

Proposition 1.3 Let f i, f 2  be two functions in H ~ having no common factor, 
and let I = I ( f  i , f2) .  Assume that ord( / ,m) = N with 2 < N < oo for  some 
m E Z(I).  Then I is properly contained in J = J ( f i , f 2 ) .  



The generalized corona theorem 139 

Proof Step 1 Because o r d ( / , m ) =  minj:l,2ord(fj, m), we may assume with- 
out loss of  generality that o r d ( f l , m )  = N < o rd ( fz ,m)  < ~ .  In this step 
we construct generators Fj such that ord(Fj, m) < oo for all j = 1,2. If  
ord( fz ,  m) < oo, we are done. Otherwise let Fl = f l  and Fz = f2  + e f l  for 
some e > 0. Then ord(F2,m) = N < e~ and I = I(FL,F2). 

So we may assume from now on that 

N = o r d ( f l , m )  < o rd ( f2 ,m)  < oo .  (3) 

Step 2 By Lemma 1.2, (3) implies that we have f j  = bjcjgj, where the bj 
and cj are interpolating Blaschke products with bj(m) = cj(m) = 0 and 9j c 
H ~176 (j  = 1,2). 

Since l(cl,c2,bl,b2) is a proper ideal, there exists by the corona theorem 
an interpolating sequence {~.} in D such that 

~. := {Ic~l + t c 2 i +  Ib, l + f b 2 l } ( ~ , ) ~ 0  as n - - * o o .  (4) 

Let b be the interpolating Blaschke product associated with {~,} and let 6 = 
min{6(Cl), 6(c2), 6(b t), ~(b2), ~(b)}. Choose, according to Hoffman's lemma, 
the Hoffman constant q so small that 0 < e, < q(6 - q)/(1 - q6) for n > no 
and 0 < r/ < ( 1 -  x / 1 - 6 2 ) / 6 .  Without loss o f  generality let no = 1. By 
Hoffman's lemma, we may conclude from (4) that each pseudohyperbolic disk 
D(~n,q) contains exactly one zero o f  Cl, c2, bl and b2 for all n. 

Let c~, c~, b~, b~ be the associated subproducts. Thus f j  = bTc]hj for 
some hj C H~ = 1,2). In order to prove our propositxon, it is, by Lemma 
1.1, sufficient to show that 

I(b~c~,b~c~).J(b~c~,b~c~). (5) 

Step 3 We claim that there exist interpolating Blaschke products B, B* and 
C, C* so that 

BB* = b I el, CC* = bzc 2 , (6) 

B ~ -  is bounded on the zero set of  C* in ID and 

C is bounded on the zero set of  B* in D (7) 

Fix n and look at the distribution o f  the zeros o f  b~, c~' resp. b~, c~ in D(~n, q). 
Let 

Z(b'[c~) n D(~., q) = {ft., fin} 

and 
z(b~c~) n o(~.,,7) = {~., v~ }. 

Now there exists among the numbers P(fl,,7,), P(fl,,7~,), P(fl*,7,), P(fl*,7~,) 
a biggest one. Without loss o f  generality let P(flT,,7*) be this number. Then 
we put the zero fl* to a Blaschke product called B*, the zero 7~, to a Blaschke 
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product called C*. The other zeros fin, resp. 7n, are put to Blaschke products 
called B resp. C. By construction we have formula (6). Moreover, 

P(fl.,7*) < 1 and P(?n, fl*) < 1 (8) 
p(3~ 7.) p(';~, #~ ) 

By Lemma 0.2, the sequences (fl.), (fl~), ()'n) and (7*) are interpolating se- 
quences whose associated interpolating Blaschke products B, B*, C and C* 
satisfy 

2r/ 
~ - ] - - T - ~  _ . ~ , .  

6(B),a(B*),6(C),6(C*) > (9) 
1 - 6 1 2 + - ~  

Moreover, we have that gn = IB*(~.)I + IC*(~.) l  + lB(~n)l 4 - Ic (~ . ) l  --* 0 as 
n --* oo. In fact, by (2), 

* 4- 4" g.  <= P(3. ,~ . )  P (V . ,~ . . )+P(3 . , r  
= p(~. ,Z(bl ) )  + p(~.,Z(b2)) + p(~. ,Z(el))  + p(~n,Z(e2)) 

--* 0 as n - - - * o o .  

If q is so small that we also have 

2q 1 - X/1 - ~,2 
0 < r/ < - - - - : t / *  < 

1 + r/2 5* ' 

we can use Lemma 0.2 and (2), (8), (9) to obtain the following estimates 

note that 

and similarly 

. ) P(?n,~n) + P(~n,~*n) 
P ( Y * ' f l * )  < 1 + , *  * < = P(Y.,~n)P(~.,fl*.) = = q* 

B@*) .p(fl..,?~) 1 
~ <  < = M  

= P(3n,Tn)P(~*,q*) = 

C(fl*) < M  for e v e r y n .  
c*(/%;) = 

This proves (7), 

Step 4 Relation (7) now implies that we can solve the interpolation problems 

B ( ? . )  = Hi(?*)  and ~ 2 ( f l * ) =  H2(fl*) 

for bounded analytic functions HI and H2. Hence there exist KI,/(2 E H ~ so 
that 

B = HIB* + KIC* and C = H2C* + K2B* . 
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Let z E ID be so that IC(z)l _-< IB(z)l. Then, using IBI _-< const(lB*l + If*l) in 
ID, one gets 

[BC(z)] < const �9 [IB*(z)llf(z)[ + IC*(z)lIC(z)l] 

< const �9 [IB*B(z)I + Ic*c(z)l] 

Changing the role of  B and C we see that 

BC E J(B*B,C*C). 

But BC q~ I(B*B, C'C), for otherwise we would have 

B C = x B * B + y C * C  for somex,  y E H  ~ .  

Since there are no common factors, we can divide by BC to obtain 

1 : :?B* + )3C* 

This contradicts the fact that 

B * ( ~ . )  ~ 0 

for some Y, 9 E H ~ . 

and C*(~.)  ~ 0 .  

Hence I(BB*, CC*) ~ J(BB*, CC*). In view of  (6), this proves (5) and hence 
Proposition 1.3. [] 

Proposition 1.4 [16] Let {zn} be a finite union of interpolatin9 sequences in 
D. I f  wn E C satisfies 

Iw.I _-< [IP(Zj,Z,,), 
j4=n 

then there exists a function f E H ~ such that 

f ( z . )  = w. for all n E IN. 

Remark. Nakazi 's  proof of  this result in [16] is not constructive. However, the 
explicit solution formula of  [20] o f  the interpolation problem of  Carleson also 
works in this case. In fact, 

1 
f ( z )  = E w .  .=l B-~.)  1 - ~ . z  J Bn(z)exp(~.(z.)-~.(z)) ,  

where 

~ . ( z ) =  ~lq-~?k--fz(1-1z.12 ) and B . ( z ) = B ( z ) / I z ' l  z . - z  
k~. 1 - ~kz z. 1 - ~?.z ' 

is a solution. 
For a function f E H ~ ,  f ~ 0, let f = BF be the Riesz factorization o f  

f ,  where B is a Blaschke product and F is a function which does not vanish 
in D.  
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Proposition 1.5 Let f )  = BjFj E H a have no common factors. Assume that 
l ( f l , f 2 )  = J ( f L , f 2 ) .  Then 

Z(FI ) fq Z(F2) = O . 

Proof  The Cauchy-Schwarz inequality implies that BIB2 v/-~lV/~ E J ( f  l, f 2). 
Hence, by our hypothesis, there exist x, y C H ~ so that 

BiB2v/~l v~2 = xBiFl + yBzF2 �9 

Division by BiBzv~v / -~2  yields functions 2, 33 E H ~ such that 

1 = :?x/ff~l + 33x/-Fzz2. 

Hence Z(F~ ) N Z(F  2) = O. [] 

Remark. We do not know whether the assertion o f  Proposition 1.5 holds 
for ideals I = I ( f l , . . . , f u )  with more than two generators and satisfying 

I ( f l  . . . . .  f u )  = J ( f l  . . . . .  fN) .  
In view of  Proposition 1.3, we must now consider the case where the 

generators BI and B2 generate a proper ideal I such that ord(/ ,m) = oo for 
some m E Z(1). The main difficulty is that the zeros o f  I need not lie in the 
closure o f  an interpolating subsequence of  BI or  B 2. Hence we cannot use the 
factorization argument given in the proof of  Step 2 of  Proposition 1.3. Using 
the following proposition, however, we shall be able to reduce our new situation 
to that o f  Proposition 1.3. Our proof is based on the following factorization of  
Hoffman ([9, p. 95], and [5, p. 411]) and Izuchi. 

Factorization Theorem 1.6 (Hoffman-Izuchi [10, p. 55]) L e t  B C H ~ be  a 

function with Zoo(B) :=  {m C M ( H  ~ )  : ord(B,m) = c~} :4=0. Then B admits 
a factorization B = B1B2 such that Z~ (B l )  = Z~(B2) = Z~(B).  

Remark. Although this factorization theorem has only been stated for Blaschke 
products in [10], it remains true for any function f E H m, because the zeros 
of  singular inner and outer functions are always of  infinite order. 

Proposition 1.7 Let B~, B2 be two functions havin9 no common factors, and 
let I = I(BI,B2). Suppose that ord(Bj, m) = oo for some m E Z(1) (j = 
1,2). Then there exist rh E Z(1), interpolatin9 Blaschke products bl, b2 and 

functions C2 and D2 such that 
(1) B2 = C2D2; 
(2) bl(rh) = b2(rh) = C2(rh) = D2(rh) = 0; 
(3) B�91 E I(bLb2, C2). 

Proof Step 1 First we factor the functions Bj according to Theorem 1.6 as 
a product Bj = CjDj of  two functions so that ord(Cj, m) = ord(Dj, m) = oe. 
Then I(Ci, C2, Dl, D2) is a proper ideal, and there exists, by the corona theorem, 
an interpolating sequence {(,} in D so that 

{IC, I + IC2l + IDol + IDzl}(G) -~ 0 as n ~ o c .  (10) 
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Note that every cluster point o f  the ~j lies in Z(I) .  
We shall now construct the interpolating Blaschke products bl and be. To 

this end, let 
E~ = {if. : JD~(~.)I < IQ(~~ �9 (11) 

Without loss of  generality, El is infinite (otherwise we can rename the func- 
tions). Let 

E2 = {~. C E~ : ID2(ff.)l < [G(ff.)[} �9 (12) 

Without loss of  generality, we may assume that E2 is infinite. Let 

E3 -= {~n E Ez : -~22(~n) < l } . (13) 

Also here we may assume that E3 is infinite, for otherwise we would look at 
the quotient C2/Cl. 

Since we will consider subsequences of  {~n}, we may assume that the fin 
satisfy Eqs. (10)- (13) .  Note that 

- ~ ( ~ . )  =< (14) 1, 

Let r/. :=  Dl(~ . ) .  Then q. --~ 0. Hence, by (14) and (11), 

IC2(~,)t > r/, and tCl(~n)t > q , .  (15) 

Let b be the interpolating Blaschke product with zeros {~,} and let 6 = 
6(b). Because t/n --~ 0 we can choose for n big enough, say n > no, the 
Hoffman constants r and r/ as follows: 

1 - x / 1  - 6 2  6 -  r/n 
0 < q < 6 , 0 < e. < q,, < q < 3 with c , ,=~ln 1 - q n 3 "  

Without loss of  generality let no = 1. 

For every n choose two different points Vn and w, from ~?D (~n, !~.) sat- 

isfying arg v~ = arg wn = arg ~,. This implies that p(v,,,Wn) > t/,/4. Note that 
the pseudohyperbolic disks D ( ~ ,  r/) are pairwise disjoint. By Lemma 0.2, both 
{vn} and {wn} are interpolating sequences satisfying 

~~ - -  . ( 1 6 )  q_._n_n < p(Vn, W n ) =  P(Vn,~.n)+P(~n,Wn) _ < qn 
4 = 1 + p(vn,~n)p(~. ,w.)  1 + ~ = 2 

Let bl respectively b2 be the interpolating Blaschke products associated with 
{vn} respectively {w.}. Since p(vn ,~n)= p ( w n , ~ . ) =  qn/4-- '  O, we see that 
bl (m)  = b2(m) = 0 for every m E [cl{~. : n E ]N}]\{~. : n  E IN} C_ Z(I) .  By 
Lemma 0.2, we have 

6(bj) > - .  6" .  (17) 

1 - 6 1 ~  q 
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We are now going to prove that the quotient CI/C 2 is bounded away from 
zero on both interpolating sequences {v,} and {w,}. 

Step 2 By Schwarz-Pick's lemma p ( f ( ( , ) , f ( v , ) )  < p(( , ,v , )  for every 
f E H ~176 with ][f][o~ _-< 1. Hence we obtain 

If(G)]-~- < If(v,)l < If(G)l +~- .  

Replacing f by C1, respectively C2, and by using (15) and (13), we obtain 

]--~2(v,) ~f < < 3 (19) 
IclG)I + CI ~IC, G)I < 
Ic2G) I -  ~ = �89 = 

for every n E N. 

Similarly, we get -~22(w,) __< 3 for every n @ IN. 

Step 3 Next we shall solve an interpolation problem simultaneously for both 
interpolating sequences {v,} and {w~}. The existence of a solution will be 
guaranteed by Proposition 1.4. To this end, let 

oo 

co. = ]-I p(vk, v.) l-I p(wk, v.) = (1 - Iv. 12)lb'l(vn)[]b2(vn)] 
k#n k = l  

and let ~o~ = (1 -[wn]Z)]b'z(w.)[]bl(w.)[. Finally, let 6j = 6(bj) (j  = 1,2). By 
(17), 6j > 6*. 

Let 0 < q* < ( 1 -  V / 1 - 6 " 2 ) / 6  * . Then (16) and the fact that q, -~ 0 
imply that, for every n -> no, we have p(vn, ZD(b2)) = p(vn,w,) < q,,/2 < q*. 
Hence, by (2) of  Hoffman's lemma, we obtain that 

6* - 1/* 
[b2(v.)[ -> - -  p(Vn,Wn). (20) 

1 - q * 6 *  

The same holds for bi. 
We claim that both IDffv,,)]/o~. and ]Dl(w.)]/w~ are bounded, In fact, by 

(18), (20) and (16), we have for n -> no 

D,(vn)[ IDffG)I + ~ ~.. < ~.,, 
< 

COn = 0~. ~n = 611bz(vn)l 

< 5" !~*" < _3 �9 416"p(6",,*)]-' = : M .  (21) 
6 * ~ p ( v . , w . )  = 2 

Similarly, Di (w.)/co~ is bounded. 
Thus, by (19), for n > no we have 

1 l-~(vn) -~2(v,) Dffv~)l <3M, 
03n fDn 

o ~  ( w ,  ) = ( w .  ) �9 04  = 
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By Proposition 1.4, we can now solve the interpolation problem 

Bi HO ~ 
h(yj) = -~2(yj), h E , 

where {yj} is the union o f  {vn} and {wn}. Thus there exist h E H ~ and 
k E H ~ so that 

Bi = hC2 + kblb2 . 

This proves Proposition 1.7. [] 

Before we can prove our main theorem, we need the following result 
of [15]. 

Proposi t ion 1.8 [15] Let I ~ H ~ be a proper ideal. Then ord( l ,m) = 1 
for every m E Z(1) i f  and only i f  I is generated by interpolating Blaschke 
products. 

Theorem 1.9 Let f l , f 2  E H ~ have no common factors. Then I ( f t , f 2 )  = 
J ( f  l , f 2 )  i f  and only i f  minj=l,2ord(f j, m) < 1 for every m E M(H~ 

Proof  Let I = I ( f l , f 2 ) .  Assume that l ( f l , f 2 ) =  J ( f l , f 2 ) .  I f  there exists 
m E Z(I )  = Z ( f l ) n Z ( f 2 )  with 2 =< ord( / ,m) < oc, then Proposition 1.4 tells 
us that I ( f l , f 2 )  ~ J ( f I , f 2 ) .  So let ord( l ,m)  = e~ for some m E Z(1). 

Now we apply Proposition 1.7. Let f2  = C2D2 be the factorization ob- 
tained there. Then, by Lemma 1.1, we have l ( f l , C 2 )  = J ( f l ,C2) .  Since 
f t  E I(blb2, C2) for some interpolating Blaschke products bl, b2, there ex- 
ist x , y  E H ~ so that f l  = xblb2 + yC2. Hence I ( f  l,C2) = l(xblb2, C2) and 
J ( f l , C 2 )  = J(xblb2, C2). Applying Lemma 1.1 once again, we obtain that 
i = I(blb2, C2) = J(blb2, C2). 

Note that by Proposition 1.7 there exists r~ with bl(rh) = b2(r~) = C2(rh) = 
0. Hence ord([ , th)  = 2. Proposition 1.3 now implies that I(blb2, C2) 
J(blb2, C2), which is a contradiction. Thus we see that, whenever 2 < ord(l, m) 
=< ec for some m E Z ( I ), then I = I ( f l , f 2 ) ~ J ( f t , f 2 ). Hence I ( f l , f 2 ) = 

J ( f l ,  f 2 )  implies that 

minord( f  j, m) __< 1 for every m E Z(1) .  
j=l,2 

To prove the converse, let ord( / ,m)  = 1 for every m E Z(1). Then, by 
Proposition 1.8, I is generated by interpolating Blaschke products. Hence, by 
[17] or [15], l ( f l , f 2 )  : J ( f l , f 2 ) .  For the reader's convenience we briefly 
present the proof. 

Let Ifl ---< ]f~ I+]fz[ and let {zn} be the zeros of  any interpolating Blaschke 
product b belonging to I .  By the definition o f  an interpolating sequence there 
exist Yl,,q2 E H ~ satisfying 

f ( zn) f j ( zn)  (J' = 1,2), n E IN. 
g j ( z n )  -~ i f l ( z . ) l  2 + [f2(z.)[ 2 

Hence f -  (91fl  + g2f2)  = gb for some g E H ~ .  This shows that f E 

I ( f  l, f2) .  [~ 
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The following theorem now proves a conjecture in [15] for the case of  two 
generators. 

Theorem 1.10 Let f l ,  f2 E H ~176 have no common factors. Let I = I ( f l ,  f2 )  
and J = J ( f l ,  f2) .  Then the following assertions are equivalent: 

(1) I = J ;  
(2) ord( / ,m)  = 1 for every m E Z(I);  
(3) I contains an interpolating Blaschke product; 
(4) d contains an interpolating Blaschke product; 
(5) tf~(z)l 2 + (1 -Izl2)lf 't(z)l + Ifz(z)l  2 + (1 -Izl2)lf'z(z)l >= ~ > O for  

every z E D. 

Remark. The equivalences (3), (4), (5) have been proven in a more general 
setting by Tolokonnikov [18] by very deep operator-theoretic techniques. We 
present another proof  here. For (4) =~ (3) see also [12] and [15]. 

Proof (1) ~ (2) is Theorem 1.9. 
(2) =~ (3) is a special case of  Proposition 1.8. 
(3) ~ (4) is trivial. 
(4) =v (2) is trivial. 
1(5) :=~](2): Assume that there exists a net (z~) in ID converging to some 

point m C M ( H ~ ) ,  so that the expression in (5) tends to zero. Then m E 
Z(I). Because ( f  o L2~,)'(O) = (1 -[zo,[2)ff'(zo,)l, the compact convergence of  
f o Lz, to f o Lm shows that ( f j  o Lm)'(O) = 0, hence ord(fj ,m) > 2. Thus 
ord(Lm) > 2. Since all steps are reversible, we also get that ] (2)  =~1(5). [] 

Remark. If  we do not assume that the generators are relatively prime, then 
we get the result that I = l ( f t , f 2 )  = J ( f t , f 2 )  if  and only if I contains an 
interpolating Blaschke product times the greatest common divisor g c d ( f l , f 2 )  
of  the generators. 

In [15], it is shown that (4) =~ (1). Proposition 1.8 shows that (3) follows 
from (2) for every ideal. The equivalences of  (3) to (5) are in [18]. In view 
of  this, it is reasonable to ask (see [15]): 

Does I = I ( f l  . . . . .  f N )  = J ( f t  . . . . .  f N )  imply that I contains an 
interpolating Blaschke product? 

To our surprise this is not the case, as the fo!lowing easy example shows. 

Proposition 1.11 Let B and C be two interpolatin9 Blaschke products. Then 
I(B 2, C2,BC) = J(B 2, C2,BC) = J(B 2, C2). 

Proof Clearly we have j(B2, C2,BC) = j(B2, C2). Now let If] < [B[ 2 + 
]CI 2. We denote the zeros of  B by bn and those of  C by cn. Without loss 
of  generality, assume Z~(B)f3 Z~(C) = 0. The assumption on f implies that 
]f(bn)[ < IC(b~)[ 2. Because {bn} is an interpolating sequence, there exists a 
function Ht E H ~176 such that 

f (bn) = Hl(bo) for every n .  
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Hence f = H1 C 2 + HzB for some//2 C H ~.  This implies that 

= f(cn)[ < IB(c,)I. In2(c.)l 
B ( c . )  . = 

Again, by solving an interpolation problem, there exists H3 C H ~ so that 

~---~2 (cn) = H3(cn) every n.  for 

Therefore He = H3B + HaC for some//4 E H ~.  Hence f = Hi C 2 + (H3B + 
H4C)B ~_ I(B 2, C2,BC). [] 

Remark. If B and C are interpolating Blaschke products and if I = I(B 2, C 2) 
is a proper ideal, then I(B 2, C 2) ~ J(B 2, C 2) = I(B 2, C2,BC). 

2 Wolff's f2-problem 

Let f l  . . . . .  f u  C H ~.  Wolff proved that [fl --< ~-~.~=l[fJ[ implies that 

f3  C I ( f l  . . . . .  f s )  (see [5, p. 329]). The question of whether I f l  --< 
~ N l l f j ]  implies that f2  C I ( f l  . . . . .  f N )  remains open. In the following the- 
orem we shall give a positive answer under the additional hypothesis that 
minl<j<u ord(fj ,  m) < e~ for every m EM(H~ 

The methods of our proof are the standard ones developed by Wolff to 
prove the corona theorem. First let us recall that a positive Borel measure /~ 
on D is called a Carleson measure if there exists a constant C so that 

flf[ dl~ < Cllfll~ 
D 

for every f in the Hardy space 

1 io H 1 = f : f analytic in ID, I[fll~ = sup If(re )l dO < c~ 
0 < r <  1 2"-~ 

It is well known that Carleson measures are those positive measures p for 
which there exists a constant K such that 

u(Q) < KI(Q) 

for every Carleson cube Q defined by 

Q = {re i~ E ID : 1 - r < I(Q), Oo - I(Q) < 0 < 00 + I(Q)} �9 

Another equivalent condition is that 

sup f 1 - Izl 2 
z ~  I1--~--~12 dl~(w) < +c~ (23) 

(see [5, p. 31 and p. 238]). 

Let N( /~ )=  sup{ (~O~ : Q  Carleson cube} denote the Carleson norm of 
p. 

We will use two results, due to Carleson and Wolff, on the existence of 
bounded solutions of ~-equations. 
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Theorem [5, p. 320-322]. (a) Let G E COD) induce the Carleson measure 
t~ on ID. I f  G is bounded then the ~-equation ~h = G admits a solution 
h E C ( ~ ) M  CLOD) with IlhllL~e~) < c~, where C1 only depends on the 
Carleson norm o f  I~, 

(b) Let G be a bounded C t function on ID and assume that the two 
measures 

~1 = ta(z)[2(1 - [ z l )dxdy ,  #2 = •G(z) (1 - j z [ )dxdy  
oz 

are Carleson measures. Then the ~-equation {)h = G admits a solution h E 
C(ID)nCI(ID) with [IhllL~(~) <= C2 for some constant C2 dependin9 only on 
the Carleson norms o f  ~1 and Pz. 

For later reference we note that whenever G induces a Carleson measure p, 
then the dilation Gr defined by Gr(z) = G(rz) induces a Carleson measure Pr 
for which N(/lr) < N(#).  

According to [19], a Blaschke product B is said to be of Carleson-Newman 
type (a CN-Blaschke product, for short) if B is a finite product of interpolating 
Blaschke products. 

A well known theorem (for example, see [14]) tells us that a Blaschke 
product B with zero sequence (z,) is a CN-Blaschke product if and only if the 

oo 1 -  m e a s u r e  p = ~ , = l (  Iz.12)6~. associated with B is a Carleson measure. Any 
such sequence will be called a CN-sequence. 

We shall also need the following results. 

Proposition 2.1 [6, 8] Let f E H ~ be a function satisfyin9 ord(f ,m)  < oc 
for  every m C Z ( f ) ,  Then f has the form f = FB, where F is an invertible 
outer function and B is a CN-Blaschke product. 

Lemma 2.2 Let D = D(zo, q) be the pseudohyperbolic disk {z C ID : 
p(z, zo) < q}. Then: [l-L~oF 1 

( 1 )  The area of  D is ~qz 1 - ~r'lzol2J �9 

(2) For every z C D we have 

1 - [ z l  2 4 
~(1 1 - Iz0l - - - - - 5  1 - t ]  2 " 

~/2) < < 

(3) {w C ~2 : Iw -z01 < ~(1 -Iz012)} c_ O c_ (w ~ ~ : l w -  z01 < 

_i-~(1 -Izd2)}. 
(4) Let 0 < h < 1/4 and l e t z o C l D  satisfy l - l z d  < h, largzol < h. 

Then for  every zl E ID with Izi - z o l  < h we have 1 - Izol < 3h and 
larg ztt < 3h. 

Proof  Elementary calculation. See also [5, p. 3]. [] 



The generalized corona theorem 149 

Lemma 2.3 Let  f : ID -~ ID be analytic with f ( O )  = O, If ' (0)]  > 6. Then f 
is schlicht in ]z I < z* = (1 - x/1 - 62)/6 < 6. Moreover, z* is best possible. 

P r o o f  Use Exercise 1 of  [5, Sect. 1], and note that z* - (6 - z*)/(1 - z*6). 
To show that z* is best possible, just look at the function f ( z )  = z(z - z*)/ 
(1 - z ' z ) .  [ ]  

Lemma 2.4 Let  ( z . )  be a CN-sequence. Fix an arbitrary q, 0 < rl < 1. For 
every n E N let ~. E D(z . ,q) .  Then (~.)  is a CN-sequence. 

P r o o f  Using (2) o f  Lemma 2.2 one gets 

4 
1 - [~ .1  < (1 - ] z . I )  

= l _ q 2  

Also ~n E Q = {re iO E ID : 1 - r < I(Q), Oo - I(Q) < 0 < Oo + I(Q)} 
implies that there exists a constant C = C(q), depending only on q, such that 
zn E CQ = {re i~ E II) : 1 - r  < CI(Q), O o - C I ( Q )  < 0 < Oo+Cl(Q)}.  Hence, 

4 
(1 - I ~ . t )  < .,2 ~ (1 - [ z . I )  < g ( r l ) l ( O ) .  

r = 1 - ,, znEQ 

So, ~ . ( 1  -1~.1)6r is a Carleson measure and {~.} is a CN-sequence. [] 

We are now able to prove the following key lemma. 

Proposit ion 2.5 Let  (z . )  be a CN-sequence o f  distinct points and let 

U = ~ D ( z , , ~ l )  
n = l  

Jbr some ~, 0 < q < 1. Let  ~w denote the characteristic function o f  U. 
Then, f o r  any interpolating Blaschke product B, the measure 

[B'I ~ u d x d y  (24) 

is a Carleson measure. 

P r o o f  The additive property o f  the logarithmic derivative yields 

B'(z)  1 - I ~ j l  2 

where {~j} are the zeros of  B in ID. 
From now on, ci = ci(q) will denote different constants depending only on 

q, Let us point out that we may assume without loss of  generality that q is 
small, because otherwise one can cover each D(z. ,  tl) by a finite number N of  
pseudohyperbolic disks o f  smaller radius, N being independent of  n. The new 
centers z. again form a CN-sequence. 
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Let 

Q = {re i~ E ID " 1 -  r < I(Q), Oo - l(Q) < 0 < 00+ l (Q)}  

and A = {zn : D(zn,rl)f'l Q+0} .  By Lemma 2.2, there exists cl = ct(t/) such 
that z, E A implies D(z~,rl) C ClQ. Let th = (1 + t/)/2. From (24) and the 
definition of  U we have 

Bt(z) ~ v ( z ) d x d y  f B(z) 
Q 

< 
dxdy 

~ ( 1  - [~jl 2 )  I Z ~j111 ~jz[ 
znEA j - -  - -  

O ( z . , O  

~ (1 -[r 2) 

D( z.,rl ) 

/ ] + ~ (1 -ICjl  2) [z ~ ~1 -- ~jz] 
j :p (~s , z . )>~h 

D(zn,q ) 

[(11. + (I1).] �9 
z. EA 

Conceming (H).,  observe that if p(~j ,z . )  > rh and p(z,z . )  < r/, we have 
(using the monotonic ity of the functions ( a - x ) / ( 1 -  ax) and ( x - a ) / ( 1 -  ax)): 

z - ~y p(z., ~j) - p(z ,z . )  ~lt - ~l > 1 1 
1 - r  =p(z ,r  i-~p--~,z~ ~ > f - - ~ / ~  = 2 "  1+------~ 

I f z  C D(z..rl)  and p(~j ,z . )  > rh, applying (3) of Lemma 2.2, one has 

Zn -- Z 

II- z. 
< ]zn-z___~l < r / ( 1 - q ) - I ( 1 - [ z . ]  2 ) _  q ( 1 - r / ) - '  < 1 
= [ ~ j - z . [  = 2-1ql(1--[Zn] 2) 2-1rh = 2 '  

if r/ is sufficiently small. Hence 

[1-~jz I > ] I - ~ j z . [ - [ z . - z ]  > � 8 9  I. 

So 

dxdy < 4 
f [1 ---~j--z[ 2 = ] 1 -  ~jz.] 2 Area(D(z.,r/)) 

D(zn,q) 

4rcr/2 (1 -[z.12) 2 
< 

( l  - , 2 )2  L1 - r 
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So, using (23) with the Carleson measure p = ~ ( 1  -[r  we have 

dxdy 
( H ) .  ~ 2 ( l + t / )  E ( l - I C j l  2) f llC~r 

j:p(r ) > ~L D(z.,~l) 

v.(1 -]~jl2)(1 -Iz.lZ) z < C2 Z.~ j [1 - -  ~jZn[ 2 

5 ~3(1 - I z . I )  �9 

Concerning ( I ) . ,  observe that if  p(~j,z.) < ql, there exists c4 = c4(q) such 

that D(z. ,q)  C D(~j, c4). Let K = {z C �9 "[z - ~jI < c_]-~c4 (1 - ]~j]2)}. By 

Lemma 2.2 (3) we have 

dxdy dxdy _ c42~(1 - [~j[2) 

D(~j,c 4 ) 

Moreover,  i f  p(~j,z~) < q, then by (3), (4) in Lemma 2.2, ~j C esQ(z.), 
where 

Q(z,O = {w e ID: 1 - [wl __< 1 - [z.1, larg w -  arg z. 1 < I - Iz.l}. 

So, using the fact that ~ ( 1  - [ ~ j l 2 ) O ~ j  is a Carleson measure once again, one 
gets 

dxUy 
(I) ,  < 2 E f , 2 ~ T ,  

j:P( ~j,z.  ) <= ql D( ~j,c4 ) 

__<e~ E (1-1~4J)__<r E (1-1~jl) 
j: p( ~j,z.  ) < ql ~j Ecs Q(z.)  

< c 'e6(1 - [ z . [ ) ,  

where c* is the Carleson norm of  the measure Y'~(1 - 1~4])6r Hence 

if(z) 
f ~ u ( z ) d x d y ~ e v ~ ( 1 - t z . I )  ~ e7 ~ ( l - l z . [ )  
Q B(z) z.~.4 z.~c~Q 

= < csl(Q) 

and this finishes the proof. 

We are now ready to prove the main theorem of  this section. 

[] 

Theorem 2.6 Let f j E H ~ (j = 1 . . . . .  N)  and let I = l ( f  l . . . . .  fN).  Assume 

that ord( l ,m)  < e~ for every m E Z(I). Then If[  _-< ~N=l] f j [  in D implies 
that 

f2  E l ( f l  . . . . .  f u ) .  
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P r o o f  S tep  1 First we show that I can be generated by N + 1 Blaschke 
products satisfying the Carleson-Newman condition. In fact, the hypothesis 
o rd( I ,m)  < oe for every m E Z(1)  implies that Z(1)  does not meet the set 
S o f  trivial Gleason parts o f  M ( H ~  Hence, by [18] (see also [7, Corollary 
2.4], for an easy proof)  1 actually contains a CN-Blaschke product b0. 

Let 9j = bo + e f j .  Since interpolating Blaschke products do not vanish on 
S, we see that ]gj] > 6 > 0 on S for e small. By a result of  Guillory et al. 
[8], resp. Gorkin [6], (see also Proposition 2.1) it follows that there exist CN- 
Blaschke products bj and outer functions Fj  invertible in H ~ so that gj = b jFj  
(j  = 1 . . . . .  N) .  

It is now clear that I = I(bo, gl . . . . .  gN) = l(bo, bl . . . . .  bN). 

S t ep  2 Let Ig[ < Y']~u=01bj[. As in [5, Sect. 8], we may assume without loss 

of  generality that N;=oZ~)(bj)  -- 0. Let 

5j 
Gp: = ( p j ~  ( j , k  = O , . . . , N )  . 

~ p j -  E~=olbk[2, 

As usual we now use a normal families argument. For technical reasons, func- 
tions and their dilations are represented by the same symbol.  Suppose we can 
solve the t~-equations 

Ohjk _ g2Gj k ( j , k  = 0,. , N )  
0~. "" 

N h with IlhjkllLO~(~n~) _< M. Then 9j = g2cpj + Y~k=0( jk - hkj)bk satisfy 

U ~gY 
~ g j b j - - g  2 and - - = 0  ( j = O  . . . . .  N )  
j=0 c:~ 

(see [5, p. 329]). Thus we have only to show that these ~-equations admit 
bounded solutions. Fix j and k and write G = Gjk. Let {z,} denote the zeros 
of  the CN-Blaschke product bo of  Step 1. Take a E C~ 0 _--- a _-< 1 
such that a -- 1 on {z : p ( z , { z , } )  < e}, a --- 0 on {z : p ( z , { z , } )  >-_ 2e} and 
(1 -Izl)lV'a(z)l  is bounded.* 

Let U ~ Now, G Gl + G2, where Gl = [,.Jn=lD(Zn,2C). = = Ga and G2 = 
G(1 - a ) .  An elementary calculation (see [5, p. 330]) yields that 

~ u  tb, f2 1=01 If 
102aa 12 < coa 2 ~u=01btl 2 " 

Hence, 

[gZGl[ < e la  U b = Ibt[' 
= E~=01 ,I ,=o 

Since the bj are CN-Blaschke products, there exists a finite number of  inter- 
polating Blaschke products BI (l = 0 . . . . .  L) so that 

* Note that, in general, the disks D(zn,e) are not pairwise disjoint. 
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Idc~I < c~a~ 
l=0 Bt 

Since a vanishes outside U, we obtain from Proposition 2.5 that 

102G~(z)l dxdy 

is a Carleson measure and hence the ~-equation ~h = g2GI admits bounded 
solutions. 

On the other hand, since b0 is a CN-Blaschke product with zeros {z, }, one 
has [b0(z)l > e(e) if  p(z,{z,}) >= e. Now an elementary calculation (as in 
[5, p. 330]), yields 

N 
CO y-,ibttz~12r 1 Ig2G2(z)12( 1 - Iz l )  =< c ( c ) 2 ~ l  t, )1 t - -Izl)  

which is a Carleson measure (see [5, p. 330]). Also 

l~3(g2a2)(z)l(1 - tel) 

is a Carleson measure. Hence the cS-equation ~h = g2G2 admits bounded solu- 
tions. This finishes the proof. [] 

We shall finish our paper by giving an analytic condition on the generators 
which guarantee a positive solution to Wolff's f2-problem. To this end, let 

d '  ( z + ~ ' ~  
Dk(f)(z) (d~.) k f  \1  + ~ J  r 

be the k-th pseudohyperbolic derivative of  a function f E H ~ (k = 0, 1,2,. . .) .  
For k = 1, e.g., we obtain Dl(f)(z)  = (1 - ]z[2)f'(z). If  f = ( f i  . . . . .  f u )  E 
(H~176 N, then we put 

IDk f l  :=  ~ j  -~lDk f j]2 

As a corollary we now obtain 

Corollary 2.7 Let f = ( f ,  . . . . .  fN)  C (H~)C Assume that for some n C 
N tJ {0} we have ET=01D~fi~. > 6 > 0. Then 10[ _-< EN=Ilfsl implies that 

g 2 E I ( f i  .... , fN ) .  

Proof By a result o f  Tolokonnikov [19] the hypothesis ~7=otDlfl~.. > ~ > 0 
is equivalent to the fact that the ideal I = l ( f l  . . . . .  fN)  contains a CN-Blaschke 
product. Hence ord(Lm) < oc~ for every m E Z(1). By Theorem 2.6, the result 
follows. [] 

Acknowledgement. Part of this work was done while the second author was visiting the 
Universitat Autbnoma de Barcelona (UAB) and the Centre de Recerca Matem~tica, Institut 
d'Estudis Catalans (Barcelona). He wants to thank these institutes for their support. 



154 P. Gorkin et al. 

References 

1. Amar, E., Bruna, J., Nicolau, A.: On HP-solutions of the Bezout equation. Centre de 
Recerca Matem~tica, Inst. d'Est. Catalans, Preprint No. 190 (1993), 1-11. Pac. J. Math. 
(to appear) 

2. Bourgain, J.: On finitely generated closed ideals in Hoe. Ann. Inst. Fourier (Grenoble) 
35 (1985), 163-174 

3. Cegrell, U.: A generalization of the corona theorem in the unit disc. Math. Z. 203 (1990), 
255-261 

4. Cegrell, U.: Generalizations of the corona theorem in the unit disc. Proc. R. Irish Acad. 
(to appear) 

5. Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York 1981 
6. Gorkin, P.: Functions not vanishing on trivial Gleason parts of Douglas algebras. Proc. 

Am. Math. Soc. 104 (1988), 1086-1090 
7. Gorkin, P., Mortini, R.: Interpolating Blaschke products and factorization in Douglas 

algebras. Mich. Math. J. 38 (1991), 147-160 
8. Guillory, C., Izuchi, K., Sarason, D.: Interpolating Blaschke products and division in 

Douglas algebras. Proc. R. Irish Acad. Sci. A 84 (1984), 1-7 
9. Hoffman, K.: Bounded analytic functions and Gleason parts. Ann. Math. 86 (1967), 

74-111 
10. lzuchi, K.: Factorization of Blaschke products. Mich. Math. J. 40 (1993), 53-75 
11. Laroco, L.: Stable rank and approximation theorems in Hoe. Trans. Am. Math. Soc. 327 

(1991), 815-832 
12. Lin, Kai-Ching: The corona theorem and interpolating Blaschke products. Indiana Univ. 

Math. J. 41 (1992), 851-859 
13. Lin, Kai-Ching: On the constants in the corona theorem and ideals of H ~ Houston J. 

Math. 19 (1993), 97-106 
14. McKenna, P.J.: Discrete Carleson measures and some interpolating problems. Mich. 

Math. J. 24 (1977), 311-319 
15. Mortini, R.: Ideals generated by interpolating Blaschke products. Analysis, 14 (1994), 

67-74 
16. Nakazi, T.: Notes on interpolation by bounded analytic functions. Canad. Math. Bull. 31 

(1988), 404-408 
17. von Renteln, M.: Finitely generated ideals in the Banach algebra Hoe. Collect. Math. 

26 (1975), 3-14 
18. Tolokonnikov, V.: Interpolating Blaschke products and ideals of the algebra H ~176 Sov. 

J. Math. 27 (1984), 2549-2553 
19. Tolokonnikov, V.: Blaschke products satisfying the Carleson-Newman condition and 

ideals of the algebra Hoe. Sov. J. Math. 42 (1988), 1603-1610 
20. Vinogradov, S.A., Gorin, E.A., Hrushchev, S.V.: Free interpolation in Hoe ~t la P.W. 

Jones. Sov. J. Math. 22 (1983), 1838-1839 
21. Wolff, T.H.: A refinement of the corona theorem. In: Linear and Complex Analysis 

Problem Book, 199 Research Problems. Ed.: V.P. Havin, S.V. Hrushchev, N.K. Nikolskij. 
Lect. Notes Math. 1043 (1984), 399~,00, Springer, Berlin - New York 


