Math. Ann. 301, 135-154 (1995) Mathematische
Annalen

© Springer-Verlag 1995
The generalized corona theorem

Pamela Gorkin', Raymond Mortini>*, Artur Nicolau>**

I Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
(E-mail: PGORKIN@BUCKNELL.EDU)

Z Mathematisches Institut I, Universitit Karlsruhe, Englerstrasse 2, D-76128 Karlsruhe,
Germany (E-mail: ABOS@DKAUNI2.Bitnet)

3 Departament de Matematiques, Universitat Autonoma de Barcelona, E-08193 Bellaterra,
Spain (E-mail: IMTFO@CCUABI.UAB.ES)

Received: 12 January 1994/ In revised form: 15 March 1994
Mathematics Subject Classification (1991): 46J15, 30D55

Introduction

Let H® = H°(ID) be the Banach algebra of all bounded analytic functions in
the open disk D = {z € C: |z| < 1}. Its spectrum or maximal ideal space is
denoted by M(H°°). Carleson’s famous corona theorem says that ID is dense
in M(H*). An equivalent algebraic formulation tells us that the ideal

N
j=

generated by the functions f; € H* equals the whole algebra if and only if
Y lfjl 28> 0inD. Let

J=J(f1,..., )= {feH°°:3C=C(f) with [ f| < cfjl|f,-| in 11)} .
=

It is obvious that J is an ideal containing /.

Carleson’s theorem implies that whenever J = H°, then I = J. However,
a well known example due to Rao (see below or p. 365 of [5]) shows that,
in general, the inclusion is proper. For example, one can take the functions

14z

(1 —z)* and (e‘Tl‘Fz)2 as generators and let f be the function (1 —z)e™ .

Von Renteln [17] showed that there exist finitely generated ideals /4 H >
for which 7 = J. In fact, if I contains an interpolating Blaschke product B,
then I = J. This result was later extended by Tolokonnikov [18], who proved
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that / = J provided that J contains an interpolating Blaschke product. An easy
proof of this latter result can be found in [15].

It is therefore a natural question to ask for a necessary and sufficient condi-
tion on the generators f,..., fn in order that I = J. In [15] it was conjectured
that this holds if and only if / contains an interpolating Blaschke product (pro-
vided, of course, that the generators have no common factor). This conjecture
may also be rephrased as an analytic condition on the generators (see Theorem
1.10). It is the aim of this paper to confirm this conjecture for the case of two
generators. To our surprise, however, this does not remain true for more than
two generators (see Proposition 1.11).

In the second section of this paper we solve Wolfl’s f?-problem ([21]
and [5, p. 329]) under the additional hypothesis that the generators do not all
vanish on any point ¢ in the spectrum of H> where the Gleason part of ¢ is
trivial. This hypothesis may also be rephrased as an analytic condition on the
generators (see Corollary 2.7). For related material see [1, 2, 3, 4, 12, 13].

We assume that the reader is familiar with the theory of bounded analytic
functions which is nicely presented in Garnett’s book [5].

0 Preliminaries

A sequence {z,} in D is said to be an interpolating sequence if for every
bounded sequence (w,) of complex numbers there exists f € H* with f(z,) =
w, for every n € IN. A Blaschke product

i —Z

B =T §

l—aj

whose zero sequence is an interpolating sequence is called an interpolating
Blaschke product.
By Carleson’s theorem {z,} is interpolating if and only if

00
i ; =
Jg&]l}p(zjazn) = 5 > O ]

J*n

where p(z,w) = i]z%fuv)_v‘ denotes the pseudohyperbolic distance in ID. As
usual, the extension of p to the whole spectrum of H*° is defined by

p(x, ») = sup{| f()| : f € H®, I f oo £ 1, f(»)=0}.

Here f denotes the Gelfand transform of f defined by f (m) =m(f) (m €
M(H®)). We shall always identify f with f.

If f€H™,then Z(f)={m € M(H™): f(m) = 0} denotes its zero set;
Zp(f) = Z(f)ND. If I is an ideal, then Z(I) = ﬂfelZ(f) is the hull or zero
set of the ideal 1.
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Following Hoffman, define for every m € M(H®) and f € H* with
f(m) = 0 the order of the zero m of f by

ord(fym)=sup{n e N: f = fi...fu, [, €H®, fi(m)=0(=1,...,n)}.

If f(m)=0, then ord(f,m) = 0.

Using the fact that for every m € M(H) there exists an analytic map
L, of D onto the Gleason part P(m) = {x € M(H*>) : p(m,x) < 1} of m
with L,,(0) = m, we see that ord(f,m) is the usual multiplicity of the zero of
the analytic function f o L, at the origin. Note that the latter is infinite if f
vanishes identically on P(m).

If f,9 € H* then ged (f,g) denotes a greatest common divisor of the
functions f and g. It is well known that in contrast to the disk algebra, a
greatest common divisor always exists and is uniquely determined modulo in-
vertible functions. It is easy to prove that whenever ged(f,#) = 1 and A divides
f + g, then h divides g.

The following results will be used throughout this paper.

Hoffman’s lemma 0.1 ([9, p. 86], and [5, p. 404]). Let 0 < d <1, 0 <y <
(1 —+1-6%/8,ie,0 < n < p(d,n), and let

0<5_S_€(6):=15_;6n’7n.

If b is any interpolating Blaschke product with zeros {z,} such that

o(b) = inf (1 = |za)Ib'(zn)] 2 8,

then

{zeD:|b(z)| <} C{zeD:p(z,Z2(h)) < n}
C{zeD:|bz)] <n}. M

It is easily shown that (1 — +/1 — §%)/d is a monotone increasing function of

4 €(0,1), that ¢ < # < J and that 0 < (1 —+/1 —6%)/6 < §. We shall also

use the fact that n < 2n/(14+n*) < & is equivalent to 0 < 1 < (1—v/1 — 82)/6.
Using (1) and Schwarz’s lemma [5, Exercise 1, p. 41] we have

o —
T35 P57 S 16G)] < pla2) @

1—
whenever p(z,z,) < n and b is an interpolating Blaschke product with 6(b) =
o and zeros z,. Finally, we note that the pseudohyperbolic disks D(z,, %) =
{z € D: p(z,z,) < n} are pairwise disjoint.

Lemma 0.2 [5, p. 310]. Let {z,} be an interpolating sequence in D with
inf, [1;,,0(z;,2s) 2 6 > 0. Let 0 < < (1 = V1~ 0%)/8, and let w, € D
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satisfy p{zn,wn) < 1 for every n € N. Then {w,} is an interpolating sequence

with
o i
inf [T p(wj, w,) 2 T

j#n 1_51__2:L{

1 Necessary and sufficient conditions for 1 = J

Our first objective is to give necessary conditions in terms of the order of the
zeros of the generators which guarantee that / = J. Using these results together
with the fact that an ideal / + H*° is generated by interpolating Blaschke prod-
ucts if and only if ord({,m) = 1 for every m € Z(I) (see Proposition 1.8), we
will prove that, for two generators, I = J if and only if 7/ contains an inter-
polating Blaschke product times the greatest common divisor of the generators.

The proof of the main result will be divided into two major steps. First
we shall be concemed with finitely generated ideals whose zero sets contain a
point m with 2 < ord({/,m) < oo; the second case deals with ideals for which
ord(l,m) = oo for some m € Z(I).

Lemma 1.1 Let f;,g; € H® (j = 1,2). Assume that the functions f,g, and
f292 have no common factors. Then

I(f191, f292) = J(f1g1, [292)

implies that

I(f1, f2)=J([1, f2).

Proof. Let [ € J(f1, f2). Then |g1g2f| £ C(lg1 f1] + |g2/2]) for some con-
stant C. By hypothesis, there exist x;,x; € H* such that

g192f =x1f1g1 +x2f292 -

Thus g1(g2f —x1 /1) = x2.f292. Since ged(gi, f292) = 1, dividing by g, yields
g2f —x1f1 = y2f292, for some y, € H*. Similarly, since ged(gsz, f191) =
1, dividing by g, yields f = X, f| + X, f, for some x|,X; € H*. Hence
J(f1, f2) CI(f1, f2), from which we get our assertion. ]

Lemma 1.2 [9, p. 100]. Let f € H™ and let m € M(H*>) be a point with
f(m) = 0. Then either f has a zero of infinite order at m or there exists an
interpolating subsequence of the zero sequence of f in ID which captures m
in its closure.

Proposition 1.3 Ler f, /2 be two functions in H* having no common factor,
and let I = I(f\, f2). Assume that ord(I,m) =N with2 £ N < oo for some
m & Z(I). Then I is properly contained in J =J(f 1, f3).
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Proof. Step 1 Because ord(/,m) = min;,, ord(f;, m), we may assume with-
out loss of generality that ord(f),m) = N < ord(f2,m) £ oc. In this step
we construct generators F; such that ord(F;,m) < oo for all j = 1,2. If
ord(f2,m) < oo, we are done. Otherwise let Fy = f| and F, = f, +¢f for
some £ > 0. Then ord(F,,m) =N < oo and I = I(F|,F,).

So we may assume from now on that

N =ord(fi,m) < ord(f5,m) < c©. (3)

Step 2 By Lemma 1.2, (3) implies that we have f; = b;c;g;, where the b;
and ¢; are interpolating Blaschke products with b;(m) = ¢j(m) = 0 and g; €
H* (j=1,2).

Since I(ci,c¢2,b1,b2) is a proper ideal, there exists by the corona theorem
an interpolating sequence {£,} in D such that

en 1= {Jet] + leal + [b1] + B2 }(&) = 0 as n— o0 4)

Let b be the interpolating Blaschke product associated with {£,} and let 6 =
min{d(c),8(c2), 8(b,),d(b3),5(b)}. Choose, according to Hoffman’s lemma,
the Hoffman constant # so small that 0 < €, < n(é — n)/(1 —nd) for n = ng
and 0 < n < (1 — 1 —6?%)/6. Without loss of generality let ny = 1. By
Hoffman’s lemma, we may conclude from (4) that each pseudohyperbolic disk
D(&,,n) contains exactly one zero of ¢, ¢;, b; and b, for all n.

Let ¢}, c3, b}, bj be the associated subproducts. Thus f; = bjcih; for
some h; € H°(j = 1,2). In order to prove our proposition, it is, by Lemma
1.1, sufficient to show that

1(bicy, byes) +J(b1cy, biey) - (%)

Step 3 We claim that there exist interpolating Blaschke products B, B* and
C, C* so that

BB* = bic}, CC*=bsc;, (6)

BB; is bounded on the zero set of C* in ID and

an;- is bounded on the zero set of B* in D. )

Fix n and look at the distribution of the zeros of by, ¢} resp. b3, ¢5 in D(&p,n).
Let

Z(bici)ND(Cpsn) = {Bns Br}
and

Now there exists among the numbers p(By, 7n), p(Bn,7n), P(By70)s P(B7.77)
a biggest one. Without loss of generality let p(f;,7:) be this number. Then

n

we put the zero ) to a Blaschke product called B*, the zero y; to a Blaschke
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product called C*. The other zeros B,, resp. y,, are put to Blaschke products
called B resp. C. By construction we have formula (6). Moreover,

p(ﬂm?;) < 1 and p(?n’ﬁ:)
p(Br ) — P By) —
By Lemma 0.2, the sequences (), (8;), (y») and (y;) are interpolating se-

quences whose associated interpolating Blaschke products B, B*, C and C*
satisfy

A

()

__2n
1+r12

n

Moreover, we have that &, = [B*(&,)] + [C*(Ea)] + |B(&n)| + |C(&)] — O as
n — oo. In fact, by (2),

3(B),0(B"),06(C),0(C™) 2 =16, )

En S p(Br,En) + p(ny En) + p(Ba, En) + p(vn, En)
= p(&n, Z(by)) + p(&n, Z(b2)) + p(&n, Z(c1)) + p(€n, Z(c2))
— 0 asn—oo0.

If 1 is so small that we also have

25 1— V1 -6+
0 < < — = —
n 57 n > ,

we can use Lemma 0.2 and (2), (8), (9) to obtain the following estimates

(note that

P(/mén)'}'p(émﬁ) 2n ).
P('Y,,,B,,) = 1+P(?n,én)p(6n,ﬂ ) = 1+’7 =1 ) '

B() 2BV

() = p(ﬂ,,,mp(&* S e =M

and similarly
By
C(BY)

<M forevery n.

This proves (7).

Step 4 Relation (7) now implies that we can solve the interpolation problems
B . C .
n)=H0,) and = (f) = Ha(B,)

for bounded analytxc functions H; and H,. Hence there exist K|, K; € H*®
that
B=HB* +KC* and C=HC"+KB".
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Let z € ID be so that |C(z)] < |B(z)|. Then, using |B| < const(|B*| + |C*|) in
D, one gets

|BC(2)] = const - [|B*(2)[|C(2)] + |C™(2)IIC(2)i]

<
; const - [|B*B(z)| + |C*C(z)]] .
Changing the role of B and C we see that
BC e J(B*B,C*C).
But BC ¢ I(B*B, C*(C), for otherwise we would have
BC =xB*B+ yC*C for some x,y € H> .
Since there are no common factors, we can divide by BC to obtain
1 =XB* 4+ yC* for some X, 5 € H*® .
This contradicts the fact that

B*({)—0 and C*(&)—0.

Hence I(BB*,CC*) ¢ J(BB*,CC™). In view of (6), this proves (5) and hence
Proposition 1.3. ]

Proposition 1.4 [16] Let {z,} be a finite union of interpolating sequences in
D. If w, € C satisfies
Iwal < TIp(zj124),
J#n

then there exists a function f € H*® such that
f(z)=w, forallneN.

Remark. Nakazi’s proof of this result in [16] is not constructive. However, the
explicit solution formula of [20] of the interpolation problem of Carleson also
works in this case. In fact,

2 2
f(2)= Z nB ( 5 < *Z-nl ) Bu(z) exp(an(za) — aa(2)) ,
where
1 +zkz | nI Zy—z
() = ¥y~ ) and Bi2) =B )/ T
kgn n

is a solution.

For a function f € H™, f #£ 0, let f = BF be the Riesz factorization of
f, where B is a Blaschke product and F' is a function which does not vanish
in D.
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Proposition 1.5 Let f; = B;F; € H* have no common factors. Assume that

I(f1, f2) =J(f1, [2). Then
Z(F)NZ(F)=0.

Proof. The Cauchy-Schwarz inequality implies that By By/F\vFs € J(f1, f2).
Hence, by our hypothesis, there exist x, y € H* so that

B\ByVF\\/F; = xB\F| + yB,F), .
Division by B B,+/F|/F; yields functions %, € H* such that
1 =#VF + 3VF, .
Hence Z(F\)NZ(F,) = 0. O

Remark. We do not know whether the assertion of Proposition 1.5 holds
for ideals I = I(f),...,fn) with more than two generators and satisfying
I(fh“"fN) =‘](fh-'-’fN)'

In view of Proposition 1.3, we must now consider the case where the
generators B and B, generate a proper ideal / such that ord(/,m) = oo for
some m € Z(I). The main difficulty is that the zeros of I need not lie in the
closure of an interpolating subsequence of B, or By. Hence we cannot use the
factorization argument given in the proof of Step 2 of Proposition 1.3. Using
the following proposition, however, we shall be able to reduce our new situation
to that of Proposition 1.3. Our proof is based on the following factorization of
Hoffman ([9, p. 95], and [5, p. 411]) and Izuchi.

Factorization Theorem 1.6 (Hoffman-Izuchi [10, p. 55]) Let B € H* be a
Sunction with Zyo(B) := {m € M(H>®) : ord(B,m) = oo} +0. Then B admits
a factorization B = BB, such that Z,(B1) = Zoo(B2) = Zoo(B).

Remark. Although this factorization theorem has only been stated for Blaschke
products in [10], it remains true for any function f € H®, because the zeros
of singular inner and outer functions are always of infinite order.

Proposition 1.7 Let By, B, be two functions having no common factors, and
let I = I(B),B,). Suppose that ord(B;,m) = oo for some m € Z(I) (j =
1,2). Then there exist m € Z(I), interpolating Blaschke products by, by and
functions Cy and D, such that

(1) By = CDy;

(2) bi(m) = by(m) = Cy(m) = Da(mi) = 0;

(3) By € I(b1b;, (y).
Proof. Step 1 First we factor the functions B; according to Theorem 1.6 as
a product B; = C;D; of two functions so that ord(C;,m) = ord(D;,m) = cc.
Then I(Cy, C;, Dy, D;) is a proper ideal, and there exists, by the corona theorem,
an interpolating sequence {{,} in ID so that

{ICi| + |Ca| + |Dy| + |D2]}({n) = 0 asn—o00. (10)
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Note that every cluster point of the {; lies in Z(/).
We shall now construct the interpolating Blaschke products b) and b;. To
this end, let
Ey = {{: D)) S GG} - (1
Without loss of generality, £ is infinite (otherwise we can rename the func-
tions). Let

Ey = {{n € E1 : [D2(80)] = |C2(C)l} - (12)
Without loss of generality, we may assume that E; is infinite. Let
G
Ey = Cn EEZ : E(Cﬂ) < [ (13)
2

Also here we may assume that Fj is infinite, for otherwise we would look at
the quotient C,/C;.

Since we will consider subsequences of {{,}, we may assume that the {,
satisfy Eqs. (10)—-(13). Note that

<. (14)

'—'—(Cn

Let 5y := D{({,). Then 5, — 0. Hence, by (14) and (11),

IC(C)l 2 nn and  [C(G)] 2 71n - (15)

Let b be the interpolating Blaschke product with zeros {(,} and let § =
o(b). Because 1, — 0 we can choose for n big enough, say n = nq, the
Hoffman constants ¢, and #n as follows:

1—VI-8 : 0 —1n

5 , 0<5,,<n,,<n<5w1th5,1:r]nm.

Without loss of generality let ny = 1.

0 <<

For every n choose two different points v, and w, from éD (C,,, %’1) sat-
isfying argv, = argw, = arg{,. This implies that p(v,,w,) = 7,/4. Note that
the pseudohyperbolic disks D({,,n) are pairwise disjoint. By Lemma 0.2, both
{v,} and {w,} are interpolating sequences satisfying

Ul
P(0n, L) + p(Lny Wn) _2’1 Nn

Hn _ - A
A R O AT AR R

Let b, respectively b, be the interpolating Blaschke products associated with
{vs} respectively {w,}. Since p(vy,{n) = p(Wn,$n) = n4/4 — 0, we see that
by(m) = by(m) = 0 for every m € [cl{{, : n € N}\{{, : n € N} C Z(I). By
Lemma 0.2, we have

6_
§(by) = ——— 1 =5, (17)
1
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We are now going to prove that the quotient C)/C, is bounded away from
zero on both interpolating sequences {v,} and {w,}.

Step 2 By Schwarz-Pick’s lemma p(f{((,), f(v,)) = p({nvs) for every
f € H® with ||f]lo = 1. Hence we obtain

/G =2 < 17 S 1@l + 2 (18)
Replacing f by C, respectlvely C,, and by using (15) and (13), we obtain

ICI(C,,)I+%” el _ 19)
Gl - % T 3Gl T

IC'(,,)

for every n € N.

Similarly, we get l%(w,,) < 3 for every n € N.

Step 3 Next we shall solve an interpolation problem simultaneously for both
interpolating sequences {v,} and {w,}. The existence of a solution will be
guaranteed by Proposition 1.4. To this end, let

:‘(H (v, Un)Hp(Wks vn)=(1— Ivn| )'b,(vn)“b2(vn)l
Fn
and let @, = (1 — |wa|2)|By(wa)||b1(w,)]. Finally, let 8, = 8(b;) (j = 1,2). By
(17), 8; =2 o

Let 0 < * < (1 — v 1—6*%)/6*. Then (16) and the fact that 4, — 0
imply that, for every n = ng, we have p(v,, Zp(b2)) = p(vn, W) < 1a/2 < 1*.
Hence, by (2) of Hoflman’s lemma, we obtain that

)
lb2(vn)| = 1 *6*

P(On, Wa) - (20)
The same holds for b,.

We claim that both |Dy(v,)|/w, and |Dy(w,)|/w] are bounded. In fact, by
(18), (20) and (16}, we have for n = ng

Di(w)| _ 1D+ % 3
@, | @ o T i|ba(vn)|
s 2 < 2 ap T =M. @)
5*m#57p(v,,,w,,)
Similarly, D{w,)/w], is bounded.
Thus, by (19), for n = ny we have
1 B C Dl(vn) <
A\ T~ \Yn ° = 3M,
=g = |5 ] ) s
= [Zom)| = ’—( W) 'M <3 22)
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By Proposition 1.4, we can now solve the interpolation problem

B
W)= ) heH™,
2

where {y;} is the union of {v,} and {w,}. Thus there exist » € H> and
k € H* so that
By =hCy+ kb\b; .

This proves Proposition 1.7. ]

Before we can prove our main theorem, we need the following resuit
of [15].

Proposition 1.8 [15] Let I & H® be a proper ideal. Then ord(Il,m) = 1
Jor every m € Z(I) if and only if I is generated by interpolating Blaschke
products.

Theorem 1.9 Ler [\, fo € H* have no common factors. Then I(f\, f7) =
J(f1, f2) if and only if min;- ord(f;,m) £ 1 for every m € M(H>).

Proof. Let I = I(f1, f2). Assume that I(fy, f2) = J(f1, f2). If there exists
meZ(I)=Z(f1)NZ(f2) with 2 £ ord(/,m) < oo, then Proposition 1.4 tells
us that 7(f1, /2) & J(S/1, f2). So let ord(Z,m) = co for some m € Z(]).

Now we apply Proposition 1.7. Let f, = C,D; be the factorization ob-
tained there. Then, by Lemma 1.1, we have I(f,C;) = J(f1,C;). Since
S1 € 1(b1 by, Cy) for some interpolating Blaschke products b;, b, there ex-
ist x,y € H*® so that f| = xb;b; + yC,. Hence I(f,C;) = I(xb, by, C;) and
J(f1,C) = J(xbiby, Cy). Applying Lemma 1.1 once again, we obtain that
I = 1(b1by, Cy) = J(b1by, Cy).

Note that by Proposition 1.7 there exists m with b,(m) = by() = C,(i1) =
0. Hence ord(i,rﬁ) = 2. Proposition 1.3 now implies that /(,52,C;) &
J(b1by, Cy), which is a contradiction. Thus we see that, whenever 2 £ ord({,m)
< oo for some m € Z(I), then I = I(f\, f2) & J(f1,[f2). Hence I(f1, [>) =
J(f1, f2) implies that

minzord(fj,m) =<1 for every m € Z(I).
i=l

To prove the converse, let ord(/,m) = 1 for every m € Z(I). Then, by
Proposition 1.8, I is generated by interpolating Blaschke products. Hence, by
[17] or [15], I(f1, f2) = J(S 1, f2). For the reader’s convenience we briefly
present the proof.

Let |f| < |f1|+] /2| and let {z,} be the zeros of any interpolating Blaschke
product b belonging to /. By the definition of an interpolating sequence there
exist g1,g» € H satisfying

f@n)f (za)
| f1@))? + [ f2(za

Hence f ~ (g1f1 + g2f2) = gb for some g € H*. This shows that f ¢
I(f1, f2). a

gj(zn): )|2 (G=12), neN.
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The following theorem now proves a conjecture in [15] for the case of two
generators.

Theorem 1.10 Let f\, fo € H® have no common factors. Let I = I(f, f3)
and J = J(f1, f2). Then the following assertions are equivalent:

M 1=J;

(2) ord(I,m) =1 for every m € Z(I);

(3) I contains an interpolating Blaschke product;

(4) J contains an interpolating Blaschke product;

(5) /11 + (1 = DI + S22 + (1~ 2P 3] 2 6 > 0 for
every z € D,

Remark. The equivalences (3), (4), (5) have been proven in a more general
setting by Tolokonnikov [18] by very deep operator-theoretic techniques. We
present another proof here. For (4) = (3) see also [12] and [15].

Proof. (1) < (2) is Theorem 1.9.

(2) = (3) is a special case of Proposition 1.8.

(3) = (4) is trivial.

(4) = (2) is trivial.

1(5) =7(2): Assume that there exists a net (z,) in ID converging to some
point m € M(H), so that the expression in (5) tends to zero. Then m €
Z(I). Because (f o L)' (0) = (1 — |z.]?)| f'(z«)|, the compact convergence of
S oL, tof oL, shows that (f; o L,)(0) =0, hence ord(f;,m) = 2. Thus
ord(l,m) = 2. Since all steps are reversible, we also get that ](2) =1(5). O

Remark. If we do not assume that the generators are relatively prime, then
we get the result that I = I(f, f2) = J(f1,f2) if and only if / contains an
interpolating Blaschke product times the greatest common divisor ged(f, f2)
of the generators.

In [15], it is shown that (4) = (1). Proposition 1.8 shows that (3) follows
from (2) for every ideal. The equivalences of (3) to (5) are in [18]. In view
of this, it is reasonable to ask (see [15]):

Does I = I(f1,....fn) = J(f1,...,fn) imply that I contains an
interpolating Blaschke product?

To our surprise this is not the case, as the following easy example shows.

Proposition 1.11 Let B and C be two interpolating Blaschke products. Then
I(B*,C? BC) = J(B?,C?,BC) = J(B?,C?).

Proof. Clearly we have J(B2,C? BC) = J(B* C?*). Now let |f| £ |B* +
|C]%. We denote the zeros of B by b, and those of C by c,. Without loss
of generality, assume Zp(8) N Zp(C) = . The assumption on f implies that
|f(b,)| £ |C(bn)>. Because {b,} is an interpolating sequence, there exists a
function H; € H* such that

f

E(b,,) = Hy(b,) for every n.
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Hence f = H,C? + H,B for some H, € H*. This implies that

Haten)] = | 25

Again, by solving an interpolation problem, there exists H3 € H* so that

s IB(Cn)l .

%(c,,) = Hi(c,) for every n.

Therefore H, = H3B + H4C for some Hy € H®. Hence f = H,C? + (H3B +
HyC)B € I(B* C? BC). |

Remark. If B and C are interpolating Blaschke products and if 7 = I(B?, C?)
is a proper ideal, then I(B%,C?) ¢ J(B? C?) = I(B? C% BC).

2 WolfPs f*-problem

Let fy,....,fn € H®. Wolfl proved that |f| < Zj-v=1|fj| implies that
f2 € I(f1,...,fn) (see [5, p. 329]). The question of whether |f] <
E;V:l|fj] implies that f? € I(f),..., fx) remains open. In the following the-
orem we shall give a positive answer under the additional hypothesis that
min; <;<n ord(f;,m) < oo for every m € M(H*).

The methods of our proof are the standard ones developed by Wolff to
prove the corona theorem. First let us recall that a positive Borel measure y

on D is called a Carleson measure if there exists a constant C so that
n{lfidu < Cllflh

for every f in the Hardy space
. 12t .
H' = {f:f analytic in D, || f|ly = sup =— [|f(re?)|db < oo} .
0<r<127'50

It is well known that Carleson measures are those positive measures u for
which there exists a constant K such that

Q) = KI(Q)

for every Carleson cube Q defined by
O={ré’eD:1-r < 1(Q),0 - I(Q) < 8§ < b+ IQ)} .
Another equivalent condition is that
1—|z|2
T
(see [S, p. 31 and p. 238)).
Let N(u) = sup{ ((Q) : Q Carleson cube} denote the Carleson norm of

du(w) < +oo (23)

U
We will use two results, due to Carleson and Wolfl, on the existence of
bounded solutions of d-equations.
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Theorem (5, p. 320-322). (a) Let G € C(ID) induce the Carleson measure
u on D. If G is bounded then the 3-equation 6h = G admits a solution
h € C(lf)) N CY(ID) with Al|~@emy < Ci, where Cy only depends on the
Carleson norm of .

(b) Let G be a bounded C' function on ID and assume that the two
measures

oG

0z

w = |G)P(1 = |z))dxdy, = |—=(2)| (1 — |z|)dxdy

are Carleson measures. Then the d-equation oh = G admits a solution h €
c(IDYNC'(D) with |AllLeopy = C; for some constant Cy depending only on
the Carleson norms of p and p.

For later reference we note that whenever G induces a Carleson measure pu,
then the dilation G, defined by G,(z) = G(rz) induces a Carleson measure p,
for which N(u,) £ N(p).

According to [19], a Blaschke product B is said to be of Carleson-Newman
type (a CN-Blaschke product, for short) if B is a finite product of interpolating
Blaschke products.

A well known theorem (for example, see [14]) tells us that a Blaschke
product B with zero sequence (z,) is a CN-Blaschke product if and only if the
measure u =Y oo (1 — |z,|*)d,, associated with B is a Carleson measure. Any
such sequence will be called a CN-sequence.

We shall also need the following results.

Proposition 2.1 [6, 8] Let f € H* be a function satisfying ord(f,m) < oo
Sfor every m € Z(f). Then [ has the form f = FB, where F is an invertible
outer function and B is a CN-Blaschke product.

Lemma 2.2 Let D = D(zo,n) be the pseudohyperbolic disk {z € D :
0(z,20) < n}. Then:

izl 1P
(1) The area of D is nn* [I—I—LZ—OLZ] .

~ 1*|zo]
(2) For every z € D we have
1 — |z)? < 4
1 — |zo? 1—n2"

1 2
ZU -1 <

B)y{weC:|lw-2z < g(1—|z0|2)}ng{weCzlw——zo] <

T—"_—,,(l — |20/}
(4) Let 0 < h < 1/4 and let zy € D satisfy | — |z| < h, |arg zo| < h.
Then for every zy € D with |z, — zp] < h we have 1 — |zy] < 3h and

larg z,] < 3h.

Proof. Elementary calculation. See also {5, p. 3]. |
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Lemma 2.3 Ler f :ID — D be analytic with f(0) =0, |f'(0)] = 8. Then f
is schlicht in |z| < t* = (1 — V1 —6%)/6 < 6. Moreover, t* is best possible.

Proof. Use Exercise 1 of [5, Sect. 1], and note that t* = (6 — t*)/(1 — 7*0).
To show that t* is best possible, just look at the function f(z) = z(z — 1*)/
(1 —t*z). |

Lemma 2.4 Let (z,) be a CN-sequence. Fix an arbitrary n, 0 < n < 1. For
every n € N Jet £, € D(z,,n). Then (£,) is a CN-sequence.

Proof. Using (2) of Lemma 2.2 one gets

4
1— & £ T‘_“?(l — |za]) .

Also &, e Q={reé® e D :1—r < I(Q), 6 — I(Q) < 0 < 6 + I(Q)}
implies that there exists a constant C = C(#), depending only on #, such that
2, €CO={re® cD:1-r < CI(Q), Oy—CI(Q) < 8 < 6+ CI(Q)}. Hence,

4
Y (1=&) = 5 2 (1= |z]) = K(I(Q) .
e 1 N°ze0

So, 3 ,(1 —|&,])d¢, is a Carleson measure and {&,} is a CN-sequence. O
We are now able to prove the following key lemma.

Proposition 2.5 Let (z,) be a CN-sequence of distinct points and let
o0
U= UD(znn)
n=1

Jor some n, 0 < n < 1. Let Wy denote the characteristic function of U.
Then, for any interpolating Blaschke product B, the measure

|B']
k=g ¥ ydxdy (24)

is a Carleson measure.

Proof. The additive property of the logarithmic derivative yields

B'(z) _ 1- &
B G- -50

where {¢;} are the zeros of B in ID.

From now on, ¢; = ¢;(n) will denote different constants depending only on
1. Let us point out that we may assume without loss of generality that n is
small, because otherwise one can cover each D(z,, 1) by a finite number N of
pseudohyperbolic disks of smaller radius, N being independent of n. The new
centers z, again form a CN-sequence.
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Let
={re®eD:1-r < Q) - UQ) < 8 < b+ KQ)}

and 4 = {z, : D(z,,n) N Q+0}. By Lemma 2.2, there exists ¢; = c|(n) such
that z, € 4 implies D(z,,n) C ¢1Q. Let n; = (1 + 7)/2. From (24) and the

definition of U we have

/ ‘B’(Z)
B(z)
0

Yu(z)dxdy

ETREN dxdy
PR /1—¢,m—czt

z,€A4 J

HA

dxd
1 — &2 __axdy
S Ié;!)/ T

= 3
2,€A4 | jip($p2a)EM DGun
dxdy
LT (1~|é,12)/ L —
ez >m . |z = &1 = ¢zl

= 2 [(Dn+UD]

2,€4

Concerning (II),, observe that if p(¢;,z,) > m and p(z,z,) < n, we have
(using the monotonicity of the functions (@ —x)/(1 —ax) and (x —a)/(1 —ax)):
(zn,éj) p(z,z,) > n—-n > l . 1

S 1l—mn =2 141’

=pz8) 2 7o p(z,22)p(zn, &)

z—¢;
— &z
If z € D(zn,n) and p(¢;,2,) > i, applying (3) of Lemma 2.2, one has
n(l-m=" _1
2= l111 = 2 ’

n(1—m~'(1 =z

|z, — 2|
271 (1~ |za?)

T -al T

Zy—z

1- Ejzn

if n is sufficiently small. Hence

“"Ejz' 2 |I-Ejznl—l "Ejz"l'

z, -z 2 11

So
dxdy < 4_ Area(D(z,, 1))
11— &zq

DGy |1 — 22
< 4 (-l
S (A=Y 1=z,
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So, using (23) with the Carleson measure y = > (1 — |€j]2)6§j, we have

un, s204n) Y (-lgf [ S
Jp(pzn)>m DAz 11— f,;zl
(1 =140 = |2y
= %: |1_5j2n[2
Le3(l —|z,) .

Concerning (1), observe that if p(¢;,z,) £ i, there exists cs = ca(n) such
that D(z,,17) C D(Ejycq). Let K = {z € C: |z~ & T%‘a(l — |19} By
Lemma 2.2 (3) we have

dxdy I dxdy  cs2n(1 - |§]?)
pCeny 12 =81 Tk 2= ¢l 1 - ¢ :

Moreover, if p(¢;,z,) < n, then by (3), (4) in Lemma 2.2, ; € ¢50(z,),
where

Qzy={weD:1—|w £ 1~z larg w—arg z,| < 1 ~|z,]}.

So, using the fact that > (1 — |éj]2)55} is a Carleson measure once again, one
gets

dxd
U2 % =
/iﬂ(fpzn)ém D(é/,CA) !Z - éjl

s > (U=lEGh=e Y (-&D

Jip(8pza) Em ¢ €csQ(zn)

C*C6(1 - |Zn|) 5

A

HA

where ¢* is the Carleson norm of the measure ) (1 - |¢;])d;,. Hence

B'(z
[1Z ey s O~ lah 0 © (- [
0 (z) 2,€4 €c,Q
= (@),
and this finishes the proof. O

We are now ready to prove the main theorem of this section.

Theorem 2.6 Let f; € H* (j=1,...,N) and let I =I(f\,..., fn). Assume
that ord(I,m) < oo for every m € Z(I). Then |f}| < Zj’vzllfjl in ID implies
that

frel(fi,.... fn).
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Proof. Step I First we show that / can be generated by N + 1 Blaschke
products satisfying the Carleson-Newman condition. In fact, the hypothesis
ord(I,m) < oo for every m € Z(Il) implies that Z(/) does not meet the set
S of trivial Gleason parts of M (/). Hence, by [18] (see also [7, Corollary
2.4}, for an easy proof) / actually contains a CN-Blaschke product by.

Let g; = bo + ¢ f;. Since interpolating Blaschke products do not vanish on
S, we see that |g;| = 6 > 0 on S for ¢ small. By a result of Guillory et al.
[8], resp. Gorkin [6], (see also Proposition 2.1) it follows that there exist CN-
Blaschke products b; and outer functions F; invertible in H™ so that g; = b;F);
G=1,...,N).

It is now clear that I = I1(bg,9),...,9n8) = [(bg,b1,...,bN).

Step 2 Let |g| £ ZN _olbj|- As in [5, Sect. 8], we may assume without loss
of generality that ﬂ oZn(b;) = 0. Let

b, opr .
I A—— i = T ,k = O,...,N .

As usual we now use a normal families argument. For technical reasons, func-
tions and their dilations are represented by the same symbol. Suppose we can
solve the d-equations

¢; =

"
Ohjk

2 .
=g°G; k=0,...
az. g jk (J, Oy ;N)

with || lli=(@) S M. Then g; = g@; + 3o — hyy)bx satisfy

N 7
Sgib;=¢* and 0?.’ =0 (j=0,...,N)
=0 oz

(see [5, p. 329]). Thus we have only to show that these 3-equations admit
bounded solutions. Fix j and k and write G = Gy. Let {z,} denote the zeros
of the CN-Blaschke product by of Step 1. Take a € C*(D), 0 < a = 1
such that e = 1 on {z: p(z,{z,}) < €}, a=0 on {z: p(z,{z4}) = 2¢} and
(1 — |z])|Va(z)| is bounded.*

Let U = {J;2,D(z4,2¢). Now, G = G + Gy, where G, = Ga and G, =
G(1 — a). An elementary calculation (see [5, p. 330]) yields that

Ig G, |2 <ca221 olb ? .
iLolbil?
Hence,
lng l < claZ’ 0| 1| Elbl‘
Zl olb | olbdl

Since the b; are CN-Blaschke products, there exists a finite number of inter-
polating Blaschke products B; (/ = 0,...,L) so that

* Note that, in general, the disks D{zn,€) are not pairwise disjoint.
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/

lg

Since a vanishes outside U, we obtain from Proposition 2.5 that
|g°G\(z)| dxdy

is a Carleson measure and hence the d-equation 6k = ¢g*G, admits bounded
solutions.

On the other hand, since by is a CN-Blaschke product with zeros {z,}, one
has |bo(z)| = c(e) if p(z,{z,}) = €. Now an elementary calculation (as in
[5, p. 330]), yields

9°Ga(2)P(1 — |z]) = - Zlb(Z)l (I-1z]),
which is a Carleson measure (see [5, p. 330]). Also

85> G2)(@)I(1 ~ 2]

is a Carleson measure. Hence the d-equation 6k = ¢2G, admits bounded solu-
tions. This finishes the proof. (]

We shall finish our paper by giving an analytic condition on the generators
which guarantee a positive solution to WolfP’s f2-problem. To this end, let

B z+¢
D*(f)z)= (dE)"f(l—}—fz)

be the k-th pseudohyperbolic derivative of a function f € H® (k =0,1,2,...).
For k = 1, e.g., we obtain D'(/)z) = (1 — z2) f'2). If f =(f\,....fn)E

(H>®)V, then we put
N
1D f o= \/ZIID"fjlz-
j=

As a corollary we now obtain

Corollary 2.7 Let f = (f\,...,fn) € (H®)". Assume that for some n €
NU {0} we have ZLO]D’fITIT =6>0 Then|g| £ Zj.vzl|fji implies that

g el(fr, i Sn)-

Proof. By a result of Tolokonnikov [19] the hypothesis 3_)_ OIDIfl ] =20>0
is equivalent to the fact that the ideal / = I(f),..., f) contains a CN Blaschke
product. Hence ord(/,m) < oo for every m € Z(I ). By Theorem 2.6, the result
follows. ]

&=0
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