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In order to give the foundations for analytic geometry over non-archimedean 
valued fields Tate, influenced by ideas of Grothendieck, introduced "rigid 
spaces" in his seminar held at Harvard in 1961 [T]. In the middle of the 
sixties Grauert and Remmert transferred the WeierstraB theory of local com- 
plex analysis to the non-archimedean situation and, by this, provided the means 
for a successful treatment of foundational problems of rigid analytic geometry 
(cf., [GR1, GR2, GG], also the monograph [BGR]). 

Besides this approach to rigid spaces which is orientated towards complex 
analysis there is the concept, as presented by Raynaud in 1970 in [R], to treat 
these by means of the theory of formal schemes developed by Grothendieck and 
to deduce the fundamental theorems from the results in [EGA]. This approach 
has recently been taken up again by Bosch and Li.itkebohmert who succeeded 
in proving results not accessible to the classical analytical methods [BL1, 
BL2, L]. 

Alas, in [EGA Inew, par. 10] the theory of formal schemes is mainly and in 
[EGA III, pars. 3-5] exclusively presented for the noetherian case. Therefore, in 
the situation over an absolute base ring R (which is separated and complete with 
respect to an ideal of definition 13 ), these results only apply to the case that R is 
noetherian, e.g., a discrete valuation ring and not to the "geometric" case of R 
the valuation ring of an algebraically closed and (non-trivially) valued complete 
field, e.g., of  IEp. Already F. Mehlmann has transferred the greatest part of 
[EGA Inew, par. 10] to the case of formal schemes locally of topologically 
finite presentation over an arbitrary valuation ring (for a height 1 valuation) 
in his doctoral dissertation [Me]. The theorem on the coherence of the higher 
direct images of  coherent sheaves with respect to proper morphisms of formal 
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schemes has, however, up to now only been proved for the noetherian situation 
[EGA III, 3.4.2]. 

So the main purpose of the present article is to deduce this direct image 
theorem for formal schemes locally of topologically finite presentation over an 
arbitrary valuation ring R for a height 1 valuation. (For sake of completeness 
the case of R noetherian will always be taken into consideration, too.) 

In the first two sections one finds fundamental facts on modules and topo- 
logically finitely presented algebras over R resp. on formal R-schemes locally 
of topologically finite presentation, e.g., a substitute for the Artin-Rees lemma 
in the non-noetherian situation (Lemma 1.3), the coherence of (topologically) 
finitely presented R-algebras (Corollary 1.8), and Theorem A for coherent 
module sheaves over formal R-schemes of topologically finite presentation 
(Proposition 2.3). 

Sections 3 to 5 serve to the proof of 

Direct image theorem for formal schemes 5.3 L e t  ~ : 3E -~ ~) be a proper 
morphism of formal R-schemes which are locally of  topologically finite presen- 
tation and Jg be a coherent (9.~-module. Then Rq~.Jg is a coherent (9~ymodule 

for each q C Z. 

Here the morphism f : �9 --* ~ is called proper if for any - resp. each 
(Lemma 2.1b)) - natural number 2 the morphism f~. : X~ -~ ~)~, of schemes 
over R/3  ~`+l induced by reduction modulo ~ + l  is proper in the sense of 
algebraic geometry. 

In its overall structure the proof coincides with the one given in [EGA 
III, 3.4] for the noetherian situation: At first, for )o E IN arbitrary one con- 
siders the proper morphism ~. : X~, --* ~.)~ and the coherent (gx~-module 
s//~ := , / /g /~+l j / / .  However, if R is not noetherian then 3E~. and ~)~, are no 
noetherian schemes so that the direct image theorem for noetherian schemes 
cannot be applied. In Sect. 3 we draw on a coherence theorem of Kiehl for rel- 
atively pseudo-coherent sheaves instead [K3, Theorem 2.9'a], which furnishes 
the coherence of Rq(f~).(J//~). 

After this step [EGA III, 3.4] uses results from [EGA 01xl, par. 13] in order 
to interchange cohomology with the projective limit with respect to )~ and by 
this gets the coherence of the direct image sheaves. There, alas, the noethe- 
rian property explicitly comes in again, in particular in the proof of [EGA 0m, 
13.7.7]. In Sect. 4 we will instead investigate for the case of a principal ideal 
- e.g., for R a valuation ring - how the cohomology of complexes behaves with 
respect to lifting modulo powers of ~.  As the cohomology on locally topolog- 
ically finitely presented formal R-schemes with values in coherent sheaves can 
be computed by means of (~ech complexes (Lemma 5.2), Proposition 4.3 gives 
the coherence of the cohomology groups, whereas Proposition 4.4 implies the 
compatibility of cohomology with complete localization. From Proposition 4.5 
one then gets a posteriori that also in the situation over an arbitrary valuation 
ring cohomology and the projective limit with respect to 2 commute. 

These results are used in Sect. 6 in order to compare the cohomology of 
a usual proper scheme over a topologically finitely presented R-algebra A and 
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the cohomology of its completion along the closed subscheme defined by 3 .  
As it is not known for the non-noetherian case whether the cohomology of a 
proper A-scheme with values in a coherent sheaf always is coherent, we again 
take resort to the notion of relative pseudo-coherence for the 1st and the 2nd 
GAGA Theorem (6.4 resp. 6.5). In the situation of a smooth proper A-scheme, 
however, the structure sheaf automatically is relatively pseudo-coherent, by 
which one gets the 3rd GAGA Theorem 6.8 ("Chow's theorem") in its usual 
formulation. Using this result one can then generalize Grothendieck's alge- 
braization criterion [EGA III, 5.4.5] to the situation over an arbitrary valuation 
ring (Proposition 6.9). 

In the last section we follow Raynaud's suggestion in [R] and deduce the 
fundamental results on the cohomology of rigid spaces from the results on 
formal schemes, e.g., Tate's acyclicity theorem (IT] resp. [GG]) on the structure 
sheaf of a rigid space (Proposition 7.1) and Kiehl's results [K2] on coherent 
module sheaves on rigid spaces (Proposition 7.3). 

1 Preliminaries 

Throughout this article R will always denote a noetherian ring or a valuation 
ring for a valuation of height 1 and J a finitely generated ideal in R such that 
R is separated and complete with respect to the 3-adic topology. 

For M an R-module let 

T~(M) := {m E M; There is a v e N with J " m  = {0} .} 

denote the J-torsion submodule o f  M. The module M is called without (non- 
trivial) J-torsion if ira(M) = {0} holds and a (mere) J-torsion module if 
T~(M) = M holds. 

Directly from the definition it follows that for each R-module M the module 
M/T.a(M) has no (non-trivial) ~-torsion. Furthermore, one has 

Remark 1.1 Let (ai)iEl Q J be a generating system of ~ over R. Then an 
R-module M is without J-torsion if and only if the R-module homomorphism 
M ~ ~IiE1 M, m ~ (aim)iE1 is injective. 

From now on we will assume in addition that the ring R is without 
-torsion. 

In the classical rigid case of  a valuation ring R the ideal J is generated 
by one element t c R, which necessarily is a non-zero element of  the maximal 
ideal of  R. Furthermore, in this situation the J-torsion submodule T~ (M) of an 
R-module M equals the usual torsion submodule of  all elements of M which 
are annihilated by a non-zero element of R, and one has that M is without 
3-torsion if and only if it is fiat over R. 

For the more general case of J a principal ideal one easily verifies: 

Remark 1.2 Let 3 = tR for a t E R and M be an R-module. Let T := T~ (M) 
be the ~-torsion submodule of M. Then T N triM = tnT holds for each n E N. 
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By this remark one gets as a substitute for the Artin-Rees lemma: 

L e m m a  1.3 Let ~ = tR for  a t E R. 
a) Let ~ : M ---* N be an R-module homomorphism. Assume that there is 

an n E IN with t"Ta (N)  = {0}. Then for  each v E N one has 

ker q/M tV+"M = F(ker  ~O N tnM).  

b) Let q~ : L ~ M be an R-module homomorphism. Assume that there 
is an n E IN with tnTa (M/qo(L)) = {0}. Then ~o is strict with respect to the 
respective ~-adic topologies. 

Proof  a) Obviously,  one has tV(ker qJ M t"M) C ker ~ M t~+"M. Let conversely 
m ~ ker qJ n t~+"M be arbitrary. Then there is an m' E t"M with m = t~rn ' 
where ~O(m') lies in tn~(M) C t"N and, because of 0 = ~b(rn) = t ~ ( m ' ) ,  is an 
J - to r s ion  element of  N. By Remark 1.2 and the assumption one has Tz (N)M 
t"N = tnT~ (N)  = {0}, hence qJ(m') = 0 and m = tyro ' E tV(ker~pMtnM). 

b) The continuity of  q~ is clear. Applying part a) to the residue class pro- 
jection M ~ MAo(L) gives q~(L) N t~+"M = tV(~o(L) N t"M) C Fq~(L) = (p(t~L) 
for v E IN arbitrary, hence the strictness of  (p. [] 

In general one has: 

L e m m a  1.4 a) Let t~ : M --, N be a surjective R-module homomorphism. 
Then ~ is strict with respect to the ~-adic topologies, hence the homomor- 
phism ~ : i~t ~ N induced by ~-adic (separated) completion also surjective. 
Together with M also N is complete with respect to the ~-adic topology. 

b) Let L ~ ~ M 0 , N > 0 be an exact sequence of  R-modules. Then 
also the sequence 

induced by ~-adie (separated) completion is exact i f  l(t/(o([ 0 is separated 
with respect to the 3-adic topology. 

c) Let 0 - -~  L ~ M ~-~ N ~ 0 be an exact sequence o f  R-modules 
such that there exists an n c IN with 3"T.n(N)  = {0}. I f  3 is not a prin- 
cipal ideal assume furthermore that M is a finitely generated module over a 
noetherian R-algebra. Then also the sequence 

o ,L ~ , ~  ~,f---~o 

induced by ~-adic (separated) completion is exact. 

Proof  Let ZM : M ~ M denote the canonical isometric homomorphism, ana- 
logously zL : L ~ L and ZN : N ~ N'. 
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a) The first claim is clear and implies the last one since M is 3-adically 
complete if  and only if IM is surjective, analogously for N. 

b) As lM(q)(L)) C ~(L) holds, the map M ,M, A;/ --- ,  ~/ &t/q3(L) =: N' 
factors over tp : M --* M/q)(L) = N by an R-module homomorphism z : 
N ---, N' .  By the right-exactness of tensorization one hence has a commutative 
diagram of  R-modules 

L | R2 (p| 0| r M | R~, ----r N | R~ ~ 0 

/~ | Ra ~| 0'| Nt M | Ra ~ | Ra , 0 

with exact rows and isomorphisms in the first two columns for each 2 C IN. But 
then also l| is an R-module isomorphism. So the system of  the t| ). E 
N,  induces an R-module isomorphism between N and the ~-adic completion 
of  N' .  However, N '  =/l~//~b(s is complete by a), furthermore separated with 
respect to the ~-adic  topology by assumption, and hence coincides with its 
~-adic  completion. 

c) It suffices to show that q) and ~k are strict with respect to the ~-adic 
topologies: For ~9 the strictness holds by a), for q~ it follows from Lemma 
1.3b) if ~ is a principal ideal and, by use of  the additional assumption, from 
[AC, chap. III, par. 3, n~ corollaire to th~or~me 2], else_ [] 

For r E IN arbitrary the R-algebra R(~1 . . . . .  ~r) o f  strictly convergent power 
series (el. [BGR, Sect. 1.4]) - resp. of  restricted formal power series (cf. [AC, 
chap. III, par. 4, n~ - consists of  those formal power series ~-~,e~, e,(~' 
with coefficients ct,, E R, v E N r, that fulfil liml~l~ ~ Ctv -- 0 with respect to the 
3-adic  topology. 

An R-algebra A is called topologically finitely generated over R if  there is 
an R-algebra epimorphism tr : R ( (  1 . . . . .  (r) ~ A for a convenient r C N and 
topologically finitely presented over R if  there is such a a whose kernel is a 
finitely generated ideal in R((t . . . .  , (r). 

As in [BL1] a topologically finitely presented R-algebra A is called admis- 
sible if  it has no J- torsion,  i.e., if  Ta(A) = {0} holds. 

By [EGA 01~w, 7.5.2(ii)] (resp. [AC, chap. III, par. 2, n ~  corollaire 2 
to proposition 14]) one has: 

Lemma 1.5 Each algebra that is topologically finitely generated over a 
noetherian ring again is a noetherian ring. 

We remind of  the notion of  coherence: A module M over a ring A is called 
coherent over A i f  it is finitely generated over A and each finitely generated 
A-submodule o f  M is finitely presented over A. The ring A itself is called 
coherent i f  it is coherent as a module over itself (cf. [AC, chap. l, par. 2, 
exerc. 11) and 12)], also [EGA 01n~w, 5.3]). 
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Directly by definition, finitely generated A-submodules of  coherent 
A-modules are coherent A-modules, too. Obviously, each noetherian ring is 
coherent. 

In analogy to [EGA Inew, 1.4.3] and in generalization of  [EGA Inew, 1.5.1] 
the results on associated module sheaves from [EGA Inew, 1.3 and 1.4] imply 
that for an affine scheme X = SpecA an (gx-module .//g is coherent if and 
only if it is associated to a coherent A-module (i.e., if  and only if it is quasi- 
coherent and F(X, J/l) is coherent over A), in particular, the structure sheaf 
Cx is coherent if  and only if A is a coherent ring. 

Fundamental for the sequel is (cf. also [BL1, Proposition 1.3]): 

Proposit ion 1.6 Let A be a finitely 9enerated or a topologically finitely 9en- 
erated R-alyebra. Then each finitely 9enerated A-module without 3-torsion is 
coherent over A. 

Proof  By Lemma 1.5 only the case of  R a valuation ring has to be considered. 
Then it suffices to show that each finitely generated A-module N which has no 
torsion over R is finitely presented over A. 

In any case, there exists a presentation 0 --~ M ---, F --+ N --, 0 of  N 
with F free and finitely generated over A. In order to show that M is finitely 
generated over A one can assume without restriction that A = R[~l . . . . .  ~r] resp. 
A = R(~I . . . . .  ~r) holds for a convenient r E N. In the "algebraic" situation 
A = R[~l , . . . ,~r]  the claim follows directly from the devissage result [RG, I, 
th6or6me 3.4.6]. In the "analytic" situation A = R(~l . . . . .  ~r) one can deduce 
the claim by tensoring the situation over R with its field of  fractions Q(R) 
and using the theory of  orthonormal bases [B, Satz 2.1] or WeierstraB theory 
[BGR, Theorem 5.2.7/7]. A third possibility is to reduce modulo 3 and apply 
again [RG, I, th~or~me 3.4.6]. [] 

Using [AC, chap. I, par. 2, n ~ 8, lemme 9] resp. [EGA 01new, 5.3.13] this 
proposition implies the following two corollaries: 

Corollary 1.7 Let A be a (topologically) finitely 9enerated R-algebra, M a 
finitely 9enerated A-module and T := Ts(M).  Then M/T is coherent and T 
finitely 9enerated over A. In particular, there is an n E N with ~nT = {0}. 

Corollary 1.8 Each (topologically)finitely presented R-algebra is a coherent 
ring. 

Lemma 1.9 Each finitely presented module M over a topoloyically finitely 
presented R-algebra A is separated and complete with respect to the ~-adic 
topology. 

Proof  As a topologically finitely presented R-algebra A is separated and com- 
plete with respect to the ~-adic topology, cf. [BL1, Proposition 1.1(b)]. Then 
the same properties are valid for each free A-module of  finite rank. Using 
Lemma 1.4a) this implies that each finitely generated A-module is ~-adically 
complete. Furthermore, each A-submodule of  a free A-module of  finite rank is 
~-adically separated. 
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Now, let 0 --~ K ---, F ~ M ~ 0 be a finite presentation of  M over A with 
F free and o f  finite rank and K finitely generated over A. By Corollary 1.7 
there is an n C N with ~"T.~(M)  = {0}. I f  ~ is no principal ideal, hence R 
noetherian, then A is a noetherian R-algebra by Lemma 1.5. 

Therefore, the hypotheses of  Lemma 1.4c) are fulfilled and the sequence 

0 --, ,r --* P ~ a )  --, 0 

that one gets by ~3-adic (separated) completion is exact, too. But, as the canon- 
ical maps F ---, F and K ---,/s are isomorphisms of  R-modules then also the 
canonical map M ---, ~Q is an isomorphism of  R-modules. [] 

2 Formal schemes and coherent module sheaves 

For the general definition of  formal schemes the reader is referred to [EGA 
Inew, par. 10]. In the sequel we will restrict to the situation described in [BL1, 
Sect. 1] of  formal schemes locally of  topologically finite presentation over a 
formal scheme S which is noetherian and without torsion with respect to an 
ideal of  definition or admissible over a valuation ring (for a height 1 valuation); 
for the second case also confer to [Me, par. 2]. 

The structure sheaf  (~x o f  such a formal S-scheme X is coherent ([EGA 
Inew, 10.11.2] for the noetherian case, [Me, 2.2.8(a)] for the situation over a 
valuation ring). I f  ~ is a coherent (gs-ideal which defines the topology of  S 
then ,~ (gx is a coherent ideal of  definition of  3[. 

For 2 C N consider the closed subspace Sj~ of  S which is defined by ~;.+l. 
Then 3[;+ := X Xs S;+ has the structure sheaf (9.,~. = (9.,~ | ((gs/~ ;+t ) -~ 
(gx/3;~+l(gx. By [EGA Inew, 10.5.3 and 10.6] one has 3[ = lim3[;~ as an induc- 

z 

tive limit in the category of  formal schemes in this situation. In particular, by 
[EGA Inew, 10.6.1] the topological space underlying 3[ coincides with the one 
underlying 312 for ). E N arbitrary so that, e.g., the existence of  any ~ c N 
with 3[~ quasi-compact implies that 3[ and all 3[;., ). E IN, are quasi-compact. 

Lemma 2.1 Let  f �9 3[ ~ ~) be a morphism o f  formal  S-schemes which are 
locally o f  topologically finite presentation. 

a) I f  there is a ~ E N such that the morphism fu : 3[~ ~ ~)~ induced 
f rom f by base change with S,  is separated then all f;~ �9 3[~ ~ ~)~, ). c N ,  
and f : 3[ --* ~) are separated. 

b) I f  there is a It c N such that f, : 3[s, ~ ~)u is proper then all fr : 
3[~ --~ ~1);~, ). C N ,  are proper. 

Proof  For 2 ,2 '  E N arbitrary with 2' _-> 2 the nilreduction (~;.)~a of  3[;. 
coincides with the nilreduction (3[,:,')red o f  *~2' since (9.~ is the quotient of  
(9~ e by a nilpotent ideal. Analogously, the morphisms I~ : X~ --, ~/);~ and f;, : 
3[~, --, ])a, have the same nilreduction (b,)~d = (f;,')~oa : (3[;~)~a = (~ ' ) r~a  

(~..)2)red = (~2')red. 
Hence part a) follows from [EGA Inew, 5.3.1(vi) and 10.15.2], and part b) 

follows from part a) and [EGA II, 5.4.6]. [] 
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In the sequel of this section we will consider formal schemes over the 
absolute basis SpfR with 3 as an ideal of definition. Set R~ := R/3  ~'+1 for 
2 ~ N .  

For an R-algebra A and g E A arbitrary let 

A(g -1) := lira ((A | R,~)[g-1]) -~ A(~)/(1 - g~) 
2 

denote the complete localization of A with respect to g. Then Spf A (9-1) is an 
open formal R-subscheme of Spf A and the open subschemes of this type form 
a basis of the topology of  Spf A. Together with A also A (9-1) is topologically 
finitely presented over R. 

Combining the proof of [EGA Inew, 10.6.3] and [BL 1, Proposition 1.7] 
one gets: 

Lemma 2.2 Let X be a formal R-scheme locally of  topologically finite pre- 
sentation. Assume that there is a # E N such that 3~ is an affine scheme. 

Then Y. is an affne formal scheme, X = SpfA with a topologically finitely 
presented R-algebra A. 

For A a topologically finitely presented R-algebra, ~ :-- SpfA the corre- 
sponding affine formal R-scheme, M an A-module, and ). E N let (M | R~) ~ 
denote the (9.~-module associated to MQRR~. in the usual sense of algebraic ge- 
ometry. Then the (9.~-module M A associated to M is defined as lim(MQRR;~) ~, 

where the projective limit has to be perfected in the category of sheaves of 
topological groups on ~ (cf. [EGA Inew, 10.10.1], also [Me, 2.2.1]). 

By [EGA Inew, 10.10.2.9] (for the noetherian case) resp. [Me, 2.2.5 (a)r 
(for the case of a valuation ring) one has: 

Proposition 2.3 (Theorem A for formal schemes) Let 3~ = SpfA be an affine 
formal scheme of  topologically finite presentation over R and .//4 an C.~- 
module. Then .fig is coherent if  and only if  there is a coherent A-module M 
such that as an (9.~-module .fig is isomorphic to the C.~-module M ~ associated 
to M. 

The A-module M in Proposition 2.3 is uniquely determined by ~ '  up to 
A-module isomorphism. Namely from the algebraic analogue [EGA I,ew, 1.3.7] 
over R~ one gets in the projective limit over )~ E N by use of Lemma 1.9: 

Lemma 2.4 Let ~ = SpfA be an affine formal scheme of  topologically finite 
presentation over R. Let M be a coherent A-module and M ~ the ~ -modu le  
associated to M. Then for each g C A one has a canonical isomorphism 

r(SpfA(g-t), M A ) ~ M | A(g - l )  �9 

(For the case of a valuation ring confer also to [Me, 2.2.1]. The noetherian 
case for g = 1 is found in [EGA I,r 10.10.2.1].) 

As over an affine formal R-scheme tt = SpfA of topologically finite pre- 
sentation the functor M -~, M ~ from the category of coherent A-modules to 
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the category of  coherent (gtt-modules is exact ([EGA Inew, 10.10.2.1] resp. [Me, 
2.2.1]), Proposition 2.3 and Lemma 2.4 imply as in the algebraic situation 
[EGA In,w, 1.3.11] that for each affine open formal R-subscheme U = SpfA 
of  a formal R-scheme 3s locally of  topologically finite presentation the "sec- 
tion functor" ~ '  ~ ,  M//(H) from the category of  coherent (9~-modules to the 
category of  coherent A-modules is exact, too. 

Let 3s = SpfA be an affine formal scheme of  topologically finite presenta- 
tion over R and ~ '  a coherent (9.~-module. Set M := ~/'(3s T := Ta(M), and 
F := M/T. Then M is a coherent A-module by Proposition 2.3 and Lemma 2.4 
so that, by Corollary 1.7, the A-modules T and F are coherent, too. Especially, 
there is an n C ]N with J " T  = {0}. 

By the exactness of  the functor "A" the exact sequence 0 -+ T ~ M -+ 
F ~ 0 of  A-modules induces an exact sequence 

0 - +  T d =: ~" ---~ M ~ =~ ~ '  ---~ F '1 =:  ~ - +  0 

of  (9.~-modules. 
Consider an arbitrary g E A. Then Lemma 2.4 implies Y-(SpfA(g-~))  -~ 

T | A(g- l ) ,  hence Jn~Y-(SpfA(g- l ) )  = {0} so that, in particular, 

g - ( S p f A ( g - l ) )  is an J - to r s ion  module. As the system {SpfA(g-1);g E A} 
is a basis o f  the topology of  3s then ~ is an D-torsion sheaf, i.e., each stalk 
3-x, x E 3s is an J - to r s ion  module, and, furthermore, JnY-~ = {0} holds 
for each x E 3E. So J- ( l~)  is an J - tors ion  module for each open formal R- 
subscheme U o f  3s and fulfills J " g " - ( t I ) =  {0}. 

Similarly, for g C A arbitrary, Remark 1.1 implies that ~ ( S p f A ( g - l ) )  ==- 
F | -1) has no J - tors ion  since A(g - l )  is a fiat A-module ([BL1, Propo- 
sition 1.7]; for the noetherian case also [EGA 01new, 7.6.13] and for the case 
of  a valuation ring [Me, 1.1 1.4]). Hence Y is a sheaf without J-torsion, i.e., 
each stalk o~x, x E 3s is an R-module without J- tors ion.  So for each open 
formal R-subscheme II of  3s the R-module ~-(1I) has no J- tors ion,  too. 

Hence for each open formal subscheme 1I of  X one concludes by the left 
exactness of  the functor "taking sections on ~.1" that ~--(11) is not only an 
J - to r s ion  module but, in fact, the whole J - tors ion  submodule T.~ (.//t'(/.t)) of  
~(u),  

Therefore it is clear how to globalize the affine situation discussed above 
and to get 

Proposi t ion 2.5 Let 3s be a formal R-scheme locally o f  topologically finite 
presentation and .//r be a coherent (~.~-module. Then there is an exact sequence 
of  coherent (9.~-modules 

such that g- is an J-torsion sheaf and ~ is without J-torsion. 
l f  Y. is quasi-compact then there is an n E IN such that one has J n 3 - ( H )  = 

{0} and 9"-(1i) = T.a ( .~ ' (U))  for each open formal R-subscheme U of  3s 
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An analogous decomposition as in the above proposition holds if dr is a 
quasi-coherent module sheaf over a (usual) R-scheme X. In both cases the ~-  
torsion sheaf J" is uniquely determined by dg and will be denoted by ~-~ (rig) 
in the sequel. 

For further reference we collect the information on the modules of 
q-cochains with values in a coherent sheaf over a formal scheme gained so 
far: 

Remark 2.6 Let X be a formal R-scheme locally of topologically finite pre- 
sentation and 1I a covering of 3E by affine open formal R-subschemes such that 
each finite intersection of sets from 1I again is formal affine (e.g., assume that 
3Q is separated, cf. Lemma 2.2 and [EGA Inew, 5.3.6]). Let dg be a coherent 
(_9~ .-module. For q E Z let cq(lI, dl)  denote the R-module of q-cochains on 
1I with values in J/l. 

Then for ). E N arbitrary one has cq(ll,~'+ldr = ~;~+lcq(ll, dg) and 

C q (H, . /g/(~ ~'+' J/l)) ~ ca(u, . / / / ) / (3 J'+' cq(ll, J/l)) ~ Cq(ll, J{) | R~,, 

and the module cq(H, Jg)  is separated and complete with respect to the ~-adic 
topology. 

If X is quasi-compact there is an n e IN with ~'T~ (cq(ll, J/l)) = {0} for 
all q E Z.  

Proof For q < 0 the claims are clear, so assume without restriction q > 0. 
Because of the hypotheses on U the module cq(ll,  J/l) is of the form 
1-Ijejq ,/g(~3;) with some affine open formal R-subschemes 2);=SpfAj of 3E. 

By the exactness of the functor "taking sections on ~j  in coherent (gx- 
modules" one has for each j E Jq that (~;'+tdg)(~3/) = ~;,+l . , ~ / ( ~ j )  and 

( , / / l /~2+l~g,)(~j)  ~ , /~(~j j) / (~) ,+l  �9 , ~ ( ~ j ) )  ~ , / / l(~j)  | R), 

holds for each ). c N, hence also the analogous statements for the modules of 
q-cochains. 

Furthermore, for each j C Jq the Aj-module .A/(~j) is finitely presented 
by Proposition 2.3 and Lemma 2.4, hence ~-adically separated and complete 
by Lemma t.9. These properties transfer to cq(u,.A{) where for the ~-adic 
completeness - if II is not finite - one may use [BGR, Proposition 2.1.5/6] 
since the ~-adic norm on the J/l(~3j) is bounded by 1 from above. 

The last claim follows from Proposition 2.5. [] 

3 T h e  direct  i m a g e  theorem for - not necessari ly  noetherian - s chemes  

For the proof of the direct image theorem for formal schemes at first the 
corresponding statement "modulo powers of ~ "  is needed. As, however, in the 
case of  a non-discrete valuation ring R also the tings R;, = R/3 ~+~, )~ E N, 
are not noetherian, one cannot draw on the direct image theorem for locally 
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noetherian schemes [EGA 1II, 3.2.1] for this purpose. Instead of  this, we will 
use a result o f  Kiehl (Theorem 3.1), but at first remind of  some notions from 
[SGA 6] in order to formulate it (cf. [SGA 6, exp. I, introduction]): 

Let (X,(gx) be a ringed space. Then an (gx-module ~ is called pseudo- 
coherent if  for each n E N locally on X there is a finite presentation of  J// 
o f  length n, i.e., if  there exists an open covering 11 of  X such that for each 
U E 11 there is an exact sequence 

Y,W,, --+ &,f',,_ l -'~ " "  ~ Leo --~ "////I u "-+ 0 

with c~ai a free and finitely generated (gv-module for i = 0 . . . . .  n. - Note that 
this notion of  "pseudo-coherence" is not in agreement with the one introduced 
in [AC, chap. I, par. 2, exerc. 11)], which is named "pr6coh6rent" in [SGA 6, 
exp. I, definition 3.1.] - 

A complex .X/'" of  (gx-modules - resp. the element of  the derived cate- 
gory D ( M o d X )  of  the category of  (gx-modules represented by this complex 
- is called pseudo-coherent if  for each n E 77 locally (in the above sense) 
there is a quasi-isomorphism ~4'" --* 3if" with .L~ ~ a complex that is bounded 
from above and whose components of  degree greater or equal n are free and 
finitely generated (fix-modules [SGA 6, exp. I, definition 2.3]. Obviously, an 
Cx-module d /  is pseudo-coherent if  and only if the complex Jff  that equals 
~ /  at the zeroth place and vanishes else is pseudo-coherent. 

Let f : X --, Y be a morphism of  schemes which is locally of  finite type and 
,~"  a complex of  Cx-modules.  Then ,,'U" is called relatively pseudo-coherent 
with respect to f if  there is an open covering 1I of  X and for each U c 1i 
a factorization of  f l u  over a closed immersion iv : U ---, Z into a smooth Y- 
scheme Z such that (Iu) , (~T")  is a pseudo-coherent complex of  (gz-modules 
[SGA 6, exp. III, th6or6me 1.1 and definition 1.2]. An (gx-module J / i s  called 
relatively pseudo-coherent with respect to f if  the complex Jff  is relatively 
pseudo-coherent with respect to f .  

With these notions one has the following version of the direct image 
theorem: 

Theorem 3.1 [K3, Theorem 2.9'a)] Let f : X ~ Y be a proper morphism 
of  schemes and aT'" a complex of  (9x-modules which is bounded from below 
and relatively pseudo-coherent with respect to f .  Then ~ ' f ,  Off" is a pseudo- 
coherent complex o f  Cy-modules. 

Now we are going to adapt this result to the situation of  interest in the 
present article. At first, for the standard situation of  a coherent structure sheaf 
one has by [EGA 0Inew, 5.3.3 and 5.3.4] resp. [SGA 6, exp. I, corollaire 3.5b)]: 

L e m m a  3.2 Let (X, Cx ) be a ringed space with a coherent structure sheaf (9x. 
Then an Cx-module J// is pseudo-coherent i f  and only if it is coherent, and a 
complex ,~ff" o f  (gx-modules that is quasi-isomorphic to a complex which is 
bounded from above is pseudo-coherent if and only i f  its cohomoloyy Hq(JT ~" ) 
is coherent for  all q E 77. 
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In order to get a sufficient criterion for relative pseudo-coherence we have 
to recourse on the coherence of the structure sheaf not only of the scheme X 
itself but also of all affine spaces over X. The property of coherence, however, 
is in general not inherited by polynomial rings (for an example see [Sou, 
proposition 18]) so that one has to define explicitly: 

A ring is called stably (or universally) coherent if each polynomial ring in 
finitely many variables over this ring is coherent. 

Obviously, noetherian rings are stably coherent. Important for the following 
is 

Example 3.3 Let R and ~ be as in Sect. 1. Then, as each polynomial ring in 
finitely many variables over a finitely presented R-algebra again is a finitely pre- 
sented R-algebra, Corollary 1.8 implies that each finitely presented R-algebra, 
in particular each finitely presented algebra over R/~ ;'+l for 2 E N, is stably 
coherent. 

One has the following criterion for relative pseudo-coherence: 

Lemma 3.4 Let f : X ~ Y be a morphism of schemes which is locally of  
finite presentation, and let Y = SpecA be affine with a stably coherent ring A. 
Then each coherent (Sx-module Jg is relatively pseudo-coherent with respect 
to f .  

Proof As relative pseudo-coherence is a local property on X, one can ex- 
change X and assume it to be affine. Then it follows from [EGA Inew, 
6.2.8 and 6.2.9] that, for a convenient r E N, there is a closed immersion 
z : X ~ SpecA[(l . . . . .  ~r] = Z~, of Y-schemes and t(X) is defined in ~ ,  by 
a finitely generated and quasi-coherent ideal sheaf J C C~}. Because of the 
stable coherence of A the structure sheaf of N~, is coherent so that J is a 
coherent ideal. As ~ is a coherent (gx-module, the module z,v# is coherent 
over z,(gx -~ (9~,}/J by [EGA 0znew, 5.3.15]. Now [EGA 0Inew, 5.3.13] implies 
the coherence of  l , ,~'  also over (9~}. So by Lemma 3.2 the module z,v/g resp. 

the complex t , . / / /=  t,(Jff) is pseudo-coherent. [] 

From Kiehl's result Theorem 3.1 one now gets: 

Direct image theorem for schemes 3.5 Let f : X ~ Y be a proper morphism 
of schemes which is (locally) of finite presentation and Jg a coherent (gx- 
module. Assume that Y has an open covering by spectra of stably coherent 
rings. Then Rq f ,,/l[ is a coherent (gy-module for each q E Z. 

Proof As coherence, properness and (local) finite presentability are local prop- 
erties on Y, one can assume Y = SpecA with a stably coherent ring A. Then 
the coherent (gx-module v/r is relatively pseudo-coherent with respect to the 
proper morphism f by Lemma 3.4. Therefore, Theorem 3.1 implies the pseudo- 
coherence of ~ ' f , ( , / f f ) .  

By [EGA III, 1.4.12] the direct image R q f . , / ~  = Hq(~' f , ( . ,~))  vanishes 
for q sufficiently large. Hence ~ ' f , ( ~ )  is quasi-isomorphic to a complex that 
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is bounded from above. As A is a (stably) coherent ring, the structure sheaf (gr 
is coherent. Lemma 3.2 now implies that Hq(~ ' f . ( . / f f ) )  = R q f . J g  is coherent 
over (-Or for all q E 7/.. [] 

Besides the direct image theorem also Serre's results on the higher direct 
image sheaves for projective morphisms [Se, n ~ 66] can be transferred to the 
stably coherent case. So [SGA 6, exp. III, th6or6me 2.2.2 or corollaire 2.3] 
together with Lemma 3.4 and [EGA II, 4.4.6] imply 

Proposition 3.6 Let Y be a scheme which has a finite open covering by spec- 
tra o f  stably coherent rings, f " X ~ Y a projective morphism o f  schemes 
which is (locally) o f  finite presentation, and 2" an invertible (gx-module which 
is ample with respect to f .  For each (gx-module Jg and each n E 7l. set 
~'(n) := ~ '  | ~ |  

Then for  each coherent Cx-module JCl there is an N E Z such that for  
all n E 2Z with n > N one has Rq f . (Jg(n))  = 0 for all q > O. 

Note. The direct image theorem 3.5 for projective morphisms f and this propo- 
sition can also be proved directly, without any recourse on Theorem 3.1 resp. 
[SGA 6, exp. III, 2] and the theory of pseudo-coherent complexes since one 
can transfer the arguments in [EGA III, 2.2.1 and 2.2.2] in a rather canonical 
way from the noetherian to the stably coherent situation. 

4 Lifting of the cohomology of complexes 

Let R and ~ be as above. Throughout this section assume in addition that 
= tR is a principal ideal. Let A be an R-algebra and set A:, := A/~:'+IA = 

A/t~+lA for 2 G N. 
For a complex C ' =  (cq,  o q) of A-modules let C~ denote the complex 

of A::modules that arises from C" by tensoring all modules with A2 and all 
homomorphisms with idna over A. Then the exact sequence of complexes 

0 ~ t  :'+IC" ~' a:. ,C"  'G~ ----~ 0 

induces a long exact cohomology sequence 

l q ~ 
... , Hq(t)'+lc" ) - -~  Hq(C" ) - ~  Hq(c~) ~ Hq+l(t;~+lc" ) , ... 

Lemma 4.1 Let C" be a complex o f  A-modules and q r Z such that there is 
an n C N with t"T~(C q+l) = {0}. Then for each ). > n one has: 

a) t~'+lHq(C ") C fl(Hq(t:'+lC')) C t:'-"+lHq(C'). 
b) Let A and C q-I be complete and cq be separated with respect to 

the respective ~-adie topology. I f  t~1 . . . . .  ~m are elements o f  H q ( c ' )  such 
~7 q q #q(Hq(C ' ) )  as that ;(/~l) . . . . .  a;,(flm) generate an A-module then fll,..-,/~m 

already generate Hq(c" ) as an A-module. 
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P r o o f  a) By Lemma 1.3a), applied to the R-module homomorphism Oq : 
cq ~ C q+ ~, one has ker dq rl t ~`+l cq = t ~-"+ t (ker oq Fq t ~ cq ), hence 

t~'+~ker oq C ker 0 q ~ t)'+lC q C t)~-"+~ker oq. 

Now the claim follows by applying the residue class map p : ker ~q ~ H q ( c  ") 
to this chain of inclusions. 

b) For # E {1, . . . ,m} let a~, E kerOq be an inverse image of flu E H q ( c ' )  
with respect to p. Furthemore set F := A" and define an A-module homomor- 
phism 4' : F ---, ker 0q by mapping the p-th element of the canonical basis of 
F to ~u for # = 1 . . . . .  m. Then the A-module homomorphism 

cr q 
F ~ ker~q ~ P  ker~q / im~ q-1 = H q ( c  ") - - ~  ima~ 

is surjective by assumption. So for q~ := p o ~ one has H q ( c ' )  = q~(F)+ 
q q ker a2 = ~p(F) + im l). = q~(F) + tHq(C' ) ,  where the last equality holds by part 

a). This implies 

kerO q = ~(F)  + imO q-I + tkerO q . 

Hence for any a = a0 E ker0q there is a bl E F,  a cl E C q-~, and an al E 
ker0 q with a0 = ~ ( b t ) +  o q - Z ( c l ) +  tai. As �9 and 3q-I are homomorphisms 
of A-modules, by iteration one gets three sequences (by) C F, (cv) C C q-l ,  
and (av) C ker ~q from this with 

a = ao = ~ tV-lbv + ~q-~ t v- + tV~ 
~ v = l  v = l  

for each v0 E N. As A, hence also F, and c q - I  are complete with respect to the 
respective ~-adic topology, one infers the existence of b := ~ = l  t~-lbv E F 
and c := ~ = 1  t~-lcv E C q-t. Then, by the ~-adic separatedness of cq, the 
above equalities give in the limit v0 ~ ~ that a = cb(b) + oq- l (c)  holds. 

As a E ker~3q was arbitrary, this implies keraq = q~(F)+ imO q- ' ,  hence 
m m 

H q ( c ' )  = ( p  o ~ ) ( F )  = ~ , = ,  A p(au) = ~u=l  A fl~. [] 

From part b) of  the above lemma one gets the following consequence, which 
generalizes part (1) of the (homologically clothed) Theorem 8.5 in [Mo]: 

Consequence 4.2 Let  A be complete with respect to the ~-adic  topology and 
C" be a complex o f  A-modules. Let  q E Z such that C q-I is complete and 
Cq is separated with respect to the respective ~-adic  topology and such that 
there is an n E IN with tnT~(C q+t) = {0}. Then Hq(c~) = O for  a )~ E 1N 
with ). > n already implies Hq(c"  ) = O. 

Proposition 4.3 Let  C" be a complex o f  A-modules and q E 77 such that there 
is an n E IN with tnT~(C q+l) = {0}. 

a) Let  A and .C  q- .  be complete and cq be separated with respect to the 
respective ~-adic  topology. I f  Hq(C2) is a finitely generated A-module and 
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Hq+l(t2+lc ") a coherent A-module for a 2 E N with )~ > n then Hq(c  ") is 
a finitely 9enerated A-module. 

b) Let A be topologically finitely 9enerated over R. I f  Hq(C" ) is a finitely 
9enerated A-module and Hq(c;~) is a coherent A-module for each 2 E IN with 
2 > n then Hq(c  ") is a coherent A-module. 

Proof One again considers the long exact cohomology sequence 

Iq aq 6q 
... , Hq(t2+|C" ) " , H q ( C  ") ~ H q ( C ~ ) - ~  Hq+I(t;~+Ic ") , ... 

a) Together with Hq(c;?) also 6q(Hq(C;?)) is finitely generated over A. 
As a submodule of the coherent A-module Hq+l(t:+lC ") then 6q(Hq(C;~)) is 
even finitely presented over A. By [AC, chap. I, par. 2, n ~ 8, lemme 9] this 

q is finitely generated over A since Hq(c~) is finitely implies that ker 6 q = im a:~ 
generated over A. Because of ). > n then by Lemma 4.1b) also Hq(c  ") is a 
finitely generated A-module. 

b) Let T := T.a (Hq(C ")) be the ~-torsion submodule of the finitely gen- 
erated A-module Hq(c') .  Then, by Corollary 1.7, the A-module Hq(c ' ) /T  
is coherent and the A-module T is finitely, generated. In particular, there is 
a 2 ~ E N with {0~ = t;" +IT = T fq t;' +IHq(C'), using Remark 1.2. As 

q q / + 1  q t kera~ = imt:. C t" H (C ' )  holds for ). := 2 + n  by Lemma 4.1a), then 
aqlT : T ---' Hq(C)~) is injective, hence T isomorphic to an A-submodule of 
Hq(C)~). By assumption the A-module Hq(C)~) is coherent, hence also each 
finitely generated A-submodule of Hq(c~), therefore T, too. Now, by [AC, 
chap. I, par. 2, exerc. 11) a)] resp. [EGA 01,ew, 5.3.2], together with Hq(c ' ) /T  
and T also Hq(c  ") itself is a coherent A-module. [] 

Let 9 E A be arbitrary, C ' a  complex of A-modules, C" one of A(9 - l ) -  
modules, and W : C" ~ C" a homomorphism of complexes of A-modules. 
Then for each 2 C IN one has a commutative diagram of A-modules 

0 ) t),+ 1 C ~ t;, a;. , C" ---~ C~ - - - ,  o 

1 1 1 
0 > t,~+l~,, r:.) C" - ~  C;" -----* 0 

with columns induced by 7/ and exact rows, which induces a commutative 
diagram of A-modules 

: a q 6~ 
> H q ( t 2 + l C "  ) " ,  H q ( c  ") ", Hq(c2"  ) ~ H q + I ( t 2 + I c  ") , 

I l I i 
, Hq(t:'+lC ") rq, Hq(~.  ) ", Hq(~ ") ", Hq+l(t:,+l~') , 

with exact rows. As the cohomology groups of the lower row are A(9-t)  - 
modules, by tensoring the upper row with A (9- l) over A one gets the following 
commutative diagram of A (9- I )_modules 
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Hq(t 2+1C') | A(g-1) 

Hq(? ~+l d')  

tq| ) 

z 

aq| 
~Hq(C') | A(g -1) 

Hq(d') 

Hq(C~i)@AA(q-I  ) 

Hq(c;) 

P. Ullrich 

#q 
z 

~| (~ 1 )~ Hq+I(t )'+l C" ) ~ AA(q-1) 

Hq+l(t2+lc') 

whose upper row is also exact if A is topologically finitely presented over R 
because then A(g -1) is flat over A by [BL1, Proposition 1.7]. 

Proposition 4.4 Let A be a topologically finitely presented R-algebra, g E A 
arbitrary., C" a complex of A-modules, C" one of A(g-l)-modules, and 71" 
C" ~ C" a homomorphism of complexes of A-modules. Let q E Z such that 
Hq(C')is a coherent A-module. Then one has: 

a) I f  there exists an n E iN with tnTa(C q+l ) = {0} and if q~q is injective 
for each ). E N with ). > n then also qaq is injective. 

b) Let ~q-1 be complete and Cq be separated with respect to the respec- 

tive ~-adic topology, and let there be an ~ E N with t*Ta(C q+l ) =- {0}. I f  
�9 q. is surjeetive and .q+l ,~ q,~ is injective for a ). E N with ). > ~ then (pq is 
surjective. 

09 q+l and q Hence, in particular, (pq is an isomorphism if r;~ ~;, are isomor- 

phisms for all ). E N,  ~q-I is complete and Cq separated with respect to the 
respective 3-adic topology, and there is an n c N with tnTa(C q+l) ~- {0} 

and tnT~(C q+l ) = {0}. 

Proof a) Let ). C IN with ). > n be arbitrary. Then, by the injectivity of  r q 
and the exactness of  the first row of  the above diagram, one has 

ker ~q C ker (sq o (pq) = ker (~q o (a q | idA(y-,))) 

= ker (a  q | idA(g-,)) = im(z~ | ida(g-~)) 

= (im z q) | A(g -1) �9 

Using Lemma 4.1a) this implies ker q)q C t ~-"+1 (Hq(C ") | A(g- l ) ) .  

By assumption Hq(C ") is coherent over A, hence Hq(c ") | A (g-1 ) finitely 
presented over A(g - l )  and therefore separated with reslSect to the 3-adic topol- 
ogy by Lemma 1.9. As 2 C N with 2 ->_ n was arbitrary, one hence concludes 
ker (pq = {0}. 

b) By some diagram chasing (cf. [AC, chap. I, par. 1, n~ proposition 
l(i)]) the surjectivity of (b q, the injectivity of  (pq+l, and the exactness of  the 
rows of  the above diagram imply 

aq (q)q(Hq(C ") | A (g-t)))  = ffq(Hq(~.)) . 
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Let H q ( c  ") be generated over A by the finitely many elements ~1 . . . .  am. 
Then the images of  fll := goq(al | 1A(o-~)) . . . . .  tim := goq(em | 1A(0-')) with 
respect to ~7~ generate 6~(Hq(d ' ) )  over A(g- ' ) .  As ). > t~ holds, then by 

Lemma  4.1b) the elements fll . . . . .  tim C imrpq generate Hq(C')  over A(g- l ) ,  
which implies the surjectivity of  qoq. [] 

Proposi t ion 4.5 Let C" be a complex of  A-modules and q C 7Z such that 
there is an n E N with t"T.~(C i) = {0} for i = q,q + 1,q + 2 and a v C N 
with t~T~ (Hq+I(:C' ) )  = {0}. Then limHq(Cs and the ~-adic (separated) 

2 

completion o f  Hq(c ' )  are canonically isomorphic. 
If, furthermore, A is topologically finitely presented over R and Hq(C') 

is coherent over A then even Hq(C ") itself and l imHq(C~) are canonically 

isomorphic. 

Proof  For ), p E N with p > ). the commutative diagram with exact rows 

0 ~ tp+ 1 C" ~" a '  , C" C/," , 0 

1 1 
0 } t2+l C. I:. a;. , C" C~ , 0 

induces the following commutative diagram with exact rows 

q+l 

Hq(tP+lc.)  ,q Hq(C')  a~ Hq(Cl'~) ~ Hq+l(t/,+lc. ) ~ , Hq+t(c.)  

Hq(t)'+lc ") ' ,  Hq(C ") ~ Hq(cs ~ ,  Hq+l(t:'+lC ") ' , Hq+l(C ") 

From this one gets the following exact sequence of  projective systems 

(*) 0 ---* Hq(C') / ,q(Hq(t: '+'C'))  ~ Hq(c~) ~ im 5~ ---* O. 

In order to show that l imim6~ = {0} holds, let 2 E N with 2 > n be 

arbitrary. As for i C {q,q+ l l q + 2 }  all J - tors ion  elements of  C i are annihilated 
by t n, one has by Remark 1.2 that t"C i is without .~-torsion, hence isomorphic 
over A to t2+lci. Therefore also Hq+l(tnC ") and Hq+l(t:'+lC') are isomorphic 
over A, by which t" annihilates each 13-torsion element of  H q+t ( t 2 + I c ' ) ,  too. 

For p := ). + v let x E im 6q be arbitrary. As t~+~Hq(C~, ") = {0} holds, 

then x is an J - to r s ion  element of  Hq+l(t/~+lc'), hence also the image z q+l .,~ (x) 

of  x with respect to the canonical homomorphism z q+l p,:, : Hq+l(tP+lc ") 

Hq+l(t)'+lC ") an element of  the J - tors ion  submodule T := Ta (Hq+l(t2+lC')) 
of  Hq+l(t:'+lC'). On the other hand, by the above, t:'+tC q+2 is without 
J - tors ion,  which implies by Lemma 4.1a), applied to the complex t:'+~C" 
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q + l  at the place q + l ,  that ~,~ (x) E :Hq+t(ta+lC') since # = ).+v. By Remark 1.2 
, q + l .  one hence concludes ,u,,~ (x) E T M t~Hq+l(t~+lC ") = VT = {0}. As x E im6~ 

.q+l,. 6qu) {0} C im q hence, since also was arbitrary, one therefore has %;, ~,~m = 6;, 

). E N with k, > n was arbitrary, lim im 6 q = {0}. 
) 

So the short exact sequence ( , )  induces an exact sequence (e.g., by [EGA 
0t,~w, 7.2.8]) 

q - -  ~ + 1  0 --, li_m (Hq(C" ) / t2(H~(t" C'))) --, lin_a Hq(c;~ ) ---+ lira im 6 q = 0 .  
2 2 :. 

As the systems (tq(Hq(t :~+' C')))~. and (t:~+'Hq(C "))~ define the same topology 

o n  Hq(C ") by Lemma 4.1a), then lim_ Hq(c~) is always isomorphic to the 
2 

~3-adic completion of Hq(C'), and the addendum follows from Lemma 1.9. [] 

Note. If one assumes that C" consists of ~-adically separated and complete 
A-modules then one can deduce the addendum even without a condition on 
Hq+l(c ") a s  follows: 

Now C" ~ lim C;I holds. As the system (C~);, is surjective, then [EGA 0nl, 
2 

13.2.3] implies that the canonical homomorphism Hq(c')  -~ Hq(limC~) 

limHq(C~) is surjective. The injectivity can be seen by the same arguments as 

above. 

5 The direct image theorem for formal schemes 

As in Sect. 2 let S denote a formal scheme which is noetherian and without 
torsion with respect to an ideal of definition or admissible over a valuation 
ring (for a height 1 valuation). For S noetherian each formal S-scheme locally 
of topologically finite presentation is locally noetherian (Lemma 1.5) so that 
the direct image theorem for formal S-schemes locally of topologically finite 
presentation holds by [EGA III, 3.4.2] in this case. Hence it only remains to 
be proved if S is admissible over an - in particular, non-discrete - valuation 
ring R. 

Let R and ~ be as above and set R:, := R/~ ~+l for 2 E N. Theorem A for 
coherent modules over formal R-schemes locally of topologically finite presen- 
tation is already documented in the literature (see Proposition 2.3). Furthermore, 
one has 

Proposition 5.1 (Theorem B for formal schemes) Let 3~ be an affine formal 
R-scheme of  topologically finite presentation and J[ a coherent C~-module. 
Then nq(~.,  J[)  = 0 holds for each q > O. 



The direct image theorem in formal and rigid geometry 87 

At first, we will give a proof  for this proposition by means of  Consequence 
4.2 that, however,  needs the additional assumption that 3 is generated by one 
element t C R - which, in fact, is the case that interests in the sequel - .  For 
sake of  completeness we will then sketch a proof  for the general case which 
draws on [EGA 0Lit, 13.3]. 

First proof So, assume additionally that 3 = tR. 
Because of  Cartan 's  comparison theorem one only has to show that for each 

affine open formal R-subscheme 3 of  X and each covering 1I of  ;3 by affine 
open formal R-subschemes the cohomology Hq(11,Jg) of  the Cech complex 
C" := C" (1I, .///) o f  cochains on 11 with values in J g  vanishes for each q > 0. 

By Remark 2.6 the complex C" consists of  3-adical ly  separated and com- 
plete R-modules and there is an n E N with tnT~(C q) = {0} for all q E Z. 
Then lln :=  {U • R,; U C 11} is an open affine covering of  the affine Rn- 
scheme ;3n = ;3 x R R,, and J/t'n := J[/tn+ldr "~ J/g | Rn is a coherent 
(93 -module. By Remark 2.6 one has C'(lln, JC/n) = C'(11, J l , )  ~ C'| R,, 
hence Hq(c'@RRn) ~- Hq([ln, J/[n)= 0 for q > 0 arbitrary, e.g., by [EGA III, 
1.3.1]. From Consequence 4.2 one therefore gets Hq(~l,./[4() = H q ( c  ") -= 0 for 
each q > 0. [] 

Second proof Let again ;3 be an arbitrary affine open formal R-subscheme 
of  �9 and set ,/#~, := j c , / , ~ , + l j #  for ). E N arbitrary. Then H q ( 3 , ~ ' ~ )  -- 
Hq(~j~,,~[;~) = 0 holds for all q > 0. Furthermore, for /~ C N with /~ < 2 
arbitrary the canonical map dt'~, -+ J//u is a surjective morphism of  coherent 
C3-modules so that by the exactness of  the functor "taking sections on ;3" the 
projective system (Hq(;3, Jr fulfills the Mittag-Lettler condition of  [EGA 
0HI, 13.1.2] for each q > 0. As by [EGA In,w, 10.11.3] (for the noetherian case) 
resp. [Me, 2.2.8(b)] (for the case of  a valuation ring) one has ~/g ~ l imddz, 

then one gets the claim from [EGA 01H, 13.3.1 and 13.3.2(ii)]. [] 

By Proposition 5.1 and Leray 's  theorem one can, as usual, compute coho- 
mology by means of  affine coverings: 

L e m m a  5.2 Let 3E be a formal R-scheme locally of topologically finite pre- 
sentation and ~[ a covering of  .~ by affine open formal R-subschemes such 
that each finite intersection of  sets from 11 is formal affine again (e.g., assume 
that Y.o is separated). Let J[ be a coherent C.~-module. 

Then the canonical morphism Hq(l.[, JP[) --+ Hq(~,  , / / / )  is bijective for each 
q c  7Z. 

A morphism f : X ~ ~) of  formal S-schemes which are locally of  topo- 
logically finite presentation is called proper if the morphism f0 : 3E0 ---' ~.)0 of  
(ordinary) schemes induced by base change with So over S is proper in the 
sense of  algebraic geometry. - Note that in this situation -~0 is of  finite type 
over So, hence also over ~.)0 by which f always is of  finite type (cf. [EGA 
Inew, 10.13.3]). So the above definition is consistent with the one in [EGA III, 
3.4.1.] - 



88 P. Ullrich 

By Lemma 2.1b) the morphism of  formal schemes f : 3~ ~ ~) is proper if  
and only if  for each 2 ~ IN the morphism of  (ordinary) schemes ~;~ : 3E~ ~ ~)~ 
is proper. In particular, the notion introduced above does not depend on the 
choice o f  the ideal o f  definition of  S. 

Direct image theorem for schemes 5.3 Let f : X ~ ~) be a proper morphism 
o f  formal  S-schemes which are locally o f  topologically finite presentation and 
Jg a coherent (gx-module. Then Rq[,~[ is a coherent (9~)-module for each 
q ~ .  

Proof. By the introductory remark to this section only the case that an ideal 
o f  definition of  S is generated by one element is left to be considered. As all 
properties in the statement of  the theorem are local on ~), one can assume 
without restriction then that S = S p f R  holds with a ring R as above, whose 
ideal o f  definition ~ is generated by one element t C R, and that ~) = SpfA 
holds for a topologically finitely presented R-algebra A. For 9 E A arbitrary set 
.t~a := ~ - t ( S p f A ( g - l ) ) .  

By Proposition 2.3 and Lemma 2.4 it suffices for the proof  of  the direct 
image theorem to show that for each coherent (~-module  Jr and each q C Z 
one has 

1) The A-module Hq(• ,  ,/~t) is coherent. 
2) For all g E A the canonical map Hq(Y~, Jg) ~ Hq(• g, J r ' )  induces an 

isomorphism Hq(Y~,Jg) | A(g - I )  ~- Hq(~ g, ,-g). 
As ~0 : ~0 ~ ~,)0 is quasi-compact, there is a covering 1I of  ~ that consists 

o f  finitely many, say qo + 1, affine open formal R-subschemes of  3E. Then for 
g E A arbitrary {U N 3E0; U C 1I} is an open covering of  3E~ by at most q0+t 
affine formal R-subschemes. By Lemma 5.2 one hence has Hq(xg, , / / /[)  = 0 for 
all q > q0. 

So 1) and 2) are trivially true for all q > q0 and one can use a descending 
induction on q for their proof: Let q E Z be fixed, (0 =< ) q < q0, with the 
property that the above claims are true for q + 1 instead of  q. 

1) For the finite covering li o f  3s chosen above set C ' : =  C ' ( H , , / [ ) .  Then, 
by Remark 2.6, the complex C" consists o f  D-adically separated and complete 
A-modules and there is an n C IN with tnT3(C q+l) = {0) since 3E is quasi- 
compact.  Furthermore, by this remark one has C'(H,t"+l.// /[) = t~+~C" and 
C" (lI,..,~,;,) "~ C" | =: C~" for each ). E N,  where J//;, := .~/t2+1,//4 ' -~ 
J / |  Rx. 

Together with ,//// also tn+l,~ ' is a coherent (9~-module so that - by in- 
duction hypothesis - the A-module Hq+l(~,tn+t,/[[) -~ Hq+l(ll, tn+tJ[) = 
Hq+l ( tn+l C') is coherent. 

Now ~ : �9 ~ ~/) is a proper morphism of  formal R-schemes which 
are locally of  topologically finite presentation so that for each s E N the 
proper morphism ~, : .t~, --~ ~/)). is locally of  finite presentation by [EGA 
Inew, 6.2.6(v)].  As A~, :=  A | R~ is a finitely presented R)-algebra, hence 
stably coherent by Example 3.3, one can apply the direct image theorem 
for schemes 3.5 to ~, : ~ .  ---, ~/)~ = SpecA~ and J[;,  and finds that 
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Rq(f;~),(J/g~,) is a coherent (9,t)~-module. Then by [EGA III, 1.4.11] the A2- 
module Hq(x),,J[Z),) ~= Hq(H,.//[j,) ~ Hq(c), ") is coherent. Hence Hq(c~, ") is 
also coherent over A by [EGA 0In,w, 5.3.13]. 

So the hypotheses of Proposition 4.3 are fulfilled for C ' =  C'(II, Jr  and 
the coherence of Hq(C') = Hq(ll, Jg) ~- Hq(~ ,~[ )  over A follows. 

2) Let g E A be arbitrary, however fixed in the sequel. Again, con- 
sider 1I 0 := {U N Xg;U E 1I} and C" := C'(tI,,//g). Furthermore, set 
&:= C'(ll0, ~) .  

Let 7 ~ : C" --~ C'" denote the homomorphism of complexes of A-modules 
that is given by restricting cochains on 1% to cochains on 1I~. Using the notations 
introduced before Proposition 4.4 one has for 2 C IN arbitrary that ~o q+t 2 : 
Hq+l(t~+lC ") | A(g - l )  ~ Hq+l(t~'+lC ") is induced by the canonical map 

Hq+l(t;'+lc" ) _~ Hq+l(3i.,t2+l./[/[) --+ Hq+l(~o,t;'+ljr ~- Hq+l(t;,+l~') 

hence an A(g -l)-module isomorphism by the induction hypothesis, applied to 
the coherent (9~-module t;'+lJ[4(. In an analogous way one gets from [EGA 
III, 1.4.11 and 1.4.13] that the canonical map Hq(c~') ~- Hq(~;,,Jg;,) --~ 
H q ( 3i ;g, JCl ;, ) ~ H q ( C, " ) induces an A(g-l)-module isomorphism 

q~q : Hq(c~) | A(g -l ) ~- Hq(C~) | ((A | R~.)[g-i]) --~ Hq(~) �9 

By Remark 2.6 and as 1) has already been proven for q, the assumptions 
of Proposition 4.4 are fulfilled and one now concludes from that proposition 
that the map 

q)q : Hq(.~,,///l) | A(g - l )  ~- Hq(H,,///[) | A(g - l )  
---. Hq(~Io,,/~) ~- Hq(x g,./[/[) 

induced by Hq(3E, J[/[) ---* Hq(3E ~, ./r is an A (g-l)-module isomorphism. [] 

Note. The proof of the analogue of 2) in the algebraic situation needs less 
expenses since there one only has to remark that for g E A tensorizing with 
A[g -~] over A commutes both with the formation of the complex of sections 
and with the formation of the cohomology because of the flatness of A[9 -I] 
over A. 

Indeed, in the above, formal situation A(g -~) is a flat A-module, too. The 
formation of the complex of sections does, however, not commute with the 
usual but only with the ~ -adically completed tensor product with A (g- l ) which 
makes a limit argument as in the proof of Proposition 4.4 necessary. 

In the above proof it was, in particular, shown for the situation over a 
valuation ring - for the noetherian situation see [EGA III, 3.4.6] -: 

Lemma 5.4 Let f : .~ --, r = SpfA be a proper morphism of  formal 
R-schemes where • is (locally) of  topologically finite presentation over R 
and A a topologically finitely presented R-algebra, and ~l  be a coherent 
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(9.~-module. Then for each 9 E A and each q c 71. one has a canonical iso- 
morphism 

H q ( ~ - t ( S p f A ( 9 - ' ) ) , J [ )  "~ F (SpfA(g-I),Rq~.J/l) . 

In particular, Hq ( f - l (SpfA(9-1) ) , J t / )  is a coherent A(9-1)-module. 

The proof of the direct image theorem for noetherian formal schemes in 
[EGA III, 3.4.4] uses that cohomology and projective limit commute. The ap- 
proach to the proof in the present article does not need this result, quite the 
contrary, it follows from the results and methods which are now at hand: 

Proposition 5.5 Let ~ : 3s --* ~) be a proper morphism of formal S-schemes 
which are locally of  topoloyically finite presentation and Jg a coherent (9.~- 
module. Let 3 be an ideal of  definition of S and ,/g;, := ~l/3;'+1,//r for 
2 C IN. Then for each q E 77 there is a canonical isomorphism 

Rq~.Jg --% lim Rq~.( Jg ;,) . 
2 

Proof By [EGA III, 3.4.3] only the case remains to be considered that ~ is 
generated by one element. As in the proof of the direct image theorem for 
formal schemes 5.3 one can restrict then to the case that S = Spf R holds with 
a ring R as above, whose ideal of definition ~ is generated by one element 
t E R, and that ~) = SpfA for a topologically finitely presented R-algebra A. 

Let q C 7/. be arbitrary, however fixed. By Lemma 5.4 it suffices to show 
that for each 9 E A the canonical morphism Hq(3s ~ limHq(3s is 

2 

an isomorphism where again 3s := ~-l(SpfA(9-1)).  For this consider a cov- 
ering 1I 0 of 3s by affine open formal R-subschemes and set C ' :=  C'(llo, Jtt). 

By Remark 2.6 there is an n ~ N with t"Ta(C i) = {0} for i = q, 
q + l ,q + 2 and one has C'(llo,.///[~) "~ C'| R~ =: C~" for 2 E IN arbi- 
trary and C" (H~162 = tnC" . As together with ./// also t " J [  is a coher- 
ent (9~-module, then Hq+l(tnC') and Hq(c ") are coherent A(9-1)-modules by 
Lemmata 5.2 and 5.4. In particular, by Corollary 1.7 there is a v E IN with 
tVTa (Hq+t(tnc')) = {0}. Hence the hypotheses of Proposition 4.5 are ful- 
filled, with the topologically finitely presented R-algebra A(9 -I)  instead of A, 
and that proposition gives the claim. [] 

By a technique well-known for the case of noetherian (usual) schemes (cf. 
[EGA III, 6.10.5] or [Mu, Chap. II, par. 5]) the direct image theorem for formal 
schemes 5.3 implies 

Proposition 5.6 Let f : 3s ~ ~) = SpfA be a proper morphism of formal 
R-schemes where 3s is (locally) of topologically finite presentation over R 
and A a topologically finitely presented R-algebra, and ,At be a coherent 
(9x-module. Assume that A and Jg are flat over R. 

Then there is a finite complex L" of coherent and R-flat (9,~)-modules which 
is quasi-isomorphic to ~" f . .g .  Furthermore, for each 2 C IN and each q E 77 
this quasi-isomorphism induces an isomorphism 
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Hq( L" | R),) -To Rq~.(J/[;.). 

Proo f  As before let lI be a covering of 3E by affine open formal subschemes 
and let C" := C'(II, . / / /)  denote the C;ech complex of cochains on 1I with 
values in J//. Then H ' ( C ' )  = H ' ( 3 E , J / )  is a finite complex of coherent 
A-modules by Lemma 5.4. Now apply [EGA 0xj~, 11.9.1] with C the category 
of all A-modules, K' the set of all coherent A-modules, and K" the set of all 
free A-modules of finite rank: One gets that there is a complex (D', ~" ) of free 
A-modules of finite rank which is bounded from above and quasi-isomorphic 
to C'. If one substitutes D O by H~ ) @ im ~3 ~ and ~3 ~ by the projection of this 
direct sum onto im d0 (followed by the inclusion of im ~30 in D t) and defines 
the modules and homomorphisms with negative index to be zero one gets a 
finite complex K" of coherent A-modules from D" which obviously is quasi- 
isomorphic to C', too. As A is fiat over R, all modules K q = Dq with q > 0 
trivially are fiat over R. The R-flatness of K ~ follows verbatim as in the last 
part of  the proof of  Lemma 1 in [Mu, Chap. II, par. 5] from the fact that the 
C q = cq(lI ,  ,d[) are fiat R-modules. (For R a valuation ring one can verify this 
immediately from the definition of K ~ since in this case a module is fiat over 
R if and only if it has no ~-torsion.) 

Now define L" to be the complex of (9,0-modules associated to K" ,  i.e., set 
L q : =  (Kq)  A. Then L" is a finite complex of coherent and R-flat (9~)-modvles 
and by the exactness of the functor "A" and Lemma 5.4 one has 

Hq(L.  ) ~ (Hq(K.)),J ~ (Hq( .~ ~ [ ) ) d  ,~ = = , = R  q . j / [  

for each q C Z, hence the first claim. As C" and K" consist of fiat 
R-modules this implies by [Mu, Chap. II, par. 5, Lemma 2] that for each 
R-algebra B the quasi-isomorphism induces an isomorphism Hq(L" | B) -~ 
H q ((~" ~.~[)  | B) for each q E Z, so, in particular, the second claim. [] 

For the formulation of the proper mapping theorem we remind of the defi- 
nition of a closed formal subscheme (cf. [EGA Inew, 10.14.2] for the noetherian 
case, [Me, 2.3.2] for the case of a valuation ring): 

Let 3~ be a formal R-scheme locally of topologically finite presentation 
and J a coherent (gx-ideal. Then the support 3 := Supp((~.~/d) of  the quo- 
tient C.~/d is a closed subspace of the topological space underlying 3/. So 
3,  endowed with the structure sheaf (C.~/J)I3, becomes a formal R-scheme 
locally of topologically finite presentation, which is called the closed formal  
subscheme o f  3E defined by J .  

For example, for 3E a formal R-scheme locally of topologically finite pre- 
sentation and ,44 a coherent Cx-module let dxJ,%-x(~')  denote the kernel of 
the canonical (9.~-module homomorphism (9• ---, ~ ' r  (,/[, ~ ' )  which assigns 
the homothety m ~ am to each section a in (9.~. Then the support Supp(.////) 
of .At' coincides with that of ~9.~/d..1~~ x (~ ' ) .  As d . ~ y ~ ( , / / / )  is a coherent 
(.0~-ideal by [EGA 01new, 5.3.4 and 5.3.7] then in a canonical way Supp(J/)  
bears the structure of a closed formal subscheme of .~. 
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A morphism i : X --, ~/) of formal R-schemes which are locally of topo- 
logically finite presentation is called a closed immersion if it factorizes into 

the form 3~ ~ ,3 i , ~/) with a closed formal subscheme 3 of e0, an iso- 
morphism of formal R-schemes g, and i the canonical injection of 3 in gO (of. 
[EGA Inew, 10.14.2] resp. [Me, 2.3.2]). 

By [EGA III, 4.8.10] (for R noetherian) resp. [Me, 2.3.4] (for R a valuation 
ring) one has: 

Lemma 5.7 A morphism i : 3[ ~ ~ of formal R-schemes which are locally 
of  topologically finite presentation is a closed immersion if and only if  i0 : 
3io ---* ~.)o is a closed immersion of Ro-schemes. 

Now the means are at hand in order to derive as usual the mapping theorem 
for proper morphisms from the direct image theorem. 

Proper mapping theorem 5.8 Let ~ : 31 ~ ~) be a proper morphism of formal 
R-schemes which are locally of  topologically finite presentation. Then for 
each closed formal subscheme 3 of  31 the image [(3) of 3 with respect to f 
(defined in the sense of  morphisms of  topological spaces) bears the structure 
of a closed formal subscheme of ~. 

Proof By Lemma 5.7 and [EGA II, 5.4.2(i) and (ii)] the composition of 
a closed immersion with a proper morphism of formal R-schemes locally of 
topologically finite presentation is proper again. So one can assume 3 = 3~ 
without restriction. 

The morphisms f : ~ ~ ~) and f0 : Xo ~ ~0 coincide as maps of the un- 
derlying topological spaces. As f0 is a proper morphism of ordinary schemes, 
hence a closed map, the image f0(~0) is closed in ~/_)0. Therefore as a topo- 
logical space f(X) is closed in ~/) and hence coincides with Supp(f.(gx). On 
the other hand, f.(gx is a coherent Cl)-module by the direct image theorem 
for formal schemes 5.3 so that its support Supp(f.(fx) can be considered as a 
closed formal subscheme of ~). [] 

6 GAGA theorems 

For a (usual) R-scheme X and a quasi-coherent (gx-module J / t h e  completion 
o f  Jg along the closed subscheme Xo = V(3 (;x) of  X defined by ~ is 

defined as the restriction of the sheaf 

lim_ dg;, with dg;~ := ,Al| for 2 r N 

to (the topological space) X0 (cf. [EGA Inew, 10.8.2]). As 3 is finitely gener- 

ated, the ringed space (Xo,(Sx) is a formal scheme by [EGA Ine,v, 10.8.3], 
which will be denoted by ,1~. More precisely, if X = SpecB is an affine 
R-scheme then k . =  SpfB holds with /J the 3-adic (separated) completion 
of B. 
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Similarly, each morphism f : X ~ Y of (usual) R-schemes induces a 
morphism f;, := f x idspecR;. : X~. := X xRR;. --~ Y;, := Y • of R;-schemes, 
R;, = RID i+t, for each ,;. E N, hence (cf. [EGA Inew, 10.9.1]) a morphism 

f : ,~ ~ Y of  formal R-schemes, which is called the continuation of  f to the 
completion o f  X and Y along Xo and Yo. 

In the sequel we will study the situation of schemes of finite type over 
a topologically finitely presented R-algebra A. By Lemmata 1.4b) and 1.9 the 

-adic completion of a finitely presented A-algebra B is topologically finitely 
presented over R and by Remark 1.1, Lemma 1.4a), c), and Proposition 1.6 it 
is even admissible if B is a finitely generated A-algebra without ~-torsion. 

Let J/r be a quasi-coherent module sheaf over X = SpecB, say the (~x- 
module associated to the B-module M and assume that B is topologically 
finitely presented over R. Then, if M finitely presented over B or finitely gener- 
ated over B and without ~-torsion the B-module M is coherent (use the same 

results from Sect. 1 as above) and s/g equals the Cs &/~ associated to 
.~/by Lemma 2.4. 

Hence one has 

Lemma 6.1 Let A be a topologically finitely presented R-algebra and X an 
A-scheme locally of  finite type whose structure sheaf has no J-torsion or 
locally of  finite presentation. 

Then X is a formal R-scheme locally of  topologically finite presentation 
and for each quasi-coherent (~x-module ~[ which is finitely 9enerated and 
without ~ -torsion or finitely presented the (~s is coherent. 

By taking sections on affine open formal subschemes Lemma 1.4b) (to- 
gether with Lemma 1.9) implies 

Lemma 6.2 Let X be an R-scheme such that f (  is locally of  topologically 
finite presentation over R and .W ~ J I  -~ Y --* 0 be an exact sequence of 
quasi-coherent Cx-modules with cd and ,,d coherent over C~. 

Then also the sequence St r -~ J [  --~ ~A ? -~ 0 induced by completion is 
exact. 

Having this result at hand one can copy the proof of [EGA Inew, 10.8.8(ii)] 
from the noetherian situation: One gets for each R-scheme X with k locally 
of  topologicaIly finite presentation over R that the functorial homomorphism 
i*,I/ --~ ./d induced by the canonical homomorphism i : ,~ ~ X of ringed 
spaces is an isomorphism of (9 2-modules for each finitely presented (gx-module 
Jg. 

As the formation of the inverse image of module sheaves commutes with 
the tensor product this implies that over schemes of this type the formation 
of the tensor product of finitely presented module sheaves commutes with the 
completion (cf. [EGA Inew, 10.8.10.1] for the noetherian case). Furthermore, 
similarly as in [EGA Inew, 10.9.5], over these schemes the inverse image of 
finitely presented module sheaves commutes with completion resp. continuation 
of the morphism. 
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The remainder of  this section is devoted to the study of the behaviour of 
the completion with respect to the direct image for proper morphisms: 

First of  all, if f : X --~ Y is a proper morphism of (usual) R-schemes with 
2 and I~ locally of topologically finite presentation over R then, by [EGA II, 
5.4.2(iii)], also f0  = ( f )0  :X  XR R0 = X0 = (2 )0  ~ Y XR R0 = Y0 = (I))0 is 
proper so that f : J (  ~ 1 ) is proper by definition. Therefore, if ~ is a quasi- 
coherent 60x-module with , / ]  coherent over 6 2 one knows by Proposition 5.5 
that there is a canonical isomorphism 

Rq(f). (J/i) -~ limRq(f ).J[),  = l imRqf . j g ) , .  

Applying Proposition 4.5 analogously as in the proof of Proposition 5.5, but 
now in the algebraic setting, hence gives 

Proposition 6.3 Let f : X ~ Y be a proper morphism of  R-schemes with 
and f" locally o f  topologically finite presentation over R. Let ~[ be a quasi- 
coherent (gx-module such that there is an n E N with J~9--~(./r = 0 and 
such thatJff is a coherent (~2-module. 

I f  q E 7~ has the property that there is a v E N with J " Y ~  (R q+l f . ( J n  /ff)) 
= 0 then one has a canonical isomorphism of (9f-modules 

( Rq f , .r ) ̂  -~ Rq Oc ), ( Jr ) . 

Now consider the case that in the above proposition Y = SpecA holds with 
a topologically finitely presented R-algebra A. 

If R is noetherian then X and Y are noetherian schemes and the direct image 
theorem for noetherian schemes [EGA III, 3.2.1] gives that the (0r-module 
Rq+lf , (Jn,~[)  is finitely generated for each coherent (.gx-module .At'. Hence 
the J-torsion submodule both of ~ '  and of Rq+l f , (JnJ/ l )  is finitely generated 
so that the assumptions of Proposition 6.3 are fulfilled for each coherent (gx- 
module .//// (cf. [EGA III, 4.1.5]). 

If, on the other hand, R is not (necessarily) noetherian one really has to 
take the conditions on the J-torsion submodules into consideration: The one 
on J -z ( , r  is not restrictive for the applications to rigid analysis since there 
one can even assume that .//r has no J-torsion at all (cf. Sect. 7). Also the one 
on Rq+l f , ( J n J [ )  causes no difficulties supposed one knows that this sheaf 
is finitely generated over (9r since then Corollary 1.7 furnishes a v E N with 
JVT~ (gq+l ( x ,~n , /~ ) )  = O, hence J"Y.-~ (Rq+' f . (J" . /g))  = 0 (cf. the proof 
of  Proposition 2.5). 

It is, however, not known - at least to the author of the present article 
- whether for f : X ---, Y = SpecA a proper morphism and A a topolog- 
ically finitely presented R-algebra the higher direct images of coherent (gx- 
module~ are always finitely generated over 6r .  (By the direct image theorem 
for schemes 3.5 it would suffice to know that A is stably coherent. But the best 
result in the literature towards this direction seems to be [RG, th6or6me 3.4.6] 
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which implies that the absolute base ring R is stably coherent, cf. Example 
3.3.) 

Therefore we resort to the notion of relative pseudo-coherence introduced 
in Sect. 3 which guarantees the coherence of the higher direct image sheaves 
by the result of Kiehl (Theorem 3.1). So by taking sections Proposition 6.3 
implies the 

1st GAGA Theorem 6.4 Let A be a topologically finitely presented R-algebra 
and f : X ---* Y := SpecA a proper morphism of  R-schemes with X (locally) of  
topologically finite presentation over R. Furthermore, let ,A[ be an 6x-module 
which is relatively pseudo-coherent with respect to f ,  fulfills ~n,Y-~(,/g)= 0 
for an n E N and whose completion ~ is coherent over (9;?. 

Then for each q C 7I one has a canonical isomorphism of A-modules 

Hq(x, ~ / )  -% Hq()(, Jff) .  

Note. The condition that . f f  is coherent over (9;? can be deduced from the 
other ones. 

As for a free Cx-module 6~c of rank r E N the sheaf $'{'~,gex((9~,,~') 
is isomorphic to dg ~ one has that dfevaex(Y,./g ) is a finitely presented (gx- 
module and relatively pseudo-coherent with respect to f if ~ is a locally flee 
(9x-module of finite rank and ~ '  is a finitely presented (gx-module and rela- 
tively pseudo-coherent with respect to f .  Hence the above 1st GAGA Theorem 
implies in the usual way 

2nd GAGA Theorem 6.5 Let A be a topologically finitely presented R-algebra 
and f : X --~ Y := SpecA a proper morphism of R-schemes with X (locally) 
of  topologically finite presentation over R. Furthermore, let Jg be a finitely 
presented (gx-module which is relatively pseudo-coherent with respect to f 
and fulfills ~nJ'~. ( J l )  = O for an n E N, and ~ be a locally free (gx-module 
of  finite rank. 

Then one has a canonical isomorphism of A-modules 

Homex (Y, .///) -% Hom~)(~,  .#g). 

Though the above GAGA results are somewhat unsatisfactory, in particular 
because of the condition of relative pseudo-coherence, they suffice to deduce 
the 3rd GAGA Theorem 6.8 for projective morphisms ("Chow's theorem") 
without unpleasant technical conditions. To this aim, we first generalize [EGA 
III, 5.2.3] to the present situation: 

Proposition 6.6 Let A be a topologically finitely presented R-algebra and f : 
~ ~) := SpfA aproper morphism of formal R-schemes where .~ is (locally) 

of  topologically finite presentation over R. 
Furthermore, let ~ be an invertible (9~-module such that .~w o = .~q~/,~ 5f ~- 

| Ro is an ample (gxo-module. For each (9.~-module and each n C 7Z set 
�9 g ( n )  := Jg| ~q~| 
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Then for each coherent (;x-module JII there is an N E 77 such that for 
all n > N the followin9 holds: 

(i) One has H q ( X , J l ( n ) )  = O for  all q > O. 
(ii) The canonical homomorphism H ~ (3E, rig(n)) ~ H ~ (3s Jg~(n)) is sur- 

jective for  all )~ E IN. 

Proof  The noetherian case is treated in [EGA III, 5.2.3] so that one can restrict 
to the situation ~ -- tR for a t C R. 

By Proposition 2.5 one finds an m E N with tm3--z(Jg) = 0. As the (gx0- 
module c.LP0 - LP"/t~m is ample, ("~m is ample with respect to the proper 
morphism f" : 3E,, ~ ~)m induced by f : 3s ~ ~) by [EGA II, 4.5.13 and 
4.6.6]. So there is a d > 0 with .L'~ ~a very ample with respect to f". By 
Corollary 1.8 the structure sheaf of  3s is coherent, hence also the invertible 
(gx,-module ~('m ~a. AS A | Rm is stably coherent (Example 3.3) the direct 
image theorem for schemes 3.5 now implies that (~m).(CL@m d) is a coherent, 
in particular finitely generated C,l~'-module. Now [EGA II, 5.5.4] gives that 
~m :3s -"-* ~)m is projective. 

So Proposition 3.6 furnishes an N '  E Z with Rq(~m).(,/[[" @cx. "~m n) = 0, 

hence H q ( X , J g ( n ) " )  = 0 for all n > N ~ and all q > 0. Similarly as in the 
first proof  of  Theorem B for formal schemes (Proposition 5.1) one can "lift" 
this statement by means of  Consequence 4.2 and hence gets claim (i) (with 
N '  in place of  N) .  

In order to prove claim (ii), apply the fact just proved to the coherent 
(gx-modules t . t / ,  t2 , /g . . . . .  t"Jd. For each 2 E IN with 0 < 2 < m -  1 this 
provides an N;~ E 77 with H l (3s = 0 for all n > .IV;. Set N "  := 
maxo<;~<__"_lN;~. By the choice of  m one has t " ~ - - a ( . g )  = 0, which implies by 
Remark 1.2 that the Cx-module t " ~ '  is without J- tors ion,  hence isomorphic 
to t;'~q for each ). > m. Therefore one has Hl(3s = 0 for all 
2 E IN and all n > N".  An application of  the long exact cohomology sequence 
induced by 0 ~ (t~+lJg)(n) --~ s/[(n) ~ Jg;~(n) --~ 0 now gives the surjectivity 
of  H~163 ~ H~163 for all ). E IN and all n > N "  so that the 
claims (i) and (ii) hold for N := m a x { N ' , N " } .  [] 

Corol lary  6.7 Under the assumptions of  Proposition 6.6 for each coherent 
Cx-module .//g there is an N E 71 such that J//(n) is 9enerated by 9lobal 
sections on 3s for all n > N, i.e., . g  is an epimorphic image of  an Cx- 
module o f  the form ((9:~,(-n)) m. 

Proof  One can argue as in the proof  of  [EGA III, 5.2.4] since for the applica- 
tion o f  [EGA II, 4.5.5] it is not necessary that 3E0 - there: X0 - is noetherian, 
but sufficient that 3E0 is separated and quasi-compact or that the space under- 
lying 3s is noetherian which both is the case in the present situation. [] 

3rd G A G A  Theorem 6.8 Let A be a topoloyically finitely presented R-algebra 
and X a projective,A-scheme such that the completion 3s := )(  of  X is a for- 
real R-scheme (locally) o f  topologically finite presentation. 
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Then for each coherent co~-module Jr there is a finitely presented COx" 
module Jg+ whose completion .A[ ~ is isomorphic to Jr In particular, for each 
closed formal subscheme ~ of  Y. there is a closed subscheme Z of  X of finite 
presentation over A whose completion Z is isomorphic to 3. 

Proof Let z : X -+ IP] =: P be a closed immersion of A-schemes for r E N 
convenient. Then, by Lemma 5.7, also its continuation f : 3~ ~ /5 =: ~3 
is a closed immersion, in particular, the kernel of the canonical Co,~-module 
homomorphism CO,~.~ ~ (i').CO.~ is a coherent, hence finitely generated Co,~-ideal. 

Now let ~[  be an arbitrary coherent Cox-module. Then (/')..At is coherent 
over (/').CO.~, hence by the above remark also over CO,~. Setting ~ := COp(I), 

the Co,~-module c~ is invertible and the Co%-module ( S ) 0  = c-L'e0 ~ cole;+,,0 (1) 

is ample. Furthermore, together with f : P -+ SpecA also f : ~ ~ Spf A is 
proper. Hence two applications of Corollary 6.7 give an exact sequence 

( ,~@n')m'  ,~ ((,,~@n' )m') ^ fl (~,~@n)m~., ((,,~@n)rn) ^ ~ (~) 
- ~ -  , = , . J r  , 0  

of C,~-modules with n, n ~ E Z, m, m ~ E N. 
As P = IP] is smooth over SpecA and, trivially, COp a pseudo-coherent 

6p-module, COp is relatively pseudo-coherent with respect to f ,  hence also 
the locally free coe-module (L~a| m. Furthermore, by Proposition 2.5, there 
is a v C IN with 3 v J ' . n ( ( ~ |  m) = 0. Hence the assumptions of the 2nd 
GAGA Theorem 6.5 are fulfilled and there exists an C0e-module homomorphism 
fl  : ( , ~ |  ' ~ ((~| whose completion is /~. 

As the inverse image of finitely presented module sheaves is compatible 
with the completion of  modules, the completion of l*fl : t*((.L~'| m') 
z* ( (~ |  is 

* i i (1)*(/~): (l ((t~| ))^ ~ (~)*(((~p@n')m') 
~ 

where all the involved COx- and co.~-modules are locally free of finite rank, in 
particular, (t*((c~| and (Z*((.Lf| " are coherent over CO.~. 

Now ./g' := coker(l*fl) is a finitely presented cox-module. By Lemma 6.2 
the completion of coker(l*fl), i.e., ~/"-7, and the cokernel of (/ ')*@) are iso- 
morphic as (9:~-modules. But because of the right-exactness of the functor (i')* 
the cokemel of ( f ) *@)  coincides with (f)* (coker(/~)) -- (/')* ( ( / ' ) . ,g ) ,  and, 
as f is a closed immersion, ( f ) * ( ( f ) . , / / )  and Jr  are canonically isomorphic 
(cf. [EGA In,w, 10.14.6] for R noetherian resp. [Me, 2.4.9 and 2.4.7] for R a 
valuation ring). [] 

By use of this theorem one can also transfer the algebraization criterion 
[EGA III, 5.4.5] to the non-noetherian situation: 
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Proposition 6.9 Let A be a topologically finitely presented R-algebra and f : 
3E ---* ~ ) : =  SpfA a proper morphism o f  formal R-schemes where 3~ is (locally) 
o f  topologically finite presentation over R. 

I f  there is an invertible (9~-module cL such that 5s = ~q~/~ ~ ~- ~ | Ro 
is an ample ~.~o-module then there exists a projective A-scheme X of  finite 
presentation whose completion ) (  is isomorphic to 32. 

Proof. From Proposition 6.6(ii) one gets an N C 7Z such that the canonical 
homomorphism H~ ~ |  __, H0(3~, Z~,0~n) = H0(~0, ~0~n) is surjective for 
all n >= N. By [EGA II, 4.5.10(ii)], one can choose an n => N such that .L~o ~n is 
very ample with respect to the proper morphism [0 : 3Eo ---* r = Spec (A| 
The ring A | R0 is stably coherent (Example 3.3), the invertible (~x0-module 
.L~'o ~n is coherent and [0 is (locally) of  finite presentation. Hence R~176 ) 
is a coherent (9.~o-module by the direct image theorem for schemes 3.5 so that 
the module H~ L, a0 ~ )  is coherent over A | R0 and therefore also over A. 

Choose a finitely generated A-submodule E of H ~  '| such that the 
image of  E in H~ c.~'0e~ ) generates this module over A. Exactly as in the 

proof  o f  [EGA III, 5.4.5] one now constructs a morphism g : 3E ~ (P (E) )  ^ 
of  formal R-schemes from .~ to the completion of  the projective bundle P (E)  
such that g0 : 3/0 ~ ((P(E))^)0 ---- P(E/~E)  is a closed immersion: One 
simply has to note that for none of  the auxiliary results ([EGA I, 9.1.5]=[EGA 
Inew, 3.3.4] and [EGA II, 4.1.3, 4.2.2, 4.2.10 and 4.4.4[!]]) cited there one 
needs a noethericity condition and that each morphism of  formal R-schemes 
automatically is adic in the sense of  [EGA I,ew, 10.12.1] by which the results 
of  [EGA Inew, 10.12] transfer to the case of  a valuation ring (e.g., by means 
of  [EGA Inew, 10.6.9]). 

As E is finitely generated over A there is an A-module epimorphism 
u : F --~ E with a free A-module F of finite rank r + 1, r E N, hence a closed 
immersion j := P ( u ) :  P (E)  --, P ( F )  = IP~. Denoting by j "  (P(E))  ^ ---, (IP~) ̂  

the continuation of  j then j o g : ~ ---, (IP~) ̂  is a morphism of  formal 
R-schemes which are locally of  topologically finite presentation. As the re- 
duction ( j  o g)o = jo o go :Xo  --~ ((lP,~)^)o = P(F /~F)  is a closed immersion, 
Lemma 5.7 now implies that j o g is a closed immersion of  formal R-schemes 
and the 3rd GAGA Theorem 6.8 gives the claim. [] 

7 Rigid spaces 

As in Sect. 2 let S be a formal scheme which is noetherian and without torsion 
with respect to an ideal of  definition or admissible over a valuation ring (for a 
height 1 valuation) and ~ be a coherent (gs-ideal which defines the topology 
of  S. A morphism f : .1;' ---, X of  admissible formal S-schemes is called 
an admissible formal  blowing-up o f  an open coherent ideal ~[ C (gx if  its 
restriction to each'affine open formal subscheme 1I = SpfA of  �9 equals the 
completion of  the usual blowing-up of  the ideal . i f (H) in SpecA along the 
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subscheme defined by ~(1I) (cf. [BL 1, Sect. 2]; in particular, a formal 
S-scheme is called admissible if  it is locally of topologically finite presentation 
over S and its structure sheaf is without ~-torsion). 

In the case that S equals the formal spectrum of a valuation ring R one 
knows by Raynaud that the category of quasi-compact and quasi-separated rigid 
analytic spaces over the quotient field of R coincides with the localization of 
the category of  quasi-compact admissible formal R-schemes by the admissible 
formal blowing-ups ([R, p. 326]; for a proof see [Me, 4.3] resp. [BL 1, Theorem 
4.1]). 

For an arbitrary base scheme S as above one turns the statement of Ray- 
naud's result into a definition and defines the category of (quasi-compact) rigid 
S-spaces as the localization of the category of quasi-compact admissible for- 
mal S-schemes by the admissible formal blowing-ups. In particular, one has 
a canonical functor which assigns a rigid S-space -:~rig to each quasi-compact 
admissible formal S-scheme X. 

In order to define a structure sheaf C.~,g on -~rig, one proceeds as follows (cf. 
[BL 1, Sect. 5]): For each quasi-compact admissible formal S-scheme 3~ one 
defines the sheaf (~.~ of the sections on X which are defined on the complement 
of the special fibre by setting (_9~ (SpfA) := (gSpecA (SpecA - V(3))  for each 
affine open formal subscheme SpfA of 3s and then continuing this as a sheaf 
to all open formal subschemes of 3s Each open rigid S-subspace llrig of 3/rig 
has an open immersion lI ,-. X of formal S-schemes as a representative and 
one sets (.~.~ng(~,.[rig):~-~- ~1(~[) .  

Similarly, the coherent C.~. -modules can be described by assigning the 
sheaf .///" of sections defined on the complement of the special fibre of 3s to 
each coherent Cx-module J /  and defining an C.~.-module ~'ng in the above 
situation by J~rig(lc[rig) :---~ ./[[t(~[). 

One has to verify, of course, that this functor (.f.~.g is well-defined and, in 
fact, a sheaf on ?l~rig and that each coherent (gxo -module ~'~ig has a formal 
(gx-model over each S-model X of .:t~rig. For a noetherian base scheme S this 
is proved in [BL 1, Sect. 5] by use of results from [EGA III, pars. 4-5] on 
noetherian formal schemes. For the proof in the situation over an - in particular, 
non-discrete - valuation ring, however, [BL 1] takes resort to Tate's acyclicity 
theorem ([T, Theorem 8.2] resp. [GG, Satz 1.2], also [BGR, Theorem 8.2.1/1]) 
and Theorem A for coherent modules over rigid spaces [K2, Theorem 1.2], 
which are results from classical rigid analytic theory. 

In the sequel we show how to deduce these theorems from the results on 
formal schemes proved within the last two sections, following the lines of 
[L, Sect. 2] for the discrete case. 

To this purpose let again S equal the formal spectrum SpfR of a ring R of 
the usual kind. By definition two quasi-compact admissible formal S-schemes 
that differ only by an admissible formal blowing-up represent the same rigid 
S-space. Hence one can blow up the ideal 3 in R, if necessary, and therefore 
assume even in the noetherian situation that 3 = tR is a principal ideal. Let 
K denote the localization of R by the multiplicative system {tv; v C N}. As R 
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is without ~-torsion, the canonical map R ~ K is injective. In the noetherian 
case, however, K need not be a field. 

Then for a quasi-compact admissible formal R-scheme ~ and a coherent 
6~-module .At' one has by the above definitions 

(9.~ = (,9~ | K and ,//t" = ,///| K .  

In order to prove that (9.~,B is a well-defined sheaf on ~rig, it hence suffices 
to show 

Proposition 7.1 (Tate's acyclicity theorem) Let f:  Y, ~ ~ be an admissible 
formal blowing-up of  admissible formal R-schemes. Then the canonical map 
6?) ~ ~,(9.~ induces an isomorphism 

~'11 | K _T, (~,6.~) | K ,  

and (Rq[,6.~) | K vanishes for all q > O. 

The basic idea of the following proof is simple enough: Of course, one can 
assume ~) to be formal affine, say ~) = SpfA with an admissible R-algebra A. 
Then, by definition, f is the completion of the blowing-up f : X ~ Y := Spec A 
of an open coherent ideal a in A. As f is an isomorphism outside the closed 
subscheme of  Y defined by ~ = tR, one has an isomorphism 6y | K -~ 
f . ( f x  |  and has ( R q f . 6 x ) |  = 0 for q > 0. A GAGA argument 
should now give the claim of Proposition 7.1. 

The technical difficulties in applying the GAGA result 6.3 in the non- 
noetherian situation, which were discussed after that proposition in Sect. 6, 
make the realization of this idea a little bit involved. Relatively straightforward 
is the 

Proof of  Proposition 7.1 for the special case A = R(~l . . . .  ~r) ,  Let ~ be the 
completion of the blowing-up f : X ~ SpecA of the open coherent ideal a in 
A. As a is open, one can assume a set of  generating elements al . . . . .  aN of Ct 
to be in R[~l , . . . , ( r ]  and, say, al in R -  {0}. 

Let a '  denote the ideal generated in R[~l . . . . .  ~r] by al . . . . .  aN. Then a t 
is coherent, since R[~I . . . . .  ~r] is coherent by Example 3.3, and open. For the 
blowing-up f ' : X '  ~ Y' := SpecR[~l . . . .  ,~r] of a '  in R[(I . . . .  ,(~] one has 
f '  x idspecR~ = f x idspec,%. = ~ • idspecR~, for each 2 E IN, which implies that f 
can also be considered as the completion of f ' .  But, as R is stably coherent by 
Example 3.3, the direct image theorem for schemes 3.5 implies that Rqf' .6x,  
is a coherent 6r ,-module for each q G IN. As the blown-up ideal a '  is open, 
6x, has no J- tors ion and Corollary 1.7 implies that for each q E N there is a 
Vq E N with tv,3".~(Rq f'.(gx ,) = O. 

So Proposition 6.3 gives an isomorphism (Rqft,6x ,) ~ Rq~,6~. For 
q > 0 one has (Rqf ' ,6x,)|  = O, hence tvqRqf',6x , = 0. Therefore Rqf' ,6x, 
and Rq[,6x a r e  isomorphic and (Rq[.6x)| K = 0. A similar argument, ap- 
plied to kernel and cokemel of  the canonical map 6y, ---, f ' ,~x ,  resp. 6 9 
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f , d ~ ,  gives the isomorphism (9~3 | K _Z> ~,(9~ | K from 6 r '  | K -~ 

f~. (9x, | K. [] 

The reader will have noted that the same kind of  argument given above 
for A = R(~l . . . .  ,~r) works for each admissible R-algebra A which is the 
.~3-adic (separated) completion of  a finitely presented R-algebra. The special 
case A = R(~l . . . .  , ~r), however, suffices to attack the situation of  a general A 
by showing first 

Lemma 7.2 Let A be an admissible R-algebra and f : 3E -+ r := SpfA an 
admissible formal blowing-up of  admissible formal R-schemes. 

Assume that the statement of  Proposition 7.1 holds for this particular 
blowing-up. Then one has: 

a) For each q > 0 and each coherent 6.~-module ~t[ the module 
(Rqf.Jg) | K vanishes. 

b) For each coherent (9.~-module J t  the canonical map ~*f.Jt --~ ~ l  
induces an isomorphism ( f* f . .~ ' )  | K -~ ,A/| K. 

c) For each coherent (9~)-module ~V the canonical map ~ff ~ [.f*~V" 
induces an isomorphism ~V | K ~ (~.~*./ff) | K. 

Proof Let f be the completion of  the blowing-up f : X --~ Y := SpecA of  the 
open coherent ideal a in A. Then there is a closed immersion l o f  X into a 
projective space IP~ with r E IN convenient over which f factors and for which 
z*(tF~,](1)) equals the invertible (gx-ideal a (.gx. By the explicit description of  
admissible formal blowing-ups in [BL 1, Lemma 2.2] the completion .LP := 
0"((9~,~(1))) ^ ~ (i')*(((9~,~(1)) ^) fulfills ~ = aO.~ and one has a canonical 

isomorphism s  ~ an(9.~ for each n E ]N. In particular, the (9.~-module 
is invertible and s = s 1 6 2  -~ (i • idspecRo)*(t~].,,0 (1)) is an ample 

(.9:~0-module. 

As a is open in A, there is a v E 1N with t" E a, hence t"v~.~ ~ s174 ~-+ 
(9.~ for each n E �9 with n _>- 0. So one has a canonical isomorphism ~ * ~  | 
K = (gx | K, at first only for those n E Z with n > 0, but then, by the 
exactness of  tensorization with s174 over (9~, also for n < 0. 

Hence the assumption that Proposition 7.1 is true for the present f implies 
that the above claims a) and b) hold for each ~.~-module of  the form (s174 
with n E Z and m E N.  Furthermore, by this assumption, claim c) holds for 
each (9~d-module of  the form (9~ with m E N.  

But for an arbitrary coherent (9~-module Jr two applications of  Corollary 
6.7 give an exact sequence 

" ,  > 0 

of  O.~-modules with n, n' E Z and m, m' E N.  And for an arbitrary 6~j-module 
~A r there is an exact sequence 

t 

-+  -+  y -+  o 
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of Co0-modules with m', m E N by Theorem A for formal schemes (Proposition 
2.3). 

So claim a) can be shown simultaneously for all coherent (gx-modules 
,~' by looking at the long cohomology sequence induced by the short exact 
sequence 

0 , kerc~ - - - *  ( . ~ @ n ) m  :~ ~, ~/~ , 0 

of coherent (gx-modules and using descending induction on q. Then the claims 
b) resp. c) follow from the above presentations of Jr' resp. JV by use of part 
a) for q = 1 and the right-exactness of the functor f*. [] 

Proof of Proposition 7.1 for an arbitrary admissible A: As A is topologically 
of finite presentation, there is an R-algebra epimorphism a:R(~I . . . . .  ~ r )  "---+ A 
with finitely generated kernel for a convenient r E IN. It induces a closed 
immersion of formal schemes i : ~/) = SpfA --* SpfR(~t . . . . .  ~r) =: IDa. 

Let f : X ---, r = SpfA be the admissible formal blowing-up of the open 
coherent ideal a in A. For a convenient set of generators of a in A one can 
choose inverse images with respect to a which generate an open coherent ideal 
b in R(~I, . . . ,  ~r). Denote the admissible formal blowing-up of b in R(~l . . . . .  ~r) 
by 9 " 3 ~ IDa. Then one has a commutative diagram of formal schemes 

with a closed immersion i 

1; i 3 

1, 1. 

: X --4 ,3, and, furthermore, i,C.~ Ne K = 
g*(i,(goo)| holds, cf. the explicit description of admissible formal blowing- 
ups in [BL 1, Lemma 2.2]. 

As J is a closed immersion of formal schemes, i,(~x is a coherent (9 3- 
module so that Lemma 7.2a) in combination with the proved special case of 
Proposition 7.1 implies (Rqg,(i,(gx)) @R K = 0 for q > 0. 

By Theorem B for formal schemes (Proposition 5.1) the higher direct im- 
ages (q > 0) of coherent module sheaves with respect to the closed immersions 
both i and i vanish. Hence two applications of Leray's spectral sequence and 
g o j = i  of give 

Rqg,(i,(fi.,r = Rq(g o i),(9.~ = Rq( i o f),(gx = i,(Rqf,(fi.~r 

for q C Z. So i.(Rqf.(9,~)| K vanishes for q > 0 and one has 

i . ( f .6x)  | K = fl.(i.(9~) | K = g.g*(i.Ooo) @R K ~ i,(9 9 @R K 

where the isomorphy holds by Lemma 7.2c). 
As i. is a closed immersion, this implies Tate's acyclicity theorem in the 

general case. [] 
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By means of  an argument which is independent from the fact whether the 
base ring R is noetherian or not ([L, proof  of  Lemma 2.2] resp. [BL1, Lemma 
5.7]) one shows that coherent module sheaves over open rigid subspaces of  a 
rigid R-space ~rig c a n  be glued together if  they are induced by coherent module 
sheaves on open formal subschemes of  the same formal model X of  3Eng. 

As Proposition 7.1 has been proved for each admissible blowing-up, Lemma 
7.2b), c) now implies that a coherent (gr~-module has a formal model on each 
fomaal model of  X (cf. [L, Lemma 2.2] and [BL 1, Proposition 5.6]). In 
particular, one can generalize the reasoning from [L, Theorem 2.3] to arbitrary 
valuation rings and hence gets Kieht 's  results on coherent modules [K 2] in 
full generality: 

Proposit ion 7.3 (Theorems A and B for rigid spaces) Let Xng be a rigid 
R-space which has an affine formal model. Then for each coherent Cx,s 
�9 / / / / r ig  o n e  has." 

(A) The module ,////rig is generated by global sections. 
(B)  For each q > 0 one has Hq(..l~rig,,////'rig) = 0. 

For the proof of  (A) one uses Theorem A for the formal situation (Proposition 
2.3), for that o f  (B) Lemma 5.4 and Proposition 7.2a) or Theorem B for the 
formal situation (Proposition 5.1). 

In an analogous way one can deduce the finiteness theorem of  Kiehl for 
proper rigid morphisms [K 1, Theorem 3.3] for the situation over an arbitrary 
valuation ring by means of  formal methods, too. One only has to remark that 
each morphism of  rigid spaces which is proper in the sense introduced by Kiehl 
[K 1, Definition 2.3] has a formal model which is proper in the sense defined 
in Sect. 5 (cf. JR, p. 326], also [L, Lemma 2.6]) and can argue as in the proof  
of  [L, Theorem 2.7] then, just with the exception that instead of  [EGA III, 
3.4.2] one has to use the version of  the direct image theorem which has been 
proved in the present article. 
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Note added in proof 
Recently K. Fujiwara, Nagoya University, has informed me that in July 1994 O. Gabber, 
IHES, has shown (notations as in the present paper): Let B denote a finitely generated algebra 
over a topologically finitely generated R-algebra. Then each finitely generated B-module 
without J-torsion is finitely presented over B. - The proof of this fact will be contained in 
Fujiwara's forthcoming article "Theory of tubular neighborhood in etale topology". - 

Using this result it follows that each topologically finitely presented R-algebra A is stably 
coherent. So far each proper morphism f : X ~ Y = SpecA the higher direct images of 
coherent 6x-modules with respect to f are coherent dTr-modules by the direct image theorem 
for schemes 3.5. Hence one can apply the GAGA result Proposition 6.3 also in the situation 
over a non-discrete valuations ring R in the way one is used to from the noetherian situation 
(cf. the considerations following that Proposition) and therefore gets the 1st and 2nd GAGA 
Theorem for all coherent 6'y-modules ,/f and ~ .  Furthermore, the proof given in Sect. 7 
for Tate's acyclicity theorem can considerably be simplified. 


