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Actions of complex reductive groups of holomorphic transformations on complex 
spaces can often be studied by means which are very close to those of geometric 
invariant theory. For example, if the complex reductive group G is acting on a 
Stein space, then the fibers of the categorical quotient are affine algebraic and G 
acts on them in an algebraic fashion IS]. 

Our goal here is to present results on actions of compact groups of 
holomorphic transformations on Stein spaces which also can be applied in 
situations where there are no actions of complex groups, e.g. bounded domains. 
The essential ingredient is the 

Complexifieation Theorem. Let K be a compact Lie group and K r a complexifica- 
tion of K. I f  K acts on a reduced Stein space X,  then there exists a complex space 
X r with a holomorphic action K C x X C ~ X  ~ and a K-equivariant holomorphic map 
z: X ~ X c with the following properties: 

(i) ~ : X ~ X  C is an open embedding and t(X) is a Runge subset o f  X c such that 
K c �9 z ( x )  = x r  

(ii) X c is a Stein space. 
(iii) I f  dp is a K-equivariant holomorphic map from X into a complex space Y 

on which K r acts holomorphically, then there exists a unique KC-equivariant 
holomorphic map t k r  Y such that the diagram 

I 

X___, X c 

Y 
commutes. 

The complexification X C of a Stein space with a fixed K-action is uniquely 
determinated up to K~-equivariant biholomorphisms. The property (iii) can be 
viewed in a slightly different way. Since K is a compact Lie group, every 
holomorphic function on X can be expanded in a Fourier series with respect to the 
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action of K. The summands are K-finite holomorphic functions on X which 
automatically extend to Kr holomorphic functions on A m. Thus A m is a 
natural domain of definition of the K-finite holomorphic functions on X. The 
simplest K-finite functions are the invariant ones. They form a subalgebra d~(X) K of 
the algebra ~a~r(X ) of K-finite holomorphic functions on X. Associated to d~(X) K is 
the categorical quotient X//K,  i.e. the quotient of X with respect to the equivalence 
relation 

R = {(x, y)e X x X; f (x )=f(y)  for all f e  0(X)r}. 

Let nx denote the quotient map. The correspondence Q~Ox(n~ t(Q))r defines a 
sheaf 0x r on X/ /K so that (X//K, 0~) is a ~E-ringed space. In fact, more is true. In 
Sect. 6.5 we prove the following 

Quotient Theorem. Let X be a reduced Stein space equipped with an action of a 
compact Lie group K. Then the ~-ringed space (X//K, (9~) is a Stein space. 

This is a generalization of the result in [H 2], where it is proved for normal Stein 
spaces. The main point here is that the open embedding z induces an isomorphism 
of the categorical quotients X/ /K and Am//K. Moreover, the diagram 

X ~ X c 

i 
XlIK ---, X*IIK 

commutes. 
In fact, the complexification X c is constructed as a sort of twisted fiber space 

over X//K. In order to do that, a local version of the Complexification Theorem is 
proved in Sect. 6.3. This result can be thought of as a Slice Theorem for an action of 
a compact Lie group on a Stein space. A simplified version is the following 

Linearization Theorem. Let K be a compact Lie group which acts on a Stein manifold 
Y and f ix  a point p in Y//K. Then there exist a point a~n{l(p), an open 
neighbourhood Q of p and an equivariant open embedding c~ of x{  I(Q) into a 
homogeneous vector bundle N = K c x ~(E" such that c~ induces an open embedding 
dp//K of Q into N//K~ffY~//Ka. 

One important step in the proof of the Linearization Theorem is to find such a 
distinguished point a in the special case where Y is locally KC-homogeneous. For 
applications of the Complexification Theorem see the last section. 

1 Actions of real Lie groups and complexifications 

1.I Spaces with a group action 

Let G be a Lie group. A topological space X together with a group homomorphism 
0 from G into the group of topological self maps of X is called a G-space if the 
action G x X--cX, (g, x)--*0(g)(x) is continuous. We often write g. x for 0(g)(x). For 
a subset U in a G-space we set G. U={g .u ;  geG, ueU}.  

A subset U of a G-space is called a G-subset or G-invariant if G- U = U holds. If 
U is a G-subset of a G-space X, then also the topological closure 1.7 of U in X is a 
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G-subset. For a point x in X the G-set G. x = G. {x} is called the G-orbit through x. 
The isotropy group Gx at x is the subgroup G~={geG; g .x=x}  of G. 

The set of G-fixed points of a G-space X will be denoted by X ~. Note that 
X ~ = { x ~ X ;  G - x = { x } } = { x ~ X ;  G~=G}. 

Let H be a Lie group and z : H ~ G  a continuous group homomorphism. Then 
eyery G-space X is viewed as a H-space. The H-action is given by (h, x)~Q(z(h))(x). 
The group G itself is a G-space with respect to the group multiplication G x G~G, 
(g, x)~gx. In this case we speak about the G-space G without specifying the action. 
With respect to any subgroup H of G the group G is a H-space. 

The quotient of a G-space X is the set X/G= {G. x; x e X} endowed with the 
quotient topology. The G-space X is called G-connected if the quotient X/G is 
connected. An open G-connected G-subset U of X will be called G-domain. If the 
group G is connected then an open G-subset in X is a G-domain if and only if it is 
connected. 

Remark. If we write G/H where H is a subgroup of G, then, unless otherwise 
mentioned, G/H will be the space {gH; g~ G}. So we let H act on G by H x G~G, 
(h, g)--.gh- 1. 

A map ~b : X ~  Y between two G-spaces is called a G-map or equivariant, if 
~b(g. x) = g. ~b(x) for all g e G and x ~ X. 

1.2 Complex spaces with a group action 

Let G be a Lie group. A complex G-space X is a reduced complex space X with 
countable topology which is a G-space such that for every g e G the map X ~ X ,  
x ~ g .  x is holomorphic. The action G x X ~ X  is in this case a real analytic map 
(see [K 1]). A complex G-space X is called holomorphic if G is a complex Lie group 
and if the action G x X ~ X  is holomorphic. In this case the isotropy groups are 
closed complex subgroups of G. 

A locally analytic G-subset of a complex G space X is a G-subset of X which is a 
locally analytic subset of X. If the locally analytic G-subset is closed in X, then it 
will be called an analytic G-set. An analytic G-set A in X is called G-irreducible if 
there exists an irreducible analytic component Ao of A such that G. Ao = A. For a 
connected group G the notions G-irreducible and irreducible coincide. 

Complex G-manifolds are by definition complex G-spaces without singular 
points. Note that the set of singular points of a complex G-space is always an 
analytic G-set. 

The set of holomorphic maps from a complex G-space X into a complex 
G-space Y is denoted by HoI(X, Y). Endowed with the compact-open topology, 
the set Hol(X, Y) is a G-space. The action is defined by (g .f)(x)=g .f(g- 1. x). The 
set of G-fixed points is in this case denoted by Holo(X, Y). Thus an element in 
Holo(X, Y) is a holomorphic G-map from X into Y. 

Every complex space Y can be viewed as a G-space with the trivial action which 
is given by g. y = y for all g ~ G and y e Y. The set of G-invariant holomorphic maps 
from X into Y is then Hol~(X, Y). For the algebra O(X) ~ of invariant holomorphic 
functions on a complex G-space X we have tP(X)~ where C is 
endowed with the trivial action. 

A linearly equivariant map on a G-space X is a G-map from X into some 
complex vector space V of finite dimension, where the G-action on V is given by a 
continuous representation of G into the general linear group GL(V). 
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A Stein space which is an open subspace of a complex space Y is called an open 
Stein subset of Y. The meaning of notions like Stein G-domain is evident. 

A holomorphic map ~b:X~ Y of complex spaces is called immersive along a 
subset S of X if ~b is an immersion at every point x ~ S, i.e. to every point x e S there 
exists an open neighbourhood which is mapped biholomorphically by ~b onto a 
locally analytic set in Y. For a G-map ~b of G-spaces X and Y the set of points in X 
where ~b is an immersion is a complement of an analytic G-subset in X. 

We shall make repeated use of plurisubharmonic functions on complex spaces. 
In order to avoid technical difficulties these are always assumed to be 
differentiable. 

1.3 Complexification of a Lie group 

Every real Lie algebra 9 determines a complex Lie algebra gr = g Q ~.  A com- 
R 

plexification can also be constructed on the group level, of. EHo]: 
Let G be a real Lie group. A complex Lie group G c together with a continuous 

group homomorphism ~: G-oG C is called a complexification of G if for a given 
continuous group homomorphism ~ from G into a complex Lie group H, there 
exists one and only one holomorphic group homomorphism ~b c from G C into H 
such that the diagram 

G c G - ~  

H 

commutes. 
A complexification is unique up to biholomorphisms. Every Lie group is 

already real analytic and in the above definition the maps ~ and t~ can be assumed 
to be analytic. 

The construction of G r can be found in J-Ho-], at least for connected groups. If 
the group G is not connected then G can be identified as a G-space with G x al G1, 
where G 1 denotes the connected component of the identity of G. Finally, G c can be 
identified in a natural way with the G-space G x alga.  It is straightforward to 
define a complex Lie group structure on G c and to check the above universality 
condition. 

Remark. In general the map ~: G-~G c is not injective. For the universal covering 
group G of SL(R2), the complexification G r is equal to SL(C 2) and the kernel of 
z : G-~ G r is isomorphic to 7.. 

We often make use of the following identity principle. 

Identity Theorem. Let H be a closed complex subgroup of G r and let U denote an 
open subset in GC/H. Let x be a point in GC/H such that the G-orbit G. x intersects 
every connected component of U. Then 

(i) every holomorphic function f on U such that f iG.  x n  U =0 is identically 
zero on U, and 

(ii) the only analytic subset of U which contains G. xc~U is U. 

Proof. The construction of  G r implies that  the real tangent space of  a G-orbit in G r 
generates the complex tangent space of G r Since G -r = G- G~, the Identity Theorem 
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holds for H =  {1}. Applying this to n -  I(U), where n: Ge~Ga:/H is the canonical 
projection, we obtain the desired result. [] 

Corollary. Every holomorphic G-map of holomorphic GC-spaces is a Ge-map. In 
particular, O(GC) ~ = O(Gr ae = ~. [] 

The G-orbit of a point x in a Ge-homogeneous complex space X is in general 
not a totally real submanifold. However, dim~G, x>dirncG C. x=dimeX.  

Example 1. The manifold ~"\{0} is homogeneous with respect to the linear action 
of GL(tE"), which is the complexification of the unitary group U(~"). The orbits of 
U(tE") are the (2n-1)-dimensional spheres. 

Example2. Themani fo ldSL( tE2) /HwhereH={(;  O )  }} t-  1 ; t e~ \{O is a 

complex SU(ll~2)-space. The S U(~2)-orbit of p = H in the manifold SL(ff~2)/H is the 
totally real submanifold SU(~2)/S 1. Any other SU(CZ)-orbit in SL(C2)/H is a real 
hypersurface. 

1.4 Complexification of a group action 

Let G be a Lie group and X a complex G-space. Let G a: be a complexification of G. 
A holomorphic GO-space X ~ together with a G-map ~ from X into X r is called a 

G-complexification of the G-space X if to every holomorphic G-map ~b from X into 
a holomorphic Gr Y there exists one and only one holomorphic Gr ~b r 
from X c into Y such that the diagram. 

X ---* X c 

Y 

commutes. 
A G-complexification X r of a complex G-space is unique up to biholomorphic 

GC-maps. Therefore, provided it exists, we shall refer to the G-complexification 
of  X. 

Example 1. Let X be a holomorphic GO-space. I f  it is viewed as a complex G-space, 
then the G-complexification of X is X itself (Identity Theorem). A special case of 
this fact is a compact complex G-space X. Then the group Aut(X) of 
biholomorphic automorphisms of X is a complex Lie group and consequently X is 
its own complexification. 

In contrast to this one can also complexify a compact complex torus X of 
dimension n also as a real Lie group. In this case one has Xc=(~E*)". 

Example 2. The disc A = {ze~ ;  Izl < 1} is a complex Sl-space with respect to the 
linear Sl-action on IE. The Sa-complexification of A is r 

More generally, one can show that the (S1)"-complexification of a holomorphi- 
tally convex Reinhardt domain U in C" is Ur "- U=(C*) 'x  ff~"-r. 

Let G be a Lie group. As an immediate consequence of the Identity Theorem 
(1.3) one obtains the 
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Lifting Lemma. Let U be an open G-subspace of  a complex G-space X.  Assume that 
U intersects every irreducible component of X and .furthermore that there exists a 
G-complexification U e of U such that the corresponding map tv: U ~  U r can be 
extended to a holomorphic map ~ : X ~ U r Then U r with the map t : X--* U r is a G- 
complexification of  X.  [] 

1.5 Extension of equivariant maps 

Let X be a Ge-space. For a given point x e X let bx: Gr bx(g) = g" x denote the 
orbit map. A G-subset U of X is called orbit-connected if b~- I(U) is a G-connected 
subset of G r for all x ~ X. 

Note that we have b~.~(U) = b~ I(U). g-  1 for all g e G r and x e X. In particular, a 
G-subset of the GO-space G r is orbit-connected if and only if it is G-connected. 

Extension Lemma. If U is an orbit-connected open G-subset of a holomorphic 
Gr X,  then G e. U with the inclusion t: U--*G r U is a G-complexification of 
U. 

Proof. Let Y be a holomorphic Gr and q~ a holomorphic G-map from U into 
Y. We define the extension ~c by the rule ~bC(g �9 x) = g. ~b(x). If this defines a map 
~bC:G r U--* Y, then it is automatically a holomorphic Ge-map. 

For  a fixed point x e U we set Ux = b~ I(U), where bx denotes the orbit map. It 
follows from the Identity Theorem (1.3), that the holomorphic G-maps 

l p l : G c ~ y ,  g ~ g ' ~ ( x ) ,  

lp2 : Ux-* Y , g~dp(g, x) 

are equal on U~. 
Let now y be a point in G e- U such that y = gl .  x 1 = g2" x2 for some gj e G e and 

x je  U. Then g~ 1 "gl e Ux~ and from the above it follows that 

g l" ~b(x 1) = g2" (g2 1. g l)" q~(x 1) = g2" 95(g2 1. g 1" x 1) = g2" ~b(x2) �9 [] 

Future tube example. Let C 2 • 2 denote the vector space of complex 2 x 2-matrices. 
Let ( , )  be the usual Hermitian inner product on ~E 2. For  a matrix Z e ~E 2 x 2 define 
the adjoint Z* ~ C 2 • 2 by ( Z .  v, w) = (v, Z*.  w) for all v, w etE 2. 

The domain U= Zelr ,  ; . (Z - Z ) . v , v  > 0  for all v~IE2\{O} in a 

SL(C2)-domain in (E 2 • 2 where the SL(tE2)-action on t12 2 • 2 is given by the map 
SL(C 2) x tE 2 x 2--.IE2 ~ 2, (g, Z)--*gZg*. The complexification of the real Lie grout p 
G---SL(II~ 2) is the complex Lie group Ge=SL01~2)x SL(tE 2) and z:G~t~-,  

restriction'(g)=(g'g*)ofiS tt~e c ~ r ~ e ~ O r ~ .  8caPctCOns~ue~y,  thecG~aCt~gnhO~)C__];z~S a .  _ . 

The so called m-fold future tube is the m-fold product U ~ of the domain U 
equipped with the diagonal G-action, i.e.g. (Z1 ... . .  Zm) = (gZlg* ... . .  gZmg*). The 
G-domain U ~ is an orbit-connected subset of (~2• 2)m, see I-S, W, p. 91]. Hence 
G r U" is a G-complexification of U ". It should be noted that it is not known if 
G r U m is a domain of holomorphy. 

Remark. There exist domains of holomorphy in C 2 invariant under the linear 
action of SL(R 2) such that the SL(R2)-complexification is C2\{0}. 
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2 Linearly equivariant maps 

2.1 Vector spaces of equivariant maps 

Let G be a Lie group and X a complex G-space. The group G acts linearly on the 
vector space d~(X) by g . f = f o  g-1. A holomorphic function f on X is called 
G-finite if the orbit G . f =  {fo g-1; g c G} is contained in a G-invariant linear 
subspace of (9(X) which is finitely-dimensional. 

Let V be a finite-dimensional linear G-subspace of O(X) and V' the dual vector 
space. By duality, G-acts linearly on V', (g. 2)(f)=2(g -1 -f). The holomorphic 
map A : X ~  V', A(x) ( f )  =f(x) is linearly equivariant. With respect to a basis of V' 
which is dual to a basis (fl  ..... f,} of V the map A is given by A(x) = (fl(x) . . . .  , f,(x)). 
On the other hand, the components of a linearly equivariant holomorphic map 
from X to ~" are G-finite holomorphic functions on X. 

2.2 Fourier series 

Let K be a compact Lie group and X a complex K-space. Every continuous 
representation Q : K ~ G L ( V )  of K in a finite-dimensional complex vector space Vis 
unitary with respect to a K-invariant Hermitian inner product on V. Let K denote 
a complete system of irreducible unitary representations of K. For Q : K ~ GL(V) in 
/~ we consider GL(V) as an open subset of E(V) = Hornc(V, V) The formula k. A 
= A o Q(k-1) defines a linear K action on E(V). 

Let # be a Haar measure on K which is normalized by #(K)= 1. We write 
dk = dl~(k). The composition of the linear map P(Q):O(X)~Holr(X,  E(V)), 

P(~)(f) = f~ = d(Q) ~ (k . f )Q(k-  1)dk, 
K 

where d(Q) denotes the dimension of V, with the trace function Tr: E(V)~tE is a 
continuous projection 

pe: (P(X)-~ (P(X), pe(f) = Trf~, 

which depends only on the equivalence class of the representation Q, see [W, 
p. 260]. 

The series ~. TrfQ is called the Fourier series of  f. A general result of Harish- 
QeK 

Chandra states that the Fourier series of f e  dT(X) converges in the topology 
of tP(X) to the function f [W, p. 260]. 

For later applications we need a more precise statement in our special situation. 
For this let I1 I[~ denote the K-invariant norm on E(V) which is associated to the 
Hermitian product (A, B)~ = Tr(A. B*) on E(V), where B* denotes the adjoint of 
BeE(V) .  For a subset C~ of X and gE~(X)  set Igl~= sup lg(x)l and 
IlgllQ.~= sup IIgQ(x)IIQ. x,C, 

xeC~, 

Fourier Theorem. Let K be a compact Lie group and X a complex K-space. Let {C~} 
be a covering of X with relatively compact open subsets. Then for every f e O(X) 
and ~ the series Y, d(~)llfllQ,~ is a convergent majorant of the series 

Q~K 
Furthermore, ~ [TrfQ1=. f= ~. TrfQ. 

o~K 



638 P. Heinzner 

Proof. The proof of the theorem is the same as the corresponding proof in [W, 
p. 2601 if one use the estimate 

ITr f0l~ < d(@) 1[ f l[ o, 

= d(@)c(@)- m II fJm(f)l[ e, 

< d(0)2c(0)-mlQm(f)l~, 

where fJ and c(@) are defined as in [W]. [] 

Example. Let X be a Reinhardt domain in IE n, i.e. a domain in (E n which is invariant 
under the linear (S1)n-action on IE n which is given by the representation 

. . . .  ,n, (t0 t~ (S1)n-~GL((En), 

In this case the Fourier series of f ~  O(X) coincides with the usual Laurent series 

f =  m~Z~ ~ fro, fro(Z)= (sS tm'f(t  .z)dt. 

It follows that fm(t'z)=tm'fm(z) for all t~(Sl) n, zEX,  msZ".  Hence, fm is an 
@ 

eigenvector of the linear map ej:(.9(X)~(_9(X), e j = z j - - ,  j=  1 ..... j ,  with the 
@zj 

eigenvalue mj, m=(ml, ...,m,). Consequently, for 12: (g(X)~(g(X), f2= 1 + ~ ey, 
i=1 

one has I2(fm)=(1 + [Imll2)fm, where we set Ilmll 2 ~ 1 For C, c X  it follows ---- mj .  

from 0(fm)(z) = (~). t m" I2(f)(t- 1. z)dt that j = 1 

1 1 
(*) Ifml~= 1 + Ilmll 2 IO(fm)l~ =< 1 + Ilmll 2 IO(f)l~.  

T h e  estimate (*) implies the convergence of the series ~ fro. 
m~Z" 

Let  K be a compact Lie group and X a complex K-space. By ~-K(X) we denote 
the algebra of K-finite holomorphic functions on X. Since every summand TrfQ of 
the Fourier series is a K-finite holomorphic function on X, the Fourier Theorem 
implies the following 

Corollary. Let X be a complex K-space. 
O) I f  d?(X) separates the points of X, then ~x(X) also separates the points of X. 

(ii) I f  O(X) defines local coordinates at a point x ~ X, then ~r(X) also defines 
local coordinates at x. [] 

In particular, for a Stein K-space X, the linearly equivariant holomorphic maps 
on X separate points and for a given point x ~ X there exists a linearly equivariant 
map on X which is an immersion at x. 

2.3 lnvariant functions 

Let K be a compact Lie group and X a complex K-space. As we have explained, the 
Fourier series of a holomorphic function has summands which are given by 
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linearly equivariant maps. The simplest equivariant maps are the invariant 
functions. Associated to the algebra (9(X) K of invariant holomorphic functions is 
the equivalence relation 

R = {(x, y) ~ X x X, f(x) =f(y) for all f e  (9(X)X}. 

The topological quotient of X with respect to R will be called the categorical 
quotient of the K-space X and is denoted by X//K. The space X//K is a Hausdorff 
topological space. The quotient map from X onto X//K is denoted by rex. 

For the further study of the quotient X//K we need a simple property of the 
invariant functions. We formulate this more generally for linearly equivariant 
maps. 

Let the compact Lie group K act linearly on IE", i.e. there is given a continuous 
representation of K into GL(IEn). A holomorphic map ~b : Y-*X, where X, Y are 
complex K-spaces, induces a linear K-map tk* : Hol (X, 112 n) ~ Hol( Y, IE~), where the 
K-action on HoI(X, IE ~) is defined by (k . f)(x)=k. (f(k -1. x)). The K-action on 
Hol(Y, 112") is defined analogously. In particular, 4)* maps the vector space 
HolK(X, IE ~) into Holt(Y, IEn). Hence it preserves the linearly equivariant maps. 
With this notations one has the following 

Lemma. I f  r : Hol(X, C")~Hol(Y, C") is surjective, then r ,(In)) 
= H o l  K (Y, Cn). 

Proof. For gCHolK(Y, IE *) and f~Hol(X,(E n) such that g=~b*(f) one has 
g = ~b*(f), where f r  HolK(X, (E) is defined by integration over the compact group, 

f(x) = I (k. f)(x)dk. [] 
K 

This lemma reflects the special nature of compact transformation group. 

Example. TherepresentationlE-.GL(CE),t-*(lt ~) defines a linear action on 

113 2. The restriction r: (9(tE2)-*(9(Y), for Y= {(0, y); y e (12} is surjective. But one has 
r((9(IE2) *) = • .  (9(Y) = (9( Y)r 

In the following corollaries (cf. [H 2]) we denote by K a compact Lie group and 
by X a Stein K-space. Let n x : X ~ X / / K  be the quotient map. 

Corollary 1. I f  pzX/ /K,  then (9(Y)K=IE for all analytic K-subsets YCnxl(p). 

Proof. This follows from Theorem B for Stein spaces and the Lemma. [] 

For a point p eX/ /K  let Ex(p ) denote the intersection over all non-empty 
analytic K-subsets which are contained in nx l(p). 

Corollary 2. The analytic K-subset Ex(p) is non-empty for all p ~ X//K. Moreover, if 
Y is a K-irreducible analytic K-subset of X, such that Yc~Ex(p)4=O, then either 
Y= Ex(P) or di r~  Y> dimcEx(P). 

Proof. It follows from Corollary 1 that an analytic K-subset D(p) of rc~ l(p) of 
minimal dimension is K-connected and smooth. If Y is a non-empty analytic 
K-subset of nx l(p), then the assumption YnD(p)= 0 leads to the contradiction 
(9( Y u D(p))K 4= IE. Hence, one obtains D(p) = Ex(p). [] 

For x ~ X  let Bx(x) denote the smallest analytic K-subset of X which 
contains x. 
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Corollary 3. For x , y ~ X  it follows that 7rx(X)=lrx(y ) if and only if Bx(x) 
c~Bx(Y)4:O. [] 

Let d~x x be the sheaf on X//K which is defined by the correspondence 
.~ OX(7~X 1 (Q))K. 

Corollary 4. The pair (X//K, 0~) is a C-ringed space. The map rr x : X-+ X/ /K is a 
morphism of the C-ringed spaces (X, (gx) and (X//K, 6~). Furthermore, to every 
K-invariant holomorphic map from X into a complex space Y there exists one and 
only one morphism q~//K : (X//K, ~ ) ~ ( Y ,  6r) such that the diagram 

X ~x X/ /K 

Y 
commutes. 

Proof. From Corollary 3 it follows, that every K-invariant holomorphic map on X 
is constant on the fibers of lr x. In particular, the sheaf (.0x ~ can be identified with the 
sheaf of germs of continuous functions f on X//K such that f o nx is holomorphic 
onX.  [] 

Corollary 5. Let ~ be a holomorphic K-map from X into a complex K-space which is 
an immersion at x ~ Ex(p). Then c~ is an immersion along rex l(p). [] 

We close this section by remarking that the analytic decomposition of X which 
is defined by the fibers of rr x: X ~ X / / K  is the coarsest analytic decomposition of 
the Stein space X into analytic K-subsets F with d~(F)X= C. 

3 Orbit convexity 

3.1 Polar decomposition 

An invertible complex matrix g ~ GL(C") can be written as a product of the form 
g=k.expv,  where k is an unitary matrix and v is a Hermitian matrix. This 
decomposition of matrices can be used to introduce polar coordinates on a closed 
subgroup G of GL(C ") which is stable under the involutive Cartan isomorphism 
O:GL(~)~GL(C"),  O(g)=(g*)-1, where g* denotes the adjoint matrix of g with 
respect to the usual Hermitian product on C". 

The set K =  {g e G; O(g)=g} of fixed points is contained in the unitary group, 
and is therefore a compact Lie group. If we denote by gl(C") the Lie algebra of 
GL(C") and by 0: gI(C")~91(C") the derivative of O at the identity, i.e. O(v)= - v ,  
then the eigenspace f={veg;O(v)=v} is the Lie algebra of K. Since 
if = {v ~ g; O(v) = - v}, the sum g = f + if is direct and g = gr = f |  is the Lie algebra 
of G. 

Let K be a compact Lie group. As a consequence of the Peter and Weyl 
Theorem, there is an embedding Qo of K into some GL(C") such that G = QoC(K c) is 
stable with respect to O and Qo(K)= {g e G; O(g)= g} (cf. I-Ch]). It can be shown 
that G together with the homomorphism Qo :K- .G is a complexification of K (cf. 
[no,  p. 207]). 

The complexifieation K ~ of a compact Lie group K is an affine algebraic group 
which has the following defining property: 
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To every continuous representation Q:K----~GL(~ m) there exists a regular 
representation QC:KC~GL(ff~m) such that the diagram 

l 

K _.__~ K r 
Q\ /Q~ 

commutes. 
Since #r is a regular map, the orbits o f / ~  on C m are Zariski open in its closure, 

i.e. the topological closure of a KC-orbit in IY" is an algebraic/~-subset  of ~ ' ,  
which only contains orbits of smaller dimension in its boundary. Furthermore, one 
has Q(K) c = Q~(/~ and QC(Kr is a closed subgroup of GL(II~m). The representation 
Q is injective if and only if #c is injective [-Ho]. 

As a consequence of Theorems 3 and 4 in [Mo 1], cf. [Mo 2], the existence of 
the special embedding Qo : K~GL(IEm) implies the following 

Decomposition Theorem of Mostow. Let L be a closed subgroup of the compact Lie 
group K with Lie algebra I. Let the group L act on the Lie algebra 1r of I ~  by the 
adjoint representation Ad:L~GL(tr  Then there exists a L-invariant linear 
subspace m of 1, such that the map K •  r [k ,v]~k .expvL  C is an 
isomorphism of topological K-spaces. [] 

Remark. Since m is a L-invariant subspace, the linear subspace im of fc = f + if is 
also L-invariant. The K-space K • Lira is by definition the quotient of K •  with 
respect to the L-action on K •  which is defined by the formula h .(k,v) 
= (kh- 1, h. v) (see also Sect. 4.3). 

The particular case L = {1 } in the Decomposition Theorem is called the Polar 
Decomposition of the complex reductive group G. 

3.2 Convexity of invariant sets 

If C n is viewed as a holomorphic (C*)n-space with (C*)'-action which is given by 
�9 / t l  O'x 

(tl . . . . .  t , )~  ,~ 0 "'" t J ' ,  then the (S1)'-domains in C n are called Reinhardt domains. 

It can be shown that a holomorphically convex Reinhardt domain U possesses the 
following property: 

For z=(zl ,  . . . ,z,)e U and v=(vl, ..., v~)~N n such that (eVlzl, ...,eV"z~)~ U it 
follows that exptv, z = (et~ e'V"z,)~ U for t e [0, 1]. 

This notion of convexity, which refers only to the orbits, can be carried over to 
more general situations. We restrict ourselves to compact Lie groups and their 
complexifications. 

Let K be a compact Lie group with Lie algebra f and K r a complexification of 
K. A K-subset U of a KC-space X is called orbit-convex if for every x e U and v e if 
such that exp v. x e U, it follows that exp tv. x e U for t e [0,1]. 

For  later use we note some properties of orbit-convex sets. 

Properties of orbit-convex sets. Let K be a compact Lie group and X a KC-space. 
Then the following hold: 

(i) Every intersection of orbit-convex K-subsets of X is orbit convex. 
(ii) I f  dp is a KC-map from X into a K~-space Y, then the preimage of an orbit- 

convex K-subset under ~p is orbit convex. 
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(iii) I f  U is an orbit-convex K-subset of X and L a closed subgroup of K, then the 
L-subset U of the Lr X is also orbit-convex. 

(iv) A K-subset U of X is orbit-convex if and only if for all compact tori T in K 
the T-subset U is an orbit-convex subset of the TC-space X. 

Proof. The properties (i), (ii), and (iii) are direct consequences of the definitions, so 
we only give the proof of (iv). On the one hand, this follows from the inclusion it C i[ 
for every compact torus T of K with Lie algebra t. On the other hand, the 
topological closure of the group {exp tw; t e R} for w ~ ~ is a compact torus T in K 
and iw is contained in it. [] 

3.3 Complexification of orbit-convex subsets 

A first application of the notion of convexity is the following 

Proposition. Let X be a holomorphic KC-space and U an orbit-convex open K-subset 
of X. Then every analytic K-subset A of U is an open orbit-convex subset of the 
Ke-space K e. A. Moreover, K e. A is an analytic subset of the open Ke-subset K e . U 
of X and with respect to the inclusion z : A--, K e . A the holomorphic Ke-space K C . A 
is a K-complexification of the K-space A. 

Proof. Let f denote the Lie algebra of K. From the assumption that U is orbit- 
convex and A is a K-invariant analytic subset of U, it follows that 

(*) If a e A  and v~if are such that expv .aeU,  

then exp tv .aeA  for t~l-0,1]. 

In particular, the K-subset A of X is orbit-convex. 
The sets g. U, g e K e form an open covering of K e.  U. So from 

(**) Ke. Ang . U = g . A  for all g e K  e 

it follows that K e- A is an analytic subset of K C. U. 
To prove (**) it is sufficient to verify K e . A n U = A .  For this, suppose that 

x ~ K e . A n U D A .  There exists kEK, v~if (3.1 Polar Decomposition) and a~A 
such that x = k .exp v. a. Hence exp v. a ~ U and by (*) it follows that exp v. a e A. 
Consequently, x = k. expv. a e k. A = A. 

Since every orbit-convex K-subset of X is orbit-connected (3.1 Polar Decom- 
position), Ke. A n U = A  implies that K e . A  is a K-complexification of A (1.5 
Extension Lemma). []  

Corollary. For an analytic K-subset A of an open orbit-convex K-subset U of a 
holomorphic Ke-space X one has Ke. A n U  = A. [] 

By definition, the orbit-convex hull of a K-subset U of a Kr Y is the 
smallest orbit-convex K-subset ConvK(U) which contains U. 

The orbit-convex hull of a K-subset U of a/(e-space Y can be constructed 
inductively as follows. 

Let f be the Lie algebra of the compact Lie group K and set U = Uo. If Uk is 
constructed, then define Uk+l={yE Y; there exist Yo~Uk and vEi[, such that 
expV'yoeUk and y=exptov.Yo for some toe[0,1]}. It follows that 

oO 

Convr(U)-- U Uk. 
k = O  

Note that if U is open in Y, then ConvK(U) is also open in Y. 
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3.4 Invariant domains of  holomorphy 

There is a connection between orbit-convex domains and invariant plurisub- 
harmonic functions which is at least implicitly known, cf. [Ro; L]. The simplest 
case is that where the compact group is a real torus T ~_ ($1)'. The exponential map 
e x p : t r  T r from the Lie algebra t C of T C onto T C is in this case the universal 
covering map of T r  (•,)r. The decomposition t r = t + it defines a real structure 
on t c. A computation of the Hessian matrix in corresponding real coordinates 
proves the following 

Lemma. Let U be an orbit-convex T-domain in T C which contains the identity 1. 
Then, for a plurisubharmonic K-invariant function qb: U ~ R ,  the function 
q~: exp- 1 (U)~R,  $ = ~b o exp is convex. I t  follows that 

~b(exp tv) = q~(tv) < (1 - t)q~(0) + tq~(v) 

= (1 - t)~b(1) + t~b(expv). 

for all t~[0,1] .  I f  qb is strictly plurisubharmonic, then q~l i tnexp- l (U): i t  
nexp-1 ( U ) ~ R  is strictly convex. [] 

Now we give an application of this Lemma to complex spaces. For this let f be 
the Lie algebra of the compact Lie group K. 

Proposition. Let Y be a holomorphic K•-space and X an orbit-convex open K-subset 
of  Y. For every plurisubharmonic K-function dp : X--*F,~, the K-set 
D = {x e X; ~b(x)< 1} is an orbit-convex subset of Y. 

Proof. Let x be a point in D and v an element in i[ such that expv. x is contained in 
D. There exists a torus T in K such that v e it, where t denotes the Lie algebra of T. 
Since the orbit map b:Tc-~Y,  t ~ t . x  is holomorphic, the K-function 
~b o b : b- l(x)--*R is plurisubharmonic. The Lemma implies that ~b(exptv �9 x) < 1 for 
t e [0, 1]. Thus D is orbit-convex. [] 

In the special case X = Y the Proposition will be applied in the proof of the next 
theorem, which is a partial converse of the Proposition in Sect. 3.3. Remember that 
~-K(X) denotes the algebra of K-finite holomorphic functions on a complex 
K-space X. 

Theorem. Let K be a compact Lie group with complexification K r Let X be an open 
K-subset of a holomorphic KC-space Y such that K C. X together with the inclusion 
t: X ~ K r  X is a K-complexification of X.  Then for XC= K C. X,  the following 
hold: 

(i) The restriction map d)(XC)~O(X) induces an isomorphism ~K(XC)-~-r(X). 
In particular, (X r X) is a Runge pair. 

(ii) I f  X is a Stein K-space, then X is an orbit-convex K-subset of X r 

Proof. Every K-finite holomorphic function f :  X-~C is a component of linearly 
equivariant holomorphic map on X (2.1). The definition of a K-complexification 
implies the surjectivity of the restriction ~r(XC')~-r(X).  Hence it is an 
isomorphism. The Runge property (i) follows from the Fourier Theorem (2.2). 

In order to prove property (ii), let f be a holomorphic function on X and 
F = Q_~ TrfQ~,~ the Fourier series of f .  Here we use the same notation as in Sect. 2.2. 

By the assumptions, the linearly equivariant holomorphic maps f~ extend to 



644 P. Heinzner 

holomorphic maps on X c which we also denote by fQ. Consequently, the 
K-invariant functions which are defined by x--,llfQ(x)ll~ are plurisubharmonic 
functions on X r Let Ca denote the orbit-convex hull (3.3) of C~cX c and 8 the 
orbit-convex hull of X in X r Let {C~} be a covering of X by relatively compact 

open K-subsets C~. Assume that C~C C~+ ~. Now ~ = G C~ and furthermore, the 
~t=l 

K-set {z e Xr Ilfe(z) ll~ < II f I1~,~} is orbit-convex (Proposition) and contains C~. It 
follows that IIfll~.~= ]tfll~,~, because llfllQ.~> llfllQ.~ would imply that there exists 
xeC~\{z~Xr  llfQ(z)ll~<llfll~,~}. Hence F =  Z Trfe defines a holomorphic 

QeK 
continuation of f to 8 (Fourier Theorem, 2.2). But X is a Stein space, and 
therefore, X = a  ~ [] 

4 Locally homogeneous spaces 

4.1 Holomorphically separable spaces 

Let K be a compact Lie group and X a Stein K-space. We already know that there 
are uniquely determined minimal analytic K-subsets E in the fibers of the quotient 
map n x : X ~ X / / K  (2.3). Our analysis of actions of compact groups on Stein spaces 
will begin with the study these minimal analytic subsets. It is easy seen that K C acts 
"locally transitively" on such sets and thus one expects E ~: to be KC-homogeneous. 

Proposition. Let K be a compact Lie group and X a holomorphically separable 
complex K-space. I f  X does not contain proper analytic K-subsets, then there exists 
a K-complexification X c. The complex space X ~ is KC-homogeneous and holomor- 
phically separable. The corresponding map t: X ~ X  C is an open embedding. 

Proof (of. [H 2]). From the Identity Theorem (1.1) and the assumption that X does 
not contain proper analytic subsets we have the following fact: 

If tp is a holomorphic K-map from X into a complex K-space u then tp(X) is 
contained in a smooth locally analytic K-subset of Y. The rank of ~p is constant. In 
particular, if Y is/(e-homogeneous, then ~p(X) is open in Y. 

Let {C~} be a covering of X by relatively compact open K-subsets C~. We 
assume C~cC~+ ~. For every 0t there exists a linearly equivariant holomorphic 
K-map tp~: X~C""  such that the restriction v2~ [ C~ is injective (2.2 Corollary). We 
fix a point xl e C1 and set w, = ~p,(xl). In order to compare the maps ~p,, we define 

~1 =~01 ~ m l = n  1 , 1)I=W 1 

and, after ~b,, m~, v, are defined, 

q~,+a =~b, x lP~+a, m~+l=m,+n~+l, v~+l=(v~,w~+Oer "'+' �9 

Since the linear action of K on ~"-  extends to an algebraic action of K C on C"" 
(1.1), for all ~ one obtains 

1. v,. 
2. 4~, is an open immersion. 
3. ~(~ 5v~ is an injection. 
4. is KaZ-biholomorphically equivalent to K~/H~, where H~ denotes the 

KC-isotropy group of K c at v~. 
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By construction, the isotropy group H~ + 1 is contained in H~. The diagram 

X 

KC.v~ ~ KC.v~+l 
P~ 

commutes for all ~ ~ N where p~ denotes the restriction of the Kr 
projection from ~m,+ l=  cm, x C "'§ to ~m,. Since the isotropy groups H~ are 
linear algebraic groups, each of them has only finitely many connected compo- 
nents. Moreover, from dinacH~ = dirncK ~ -  dimcX it follows, that the connected 
component of the identity is the same group for all ~. Hence there exists an ~o such 
that H,=H~o for all ct>~t o. For such an at, the map p~ is biholomorphic. In 
particular, r is an open embedding. 

Let H be the smallest and closed complex subgroup of H~0 such that there 
exists an open Ke-equivariant embedding z: X~KC/H. Note that H is obtained 
from H~o by omitting, if necessary, some connected components. 

We set XC=Ke/H=ICr'v,  where v=  t(xl)=H. In order to prove the univer- 
sality property for equivariant holomorphic maps, let ~p be a holomorphic 
K-map from X into a holomorphic KC-space Y. The image of the K-map 
zxvg:X--*K'C.vxY, x~O(x),~p(x)) is contained in the /Ct-orbit ICr.(v,w) 
= {(g. v, g.  w); g e K C} where we set w = ~p(xl). Furthermore, viewed as a map from 
X into K ~. (v, w) _~ KC/Hn(Kr t x ~p is an open embedding. Let p: K r (v, w) 
--*K C. v denote the restriction of the natural projection. It follows from the 
definition of KC/H that p is biholomorphic. Moreover, viewed as a map from K r v 
into K C- v x Y, the inverse map p-~ is holomorphic. If we denote by q the 
projection K C. v x Y~ Y, then the diagram 

I 

X ....~ Kr v 

Y 

commutes, where v2 r = q o p-  ~. Finally, the KC-map v2 r is uniquely determined by 
w. [ ]  

Corollary. Let X be a holomorphically separable K-connected open K-subset of a 
Kr space Y. Then the inclusion j: X ~ Y  induces a KC-equivariant 
holomorphic covering map f :  X~-~ Y. [] 

4.2 Totally real points 

Let Y be a KC-homogeneous space and U an open K-subset. In general, it is not 
true that Y is the K-complexification of U. For example, the St-complexification 
of an annulus in a compact complex torus is •*. 

This example is, of course, not relevant for the study of K-actions on Stein 
spaces. However, the following examples reflect phenomen of central importance. 
Let U be a sufficiently small open orbit-connected K-subset in K c which contains 
K. In general, there exist many finite subgroups F in K r such that KngFg - 1 = { 1 } 
for all g e U. For such groups, the image X of U in KC/F is biholomorphically 
equivalent to U and the K-action on X is free, i.e. Kx = {1} for all x e X. By 
construction, the complexification of X is K r 
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On the other hand, there are also "positive" examples. The compact group 
SU(~ 2) acts on the holomorphic SL(ll~2)-manifold Y=SL(t~2)/H where 

H={( t0  t O ) ' t ~ C * }  , 

sion two and isomorphic to SU(r 1. Any other SU(C2)-orbit has real 
dimension three, hence is a hypersurface. Every open Stein SU(C2)-subset X of Y 
contains the "minimal" SU(C2)-orbit of dimension two and XC= Y. 

In the above examples the K-complexification always exists and is determined 
by some"minimal" K-orbit. This is a general observation which is explained by the 
last theorem of this section. For this we begin by proving two lemma. 

Lemma 1. Let T be a real compact torus with Lie algebra I and S a closed subgroup 
of T with Lie algebra ~. Let n denote the quotient map T ~--, T~/S ~. Then for an orbit- 
convex T-domain U in T C the T-domain re(U) is also orbit-convex. In particular, for 
M =  T/S the M-domain n(U) is orbit-convex in the M~-space M r  Tr r 

Proof. Let v e it and x e U be such that exp(v) �9 n(x) ~ n(U). There exist h e S C, w e i~ 
and s e S  such that h=s . expw and e x p v . x . h = s . e x p ( w + v ) . x e  U. Since U is 
orbit-convex, it follows that exptv- n(x) = n(exptv, x.  s. exptw) e n(U) for 
t e  [0,1].  [ ]  

Let K be a compact Lie group with Lie algebra ~ and L a closed subgroup of K 
with Lie algebra I. 

Lemma 2. Let U be an orbit-convex K-domain in K'C/L c which contains the point 
p=LC ~ KC/LC and q~ : U--,• a strictly plurisubharmonic K-function with a local 
minimum at p. I f  g . p e U for some g e K C, then the inequality ~(g. p) < ok(P) implies 
that g . p e K . p .  I f  in addition g=expv for some veif, then it follows that veil. 

Proof. Let g e K "r with g- p e U and q~(g. p) < ~(p) be given. We write g as a product 
g=k.expv ,  where k e K  and v~if (Polar Decomposition, 3.1). Since ~b is 
K-invariant, we have ~b(expv. p)____ q~(p). Because K is a compact Lie group, there 
exists a compact torus T with Lie algebra t such that v eit. The T-set 
U r =  Uc~T c- p is orbit-convex (3.2). 

Let S denote the isotropy group Tp and M the compact torus T/S. Then T ~- p is 
canonically isomorphic to M r and Ur is an orbit-convex M-subset in U T 
(Lemma 1). The M-invariant function ~bM: Ur - ,R ,  q~M = q~ I Ur is strictly plurisub- 
harmonic. It follows that v e if C iI (3.4 Lemma) where f denotes the Lie algebra 
of S. 

This proves expveL r and consequently g . p = k . e x p v . p = k . p e K . p .  [] 

Remark. Note that the statement of Lemma 2 remains true, with the same proof, if 
one replaces the assumption "~b obtains a minimal value at p" by "p is a critical 
point of ~b". 

Let K be a compact Lie group and Ya holomorphic KC-space. For a point y e Y 
the isotropy group Ky is contained in the isotropy group (Ke)r The map 
~: (Ky)r is injective (see 3.1). 

Example. The isotropy group of the unitary group U(~ 2) at (1 ,0)e~ 2, where 
2 2 1 U(C)actsonCE by matdx multiplication, is the group ( ( 0  0) ; ,t,= l} which is 

isomorphic to S 1. The isotropy group of GL((I~2)= U(II~2) c at (1, 0) is the group 
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A point y in a holomorphic Kq:-space Y is called a totally real K-point, if the 
inclusion ~:Ky-*(KCjy induces an isomorphism zr Note that the 
K-orbit of a totally real K-point is a totally real submanifold. The converse of this 
statement is not necessarily true. 

Example. All points in the K-orbit through the point p = L c ~ KC/L c are tor real 
K-points. Every KC-fixed point is a totally real K-point. 

Theorem. Let K be a compact Lie group and X a Stein K-space which does not 
contain proper analytic K-subsets. Then there exists a point x in the complexification 
X r of X such that z(x)~ X r is a totally real K-point. 

Proof. The complexification X r of X is a K~:-homogeneous holomorphically 
separable complex space (4.1 Proposition). Since X is a Stein K-space, there exists 
a strictly plurisubharmonic K-function ~p : X - * R  which obtains a minimal value in 
some point x e X. For  every K-orbit one has that dimRK, x > dimcX = dimcX r 
(1.3). Because the set of critical points of the strictly plurisubharmonic function ~p is 
contained in a totally real submanifold of X, cf. [RH; W], it follows that 
dimRK/K x = dimcK c.  x = dimcX r 

The K-space X is an orbit-convex K-domain in X r (3.4 Theorem). Let H denote 
the isotropy group (KC)x and L the compact isotropy group K:,. Since d in~L  C 
= dimrtL = dimcH, the complexification L r is an open subgroup of H. The group 
H is algebraic. Hence it has only finitely many connected components. Thus the 
K~-equivariant projection p : KC/L~-*KC/H, g. LC--.g. x is a finite covering map. 
Recall, that the inverse image . ~ = p - l ( X )  is an orbit-convex K-domain in 
Ke/L e (3.2). 

We now show that the covering map p :~e--~X, P = p I X  is injective. For  this, 
first note that ~b = ~p o/~ is a strictly plurisubharmonic K-function on ~ .  A point 
ze/~-  l(x) is of the form z = g - ~  for some g e K  e, where we set ~=Le~Ke/Le .  It 
follows from the definition that ~(z)= ~(g. ~)= ~b(~). Consequently, g = k.  h for 
some k ~ K and h e L e (Lemma 2). From k. x = k-/~(~) =/~(g- ~) = g. x = x we obtain 
that k e Kx = L. Thus g = k. h e L r and z = g. ~ = ~. This proves that /~-  l(x) = ~. 
Consequently,/~:.~--*X is an isomorphism and H = L  e. [] 

The above proof  also yields the following result which goes back to 
Matsushima and Onis~ik. 

Corollary. Let K be a compact Lie group and Y a Ke-homogeneous holomorphic 
Ke-space. I f  there exists a strictly plurisubharmonic K-function ~ : Y -*R  which 
obtains a minimal value at some point x e Y, then the isotropy group (Kr = (K~) e is a 
complex reductive group. [] 

4.3 Homogeneous vector bundles 

For  a closed subgroup H of a Lie group G and a H-space Y, let G x H Y denote the 
bundle with typical fiber Y associated to the principal bundle G-*G/H. This 
bundle is by definition the quotient of the H-space G x Y with respect to H, where 
the H action on G x Y is defined by h. (g, y)=(gh-1, h. y). The corresponding 
quotient map G x Y--. G x H Y is open. We denote the image of a point (x, y) e G x Y 
in G x a Y by Ix, y]. The map G x G x B Y--* G x H Y, (g, Ix, y])-* [gx, y] is a G-action 
on G x H Y. Note  that the bundle projection G x n Y-*G/H, [g, y] -*gH is a G-map. 
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4.4 Minimal compact orbits 

Let G be a Lie group and H a closed subgroup of G. We denote by Typo(X ) the 
G-isomorphism class of the G-homogeneous space X = G/H and call it the G-orbit 
type. There is a partial ordering on the set of G-orbit types which is defined as 
follows. 

If XI = G/H1 and X2 = G/H2 represent two G-orbit types, then X1 is called 
smaller as X2 if there exists a G-map from X2 into X 1. Note that such a map is 
automatically surjective. We set Typo(X i) < Typo(X2) if and only if X1 is smaller 
as X2. The G-orbit types of two G-homogeneous spaces are equal if and only if the 
corresponding isotropy groups are G-conjugate. 

The orbit type of a G-space X is by definition the set {Typ~(G .x); x e X } .  A 
G-homogeneous space which represents a minimal element in {Typ~(G �9 x); x ~ X} 
is called a minimal G-orbit in X. 

Let K be a compact Lie group and L a closed subgroup of K. As a K-space, the 
Kr complex space K~:/L r is isomorphic to a real K-vector bundle 
over K/L  of the form K x t.F (3.1 Decomposition Theorem). Consequently, for 
every x ~ KC/L r the bundle projection K x L F ~ K/L  induces a K-map K . x ~ K/L. 
Thus every K-orbit in Ke/L r can be compared with K/L  and K/L  is a minimal 
K-orbit in Ke/L r Furthermore, it follows that the K-orbit through a point 
x ~ Ke/L e is minimal if and only if TypK(K �9 x) = TypK(K/L). This is the case if and 
only if Kx is conjugate to L by an element of K. The following is a characterization 
of minimal K-orbits in KC/LC: 

Theorem. Let K be a compact Lie group and L a closed subgroup of K. For a point 
x ~ Ke/L r the following statements are equivalent. 

(i) The point x is a totally real K-point. 
(fi) The K-orbit through x is minimal. 

(iii) On Ke/L r there exists a strictly plurisubharmonic proper K-invariant 
function p : Ke/Lr ~[O, 00), such that K . x=p-l(0).  

(iv) The K-orbit through x has a basis of neighbourhoods which consists of orbit- 
convex Stein K-subsets. 

Proof. First, we show that (i) implies (ii). 
Every point x eKC/L r is representable by gL r for a suitable g ~ K  C. By 

assumption, ~C:(Kx)C~(Ke)x is an isomorphism. It follows that dimRKx 
=dime(K~)r Since every K-orbit in KC/L ~ is 
comparable with the minimal orbit K/L (3.1 Decomposition Theorem), there 
exists a K-map from K . x  onto K/L. Thus the equality dimRK~=dimRL 
implies that K~ is an open subgroup of kLk-~ for a suitable k e K. From (K~) c 

= kLa:k- 1 = (KC)x = gLCg- 1, it follows that K~ and kLk-  1 have the same number of 
connected components. This implies K~=kLk-1  and consequently Typr(K. x) 
= TypK(K/L ). 

We now prove that (ii) implies (iii). 
Let L denote the isotropy group K.. Since the orbit K.  x is minimal, it follows 

1 C C C C 1 that L = kLk-  for some k e K. Thus K~/E is K -isomorphic to K ykE k -  , where 
the isomorphism is induced by the map K e ~ K  C, g ~ g k -  1. Consequently, without 
lost of generality we can assume that L = K~ and x = L r Now we make use of the 
following consequence of the Peter and Weyl theorem: 

There exists a real vectorspace W of finite dimension with a linear action of K 
such that L=  Kw for some w ~ W (cf. for example IJ]). 
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The complexification K C acts holomorphically on the complexification W |  
and there exists a K-invariant Hermitian inner product <, > on W |  whose 
restriction to W is a K-invariant scalar product on W. 

Since K .  w is perpendicular to the line Rw, w is a critical point of the strictly 
plurisubharmonic K-function d: W| d(v) = <v, v>. From this follows (see 
[P, S] or 5.4 Corollary 1) that 

(1) the orbit K r w is closed in W@tE, 
(2) the Kr KC/Lr g.x--*g.w is biholomorphic, i.e. Lr 
(3) d(w) < d(g. w) for all g e K C. 
As a consequence of (1) and (2), the strictly plurisubharmonic K-function 

p : Ke/LC~[O, oo), g. x-~d(g, w ) -  d(w) is proper. Thus it follows that p -  1(0) = K .  x 
(4.2 Lemma 2). 

To prove that (iii) implies (iv) one need only observe that the sets p-I ( [0 ,  ~)), 
e > 0 have the desired property. 

Finally, we prove that (iv) implies (i). 
From the Slice Theorem for compact group actions, see [J-J, it follows that 

0 = {y e K~/Lr Typr (K  - x) < TypK(K �9 y)} is an open neighbourhood of the orbit 
K . x .  Let U be an orbit-convex Stein K-domain in ~ which contains K .  x. Since 
Ke/L e is a K-complexification of U (3.3), there exists a totally real K-point y e U, 
i.e. (Ky) r = ( K ~  r But then, as we have proved, the orbit K . y  is minimal. The 
definition of U implies that K .  x is also a minimal K-orbit. Note that x = gL r for 
some g e K r i.e. (KC)x = gLeg- t. Since K~ = kLk-  1 for a suitable k e K, it follows 
that (Kx) r = kLek-I  C (Kr = gLeg- 1. Hence, we obtain (K~) r = (Kr [ ]  

Note that the space K r is homogeneous with respect to the K r x Ke-action 
given by (g, h, x)--.gxh- 1. The K x K-orbit  through 1 e K ~ is the group K and K is a 
minimal K x K-orbit  in K C. This proves the following 

Corollary 1. Let K be a compact Lie group and K ~ the complexification of K r Then 
the K xK-subset K of K C has a basis of open orbit-convex K x K -  
neighbourhoods. [] 

Let L be a closed subgroup of the compact Lie group K and f i :L~GL(V) a 
representation of L in a finite-dimensional complex vector space V. We always 
assume the representation to be unitary. The corresponding Ke-bundle K C x Lr V 
is a holomorphic vector bundle over KC/L e with typical fiber V. Every closed (resp. 
open) Le-subset U of V can be identified with the closed (resp. open) K%subset 
K e x L c U  of KCxLcV. The embedding j :V-- .KexLcV,  z--.[1,z] induces an 
isomorphism of the rE-ringed spaces V//L and K e x Lr V//K. 

In the following, K/L is identified with the K-orbit through L e e KC/L e and 
Kr e with the zero section K r  [1,0] = K c x ze {0} in K C x r~r V. Furthermore, the 
group K c is viewed as a homogeneous K ~r x L%space. Here the action is given by 
the map K e x L e x K e ~ K  r (g, h ,x )~gxh- i .  Note  that the open orbit-convex 
K x L-subsets which contains K form a basis of neighbourhoods of K in K c 
(Corollary 1). 

Corollary 2. For every orbit-convex K x L-subset N of K r and every orbit-convex 
L-subset D of V the K-subset IN, D] = { [g, z]; (g, z) ~ N x D} of K r x Lr V is orbit- 
convex. 

Proof. Let ~ denote the Lie algebra of K. If (u, x) ~ N x D and v ~ i[ are given and if 
expv. Iu, xl  ~ I-N, D], then it is necessary to show that exp tv. [u, x] ~ [N, D] for 
t~[0,1]. 
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By the definition of EN, D], ( e x p v . u . h - : , h . x ) e N •  for an appropriate 
h E L  r Let I denote the Lie algebra of L. There exist reeL  and weil ,  such that 
h = m . e x p w  (3.1). Since N is K x L-invariant and D is L-invariant, it follows from 
the orbit-convexity assumption that (exp tv . u. exp( - tw), exp tw . x) e N • D for 
t ~ I'0,1]. Thus exptv- [u, x'] = [-exptv. u. (exptw)- 1, exptw- x] e [N, D]. [] 

5 Linear actions 

5.1 Linearization 

Let K be a compact Lie group and K r a complexification of K. We note the 
following useful 

Remark. Let Y1 and Y2 be holomorphic Ke-spaces and ~b : Y1 ~ Y2 a holomorphic 
K-map. If ~b is an open immersion at at ~ Y1 such that the restriction of ~b to K .  at is 
injective, then ~b maps a K-neighbourhood of K . a i  biholomorphically onto a 
neighbourhood of K .  $(at). If a2 = ~b(al) possesses a basis of K-connected open 
neighbourhoods, then ~b- t is defined in an open K-neighbourhood U of K .  a2. 
Since K c- U is a K-complexification of U, q~- t extends to a holomorphic Kr 
on K r U (1.5). Hence ~b maps a Ke-neighbourhood of K-  at biholomorphically 
onto a KC-neighbourhood of K.a2 .  

Let Y be a holomorphic/(e-space and a a smooth totally real K-point in Y. By 
definition, if we denote by L the isotropy group Ko, we have Le=(KC),. The 
differential of the maps Y ~ Y ,  y-- .h.y,  h~L,  defines a representation of L in 
GL(T~Y), where T~ Y denotes the tangent space of Y at a. The L-action on Y can be 
linearized in a neighbourhood of a, i.e. there exists an L-equivariant 
biholomorphic map /z from an L-neighbourhood of a in Y onto an 
L-neighbourhood of zero in T, Y with/~(a) = 0. 

The tangent space T~(K c. a) at a of the orbit K r a is an L-invariant linear 
subspace of T~Y. We choose an L-invariant Hermitian inner product on T,Y and 
decompose T, Yin an orthogonal sum T~Y= To(K r a ) ~  II+ We ca~l Van L-invariant 
normal space at a to the orbit K r a. 

For a sufficiently small open L-neighbourhood D of 0e  II, there exists a 
holomorphic L-map 2: D--* Y, 2(x) =/~- 1, which maps D biholomorphically onto a 
local submanffold of Y. Note that, if D is an orbit-connected neighbourhood of 
0 ~ 1/, for example, a ball around zero, then D e = L e- D is an L-complexification of 
D. Consequently, 2 : D ~  Y extends to a holomorphic Lr 2 r D r  Y. With this 
notation we have the following 

Linearization Lemma. Let K be a compact group with complexification K r and Y a 
holomorphic KC-space. Let a ~ Y be a smooth totally real K-point in Y and set 
L = Ko. Assume that there exists a basis of  open orbit-connected neighbourhoods of  
the orbit K .  a in Y. I f  D is a sufficiently small open L-neighbourhood of  zero in a 
L-invariant normal space V at a to K c . a, then there exists an injective holomorphic 
Lr 2 r  such that A : K e x L c L C . D ~ Y ,  ['g,v]~g.),(v), is an open 
embedding. 

Proof. For  small D, there exists a holomorphic Le-map 2 ~: K e- D ~ Y which maps 
D onto a local L-submanifold of Y. We can assume that this submanifold is 
transversal to the orbit K c.  a at a. Consequently, the map A:/r  x i+ LC" D ~ Y is 
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an open immersion at [1,0] with A([1,0])=2e(0)=a. Note that A maps 
K/L  ~-K. I1,0] diffeomorphically onto K .  a-~ K/L. Thus by the Remark A maps 
an open Ke-neighbourhood of K r [1,0] biholomorphically onto the image. 
Recall that the quotient map K c x V ~ K  ~ x LcV is open. Hence, after shrinking D if 
necessary, we obtain the desired result. [] 

Example. Every point in Ir /Z +/7. is a totally real S ~ ~ R/7.  point. But there are no 
proper S~-connected subsets in Ir /Z + iZ. 

Even if Y is a K-vector space with a linear K-action, then not every K-orbit of a 
totally real K-point possesses arbitrary small K-connected neighbourhoods 
(see [Lu 1]). 

5.2 Hilbert' s Finiteness Theorem 

Let K be a compact Lie group which acts linearly on Ir", i.e. via a unitary 
representation Q:K~GL(Ir"). The Finiteness Theorem can be stated as follows: 

The algebra Ir[ z l . . . . .  z,] x of K-invariant polynomials on Ir" is finitely generated. 
For the proof of the Finiteness Theorem one needs Hilbert's Basisatz and the 

existence of a Haar measure on the compact group K, see [We]. 
A set of generators PD'",Pk of the algebra Ir[z 1,.. . ,z.] x gives rise to a 

polynomial map p : i r , ~ i r k .  For  an ideal I in Ir[z~ .. . . .  z,] x one obtains by 
integration over K the identity I .  Ir[z~ ... . .  z , ]n[z l  . . . .  , z,]X=I. From this it 
follows that (cf. [Kr] or [K, S, S]): 

(i) The images of Zariski closed K-subsets of Ir" of P are closed in Irk. In 
particular, Z = P(ir") is a Zariski closed subvariety of (r k, whose algebra of regular 
functions is isomorphic to Ir[z 1 . . . . .  z,] x. 

(ii) The map P separates the closed Ke-orbits in Ir". 
By 2.3 Corollary 3, we know that there exists a continuous bijection 

P:Ir"//K ~ Z  such that/~ o n, = P where ~,: Ir~ ~ i r " / / K  denotes the quotient map. 
It is known that Z is isomorphic to Ir"//K as a Ir-ringed space. This will be 
proved in detail in 6.4. 

5.3 Complete invariant subsets 

Let K be a compact Lie group. For a point x in a complex K-space X let Bx(x) 
denote the smallest analytic K-subset in X which contains x (cf. 2.3). 

Remark. If X is a locally analytic K-subset of a holomorphic Ke-space Y, then 
K e .  Bx(x)C Br(x) for all x e X. This follows from the Identity Theorem (1.3). 

A locally analytic K-subset X of a holomorphic Ke-space Y is called complete if 
K e.  Bx(x) = Br(x) for all x e X. The locally analytic K-subset X is called complete 
with respect to a closed subgroup L of K if X is a complete L-subset of the 
holomorphic Lr u 

Example. Let U be a Reinhardt domain in Ir". After a change of indices we may 
assume Uc~ir = x {0} 4:0 and Uc~{0} x I r " - ' = O  for some me {0 . . . .  , n -  1}. The 
(St)"-complexification of U is (ir*)" �9 UC(ir*)" x Ir,-m. One can show that U is a 
domain of holomorphy if and only if it is orbit-convex and complete with respect 
to every dosed subgroup of ($1) ". 
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In the following we often use the fact that a locally analytic K-subset X of a 
holomorphic KC-space Y which is a union of some analytic K-subsets A j, j e J is 
complete in Y if and only if X n A j  is complete in Aj for all j. 

Example. If the compact Lie group K acts linearly on C ~, then the action of the 
complexification K ~ on ~ is algebraic. Hence the topological closure K ~. z of an 
orbit K C- z C r  is an analytic KC-subset of ~ .  Thus, we have Bc,(z) = ~ for all 
z E ~  ~. It follows that a locall a ~ l y t i c  K-subspace X in C" is complete if and only 
if K e.  x n X  is complete in ~ for alt x E X. 

Let the compact Lie group K act linearly on ~n and denote the quotient map 
IF. ~ ~ff~'//K by nn. 

Lemma. Let Y be a closed complex KC-subset of a n,-saturated open subset of ~". 
Then an open orbit-convex K-subset X of Y is complete if and only if K ~. X is 
saturated with respect to nr:  Y--* Y//K. 

Proof. Note first, since Y.is a complete analytic KC-subset of tE ~, we have Br(y) 
= K ~" Br(y) = Be,(y) = K r y for all y ~ Y. 

Assume that the open K-subset X of Y is complete. It is necessary to show that 
if z e n~- l(nr(K~- X)) = n r t(nr(X)), then z e K C- X. Suppose x E X is such that r~r(z) 
=nr(x). Then O4=Br(z)nBr(x)=Br(z)nK~.Bx(x).  But since X is open in Y, 
r 1 6 2  implies that KC.znX~eO.  Consequently, we obtain 
z ~ K ~ . X .  

Now assume that the open subset K ~:. X of Y is nr-saturated. For all x e X we 
have Br(x) = B~(x) = / ~ s ~ -  x. Thus nr(X) = ~tr(Br(x)). Since K ~. X is nr-saturated, it 
follows that Br(x)C K ~- X. Now, Bx(x) is an analytic K-subset of the orbit-convex 
subset X of Y. Hence K ~. Bx(x ) is an analytic K-subset of K e. X (Proposition 3.3). 
Of course, K ~- Bx(x)(Br(x). In the situation under consideration as we have 
shown Br(x)C K az" X. Thus it follows that K r Bx(x) is an analytic subset of By(x). 
The definition of Br(x) implies that K ~: . Bx(x) = Br(x). [] 

As we will see later the statement of our Lemma remains true if one replace the 
holomorphic K~-space ~"  by a holomorphic Stein Kr 

5.4 Completeness and invariant plurisubharmonic functions 

Let the compact Lie group K act linearly on ~ and denote by rc~ the quotient map 

Prol~sition. Let Y be a closed KC-subspace of  a nn-saturated open subset of  ~ .  
Then for a plurisubharmonic K-function d? : Y ~ n  the open K-subset D(qb) = (x ~ Y; 
gp(x) < 1 } of  Y is orbit-convex and complete. 

Proof. Since the K-subset D(q~) is orbit-convex (3.4 Proposition), it suffices to show 
that K c- D(t~) is saturated with respect to the quotient map rtr: Y~ Y//K (5.3 
Lemma). For this let x e D(~b) and y e Y and suppose that nr(x)= nr(Y). We shall 
prove that y c K  C- D~.;__c..Since Y is n,-saturated nr(x)=nr(y) implies that 
Br(x)nBr(y  ) = K ~\ x n K  . y ~ O. From the Hilbert Lemma (see, for example, [Kr, 
III.24]) it follows that there exists a holomorphic group homomorphism 
~ : ~ * ~ K  C with ~(S1)CK such that 

(a) Yo = lira ~(z).x exists and 
Z ~ O  

(b) Yo ~ E,(x) = er(~Zr(x)) C K c" x. 
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The Sl-map u:lE~lE" defined by u(z)=y(z) .x  for z~lE* and u(0)=yo is 
holomorphic. Hence the Sl-invariant function ~: IE~R,  q~ = ~b o u is subharmonic 
and consequently 

~(0) < ~s, ~(tz)dt = q~(z) for all z e lE. 

This proves that Yo e D(~b). Thus K~.yo C K r  implies K C. yc~D(~b)+O and it 
follows that y e K c. O(~b). [] 

In the following corollaries we assume that K is acting linearly on lE" and that Y 
is a closed complex K-subspace of a n,-saturated open subset of lE". For p e Y/ /K 
let Er(p) be the minimal KC-orbit in n~- l(p) (2.3 Corollary 2). The following is a 
straightforward generalization of a result of Kempf and Ness (cf. [K, N; D, K; 
P, S]). 

Corollary 1. Let (b : y-o•,, be a K-invariant function such that for p ~ Y/ /K the 
restriction dpv: n ~ l(p)-o~,, ~bv= dp ] n~ l(p), is proper and strictly plurisubharmonic. 
Then every extremal value of ~bp is a minimal value and the set of such points is 
exactly one K-orbit through a totally real K-point a ~ Er(p). 

Proof. Let q~ be the function introduced in the proof of the Proposition. Then, 
since ~bp is strictly plurisubharmonic, for x E ~r~-l(p)\Er(p), the function F , .~R,  
t ~ ( e  t) = (a(~,(e'). x) is convex and strictly increasing. Hence the critical points of 
~b v are contained in Er(p)=Kr  and the desired result follows from 4.2 
Lemma 2. [] 

Corollary 2. In every closed KC-orbit E of lE" there exists a totally real K-point a 
such that every open neighbourhood of K . a contains an orbit-convex complete open 
K-neighbourhood of K . a. 

Proof. Recall that there exists an invariant polynomial map P: lE"-olE k such that 
P-I(P(z))  = n~ x(n,(z)) for all z ~ lE" (5.2 Hilbert's Finiteness Theorem). We may 
assume that K is a subgroup of the unitary group of lE". The K-invariant function 
d : lE"~R ,  d(z)= Ilzll 2 is proper and strictly plurisubharmonic. Hence the map 
~b = P • d is proper. Furthermore, for a suitable a ~ E we have ~b- a(~b(a)) = K .  a 
(Corollary 1). If U is a neighbourhood of K .  a, then the properness of ~b implies 
that there exist open neighbourhoods Q of P(a) and I of d(a) such that 
4)-I(Q • I)c  U. 

Finally, since P-~(Q) is z,-saturated and d is plurisubharmonic, the Propo- 
sition implies that 4~-1(Q •  is orbit- 
convex and complete if Q is sufficiently small. [] 

5.5 Luna's Slice Theorem 

Let K be a compact Lie group with complexification K r We consider a linear K 
action on lE" and denote by ~, the quotient map lE"~lE"//K. Let a be a totally real 
K-point in a dosed K~-orbit E in lE". We set L = Ka and denote by V a L-invariant 
normal space at a to the orbit K C. a (5.1). 

We identify TalE" with lE". The holomorphic KC-map A:KCxLcV~IE ", 
[g, v]--*g- (a + v) maps a neighbourhood of the orbit K / L  ~ K .  [1,0] C K C x Lc V 
biholomorphically onto a neighbourhood of K .  a in lE". Let nv : V ~  V/ /K be the 
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quotient map. Using the notion of orbit-convexity and completeness, we now give 
a proof of Luna's 

Slice Theorem. There exists a nv-Saturated neighbourhood S of 0 e V, such that 
(i) U = K r (a + S) is rc,-saturated and 

(ii) the KC-map A : K r • Lc V ~  U, [g, v] ~ g  . (a + v) is biholomorphic. 

Proof. By 5.4 Corollary 2 there exists a totally real K-point ~ in K r a such that 
K .  ~ has a basis of orbit-convex complete open neighbourhoods. Note that 

= go" a for an appropriate go e Kc- 
The holomorphic KC-map A is an immersion at [1,0]. Thus A is an immersion 

along K r [1,0]. In particular, A is an immersion at [go, 0]. Since K~tgo. ol = goL•go 1 
=(Kr the map A restricted to K C. [go,0] is in~ective. After we choose a 
sufficiently small orbit-convex open neighbourhood U of K .  ~ we see that A maps 
an open KC-neighbourhood of K r  [1, 0] in K ~: x Lr V onto a ft,-saturated open 
neighbourhood of K r a in ~ (5.1 and 5.3). 

For a sufficiently small ball D around zero in V the LC-set S = L  ~. D is 
r~v-Saturated (5.4) and A maps K e x Lr biholomorphically onto the lt,-saturated 
open set U = K r (a + S) = K r (a + D) C tT. [] 

Corollary. For every totally real K-point a of a closed KC-orbit in ~n the orbit K . a 
has a basis of  orbit-convex complete open Stein K-neighbourhoods. 

Proof. This follows from the Slice Theorem and 4.4 Corollary 2. [] 

The rOy-saturated LC-subset S of V in the Slice Theorem contains arbitrary 
small open L-invariant balls D, around the origin. If D, is contained in S, then we 
call D = a + D, a local linear slice at a to the closed orbit K r a. 

In particular, a local linear slice D at a is a locally analytic L-subset of IIY and 
one has K r (a + L r D,) = K r D. The holomorphic LC-space L ~:. D = a + L ~:. D r is 
an L-complexification of D and the natural map K C x L ~ L e . D ~ L C . D  is 
biholomorphic. Furthermore, K e.  D is a n ,  saturated open neighbourhood of 
K C. a in IE ". 

6 Complexifications 

6.1 Maps with the slice property 

Let K be a compact Lie group and X a complex K-space. We say that a linearly 
equivariant holomorphic map ~b : X ~  n has the slice property at x ~ X  if it 
satisfies the following conditions: 

(i) q~ is an immersion at x, 
(ii) ~b restricted to K .  x is injective, 

(iii) ~b(x) is contained in the closed KC-orbit Ec,(c~(x)), and 
(iv) ~b(x) is a totally real K-point in ~". 
The following is a direct consequence of the Slice Theorem (5.5). 

Lemma. Let K be a compact Lie group and X a complex K-space. I f  q~ : X - ~ C  n is a 
linearly equivariant holomorphic K-map which has the slice property at x ~ X,  then 
there exists a local linear slice D at Jp(x) and an open K-neighbourhood U of x such 
that: 
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(i) q6(U) is an orbit-convex and complete open K-subset of the analytic K-subset 
A = K C . dp(U) of K~Z. O. 

(ii) q~v: U~q~(U), tPt~(y)=q~(y) is biholomorphic. [] 

Let 0 denote the union of irreducible components of the complex K-space 
~b - I(A) which intersect U. Note that 0 is a closed analytic K-subset of tp- ~(A) and 
that A with the map q~ :0~A,  t~=~blO, is a K-complexification of O (3.3 
Proposition and 1.4 Lifting Lemma). 

6.2 Existence of maps with the slice property 

Let K be a compact Lie group and X a Stein K-space. For  a point x ~ X let Bx(x) 
denote the smallest analytic K-subset of X which contains x. Let Ex(x) be the 
smallest non-empty analytic K-subset of Bx(x ). One has Ex(x)=Ex(nx(X)) (2.3 
Corollary 2) and Ex(x) is the unique analytic K-subset in rt x 1(1ix(X)) of minimal 
dimension, where ~x denotes the quotient map X ~ X / / K .  Note that in general x 
does not belong to Ex(x). 

Lemma. Let x be a point in a Stein K-space X.  Then, for every totally real K-point 
Xo ~ Ex(x), there exists a linearly equivariant holomorphic map c~ : X-*flY which has 
the slice property at x o. 

Proof. Since the algebra of K-finite functions is dense in (9(X) (2.2 Fourier 
Theorem) there is a linearly equivariant holomorphic map tp 1 :X ~ C  "1 which is an 
immersion at Xo. 

The homogeneous Stein space Kr ~ where L = Kxo is a K-complexification of 
Ex(p) (4.2 Theorem and 4.4 Theorem). We can identify K~:/L C with a dosed 
KC-orbit in some ~"~ (cf. the proof of 4.4 Theorem) and obtain a linearly 
equivariant holomorphic embedding lp:Ex(x)-~ll2 "~. Let ~)2:X----~ n2 be a 
K-equivariant extension of ~p (2.3 Lemma). Note  that ~b2(xo) is a totally real 
K-point. The group K C acts diagonally on C"=~"1 x lIT 2. By construction, the 
holomorphic K-map q~ : X ~ C " ,  tk(y)= (~bl(y), ~b2(y)) is an immersion at Xo whose 
restriction to Ex(x) is injective. 

The orbit K C. q~2(Xo) is a K-complexification of Ex(xo). Hence the equivariant 
projection q : C " ~ C  "2 maps the o r b i t / ~ ,  q~(Xo) = {(g" ~bl(Xo), g" ~b2(Xo)); g ~/C ~} 
biholomorphically o n t o / C  r. ~b2(xo). Thus ~b(Xo) is a totally real K-point. 

It remains to show that K C. ~b(Xo) is closed in C". Assume the contrary is true. 
Then there exists a E K c. ck(xo)\K C. c~(Xo). S i n c e / ~  acts algebraically on C" it 
follows that dimKC.a<dimKC.c~(xo). On the other hand, from q(KC.a) 
CKC'~P2(Xo)=KC'c~2(Xo), we deduce that q(K~=gC.dpz(Xo). Thus d i m / ~ . a  
>_-dimK r ~b2(Xo)=dim/C ~. ~b(Xo). This contradicts d imK r a < K  r ~(Xo). []  

Remark. Using 6.1 Lemma, 5.5 Slice Theorem, and 3.1 Decomposition Theorem, 
one sees that a minimal K-orbit in nx l(nx(X)) is automatically contained in Ex(x). 

6.3 Local complexification 

Let K be a compact Lie group and X a Stein K-space. As in the previous section, 
Bx(x) denotes the smallest analytic K-subset of X which contains the point x e X 
and Ex(x ) is the smallest analytic K-subset of Bx(x). 
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Lemma. Let U be a subset of  X and ck : X ~IE" a linearly equivariant holomorphic 
map which is an immersion along U. I f  for x ~ X there exists Xo ~ U nBx(x) such that 
~b(xo) e E~((a(x)), then it follows that Ex(x ) = Ex(xo) = Bx(xo). 

Proof. Let ~b : X ~ E "  be a l i n e a r l ~ i v a r i a n t  holomorphic map. Then, for x e X, 
(a) c~(Bx(x)) C Bc.((o(x)) = K ~- ~b(x); 
(b) dimBx(x)> dimBr162 
Note that c~(Bx(xo)) is an open subset of E,.(Cb(x)) = K ~ . ~(Xo). For all y ~ Bx(x), 

it follows that: 

dim Bx(y ) > dim Ec.( dp(x)) = dim ck( Bx(xo) ) = dim Bx(xo) . 

Hence Bx(xo) is of minimal dimension in Bx(x). Consequently, Bx(xo)= Ex(xo) 
= Ex(x). [] 

For a Stein K-space X let rrx:X-oX/ /K be the quotient map. We fix a point 
p ~ X / / K  and a minimal K-point Xo ~ Ex(p). Let q~ : X--*~E" be a linearly equivariant 
holomorphic map which has the slice property in Xo, and let U denote the open 
K-neighbourhood of Xo of 6.1 Lemma. The K-subset ~b(U) is then orbit-convex 
and complete, and A = K •. qS(U) is an analytic K*-subset in a ~r,-saturated open set 
in 112". We set 13=Bx(U)= U Bx(y) and denote by z : O ~ A  the restriction of 
~b to O. ~ v  

Theorem on the existence of local complexifieations. The K-subset [7 of X is open 
and ~x-Saturated. The analytic KC-subset A = Kr is a K-complexification of t3 
and z: O ~ A is an open embedding. 

Proof. In order to prove that O is nx-saturated, let z e X  with ~x(z)~Trx(O ) be 
given. We have to show that z ~ 13. 

If Bx(z)nU is non-empty and contained in Bx(u) for some u ~ Bx(z)r~U, then, 
since Bx(u) is by definition a K-irreducible analytic K-set, the identity principle for 
analytic sets implies that Bx(z) C Bx(u) C O. In particular, z ~ O. 

We show that Bx(z)nU is non-empty. For this note that ~x(O)= 7rx(U) (2.3 
Corollary). We choose a x e U such that nx(Z)= ~x(x). Since A = K ~:. ~b(U) is an 
analytic set in a lr,-saturated open subset of ~E ~, we have Ec,(ck(x))CBc,(ch(x)) 
= BA(C~(X)). But x ~ U and ~b(U) is complete, so it follows that E,.(ch(x))C BA(q~(x)) 
= K C ' B ,  tv)(~p(x))= K C" (o(Bv(x)), since ~bl U is biholomorphic onto ~b(U). Conse- 
quently, E~(ck(x))n~(Bv(x)) is non-empty and there is a point zoeBv(x) 
CBx(x)nU such that ~(Zo)eEc4(~(x)). The previous Lemma implies that 
Ex(x)nU4:0. Thus Ex(x)=Ex(z)CBx(z) (2.3) implies that Bx(z)nU is non- 
empty. 

In order to complete the proof of the statement that 0 is ~Zx-saturated it 
remains to show that B x ( z ) ~ ! u )  for some u e Bx(z)n U. For this first note 
that since the boundary R = K �9 ~z)\/Cr~b(z) of K*. $(z) in ~ 7 ~-~j is a (possible 
empty) analytic K-subset of ~ ,  there exists u ~ (Bx(z)\~b- ~(R))n U C Bx(z) n U such 
that ~b(u)~K r  ~(z)n$(U). In particular, it follows that Bc.((o(z))=Bc~(ck(u)) 
= Ba(~b(u)). Together with 3.3 Corollary, this implies that (o(Bx(z)n U)C B~(qS(z)) 
nqb(U)=K c. B,tv)(d?(u))nck(U)=B,tv)($(u))=q~(B~(u)). From this it follows that 
Bx(z)n U C By(u) C Bx(u). 

To prove that 13 is open, let z613 be given. Then B~c(z) 
= Bx(z)\ck- * ( ~ . $ ( z ) \ K * .  ok(z)) is, as a complement of a proper analytic K-subset 
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of Bx(z), a K-connected open K-subset of the K-irreducible analytic set Bx(z). 
Furthermore, B](z)nU is non-empty. Hence there exist y e BOX(z)c~U and k e K  
such that y and k. z are contained in the same connected component of B~ Let 
u:[0,1]--*BOx(z) be a curve with u(0)=y and u(1)=k, z. Note that Ke--*K r r 
g~g .  q~(y) is a bundle map. Thus there exists a curve ~: [0, 1]--*K r such that 
~(0)= 1 and c~(u(t))=V(t). r for t e  [0, 1]. 

The K-action on X can be extended to a local/dr-action, cf. [K 1]. Thus in a 
relatively compact neighbourhood Ur of u([0,1]) the operation t--.V(t).w, 
t e [0,1], w e U r, is well defined, cf. [H 2]. If U o C U is a small neighbourhood of y, 
then V(1). Uo is a neighbourhood of k. z which is contained in Bx(Uo)C/~. Thus 
z e k  -1 .V(1). Uo( t ) .  This proves that t) is open. 

Recall that the holomorphic Ke-space A = K r r is a K-complexification of 
tk(U). Since z l U: U~c~(U) is biholomorphic, A is a K-complexification of I~ (1.4 
Lifting Lemma). Since X is a Stein space, it follows, by the definition of a 
K-complexification, that i is an open embedding. [] 

6.4 The categorical quotient for linear actions 

Let K be a compact Lie group and Q:K~GL(IE ~) a continuous representation 
which we always assume to be unitary. Let ztn: I I : ~ / / K  denote the correspond- 
ing quotient map. The finitely generated algebra C[zl  . . . .  , zn] K defines an affine 
algebraic variety which will be denoted by Z. 

A set of generators of r  . . . . .  zn] K defines a surjective map P : C ' ~ Z ,  such 
that rc~-l(n~(z))= P-~(P(z)) for all z ~ II~ ~. Since Z is a normal variety, the complex 
space associated to Z is a normal complex space [Z, S, p. 320]. Let (9 z be the sheaf 
of germs of holomorphic functions on Z. Since P:ffA~--*Z i.s an invariant 
holomorphic map, there is a bijective continuous map/~: C~//K ~ Z  such that the 
diagram 

ff~"//K t, ' Z 

commutes. 

Lemma. The map P is homeomorphic. 

Proof. It follows from 5.5 Slice Theorem that for all open subsets Q c Cn//K the 
map ~e: n;I(Q)--*Q, ~Q=~n [~-I(Q) is quasi-proper. In particular, C~//K is a 
locally compact Hausdorff space. Since p-l(/~(p))= {p} for p ~ n / / K ,  it follows 
that there exists an open neighbourhood Q of p and a connected open 
neighbourhood W of P(p), such that/~Q : Q ~ W, PQ = P [ Q is a finite map. Since 
PQ: ~-I(Q) ~W,  PQ= P I~2 I(Q) is quasi-proper, PQ(Tt~ I(Q))=p(Q) is an analytic 
subset in W (see, for example, [G 2]). But W is a connected normal space, so we 
obtain PQ(Q)= W. This proves that P is open at p. [] 

Remark. The map K e x Lr V ~ C  n, [g, v] -~g. (a + v) in 5.5 Slice Theorem induces an 
algebraic map V//K~ff~n//K which maps a neighbourhood of ~v(0) topologically 
onto a neighbourhood of ~n(p) (Slice Theorem and Lemma). Thus the map 
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V/ /L~C"/ /K  is biholomorphic at roy(0 ). Hence one obtains the Slice Theorem of 
Luna as formulated in [Lu 1] for the ground field C. 

Theorem. The categorical quotient (~"//K, d)~,) is a Stein space. 

Proof. We identify Z = P(r and ~"//K as topological spaces. Now we repeat the 
arguments of Luna in [Lu 3]. For an open subset Q of ~"//K let ~(Q) denote the 
Frech6t space of continuous functions on Q. One can identify Cg(Q) with the closed 
subset c~(~- l(Q))X of cg(n~- a(Q)) (cf. 2.3 Corollary 3). Thus Cgz(Q) is a closed subset 
of O~,(Q) c if(Q). For a local linear slice D at a totally real K-point a ~ Ex(p) where 
p e r  one can identify the algebra of Ka-invariant holomorphic polynomials 
on O with a dense subspace of Oz(~,(D)). Since d~,(K ~:. D)K~ (gD(D) K", it follows 
that dJz(rc,(D)) ~ (9~(n,(D)). Consequently, Oz ~- d~,,. []  

This theorem will now be applied to orbit-convex complete K-subsets of IIY. 

Proposition. Let U be an open orbit-convex complete K-subset of ~". Then for an 
analytic K-subset X in U it follows that 

(i) n,(X) is an analytic subset in the open subset r~,(U) of ~"//K. 
(ii) The inclusion X ~ U  induces an isomorphism of the C-ringed spaces 

(X//K, ~ )  and (rc,(X), ~,~x)). In earticular, (X//K, Oxx) is a complex space. 

Proof. Recall that X is an open K-subset of the analytic K-subset A = K ~. X of 
0 = K e .  U (3.3 Proposition). Moreover, O is a z,-saturated open subset in ~" (5.3 
Lemma). Thus Q = rc,(O) = ~,(U) is an open subset in ffY//K. We set .~ = rc~- 10t,(A)). 
The remainder of the proof  will be carried out in three steps. 

1 n,(X) is an analytic subset in n,(U). Since C"//K is a complex space, we can cover 
Q = n,(U) with open Stein subsets Q,. Note  that 0 ,  = n~-~(Q,) is holomorphically 
convex. Hence { 0,} is a covering of 0 with open Stein subsets. Let J denote the 
sheaf of ideals of the analytic subset A = K C. X of 0.  Since 0 ,  are open Stein sets, 
we have A~=Ac~O,={ze 0~; f ( z ) = 0  for all f e J (O~)} .  

Since every closed K~-orbit in r is contained in A (2.3 Corollary 3), it follows for 
g,=.,~nU,=n~l(rc,(A,)) that ~ , = { x e O , ;  f ( x ) = 0  for all f e J ( O , )  K} (2.3 
Lemma). In particular, n , (X)= n, (~)= U r~,(A,) is an analytic subset in 7r,(U). 

at 

2 The inclusion j: A ~  induces an isomorphism f o f  the IE-ringed spaces (A//K, (9~) 
and (rr,(r O~.~a)). Let p be a point in A//K and x a totally real K-point in Ea(p). 
Since A is closed in the ft,-saturated set .~, we have Ea(p) = Ex(x) = Ec,(x). For every 
open neighbourhood Q of p e A / / K  one has ~rj~(Q)=Ac~U for an appropriate 
open subset 0 in IE". There exists a local linear slice D at x which is contained in/7 
(see 5.5 Slice Theorem). Then, for such a D, rra(Ac~D) is an open subset in A//K. 
Since j-~na(Ac~D)) = n,(Ac~D) = n,(g)n~r,(D), it follows that ]-is a homeomorphism. 

Let (~ be an open Stein subset in n,(O) C tE"//K. Since every closed Kr in z] 
is contained in A, the restriction Oa(gc~r~-~((~))~d~a(A~rt~'a(Q)) x is injective 
and, because (~ is a Stein subset of n,(0), it is also surjective (2.3 Lemma). From 
d~,~a)(~,((,~)n(~ ) = ~a(,~nn~- *(~))K it follows d~,~a ~-  d~. 

3 The inclusion ~ : X ~ A  induces an isomorphism Fof the if>ringed spaces (X//K, ~ )  
and (A//K, O~). The map [is a homeomorphism (cf. second part of the proof). Let 
W be an arbitrary ha-saturated open subset of A. Note that W n X  is orbit-convex 
(3.2). Since K r  (3.3 Corollary) the map [ : O ~ F O ~  is an 
isomorphism. []  
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6.5 Hilbert's Theorem for Stein spaces 

Let K be a compact Lie group and X a Stein K-space. Then the IF-ringed space 
(X//K, (P~) is a Stein space. 

Proof. Since (X//K,(9g) is a complex space (6.4 Proposition and 6.3 Local 
Complexification), it remains to show that X/ /K is a Stein space. But this is 
obvious, because, if (PR) is a discrete sequence in X//K,  then (re x l(pk) ) is a "discrete" 
sequence of analytic K-subsets of X and consequently there exists a function 
f e  O(X) r such that f [ nx l(Pk) = k (2.3 Lemma). []  

Remark. Using 6.3 and the coherence result of Roberts I-R], one can also see that 
(X//K, (P~) is a complex space. Moreover, Roberts arguments along with 6.3 can be 
used to prove analogous coherence results for Stein K-spaces. 

6.6 Complexification of Stein spaces 

Let K be a compact Lie group and X a Stein K-space. As before, we denote by nx 
the quotient map X ~ X / / K .  We now show that the local complexifications 
constructed above can be patched together. 

Complexifieation Theorem. For every Stein K-space X there exists a 
K-complexification X r which has the following properties: 

(i) X is an open orbit-convex complete Runge K-subset of X c. 
(ii) The inclusion X ~ X  e induces an isomorphism of the quotients X / /K  and 

Xe//K. For the quotient maps one has (rtx) r nxr 
(iii) I f  Q is a locally analytic subset in X//K,  then K r ZCx~(Q)=~ I(Q) is a 

K-complexification of ~ x l( Q). 
(iv) The K-complexification X r is a Stein space. 

Proof. First, we summarize the consequences of the Theorem on the Existence of 
local Complexifications. There exist: 

(1) a covering {U~} of X where U~ are open ~x-saturated Stein subsets of X, 
(2) linear K-actions on appropriate 112 n- and analytic Ke-subsets A~ in 

rc~-saturated open subsets of IFn,, where ~ denotes the quotient map IFn~IFn~//K, 
and 

(3) orbit-convex open K-subsets Y~ of A~ with A~ = K ~. Y~ and biholomorphic 
K-maps tk~: U ~  Y~. 

We can define K-spaces Y~p= Ypc~bp(U~c~tk~x(Y~)) and A ~ = K  e.  Y~p. The 
K-spaces Y~a are orbit-convex open K-subspaces of A~p, i.e. A~p is a 
K-complexification of Y~a (3.3). The map l~p : Y~p~ Ya~, z~a = ~b~ o ~b~l[ Y~a extends 
uniquely to a holomorphic K-map z~ : A~p~Aa~. Note that ~e is biholomorphic 

with inverse z~. The holomorphic KC-space X e =  U A~/(t~p) contains the open 
K-subset U YJ0~p) which will be identified with X. Since the K-subsets Y~ of A~ are 

~t 

orbit-convex and complete, this is also the case for the K-subset X. From 
K e.  X = X e, it follows that X e is a K-complexification of X (3.3). 

We prove that X e is a Stein space. For this, let {z,~XC; n ~ N }  be a discrete 
subset in X r Since X/ /K = Xe//K is a Stein space, we can assume that the sequence 
(nex(zn)) converges to p ~ X//K. There exist a linearly equivariant holomorphic map 
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~ b : X ~  m and a rex-Saturated open neighbourhood U of Zrxl(p) such that 
A = h e .  ~b(U) is an analytic subset in a nm: ~ m ~ " / / K  saturated open subset of 
tEm. Furthermore, the extension ~bC:Xr " of 4, restricted to h e . U  is 
biholomorphic onto A (6.2). Replacing (z,) by a subsequence, we can assume that 
{~b(z~); nelq} is a discrete subset of ~E ~'. Since IE" is a Stein space, there exists a 
fetV(tE m) such that I(foqbe)(z,)l=n for all n e N .  This proves that X e is 
holomorphically convex. The same argument applied to a set consisting of two 
points of X r shows that X r is holomorphically separable. This implies that X r is a 
Stein space. 

The Runge property of X in X r is a consequence of 3.4 Theorem. []  

6.7 Applications 

In the sequal K denotes a compact Lie group. 
(a) Let X be a Stein K-space and assume that (9(X)K= r Then, of course, 

X//K = {p}. If x is a totally real K-point in Ex(p), then X ~: is a closed analytic 
K-subset in the Kr bundle K C • Lr T~X where L is the isotropy group of K 
at x. Thus X r = K c • Lc Y, where Y is a closed L-subset of the L-vector space TxX 
through 0e  T~X. Note that K . x  is identified with K/L=K.  [1 ,0 ]cX r If one 
assumes that X is a contractible topological space, then we have H.(K/L, Z)= 7Z, 
for the homology ring. This implies L = K and consequently X is an open subset in 
Y which contains 0. In particular, if X is smooth, then Y= TxX and X is a domain 
in T~X which is invariant under the linear K-action on TxX. 

(b) Let X be a connected Stein K-manifold and assume that the set X K of 
K-fixed points is non-empty. If there exists x e X  such that d~(Vx)K=C for the 
K-invariant normal space at x to X K, then X r is the normal bundle to the 
submanifold X x of X, cf. [H 3]. 

(c) Let X be a Stein Sl-manifold and assume X sl =0. Then locally X is an open 
subset of the vector bundle II~* x zmV where Zm= {tsS1; t m= 1}. Hence X r is a 
Seifert C*-principal bundle over X/IS 1. The singularities of X//S 1 are given by 
finite quotients with respect to cyclic groups. 

(d) Let M be a compact subgroup of the unitary group U(C") which contains 
the transformations S={t.idr teS~}. If U is an M-invariant domain of 
holomorphy in II~" which contains the origin, then IE"=M e. U is an 
M-complexification of U. But then U is orbit-convex with res~pect to any compact 
subgroup K of M (3.2). For such a group it follows that K ~. U is a domain of 
holomorphy. 

In order to give a concrete example, let U be the m-fold product of 

Uo= ~ZE(  z~ z2); <Z.w,Z.w><l[wll 2 for all W6C2\{0}} and M the m-fold 
\z3 z4/ 

product of U(~ 2) x U(tE2). The group K=SU(ff~ 2) x SU(r  2) can be embedded 
diagonally in M and with respect to the diagonal action it follows that K r U is a 
domain of holomorphy. This is a "compact" version of the future tube 
example (1.5). 

(e) Let X be a real analytic K-manifold, i.e. the action K x X ~ X  is a real 
analytic map. From the result of Grauert [G 1] applied to the map K x X ~ X  it 
follows that there exists a Stein K-manifold 37 which contains X as a totally real 
K-submanifold. By the Complexification Theorem, there exists a holomorphic 
Stein manifold X r which contains X as a totally real K-submanifold. Since X is 
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totally real, the Kr through the points of X are closed. The quotient X/K is 
a real semi-analytic subspace of X•//K. 

From the Embedding Theorem in [H 1] it follows that: 
There exists a linearly equivariant closed real analytic embedding of X into some 

•N if and only if the K-orbit type of X is finite. 
At this point it should be noted, that the Einbettungssatz 2 in [H 1] is not 

corrected stated. It  says that a holomorphic Stein KC-manifold can be linearly 
equivariant embedded if and only if the Kr type is finite. But finiteness of the 
K~Lorbit type is only a sufficient condition. The necessary and sufficient condition 
is finite K-orbit  type. I t  is easy to see that this condition is necessary [J]. On the 
other hand, the finiteness of the K-orbit  type implies finite Slice type and this 
implies the existence of a linearly equivariant embedding of a holomorphic Stein 
K*Lmanifold (this, in fact, is proved in [-H 1]). 

(f) Let Y be a holomorphic KC-space and tk: Y ~ R  a K-invariant  strictly 
plurisubharmonic proper function. Let O(~b) = {x ~ Y; tk(x) < 1). Then K C. D(~b) an 
open Stein Kr of Y. 
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