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Actions of complex reductive groups of holomorphic transformations on complex
spaces can often be studied by means which are very close to those of geometric
invariant theory. For example, if the complex reductive group G is acting on a
Stein space, then the fibers of the categorical quotient are affine algebraic and G
acts on them in an algebraic fashion [S].

Our goal here is to present results on actions of compact groups of
holomorphic transformations on Stein spaces which also can be applied in
situations where there are no actions of complex groups, e.g. bounded domains.
The essential ingredient is the

Complexification Theorem. Let K be a compact Lie group and K® a complexifica-
tion of K. If K acts on a reduced Stein space X, then there exists a complex space
X with a holomorphic action K€ x X€— X® and a K-equivariant holomorphic map
1: X - X with the following properties:
(i) 1: X>XT is an open embedding and 1(X) is a Runge subset of X such that

K® i Xx)=XT.

(ii) XT is a Stein space.

(iii) If ¢ is a K-equivariant holomorphic map from X into a complex space Y
on which K% acts holomorphically, then there exists a unique K%-equivariant
holomorphic map ¢®: X%—Y such that the diagram

X & x€
A
Y
commutes.

The complexification X of a Stein space with a fixed K-action is uniquely
determinated up to K€-equivariant biholomorphisms. The property (iii) can be
viewed in a slightly different way. Since K is a compact Lie group, every
holomorphic function on X can be expanded in a Fourier series with respect to the
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action of K. The summands are K-finite holomorphic functions on X which
automatically extend to K®-finite holomorphic functions on X% Thus X% is a
natural domain of definition of the K-finite holomorphic functions on X. The
simplest K-finite functions are the invariant ones. They form a subalgebra O(X)X of
the algebra #4(X) of K-finite holomorphic functions on X. Associated to O(X)¥ is
the categorical quotient X//K, i.e. the quotient of X with respect to the equivalence
relation

R={(x,y)e X x X; f(x)=f(y) for all fe O(X)*}.

Let ny denote the quotient map. The correspondence Q—0(nx *(Q))* defines a
sheaf 0% on X//K so that (X//K, 0%) is a C-ringed space. In fact, more is true. In
Sect. 6.5 we prove the following

Quotient Theorem. Let X be a reduced Stein space equipped with an action of a
compact Lie group K. Then the C-ringed space (X//K, 0%) is a Stein space.

This is a generalization of the result in [H 21, where it is proved for normal Stein
spaces. The main point here is that the open embedding : induces an isomorphism
of the categorical quotients X//K and X%//K. Moreover, the diagram

X — XC
ﬂxl l nx
X//K - X%//K

commutes.

In fact, the complexification X is constructed as a sort of twisted fiber space
over X//K. In order to do that, a local version of the Complexification Theorem is
proved in Sect. 6.3. This result can be thought of as a Slice Theorem for an action of
a compact Lie group on a Stein space. A simplified version is the following

Linearization Theorem. Let K be a compact Lie group which acts on a Stein manifold
Y and fix a point p in Y//K. Then there exist a point acny'(p), an open
neighbourhood Q of p and an equivariant open embedding ¢ of my (Q) into a
homogeneous vector bundle N = K% x x&C" such that ¢ induces an open embedding
¢//K of Q into N//K=T"//K,.

One important step in the proof of the Linearization Theorem is to find such a
distinguished point a in the special case where Y is locally K*-homogeneous. For
applications of the Complexification Theorem see the last section.

1 Actions of real Lie groups and complexifications
1.1 Spaces with a group action

Let G be a Lie group. A topological space X together with a group homomorphism
o from G into the group of topological self maps of X is called a G-space if the
action G x X > X, (g, x)—g(g)(x) is continuous. We often write g - x for g(g)(x). For
a subset U in a G-space we set G- U={g-u; geG, ueU}.

A subset U of a G-space is called a G-subset or G-invariant if G- U =U holds. If
U is a G-subset of a G-space X, then also the topological closure U of Uin X is a
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G-subset. For a point x in X the G-set G - x=G - {x} is called the G-orbit through x.
The isotropy group G, at x is the subgroup G,={geG; g-x=x} of G.

The set of G-fixed points of a G-space X will be denoted by X¢. Note that
X%={xeX; G -x={x}}={xeX; G,=G}.

Let H be a Lie group and t: H— G a continuous group homomorphism. Then
every G-space X is viewed as a H-space. The H-action is given by (k, x)—o(t(h))(x).
The group G itself is a G-space with respect to the group multiplication G x GG,
(g, x)—gx. In this case we speak about the G-space G without specifying the action.
With respect to any subgroup H of G the group G is a H-space.

The quotient of a G-space X is the set X/G={G - x; xe X} endowed with the
quotient topology. The G-space X is called G-connected if the quotient X/G is
connected. An open G-connected G-subset U of X will be called G-domain. If the
group G is connected then an open G-subset in X is a G-domain if and only if it is
connected.

Remark. If we write G/H where H is a subgroup of G, then, unless otherwise
mentioned, G/H will be the space {gH; g€ G}. So we let H act on G by H x GG,
(h,g)—gh™ 1.

A map ¢:X—Y between two G-spaces is called a G-map or equivariant, if
P(g-x)=g- ¢(x) for all ge G and xe X.

1.2 Complex spaces with a group action

Let G be a Lie group. A complex G-space X is a reduced complex space X with
countable topology which is a G-space such that for every ge G the map X - X,
x—»g - x is holomorphic. The action G x X — X is in this case a real analytic map
(see [K 1]). A complex G-space X is called holomorphic if G is a complex Lie group
and if the action G x X —» X is holomorphic. In this case the isotropy groups are
closed complex subgroups of G.

A locally analytic G-subset of a complex G space X is a G-subset of X whichisa
locally analytic subset of X. If the locally analytic G-subset is closed in X, then it
will be called an analytic G-set. An analytic G-set A in X is called G-irreducible if
there exists an irreducible analytic component 4, of A such that G- A;=A4.Fora
connected group G the notions G-irreducible and irreducible coincide.

Complex G-manifolds are by definition complex G-spaces without singular
points. Note that the set of singular points of a complex G-space is always an
analytic G-set.

The set of holomorphic maps from a complex G-space X into a complex
G-space Y is denoted by Hol(X, Y). Endowed with the compact-open topology,
the set Hol(X, Y)is a G-space. The action is defined by (g - f)(x)=g - f(g ™' - x). The
set of G-fixed points is in this case denoted by Hol;(X, Y). Thus an element in
Holgz(X, Y) is a holomorphic G-map from X into Y.

Every complex space Y can be viewed as a G-space with the trivial action which
is givenby g- y=yforallge G and y € Y. The set of G-invariant holomorphic maps
from X into Y is then Holg(X, Y). For the algebra O(X)® of invariant holomorphic
functions on a complex G-space X we have 0(X)¢=Holg(X,T), where € is
endowed with the trivial action.

A linearly equivariant map on a G-space X is a G-map from X into some
complex vector space V of finite dimension, where the G-action on V is given by a
continuous representation of G into the general linear group GL(V).
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A Stein space which is an open subspace of a complex space Y is called an open
Stein subset of Y. The meaning of notions like Stein G-domain is evident.

A holomorphic map ¢: X —Y of complex spaces is called immersive along a
subset S of X if ¢ is an immersion at every point x € S, i.e. to every point xe S there
exists an open neighbourhood which is mapped biholomorphically by ¢ onto a
locally analytic set in Y. For a G-map ¢ of G-spaces X and Y the set of points in X
where ¢ is an immersion is a complement of an analytic G-subset in X,

We shall make repeated use of plurisubharmonic functions on complex spaces.
In order to avoid technical difficulties these are always assumed to be
differentiable.

1.3 Complexification of a Lie group

Every real Lie algebra g determines a complex Lie algebra g*=g® C. A com-
R

plexification can also be constructed on the group level, cf. [Ho]:

Let G be a real Lie group. A complex Lie group G* together with a continuous
group homomorphism 1: G—G¢ is called a complexification of G if for a given
continuous group homomorphism ¢ from G into a complex Lie group H, there
exists one and only one holomorphic group homomorphism ¢ from G®into H
such that the diagram

G5 Gt

NV
H

commutes.

A complexification is unique up to biholomorphisms. Every Lie group is
already real analytic and in the above definition the maps 1 and ¢ can be assumed
to be analytic.

The construction of G® can be found in [Ho], at least for connected groups. If
the group G is not connected then G can be identified as a G-space with G x ¢, G,
where G, denotes the connected component of the identity of G. Finally, G®can be
identified in a natural way with the G-space G x 4, G¥. It is straightforward to
define a complex Lie group structure on G® and to check the above universality
condition.

Remark. In general the map 1: G—G? is not injective. For the universal covering
group G of SL(R?), the complexification GT is equal to SL{C?) and the kernel of
1: G—GY is isomorphic to Z.

We often make use of the following identity principle.

Identity Theorem. Let H be a closed complex subgroup of G€ and let U denote an
open subset in GX/H. Let x be a point in GY/H such that the G-orbit G - x intersects
every connected component of U. Then
(i) every holomorphic function f on U such that f|G-xnU =0 is identically
zero on U, and
(ii) the only analytic subset of U which contains G-xnU is U.

Proof. The construction of G¥implies that the real tangent space of a G-orbit in G©
generates the complex tangent space of G<. Since G®=G - G¥, the Identity Theorem
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holds for H={1}. Applying this to =~ *(U), where n: G*>G®/H is the canonical
projection, we obtain the desired result. []

Corollary. Every holomorphic G-map of holomorphic G%-spaces is a G%map. In
particular, 0(GH%=0(GH** =C. O

The G-orbit of a point x in a G®-homogeneous complex space X is in general
not a totally real submanifold. However, dimg G - x = dim¢G® - x =dim¢ X.

Example 1. The manifold €*\{0} is homogeneous with respect to the linear action
of GL(C"), which is the complexification of the unitary group U(C"). The orbits of
U(C") are the (2n— 1)-dimensional spheres.

Example 2. The manifold SL(C2/H where H= {(8 t?l); teC\{O}} is a

complex SU(C?)-space. The SU(C?)-orbit of p = H in the manifold SL(T?)/H is the
totally real submanifold SU(C?)/S. Any other SU(T?)-orbit in SL(C?)/H is a real
hypersurface.

1.4 Complexification of a group action

Let G be a Lie group and X a complex G-space. Let G be a complexification of G.

A holomorphic G®-space XT together with a G-map 1 from X into XTiscalled a
G-complexification of the G-space X if to every holomorphic G-map ¢ from X into
a holomorphic G%-space Y there exists one and only one holomorphic G*-map ¢
from X% into Y such that the diagram.

X 5 XC©

s\, /o
Y

commutes.

A G-complexification X% of a complex G-space is unique up to biholomorphic
G®-maps. Therefore, provided it exists, we shall refer to the G-complexification
of X.

Example 1. Let X be a holomorphic GT-space. If it is viewed as a complex G-space,
then the G-complexification of X is X itself (Identity Theorem). A special case of
this fact is a compact complex G-space X. Then the group Aut(X) of
biholomorphic automorphisms of X is a complex Lie group and consequently X is
its own complexification.

In contrast to this one can also complexify a compact complex torus X of
dimension n also as a real Lie group. In this case one has XC=(C*)".

Example 2. The disc 4={zeC; |z| <1} is a complex S*-space with respect to the
linear S*-action on €. The S*-complexification of 4 is C.

More generally, one can show that the (S*)"-complexification of a holomorphi-
cally convex Reinhardt domain U in € is UC=(C*)"- U=(C* xC" ™.

Let G be a Lie group. As an immediate consequence of the Identity Theorem
(1.3) one obtains the
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Lifting Lemma. Let U be an open G-subspace of a complex G-space X. Assume that
U intersects every irreducible component of X and furthermore that there exists a
G-complexification UC of U such that the corresponding map 1,: U—UT can be
extended to a holomorphic map 1: X - U®, Then U® with the map 1: X -»U% is a G-
complexification of X. [J

1.5 Extension of equivariant maps

Let X be a G®-space. For a given point x€ X let b,: G*— X, b,(g) =g - x denote the
orbit map. A G-subset U of X is called orbit-connected if b; }(U) is a G-connected
subset of GT for all xe X.

Note that we have b, J(U)=b; '(U)- g~ ' forallge G®and x € X. In particular,a
G-subset of the GC-space GC is orbit-connected if and only if it is G-connected.

Extension Lemma. If U is an orbit-connected open G-subset of a holomorphic
G®-space X, then G- U with the inclusion 1: U—-G®- U is a G-complexification of
U.

Proof. Let Y be a holomorphic G®-space and ¢ a holomorphic G-map from U into
Y. We define the extension ¢ by the rule ¢%(g - x)=g - ¢(x). If this defines a map
¢%:G®- U—Y, then it is automatically a holomorphic G®-map.

For a fixed point x € U we set U, =b_ '(U), where b, denotes the orbit map. It
follows from the Identity Theorem (1.3), that the holomorphic G-maps

v,:6G5-Y,  gog-¢x),
v:U,~Y, g—d(g-x)

are equal on U,.
Let now y be a point in G®- U such that y=g, - x, =g, - x, for some g;e G®and
x;eU. Then g; ' -g, €U, and from the above it follows that

g P(x)=g8;(82' " 81) d(x)=g," gz '-g-x)=g, d(x;). O

Future tube example. Let €22 denote the vector space of complex 2 x 2-matrices.
Let ¢, > be the usual Hermitian inner product on €2. For a matrix Z e €C>* 2 define
the adjoint Z*e €22 by (Z-v,w) ={v,Z*-w) for all y, we €%

The domain U=<ZeC**?%; —1—_(Z*—Z)-v,v >0 for all veC*\{0}; in a
2i

SI(C?)-domain in €>*? where the SL{C?)-action on €*>*? is given by the map
SI(C?*) x C**2-»C?*2, (g, Z)—»>gZg*. The complexification of the real Lie grou
G=SI(C? is the complex Lie group GC=SL(C?)xSL(T? and 1:G-G",
1(g)=(g, g*) is the corresponding map. Conseguently, the G-action on €**%is a
restriction of the holomorphic G%-action G x C**2-C>*2, (g,h, Z)—>gZh™*.
The so called m-fold future tube is the m-fold product U™ of the domain U
equipped with the diagonal G-action, i.e. g-(Zy,...,Z,)=(8Z,g%, ....,gZ,g*). The
G-domain U™ is an orbit-connected subset of (C2*?)™, see [S, W, p. 91]. Hence
G®. U™ is a G-complexification of U™. It should be noted that it is not known if
G®. U™ is a domain of holomorphy.

Remark. There exist domains of holomorphy in €2 invariant under the linear
action of SL(R?) such that the SL{R?)-complexification is €*\{0}.
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2 Linearly equivariant maps
2.1 Vector spaces of equivariant maps

Let G be a Lie group and X a complex G-space. The group G acts linearly on the
vector space O(X) by g-f=fog~'. A holomorphic function f on X is called
G-finite if the orbit G- f={f-g~!; ge G} is contained in a G-invariant linear
subspace of O(X) which is finitely-dimensional.

Let ¥ be a finite-dimensional linear G-subspace of @(X) and V"’ the dual vector
space. By duality, G-acts lmearly on V', (g- A(f)=Ag~'-f). The holomorphic
map A4: X -V, A(x)(f)=f(x) is linearly equlvarlant With respect to a basis of V’
whichis dualtoabasis { f}, ..., f,} of V the map A is given by A(x)=(f(x), ..., f,(X)).
On the other hand, the components of a linearly equivariant holomorphic map
from X to €" are G-finite holomorphic functions on X.

2.2 Fourier series

Let K be a compact Lie group and X a complex K-space. Every continuous
representation g : K —GL(V) of K in a finite-dimensional complex vector space V'is
unitary with respect to a K-invariant Hermitian inner product on V. Let K denote
a complete system of irreducible unitary representations of K. For ¢: K—GIL(V)in
R we consider GL(V) as an open subset of E(V)=Homg(V, V) The formula k- 4
= Ao g(k™ ') defines a linear K action on E(V).

Let u be a Haar measure on K which is normalized by u(K)=1. We write
dk = du(k). The composition of the linear map P(g): O(X)—Holi (X, E(V)),

P)(f)=fo=d(o) [ (k-f)e(k™ Nk,

where d(g) denotes the dimension of V, with the trace function Tr: E(V)—Cis a
continuous projection

P O0X)—>0X), pff)=Trf,

which depends only on the equivalence class of the representation g, see [W,
p. 260].

The series Y, Trf, is called the Fourier series of f. A general result of Harish-

ek

Chandra statés that the Fourier series of fe®(X) converges in the topology
of O(X) to the function f [W, p. 260].

For later applications we need a more precise statement in our special situation.

For this let || ||, denote the K-invariant norm on E(V) which is associated to the
Hermitian product {4, B),=Tr(4 - B*) on E(V), where B* denotes the adjoint of

BeE(V). For a subset C, of X and ge®(X) set |g|,= sup lg(x)| and
”g”g a= suP ”gq(x)“q xeCe

Fourier Theorem. Let K be a compact Lie group and X a complex K-space. Let {C,}
be a covering of X with relatively compact open subsets. Then for every fe 0O(X)
and o the series Y d(o)llfll,, is a convergent majorant of the series

ek
Zi( ITefl,. F urtherm;re, f= Y Tif,
Qe eek
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Proof. The proof of the theorem is the same as the corresponding proof in [W,
p. 260], if one use the estimate

Tt fol < d(@) 11 f l,
=d(e)c(@) ™1™ (M.«
S d(e)c(e)” ™2™ (fas
where Q and c¢(p) are defined as in [W]. [

Example. Let X be a Reinhardt domain in €", i.e. a domain in C" which is invariant
under the linear (§')"-action on €" which is given by the representation

SY>GLCY,  (ty..t)— (t(; ?) ., test.

In this case the Fourier series of fe ((X) coincides with the usual Laurent series

f= 5 fur = | emf)r.
meln (SHym

It follows that f,(t-z)=t™-f,(z) for all te(S')", ze X, meZ". Hence, f,, is an

eigenvector of the linear map e;: O(X)—»0(X), ¢;=z;—, j=1, ..., j, with the

! 0z;
eigenvalue m;, m=(m,, ...,m,). Consequently, for Q: (9(X)—>(9(X) Q=1+ Z e,

one has Q(f,)=(1+ l|m||2) £.., where we set ||m|?= Z m?. For C, € X it follows

from Qf)z)= [ ™ Q)™ z)dt that =t

sy
* m a Q m, rl—- Q a”
The estimate (*) implies the convergence of the series Y f,,.

meln

Let K be a compact Lie group and X a complex K-space. By #(X) we denote
the algebra of K-finite holomorphic functions on X. Since every summand Tr f, of
the Fourier series is a K-finite holomorphic function on X, the Fourier Theorem
implies the following

Corollary. Let X be a complex K-space.
(i) If O(X) separates the points of X, then F(X) also separates the points of X.
(i) If O(X) defines local coordinates at a point x€ X, then F¢(X) also defines
local coordinates at x. []

In particular, for a Stein K-space X, the linearly equivariant holomorphic maps

on X separate points and for a given point x € X there exists a linearly equivariant
map on X which is an immersion at x.

2.3 Invariant functions

Let K be a compact Lie group and X a complex K-space. As we have explained, the
Fourier series of a holomorphic function has summands which are given by
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linearly equivariant maps. The simplest equivariant maps are the invariant
functions. Associated to the algebra O(X)* of invariant holomorphic functions is
the equivalence relation

R={(x,y)e X x X, f(x)=f(y) for all fe AX)*}.

The topological quotient of X with respect to R will be called the categorical
quotient of the K-space X and is denoted by X//K. The space X//K is a Hausdorff
topological space. The quotient map from X onto X//K is denoted by =.

For the further study of the quotient X//K we need a simple property of the
invariant functions. We formulate this more generally for linearly equivariant
maps.

Let the compact Lie group K act linearly on ", i.e. there is given a continuous
representation of K into GL(C"). A holomorphic map ¢ : Y- X, where X, Y are
complex K-spaces, induces a linear K-map ¢*: Hol(X, €")—Hol(Y, €C"), where the
K-action on Hol(X, ") is defined by (k- f)(x)=k-(f(k~*!-x)). The K-action on
Hol(Y, C") is defined analogously. In particular, ¢* maps the vector space
Hol (X, T") into Hol(Y, C"). Hence it preserves the linearly equivariant maps.
With this notations one has the following

Lemma. If ¢*:Hol(X,C"—Hol(Y,C" is surjective, then ¢(Holg(X,T™)
=Holg (Y, C").

Proof. For geHoli(Y,C" and feHol(X,C") such that g=¢*(f) one has
g=¢*(f), where feHolg (X, C" is defined by integration over the compact group,

f@={k-NHxdk. O

K

This lemma reflects the special nature of compact transformation group.

1
2. The restriction r: (C*)— O(Y), for Y={(0, y); y € €} is surjective. But one has
rO@HH=C+0(Y)=0(Y)".
In the following corollaries (cf. [H 2]) we denote by K a compact Lie group and
by X a Stein K-space. Let ny: X = X//K be the quotient map.

Corollary 1. If pe X//K, then O(Y)*=C for all analytic K-subsets Y Cnyx (p).

Proof. This follows from Theorem B for Stein spaces and the Lemma. [J

1
Example. The representation C—GL(C?), t— <t 0) defines a linear action on

For a point pe X//K let E,(p) denote the intersection over all non-empty
analytic K-subsets which are contained in ny !(p).

Corollary 2. The analytic K-subset E(p) is non-empty for all pe X//K. Moreover, if
Y is a K-irreducible analytic K-subset of X, such that YNEy(p)=+0, then either
Y=E(p) or dimg Y >dimgE«(p).

Proof. It follows from Corollary 1 that an analytic K-subset D(p) of =y '(p) of
minimal dimension is K-connected and smooth. If Y is a non-empty analytic
K-subset of ny !(p), then the assumption YNAD(p)=90 leads to the contradiction
O(YuD(p))X + C. Hence, one obtains D(p)=Ex(p). O

For xeX let By(x) denote the smallest analytic K-subset of X which
contains x.
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Corollary 3. For x,yeX it follows that myx)=mny(y) if and only if By(x)
NBy(y)*90. O

Let 0% be the sheaf on X//K which is defined by the correspondence
Q—Ox(mx Q).

Corollary 4. The pair (X//K, 0%) is a €-ringed space. The map ny: X -X//K is a
morphism of the C-ringed spaces (X, 0y) and (X//K, O%). Furthermore, to every
K-invariant holomorphic map from X into a complex space Y there exists one and
only one morphism ¢//K :(X//K, O%)~(Y, Oy) such that the diagram

x5 x/K

¢\ / éx//K

Y
commutes.

Proof. From Corollary 3 it follows, that every K-invariant holomorphic map on X
is constant on the fibers of ny. In particular, the sheaf ©% can be identified with the
sheaf of germs of continuous functions f on X//K such that oy is holomorphic
onX. [

Corollary 5. Let ¢ be a holomorphic K-map from X into a complex K-space which is
an immersion at x € Ey(p). Then ¢ is an immersion along nx'(p). O

We close this section by remarking that the analytic decomposition of X which
is defined by the fibers of my: X — X//K is the coarsest analytic decomposition of
the Stein space X into analytic K-subsets F with O(F)* =C.

3 Orbit convexity
3.1 Polar decomposition

An invertible complex matrix g e GL(C") can be written as a product of the form
g=k-expv, where k is an unitary matrix and » is a Hermitian matrix. This
decomposition of matrices can be used to introduce polar coordinates on a closed
subgroup G of GL(C") which is stable under the involutive Cartan isomorphism
@ : GL(C")-GL(T"), O(g)=(g*)~*, where g* denotes the adjoint matrix of g with
respect to the usual Hermitian product on C".

The set K={ge G; O(g)=g} of fixed points is contained in the unitary group,
and is therefore a compact Lie group. If we denote by gl(C") the Lie algebra of
GL(C") and by 0: gl(T")—gl(C") the derivative of @ at the identity, i.e. 6(v)= —uv,
then the eigenspace f={veg; O(v)=v} is the Lie algebra of K. Since
it={veg; O(v)= —v}, the sum g={ + it is direct and g = =IQC is the Lie algebra
of G.

Let K be a compact Lie group. As a consequence of the Peter and Weyl
Theorem, there is an embedding g, of K into some GL(C") such that G =gf{(KY) is
stable with respect to © and ¢(K)={ge G; O(g)=g} (cf. [Ch]). It can be shown
that G together with the homomorphism g, : K— G is a complexification of K (cf.
[Ho, p. 207)).

The complexification K€ of a compact Lie group K is an affine algebraic group
which has the following defining property:
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To every continuous representation g¢:K—GL(C™) there exists a regular
representation ¢€: K- GL(C™) such that the diagram

K 5> K°
¢ \ / ¢
GL(C™)
commutes.

Since g€ s a regular map, the orbits of KT on €™ are Zariski open in its closure,
i.e. the topological closure of a K%-orbit in €™ is an algebraic K®-subset of C",
which only contains orbits of smaller dimension in its boundary. Furthermore, one
has o(K)® = ¢%(K?) and ¢%(K%)is a closed subgroup of GIL(C™). The representation
o is injective if and only if ¢% is injective [Ho].

As a consequence of Theorems 3 and 4 in [Mo 1], cf. [Mo 2], the existence of
the special embedding g, : K—GL(C™) implies the following

Decomposition Theorem of Mostow. Let L be a closed subgroup of the compact Lie
group K with Lie algebra 1. Let the group L act on the Lie algebra I of K° by the
adjoint representation Ad:L—GL(IY). Then there exists a L-invariant linear
subspace m of ¥, such that the map K x im—K%/LY, [k,v]-k-expvL® is an
isomorphism of topological K-spaces. [

Remark. Since m is a L-invariant subspace, the linear subspace im of f¥=f+if is
also L-invariant. The K-space K x , im is by definition the quotient of K x im with
respect to the L-action on K xim which is defined by the formula h-(k,v)
=(kh~1,h-v) (see also Sect. 4.3).

The particular case L= {1} in the Decomposition Theorem is called the Polar
Decomposition of the complex reductive group G.

3.2 Convexity of invariant sets

If €" is viewed as a holomorphic (€C*)"-space with (C*)"-action which is given by
(tgseeenty)— <t01 t0> , then the (§')"-domains in €" are called Reinhardt domains.
It can be shown that a holomorphically convex Reinhardt domain U possesses the
following property:

For z=(z,,...,z,)eU and v=(v,,...,v,)eR" such that (¢"'z,,...,e"z,)eU it
follows that exptv - z=(e"'z,, ...,e"z,)e U for te[0,1].

This notion of convexity, which refers only to the orbits, can be carried over to
more general situations. We restrict ourselves to compact Lie groups and their
complexifications.

Let K be a compact Lie group with Lie algebra f and KT a complexification of
K. A K-subset U of a K®-space X is called orbit-convex if for every xe U and ve i
such that expv-xe U, it follows that exptv-xe U for te[0,1].

For later use we note some properties of orbit-convex sets.

Properties of orbit-convex sets. Let K be a compact Lie group and X a K®-space.
Then the following hold:

(i) Every intersection of orbit-convex K-subsets of X is orbit convex.

(ii) If ¢ is a KSmap from X into a K®-space Y, then the preimage of an orbit-
convex K-subset under ¢ is orbit convex.
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(iii) If U is an orbit-convex K-subset of X and L a closed subgroup of K, thenthe
L-subset U of the L:-space X is also orbit-convex.

(iv) A K-subset U of X is orbit-convex if and only if for all compact tori T in K
the T-subset U is an orbit-convex subset of the T -space X.

Proof. The properties (i), (ii), and (iii) are direct consequences of the definitions, so
we only give the proof of (iv). On the one hand, this follows from the inclusion it C if
for every compact torus T of K with Lie algebra t. On the other hand, the
topological closure of the group {exptw; teR} for wetlis a compact torus T'in K
and iw is contained in it. [

3.3 Complexification of orbit-convex subsets

A first application of the notion of convexity is the following

Proposition. Let X be a holomorphic K®-space and U an orbit-convex open K-subset
of X. Then every analytic K-subset A of U is an open orbit-convex subset of the
K®-space K€- A. Moreover, K€ - A is an analytic subset of the open K®-subset K€ - U
of X and with respect to the inclusion 1: A K® - A the holomorphic K®-space K®- A
is a K-complexification of the K-space A.

Proof. Let t denote the Lie algebra of K. From the assumption that U is orbit-
convex and A is a K-invariant analytic subset of U, it follows that

(*) If aeA and veif aresuchthat expv-aeU,
then exptv-aeAd for te[0,1].

In particular, the K-subset A of X is orbit-convex.
The sets g- U, ge KT form an open covering of K- U. So from

(#%) K® Ang-U=g-A forall geKC®

it follows that K€- 4 is an analytic subset of KT- U.

To prove (*#) it is sufficient to verify K®- AnU = A. For this, suppose that
xe K% AnUD A. There exists ke K, veif (3.1 Polar Decomposition) and ae 4
such that x=k - expv-a. Hence expv - ae U and by (#) it follows that expv-ae A.
Consequently, x=k-expv-ack-A=A.

Since every orbit-convex K-subset of X is orbit-connected (3.1 Polar Decom-
position), K¥*- AnU=A implies that K®- 4 is a K-complexification of A (1.5
Extension Lemma). [

Corollary. For an analytic K-subset A of an open orbit-convex K-subset U of a
holomorphic K®-space X one has K- AnU=A4. [J

By definition, the orbit-convex hull of a K-subset U of a K®-space Y is the
smallest orbit-convex K-subset Convy(U) which contains U.

The orbit-convex hull of a K-subset U of a K®-space Y can be constructed
inductively as follows.

Let T be the Lie algebra of the compact Lie group K and set U=U,. If U, is
constructed, then define U, ., ={yeY; there exist y,€ U, and veif, such that
expv-yoeU, and y=exptow-y, for some t,e[0,1]}. It follows that
Convg(U)= kU U,.

Note that if U is open in Y, then Convg(U) is also open in Y.
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3.4 Invariant domains of holomorphy

There is a connection between orbit-convex domains and invariant plurisub-
harmonic functions which is at least implicitly known, cf. [Ro; L]. The simplest
case is that where the compact group is a real torus T=(S')". The exponential map
exp:{€— TT from the Lie algebra t€ of TT onto T¢ is in this case the universal
covering map of T®=(C*)". The decomposition tT=1t+ it defines a real structure
on €. A computation of the Hessian matrix in corresponding real coordinates
proves the following

Lemma. Let U be an orbit-convex T-domain in T which contains the identity 1.
Then, for a plurisubharmonic K-invariant function ¢:U—-R, the function
¢ exp Y(U)-R, d=¢oexp is convex. It follows that

Plexptv)= (tv) < (1 —1)P(0) + td(v)
=(1 —)$(1)+ td(expv).

for all te[0,1]. If ¢ is strictly plurisubharmonic, then @|itnexp™ '(U):it
nexp~ ' (U)-R is strictly convex. []

Now we give an application of this Lemma to complex spaces. For this let f be
the Lie algebra of the compact Lie group K.

Proposition. Let Y be a holomorphic K®-space and X an orbit-convex open K-subset
of Y. For every plurisubharmonic K-function ¢:X-R, the K-set
={xeX; ¢(x)<1} is an orbit-convex subset of Y.

Proof. Let x be a point in D and v an element in if such that expv - x is contained in
D. There exists a torus T in K such that v e it, where t denotes the Lie algebra of T
Since the orbit map b:T®-Y, t—t-x is holomorphic, the K-function
¢ ob:b~1(x)>R is plurisubharmonic. The Lemma implies that ¢(exptv - x) <1 for
te[0,1]. Thus D is orbit-convex. []

In the special case X = Y the Proposition will be applied in the proof of the next
theorem, which is a partial converse of the Proposition in Sect. 3.3. Remember that
Fi(X) denotes the algebra of K-finite holomorphic functions on a complex
K-space X.

Theorem. Let K be a compact Lie group with complexification K€. Let X be an open
K-subset of a holomorphic K®-space Y such that K- X together with the inclusion
1: X—-K®- X is a K-complexification of X. Then for X*=K€. X, the following
hold:

@) The restriction map O(X%)-0(X) induces an isomorphism Fx(X®) - F(X).
In particular, (X%, X) is a Runge pair.

(ii) If X is a Stein K-space, then X is an orbit-convex K-subset of X<.

Proof. Every K-finite holomorphic function f: X—C is a component of linearly
equivariant holomorphic map on X (2.1). The definition of a K-complexification
implies the surjectivity of the restriction F(XC)—»F(X). Hence it is an
isomorphism. The Runge property (i) follows from the Fourier Theorem (2.2).
In order to prove property (i), let f be a holomorphic function on X and
F= ZkTr f, the Fourier series of f. Here we use the same notation as in Sect. 2.2.

By the assumptions, the linearly equivariant holomorphic maps f, extend to



644 P. Heinzner

holomorphic maps on X® which we also denote by f,. Consequently, the
K-invariant functions which are defined by x— || f(x)||? are plurisubharmonic
functions on XT. Let Cd denote the orbit-convex hull (3.3) of C,€ X® and X the
orbit-convex hull of X in XT. Let {C,} be a covering of X by relatlvely compact

open K-subsets C,. Assume that C,CC, . ;. Now X = U C, and furthermore, the

K-set {ze X% || f{(2)l,< || f1l,.o} is orbit-convex (Proposmon) and contains C,. It
follows that || fi,,,= 1 f1l,. because || fli, s> | f .. would imply that there exists

xeC\{ze X% £, < fll o Hence F= Z Trf, defines a holomorphic

continuation of f to X (Fourier Theorem, 22) But X is a Stein space, and
therefore, X=X. O

4 Locally homogeneous spaces

4.1 Holomorphically separable spaces

Let K be a compact Lie group and X a Stein K-space. We already know that there
are uniquely determined minimal analytic K-subsets E in the fibers of the quotient
map my: X —» X //K (2.3). Our analysis of actions of compact groups on Stein spaces
will begin with the study these minimal analytic subsets. It is easy seen that K acts
“locally transitively” on such sets and thus one expects E® to be K®-homogeneous.

Propesition. Let K be a compact Lie group and X a holomorphically separable
complex K-space. If X does not contain proper analytic K-subsets, then there exists
a K-complexification X®. The complex space X is K®-homogeneous and holomor-
phically separable. The corresponding map 1: X — XC is an open embedding.

Proof (cf. [H2]). From the Identity Theorem (1.1) and the assumption that X does
not contain proper analytic subsets we have the following fact:

If y is a holomorphic K-map from X into a complex K-space Y, then y(X) is
contained in a smooth locally analytic K-subset of Y. The rank of y is constant. In
particular, if Y is K®-homogeneous, then w(X) is open in Y.

Let {C,} be a covering of X by relatively compact open K-subsets C,. We
assume C,CC,,,. For every a there exists a linearly equivariant holomorphic
K-map yp,: X— Q" such that the restriction y, | C, is injective (2.2 Corollary). We
fix a point x, € C, and set w,=1,(x,). In order to compare the maps ,, we define

$1=y;, m=n;, v;=w,

and, after ¢,, m,, v, are defined,

m,
Gt 1=Da X War1s  Mupy=Mytnyyq, Uiy =(Vp W4 ) €T,

Since the linear action of K on €™ extends to an algebraic action of KT on €™
(1.1), for all « one obtains
1. ¢(X)CK®:v,.
2 ¢,, is an open immersion.
| C, is an injection.
4 Ku{B v, is K®-biholomorphically equivalent to K%/H,, where H, denotes the
K‘”—xsotropy group of K€ at v,.
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By construction, the isotropy group H, ., is contained in H,. The diagram
X

¢z/ \¢a+l
KC'Ua"_KC'va+l
P

commutes for all xe N where p, denotes the restriction of the K%-equivariant
projection from C™*'=C™ x C*+* to €™ Since the isotropy groups H, are
linear algebraic groups, each of them has only finitely many connected compo-
nents. Moreover, from dimg H, = dimg K€ —dimg X it follows, that the connected
component of the identity is the same group for all «. Hence there exists an oy such
that H,=H,  for all «=u,. For such an a, the map p, is biholomorphic. In
particular, ¢,  is an open embedding.

Let H be the smallest and closed complex subgroup of H,  such that there
exists an open K®-equivariant embedding 1: X - K%/ H. Note that H is obtained
from H, by omitting, if necessary, some connected components.

We set XC= K% H=KF:v, where v=1(x,)= H. In order to prove the univer-
sality property for equivariant holomorphic maps, let y be a holomorphic
K-map from X into a holomorphic K®space Y. The image of the K-map
ixyp: X>K® vx Y, x—((x),p(x)) is contained in the K%-orbit KT-(v,w)
={(g-v, g - w); g€ K} where we set w=1(x,). Furthermore, viewed as a map from
X into K®-(v,w)=K¥HN(K®),, 1 x p is an open embedding. Let p: K< (v, w)
—K%.v denote the restriction of the natural projection. It follows from the
definition of K¥/H that p is biholomorphic. Moreover, viewed as a map from K€ - v
into K®-vx Y, the inverse map p~! is holomorphic. If we denote by g the
projection K€-v x Y-, then the diagram

X = K€-p

w\ /wc
Y

commutes, where p®=gop~!. Finally, the K®-map y® is uniquely determined by
yo)=w. O

Corollary. Let X be a holomorphically separable K-connected open K-subset of a
K®-homogeneous space Y. Then the inclusion j: X—Y induces a K-equivariant
holomorphic covering map j©:Xt-Y. [

4.2 Totally real points

Let Y be a K®-homogeneous space and U an open K-subset. In general, it is not
true that Y is the K-complexification of U. For example, the S*'-complexification
of an annulus in a compact complex torus is C*.

This example is, of course, not relevant for the study of K-actions on Stein
spaces. However, the following examples reflect phenomen of central importance.
Let U be a sufficiently small open orbit-connected K-subset in K® which contains
K. In general, there exist many finite subgroups I' in K€, such that Kngl'g ™! = {1}
for all ge U. For such groups, the image X of U in K%/T is biholomorphically
equivalent to U and the K-action on X is free, ie. K,={1} for all xe X. By
construction, the complexification of X is K<,
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On the other hand, there are also “positive” examples. The compact group

SU(C? acts on the holomorphic SL(C?-manifold Y=SL(C*)/H where
t 0 . .

H= {( 0 t">; te(E*}. The SU(C?)-orbit through p=He Y is of real dimen-
sion two and isomorphic to SU(C2)/S!. Any other SU(C?-orbit has real
dimension three, hence is a hypersurface. Every open Stein SU(C?)-subset X of Y
contains the “minimal” SU(C?)-orbit of dimension two and X*=Y.

In the above examples the K-complexification always exists and is determined
by some “minimal” K-orbit. This is a general observation which is explained by the
last theorem of this section. For this we begin by proving two lemma.

Lemma 1. Let T be a real compact torus with Lie algebra t and S a closed subgroup
of T with Lie algebraf. Let n denote the quotient map T— T%/S<. Then for an orbit-
convex T-domain U in T€ the T-domain n(U) is also orbit-convex. In particular, for
M =T/S the M-domain n(U) is orbit-convex in the M®-space M= T¢/ST

Proof. Let veit and x € U be such that exp(v) - n(x) € n(U). There exist he S, we if
and se S such that h=s-expw and expv-x-h=s-exp(w+v)-xe U. Since U is
orbit-convex, it follows that exptv-n(x)=mn(exptv-x-s-exptw)en(U) for
te[0,1]. O

Let K be a compact Lie group with Lie algebra f and L a closed subgroup of K
with Lie algebra L

Lemma 2. Let U be an orbit-convex K-domain in K€/L® which contains the point
p=L%cKYL® and ¢:U—-R a strictly plurisubharmonic K-function with a local
minimum at p. If g-pe U for some g € KS, then the inequality ¢(g - p) < d(p) implies
that g-pe K- p. If in addition g=expv for some veil, then it follows that veil.

Proof. Letge K€ with g - pe U and ¢(g - p) < ¢(p) be given. We write g as a product
g=k-expv, where keK and veil (Polar Decomposition, 3.1). Since ¢ is
K-invariant, we have ¢(expv- p)< ¢(p). Because K is a compact Lie group, there
exists a compact torus T with Lie algebra t such that veit. The T-set
Ur=UNTE. p is orbit-convex (3.2).

Let S denote the isotropy group 7,and M the compact torus 7/S. Then T®. pis
canonically isomorphic to M® and U, is an orbit-convex M-subset in Uj
(Lemma 1). The M-invariant function ¢,,: U7z =R, ¢, = ¢ | Uy is strictly plurisub-
harmonic. It follows that veifCil (3.4 Lemma) where { denotes the Lie algebra
of S.

This proves expve L and consequently g-p=k-expv-p=k-peK-p. O

Remark. Note that the statement of Lemma 2 remains true, with the same proof, if
one replaces the assumption “¢ obtains a minimal value at p” by “p is a critical
point of ¢”.

Let K be a compact Lie group and Y a holomorphic K®-space. Fora pointye Y
the isotropy group K, is contained in the isotropy group (KY),. The map
1:(K,)*~(K9), is injective (see 3.1).

Example. The isotropy group of the unitary group U(C?) at (1,0)e C?, where
U(@?) acts on €2 by matrix multiplication, is the group (1) NE tI= 1} which is
isomorshic to S, The isotropy group of GL(C?)=U(C*® at (1,0) is the group

{6 )}
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A point y in a holomorphic K®-space Y is called a totally real K-point, if the
inclusion 1: K,—(K®), induces an isomorphism i*:(K )*—~(K%),. Note that the
K-orbit of a totally real K-point is a totally real submanifold. The converse of this
statement is not necessarily true.

Example. All points in the K-orbit through the point p=L€e K/LF are tofally real
K-points. Every K®fixed point is a totally real K-point.

Theorem. Let K be a compact Lie group and X a Stein K-space which does not
contain proper analytic K-subsets. Then there exists a point x in the complexification
X® of X such that (x)e X© is a totally real K-point.

Proof. The complexification XT of X is a K®-homogeneous holomorphically
separable complex space (4.1 Proposition). Since X is a Stein K-space, there exists
a strictly plurisubharmonic K-function y : X - R which obtains a minimal value in
some point x € X. For every K-orbit one has that dimgK - x 2dimg X =dim¢ X©
(1.3). Because the set of critical points of the strictly plurisubharmonic function yis
contained in a totally rea! submanifold of X, cf. [RH; W], it follows that
dimg K/K , =dimg KT - x =dimg XT.

The K-space X is an orbit-convex K-domain in X (3.4 Theorem). Let H denote
the isotropy group (K%), and L the compact isotropy group K. Since dimgL®
=dimg L=dimgH, the complexification LT is an open subgroup of H. The group
H is algebraic. Hence it has only finitely many connected components. Thus the
K®-equivariant projection p: K¢/L*»K®%/H, g- L*-g - x is a finite covering map.
Recall, that the inverse image X=p~'(X) is an orbit-convex K-domain in
K%L (3.2). )

We now show that the covering map p: X - X, p=p| X is injective. For this,
first note that ¢ =1 o p is a strictly plurisubharmonic K-function on X. A point
zep~}(x) is of the form z=g - % for some ge K%, where we set £=Le KY/LE. It
follows from the definition that ¢(z)= (g %)= (). Consequently, g=k - h for
some ke K and he LT (Lemma 2), Fromk - x=k - p(£)=p(g - £)=g - x = x we obtain
that ke K,=L. Thus g=k-heL® and z=g-%=%. This proves that p~}(x)=%.
Consequently, p: X — X is an isomorphism and H=I% [

The above proof also yields the following result which goes back to
Matsushima and Oniscik.

Corollary. Let K be a compact Lie group and Y a KS-homogeneous holomorphic
KC®-space. If there exists a strictly plurisubharmonic K-function ¢: Y—R which
obtains a minimal value at some point x € Y, then the isotropy group (K%, =(K )Cisa
complex reductive group. [

4.3 Homogeneous vector bundies

For a closed subgroup H of a Lie group G and a H-space Y, let G x ;Y denote the
bundle with typical fiber Y associated to the principal bundle G-+G/H. This
bundle is by definition the quotient of the H-space G x Y with respect to H, where
the H action on G x Y is defined by h-(g,y)=(gh~!,h-y). The corresponding
quotient map G x Y—G x 5 Y is open. We denote the image of a point (x,)})e G x Y
inGx g Yby[x,y]. ThemapGx G x g Y= G x Y, (g,[x, y])—[gx, y] is a G-action
on G x 5 Y. Note that the bundle projection G x ;Y- G/H, g, y]»gH is a G-map.
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4.4 Minimal compact orbits

Let G be a Lie group and H a closed subgroup of G. We denote by Typg(X) the
G-isomorphism class of the G-homogeneous space X = G/H and call it the G-orbit
type. There is a partial ordering on the set of G-orbit types which is defined as
follows.

If X,=G/H, and X,=G/H, represent two G-orbit types, then X, is called
smaller as X, if there exists a G-map from X, into X,. Note that such a map is
automatically surjective. We set Typg(X ) S Type(X,) if and only if X, is smaller
as X ,. The G-orbit types of two G-homogeneous spaces are equal if and only if the
corresponding isotropy groups are G-conjugate.

The orbit type of a G-space X is by definition the set {Typs(G-x); xe X}. A
G-homogeneous space which represents a minimal element in {Typ¢(G - x); x € X}
is called a minimal G-orbit in X.

Let K be a compact Lie group and L a closed subgroup of K. As a K-space, the
K®-homogeneous complex space K¥/LT is isomorphic to a real K-vector bundle
over K/L of the form K x ; F (3.1 Decomposition Theorem). Consequently, for
every x € K%/L® the bundle projection K x ; F-»K/Linduces a K-map K - x— K/L.
Thus every K-orbit in K¥/L® can be compared with K/L and K/L is a minimal
K-orbit in K%/LY. Furthermore, it follows that the K-orbit through a point
x € K%/LT is minimal if and only if Typg(K - x) = Typx(K/L). This is the case if and
onlyif K, is conjugate to L by an element of K. The following is a characterization
of minimal K-orbits in K¢/L®:

Theorem. Let K be a compact Lie group and L a closed subgroup of K. For a point
x € KY/LE the following statements are equivalent.
(i) The point x is a totally real K-point.

(@ii) The K-orbit through x is minimal.

(iii) On K%/L® there exists a strictly plurisubharmonic proper K-invariant
function p: K€/L®—-[0, ), such that K - x=p~'(0).

(iv) The K-orbit through x has a basis of neighbourhoods which consists of orbit-
convex Stein K-subsets.

Proof. First, we show that (i) implies (ii).

Every point xe K%/L® is representable by gL® for a suitable ge K®. By
assumption, 1€:(K,)*—(K%), is an isomorphism. It follows that dimgK,
=dimg(K )= dimg(KY), = dimg L* =dimg L. Since every K-orbit in K¢/L% is
comparable with the minimal orbit K/L (3.1 Decomposition Theorem), there
exists a K-map from K-x onto K/L. Thus the equality dimgK,=dimgL
implies that K is an open subgroup of kLk ™! for a suitable ke K. From (K,)®
=kL%k ' =(K%), =gL% !, itfollows that K, and kLk ~* have the same number of
connected components. This implies K, =kLk™! and consequently Typg(K - x)
=Typg(K/L).

We now prove that (ii) implies (iii).

Let L denote the isotropy group K. Since the orbit K - x is minimal, it follows
that L.=kLk™* for some k€ K. Thus K&/Lc is K®-isomorphic to K&/kLT 1, where
the isomorphism is induced by the map K®— K€, g—gk ™. Consequently, without
lost of generality we can assume that L= K, and x= LY. Now we make use of the
following consequence of the Peter and Weyl theorem:

There exists a real vectorspace W of finite dimension with a linear action of K
such that L=K, for some we W (cf. for example [J]).
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The complexification K€ acts holomorphically on the complexification W@C,
and there exists a K-invariant Hermitian inner product {, > on W®C whose
restriction to W is a K-invariant scalar product on W.

Since K - w is perpendicular to the line Rw, w is a critical point of the strictly
plurisubharmonic K-function d: WRQC-R, d(v)= {v,v). From this follows (see
[P, S] or 5.4 Corollary 1) that

(1) the orbit K€ w is closed in W®C,

(2) the K®-map K%/L®>K®-w, g-x—g-w is biholomorphic, i.e. L*=(KY),,

(3) dw)<d(g- w) for all ge K®.

As a consequence of (1) and (2), the strictly plurisubharmonic K-function
p: K%L [0, ), g - x—>d(g - w)— d(w)is proper. Thusiit follows that p~ }(0) =K - x
(4.2 Lemma 2).

To prove that (iii) implies (iv) one need only observe that the sets p~ ([0, &),
&> 0 have the desired property.

Finally, we prove that (iv) implies (i).

From the Slice Theorem for compact group actions, see [J], it follows that
U ={yeKY/LT; Typx(K - x) S Typg(K - y)} is an open neighbourhood of the orbit
K - x. Let U be an orbit-convex Stein K-domain in U which contains K - x. Since
K“T/L‘E is a K-complexification of U (3.3), there exists a totally real K-point ye U,
ie. (K)°® —(K‘L) But then, as we have proved, the orbit K - y is minimal. The
definition of U 1mp11es that K - x is also a minimal K-orbit. Note that x=gL® for
some ge K, ie. (K9, =gL% . Since K, =kLk™"! for a suitable ke K, it follows
that (K, )C=kLSk ! C(K“:),=gL‘Dg". Hence, we obtain (K )®=(K9, O

Note that the space K¢ is homogeneous with respect to the KT x K%-action
given by (g, h, x)—»gxh~!. The K x K-orbit through 1 € K®is the group K and K isa
minimal K x K-orbit in KT. This proves the following

Corollary 1. Let K be a compact Lie group and KT the complexification of KT. Then
the K xK-subset K of K® has a basis of open orbit-convex K x K-
neighbourhoods. [

Let L be a closed subgroup of the compact Lie group K and é: L-»GL(V) a
representation of L in a finite-dimensional complex vector space V. We always
assume the representation to be unitary. The corresponding K®-bundle K€ x ;¢ V
is a holomorphic vector bundle over K/L® with typical fiber V. Every closed (resp.
open) LE-subset U of ¥V can be identified with the closed (resp. open) K®-subset
K®x ;cU of KTx ;cV. The embedding j: V-+K®x ¢V, z-[1,z] induces an
isomorphism of the C-ringed spaces V//L and K®x ;cV//K.

In the following, K/L is identified with the K-orbit through L*e K%/L® and
K%/L® with the zero section K€ [1,0]= K% x i {0} in K% x ;¢ V. Furthermore, the
group KT is viewed as a homogeneous K¢ x L%-space. Here the action is given by
the map K®x LT x K*- K€, (g, h,x)—gxh~!. Note that the open orbit-convex
K x L-subsets which contains K form a basis of neighbourhoods of K in K¢
(Corollary 1).

Corollary 2. For every orbit-convex K x L-subset N of K and every orbit-convex
L-subset D of V the K-subset [N,D]={[g,z]; (g,z)€ N x D} of K®x ,cV is orbit-
convex.

Proof. Let E denote the Lie algebra of K. If (4, x)e N x D and veif are given and if
expv- [u,x] €[N, D], then it is necessary to show that exptv-[u, x]e[N, D] for
te[0,1].
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By the definition of [N,D], (expv-u-h~',h-x)e N x D for an appropriate
heIf. Let [ denote the Lie algebra of L. There exist me L and weil, such that
h=m-expw (3.1). Since N is K x L-invariant aud D is L-invariant, it follows from
the orbit-convexity assumption that (exptv-u-exp(—tw),exptw-x)e N x D for
te{0,1]. Thus exptv- [u, x]=[exptv-u-(exptw) *,exptw-x]€[N,D]. (O

S Linear actions
5.1 Linearization

Let K be a compact Lie group and KT a complexification of K. We note the
following useful

Remark. Let Y, and Y, be holomorphic K®-spaces and ¢ : Y, — Y, a holomorphic
K-map. If ¢ is an open immersion at a, € Y; such that the restrictionof ¢ to K - a, is
injective, then ¢ maps a K-neighbourhood of K - a, biholomorphically onto a
neighbourhood of K - ¢(a,). If a, = ¢(a,) possesses a basis of K-connected open
neighbourhoods, then ¢ ~! is defined in an open K-neighbourhood U of K - a,.
Since K€ - U is a K-complexification of U, ¢~ extends to a holomorphic K®-map
on K®- U (1.5). Hence ¢ maps a K®-neighbourhood of K - 4, biholomorphically
onto a K%-neighbourhood of K - a,.

Let Y be a holomorphic K®-space and a a smooth totally real K-point in Y. By
definition, if we denote by L the isotropy group K,, we have LY=(K%),. The
differential of the maps Y—Y, y—h-y, heL, defines a representation of L in
GL(T,Y), where T,Y denotes the tangent space of Y at a. The L-action on Y can be
linearized in a neighbourhood of a, ie. there exists an L-equivariant
biholomorphic map u from an L-neighbourhood of a in Y onto an
L-neighbourhood of zero in T,Y with u(a)=0.

The tangent space T(K®-a) at a of the orbit K€ a is an L-invariant linear
subspace of T,¥. We choose an L-invariant Hermitian inger product on T,Y and
decompose T,Yin an orthogonal sum T,Y = T(K® - @)@ V. We calt ¥ an L-invariant
normal space at a to the orbit K< a.

For a sufficiently small open L-neighbourhood D of 0eV, there exists a
holomorphic L-map 4: D— Y, A(x)=p "', which maps D biholomorphically onto a
local submanifold of Y. Note that, if D is an orbit-connected neighbourhood of
0eV,for example, a ball around zero, then D®=L¥ - D is an L-comglexiﬁcation of
D. Consequently, 1: D— Y extends to a holomorphic L¥-map A%: D®— Y. With this
notation we have the following .

Linearization Lemma. Let K be a compact group with complexification KX and Y a
holomorphic K®-space. Let acY be a smooth totally real K-point in Y and set
L=K,. Assume that there exists a basis of open orbit-connected neighbourhoods of
the orbit K-ain Y. If D is a sufficiently small open L-neighbourhood of zero in a
L-invariant normal space V at a to K*- a, then there exists an injective holomorphic
LEmap J€:K® DY such that A:K€x cL* DY, [g,v]-g- Av), is an open
embedding.

Proof. For small D, there exists a holomorphic L-map A®; K€- D~ Y which maps
D onto a local L-submanifold of Y. We can assume that this submanifold is
transversal to the orbit K- a at a. Consequently, the map 4:K®x, LT-D—Yis
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an open immersion at [1,0] with A([1,0])=A%0)=a. Note that 4 maps
K/L=K -[1,0] difftomorphically onto K - a2~ K/L. Thus by the Remark 4 maps
an open K%neighbourhood of K®-[1,0] biholomorphically onto the image.
Recall that the quotient map K€ x V- K% x ¢V is open. Hence, after shrinking D if
necessary, we obtain the desired result. [J

Example. Every pointin €/Z +iZ is a totally real S* R/Z point. But there are no
proper S!-connected subsets in €/Z +iZ.

Evenif Y is a K-vector space with a linear K-action, then not every K-orbit of a
totally real K-point possesses arbitrary small K-connected neighbourhoods
(see [Lu1]).

5.2 Hilbert’s Finiteness Theorem

Let K be a compact Lie group which acts linearly on €", ie. via a unitary
representation ¢: K—GL{C"). The Finiteness Theorem can be stated as follows:
The algebra C[z,, ..., z,)* of K-invariant polynomials on C" is finitely generated.
For the proof of the Finiteness Theorem one needs Hilbert’s Basisatz and the
existence of a Haar measure on the compact group K, see [We].

A set of generators p,,...,p; of the algebra C[z,,...,z,]¥ gives rise to a
polynomial map P:QC"—C* For an ideal I in C[z,,...,z,]* one obtains by
integration over K the identity I-C[z,,...,z,]1n[2},...,2,]¥=1. From this it
follows that (cf. [Kr] or [K, S, S]):

(i) The images of Zariski closed K-subsets of € of P are closed in €~ In
particular, Z = P(C") is a Zariski closed subvariety of ©*, whose algebra of regular
functions is isomorphic to €[z, ...,z,]%.

(i) The map P separates the closed KS-orbits in C".

By 2.3 Corollary 3, we know that there exists a continuous bijection
P:@"//K—Z such that Por,=P where n,: €'~ C"//K denotes the quotient map.
It is known that Z is isomorphic to €"//K as a C-ringed space. This will be
proved in detail in 6.4.

5.3 Complete invariant subsets

Let K be a compact Lie group. For a point x in a complex K-space X let By(x)
denote the smallest analytic K-subset in X which contains x (cf. 2.3).

Remark. If X is a locally analytic K-subset of a holomorphic K®-space Y, then
KT . B,(x)C By(x) for all xe X. This follows from the Identity Theorem (1.3).

A locally analytic K-subset X of a holomorphic K®-space Y is called complete if
KT By(x)= By(x) for all x € X. The locally analytic K-subset X is called complete
with respect to a closed subgroup L of K if X is a complete L-subset of the
holomorphic L-space Y.

Example. Let U be a Reinhardt domain in €". After a change of indices we may
assume UnC™ x {0}+0 and Un{0} x C" "=9 for some me{0,...,n—1}. The
(8*)*-complexification of U is (C*)"- U C(C*)™ x €*~™. One can show that U is a
domain of holomorphy if and only if it is orbit-convex and complete with respect
to every closed subgroup of (S')".
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In the following we often use the fact that a locally analytic K-subset X of a
holomorphic K®-space Y which is a union of some analytic K-subsets 4, jeJ is
complete in Y if and only if XN A4; is complete in 4; for all j.

Example. If the compact Lie group K acts linearly on €", then the action of the
complexification K® on C" is algebraic. Hence the topological closure K* - z of an
orbit K€- zc C" is an analytic K®-subset of €". Thus, we have Be(z)= KT z for all
ze " It follows that a locally analytic K-subspace X in €C" is complete if and only
if K¥-xnX is complete in K*- x for all xe X.

Let the compact Lie group K act linearly on €" and denote the quotient map
C'->C"//K by =,

Lemma. Let Y be a closed complex K®-subset of a m,-saturated open subset of C".
Then an open orbit-convex K-subset X of Y is complete if and only if K®-X is
saturated with respect to y: Y- Y//K.

Proof. Note first, since_Y is a complete analytic K®-subset of €", we have By(y)
=K% BAy)=Be{y}=KT. y for all ye Y.

Assume that the open K-subset X of Y is complete. It is necessary to show that
if zeny (ny(K®- X)) =0y Y(n{(X)), then ze K- X. Suppose x € X is such that m(z)
=my{(x). Then 0= By(z)nBy(x)=B(z)nK®- By(x). But since X is open in Y,
ES Ig{(z)nX =KC€.znX implies that K znX #0. Consequently, we obtain
z

eK*- X.
Now assume that the open subset KT X of Y is ny-saturated. For all xe X we
have By(x) = Bex(x) = KT - x. Thus nt,(x) = ny(By(x)). Since K€ X is ny-saturated, it

follows that By{x)C K€- X. Now, B4{(x) is an analytic K-subset of the orbit-convex
subset X of Y. Hence K- B,(x)is an analytic K-subset of K- X (Proposition 3.3).
Of course, K- By(x)CBy(x). In the situation under consideration as we have
shown B,(x) CK®- X. Thus it follows that K€ By(x)is an analytic subset of By(x).
The definition of By{x) implies that K€- By(x)=By(x). []

As we will see later the statement of our Lemma remains true if one replace the
holomorphic K€-space €* by a holomorphic Stein K®-space.

5.4 Completeness and invariant plurisubharmonic functions

Let the compact Lie group K act linearly on C" and denote by =, the quotient map
C-CY//K.

Proposition. Let Y be a closed K-subspace of a m,-saturated open subset of C".
Then for a plurisubharmonic K-function ¢ : Y—@" the open K-subset D(¢p)={x € Y
d(x)<1} of Y is orbit-convex and complete.

Proof. Since the K-subset D(¢) is orbit-convex (3.4 Proposition), it suffices to show
that K€- D(¢) is saturated with respect to the quotient map ny: Y- Y//K (5.3
Lemma). For this let xe D(¢) and ye Y and suppose that my(x)=m,(y). We shall
prove that ye KT D(¢). Since Y is m,-saturated my(x)=ny(y) implies that
By(x)nBy(y)=KT-xKT- y+0. From the Hilbert Lemma (see, for example, [Kr,
I11.24]) it follows that there exists a holomorphic group homomorphism
7:€C*—> KT with %($')C K such that
@) yo= liné ¥(2) - x exists and

(b) yo€E,(x)=Ey(ry(x))C _IZ(T;.
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The S'-map, u:C—C" defined by u(z)=y(z)-x for zeC* and u(0)=y, is
holomorphic. Hence the S*-invariant function ¢ : C—»IR, ¢ = ¢ o u is subharmonic
and consequently

H0)< sjl Ptz)dt=P(z) for all zeC.

This proves that y,eD(¢). Thus K- y,CK®-y implies K- ynD(¢)+9 and it
follows that ye K®-D(¢). [

In the following corollaries we assume that K is acting linearly on €” and that Y
is a closed complex K-subspace of a n,-saturated open subset of €". For pe Y//K
let Ey(p) be the minimal K%-orbit in y *(p) (2.3 Corollary 2). The following is a
straightforward generalization of a result of Kempf and Ness (cf. [K,N; D, K;
P, S)).

Corollary 1. Let ¢: Y- R be a K-invariant function such that for pe Y//K the
restriction ¢,:ny '(p)->R, ¢,=¢|ny (p), is proper and strictly plurisubharmonic.
Then every extremal value of ¢, is a minimal value and the set of such points is
exactly one K-orbit through a totally real K-point ae Ey(p).

Proof. Let ¢ be the function introduced in the proof of the Proposition. Then,
since ¢, is strictly plurisubharmonic, for xeny Y(p)\Ey(p), the function R—>R,
t—¢(e) = P(y(e") - x) is convex and strictly increasing. Hence the critical points of
¢, are contained in Ey(p)=K®-y, and the desired result follows from 4.2
Lemma 2. []

Corollary 2. In every closed K®-orbit E of C" there exists a totally real K-point a

such that every open neighbourhood of K - a contains an orbit-convex complete open
K-neighbourhood of K - a.

Proof. Recall that there exists an invariant polynomial map P: €"—C* such that
P YP(z))=mn, Y(n,(z)) for all ze €" (5.2 Hilbert’s Finiteness Theorem). We may
assume that K is a subgroup of the unitary group of €. The K-invariant function
d:€C"-R, d(z)=|z||* is proper and strictly plurisubharmonic. Hence the map
¢ =P xd is proper. Furthermore, for a suitable ae E we have ¢ " !(¢(a))=K -a
(Corollary 1). If U is a neighbourhood of K - 4, then the properness of ¢ implies
that there exist open neighbourhoods Q of P{a) and I of d(a) such that
¢~ YQ x)CU.

Finally, since P~}(Q) is n,-saturated and d is plurisubharmonic, the Propo-
sition implies that ¢ Q@ x =P YQ)nd '(D)=d|P~ Q) '(I) is orbit-
convex and complete if Q is sufficiently small. [J

5.5 Luna’s Slice Theorem

Let K be a compact Lie group with complexification K€. We consider a linear K
action on €" and denote by =, the quotient map C"—-C"//K. Let a be a totally real
K-point in a closed K®-orbit E in €". We set L= K, and denote by V a L-invariant
normal space at a to the orbit K. a (5.1).

We identify T,C" with C". The holomorphic K®map 4:K®x ,eV-C"
[g,v]—g-(a+v) maps a neighbourhood of the orbit K/L=K -[1,0]JCK®x eV
biholomorphically onto a neighbourhood of K -a in C". Let =, : V—V//K be the
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quotient map. Using the notion of orbit-convexity and completeness, we now give
a proof of Luna’s

Slice Theorem. There exists a n,-saturated neighbourhood S of 0V, such that
(i) U=KE-(a+S) is n,-saturated and
(ii) the K®map A:K€x ;cV-U, [g,v]—g-(a+v) is biholomorphic.

Proof. By 5.4 Corollary 2 there exists a totally real K-point @ in K®- a such that
K -4 has a basis of orbit-convex complete open neighbourhoods. Note that
d=g,-a for an appropriate g, KT.

The holomorphic K®-map A is an immersion at [1,0]. Thus 4 is an immersion
along K®-[1,0]. In particular, 4 is an immersion at [g,, 0]. Since K§,, o;=80L g0 *
=(K%),, the map A4 restricted to K®:[g,,0] is injective. After we choose a
sufficiently small orbit-convex open neighbourhood U of K - 4 we see that A maps
an open K%-neighbourhood of K®-[1,0] in K®x ,cV onto a =,-saturated open
neighbourhood of K®-a in €" (5.1 and 5.3).

For a sufficiently small ball D around zero in V the I%set S=LT.D is
ny-saturated (5.4) and 4 maps K€ x ;¢S biholomorphically onto the r,-saturated
open set U=K® - (a+8)=K®-(a+D)cU. O

Corollary. For every totally real K-point a of a closed K®-orbit in €" the orbit K - a
has a basis of orbit-convex complete open Stein K-neighbourhoods.

Proof. This follows from the Slice Theorem and 4.4 Corollary 2. []

The ny-saturated LT-subset S of V in the Slice Theorem contains arbitrary
small open L-invariant balls D, around the origin. If D, is contained in S, then we
call D=a+D, a local linear slice at a to the closed orbit K - a.

In particular, a local linear slice D at a is a locally analytic L-subset of C* and
one has K€-(a+L®- D,)=KC- D. The holomorphic L¢-space I*-D=a+L®. D, is
an L-complexification of D and the natural map K€x ,cL®-D-L®-D is
biholomorphic. Furthermore, K®-D is a =, saturated open neighbourhood of
K€.ain C".

6 Complexifications
6.1 Maps with the slice property

Let K be a compact Lie group and X a complex K-space. We say that a linearly
equivariant holomorphic map ¢:X—C" has the slice property at xeX if it
satisfies the following conditions:
(i) ¢ is an immersion at x,

(i) ¢ restricted to K - x is injective,

(iii) ¢(x) is contained in the closed K®-orbit Ega(¢(x)), and

(iv) ¢(x) is a totally real K-point in €".

The following is a direct consequence of the Slice Theorem (5.5).

Lemma. Let K be a compact Lie group and X a complex K-space. If ¢ : X ->C"isa
linearly equivariant holomorphic K-map which has the slice property at xe€ X, then
there exists a local linear slice D at ¢(x) and an open K-neighbourhood U of x such
that:
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(i) ¢(U) is an orbit-convex and complete open K-subset of the analytic K-subset
A=KT. ¢(U) of K®-D.
(ii) ¢y:U—-¢(U), dy(y)=¢(y) is biholomorphic. [

Let U denote the union of irreducible components of the complex K-space
¢~ (4) which intersect U. Note that U is a closed analytic K-subset of ¢ ~'(4) and
that A with the map ¢:U—A, ¢=¢|U, is a K-complexification of U (3.3
Proposition and 1.4 Lifting Lemma).

6.2 Existence of maps with the slice property

Let K be a compact Lie group and X a Stein K-space. For a point xe X let By(x)
denote the smallest analytic K-subset of X which contains x. Let Ey(x) be the
smallest non-empty analytic K-subset of By(x). One has E,(x)=E(ny(x)) (2.3
Corollary 2) and E,(x) is the unique analytic K-subset in 7y }(n,{(x)) of minimal
dimension, where 7, denotes the quotient map X — X//K. Note that in general x
does not belong to Ey(x).

Lemma. Let x be a point in a Stein K-space X. Then, for every totally real K-point
Xo € Ex(x), there exists a linearly equivariant holomorphic map ¢ : X »@" which has
the slice property at x,.

Proof. Since the algebra of K-finite functions is dense in O(X) (2.2 Fourier
Theorem) there is a linearly equivariant holomorphic map ¢, : X - €™ whichis an
immersion at x,.

The homogeneous Stein space KT/LT where L=K,_is a K-complexification of
E,(p) (4.2 Theorem and 4.4 Theorem). We can identify K/LT with a closed
K%-orbit in some C" (cf. the proof of 4.4 Theorem) and obtain a linearly
equivariant holomorphic embedding w:Ey(x)-»C". Let ¢,:X—->C™ be a
K-equivariant extension of p (2.3 Lemma). Note that ¢,(x,) is a totally real
K-point. The group K¢ acts diagonally on €"=C" x €. By construction, the
holomorphic K-map ¢: X -C", ¢(y)=(¢,(y), $,(»)) is an immersion at x, whose
restriction to Ey(x) is injective.

The orbit K€ ¢,(x,) is a K-complexification of E,(x,). Hence the equivariant
projection g: C"—@" maps the orbit KT ¢(xq)={(g- P1(xo) & - P2(x0)); g€ K}
biholomorphically onto KT ¢,(x,). Thus ¢(x,) is a totally real K-point.

It remains to show_that K®- ¢(x,) is closed in €". Assume the contrary is true.
Then there exists ae K®- ¢(xo)\K®- ¢(x,). Since KT acts algebraically on €” it
follows that dimK®-a<dimK®- ¢(x,). On the other hand, from g(K®-a)
CKT- §(x0)=KE- ¢,(x,), we deduce that g(KY)=KT- ¢,(x,). Thus dimKCE-a
2dimK®- ¢,(x)=dim KT ¢(x,). This contradicts dimK®-a< KT ¢(x,). [

Remark. Using 6.1 Lemma, 5.5 Slice Theorem, and 3.1 Decomposition Theorem,
one sees that a minimal K-orbit in n5 '(74(x)) is automatically contained in E y(x).

6.3 Local complexification

Let K be a compact Lie group and X a Stein K-space. As in the previous section,
By(x) denotes the smallest analytic K-subset of X which contains the point xe X
and E,(x) is the smallest analytic K-subset of By(x).
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Lemma. Let U be a subset of X and ¢ : X —C" a linearly equivariant holomorphic
map which is an immersion along U. If for x € X there exists x, € U By(x) such that
P(xo) € EcAp(x)), then it follows that Ey(x)= Ey(xq)=Bx(x,).

Proof. Let ¢: X - " be a linearly equivariant holomorphic map. Then, for xe X,
(2) P(Bx(x))C Benld(x))=K" - $(x);
(b) dim B,(x) =dim Be()(x)).
Note that ¢(By(x,)) is an open subset of Eg.(¢(x))= KT - @(x,). For all y € By(x),
it follows that:

dim By(y) 2 dim Egn((x)) = dim $(Bx(x,)) = dim By(x,).

Hence By(x,) is of minimal dimension in By(x). Consequently, By(xq)=Eyx(x,)
=Ex(x). O

For a Stein K-space X let n,: X— X//K be the quotient map. We fix a point
pe X//K and a minimal K-point x4 € Ey(p). Let ¢ : X »@" be a linearly equivariant
holomorphic map which has the slice property in x,, and let U denote the open
K-neighbourhood of x, of 6.1 Lemma. The K-subset ¢(U) is then orbit-convex
and complete, and 4 = K- ¢(U)is an analytic K®-subset in a n,-saturated open set
in (E".UWe set U=By(U)= |) By(y) and denote by 1: U—A the restriction of
¢ to U. veU

Theorem on the existence of local complexifications. The K-subset U of X is open
and ny-saturated. The analytic K®-subset A=K%(U) is a K-complexification of U
and 1: U— A is an open embedding.

Proof. In order to prove that U is my-saturated, let ze X with ny(z)e ny(U) be
given. We have to show that ze U.

If By(z)~U is non-empty and contained in By(u) for some u e By(z)nU, then,
since By(u) is by definition a K-irreducible analytic K-set, the identity principle for
analytic sets implies that By(z)C Bx(u)C U. In particular, ze U.

We show that By(z)nU is non-empty. For this note that n,(0)=ny(U) (2.3
Corollary). We choose a xe U such that ny(z) =nx(x). Since A=K®- $(U) is an
analytic set in a n,-saturated open subset of €, we have Egi(¢(x))C Bp(p(x))
=B (¢(x)). But xe U and ¢(U) is complete, so it follows that Eg.{(¢(x)) C B 4(¢(x))
=K% B,u(#(x))=K® - ¢(By(x)), since ¢ | U is biholomorphic onto ¢(U). Conse-
quently, Eg{(@(x))N¢(By(x)) is non-empty and there is a point z,e€ By(x)
CBy(x)NU such that ¢(zy)€ Egn(¢(x)). The previous Lemma implies that
Ey(x)nU=+0. Thus Ey(x)=E,(z)CBy(z) (2.3) implies that By(z)nU is non-
empty.

In order to complete the proof of the statement that U is ny-saturated it
remains to show that By(z)nU C By(u) for some ue By(z)nU. For this first note
that since the boundary R=KT- ¢(z)\K€¢(z) of KT ¢(z) in K- ¢(z) is a (possible
empty) analytic K-subset of €", there exists u €(Bx(z)\¢ ~ (R))nU C Bx(z)nU such
that ¢(u)eKT- @(z)nd(U). In particular, it follows that Bge.(¢(z))= BeAd(u)
= B ,(¢(u)). Together with 3.3 Corollary, this implies that ¢(By(z)nU)C BeA(¢(2))
n¢(U)=Kc-B¢(U)(¢(u))n¢(U)=B¢(U)(¢>(u))=¢(BU(u)). From this it follows that
Bx(2)"U CBy(u) C By(u).

To prove that O is open, let zeU be given. Then B3(z)
=B,(z)\¢ (KT ¢(z)\K® - $(2)) is, as a complement of a proper analytic K-subset
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of By(z), a K-connected open K-subset of the K-irreducible analytic set B,(z).
Furthermore, B3(z)nU is non-empty. Hence there exist ye By(z)nU and ke K
such that y and k - z are contained in the same connected component of B3(z). Let
u:[0,1]— B3(z) be a curve with u(0)=y and u(1)=k - z. Note that K- K- ¢(y),
g—g-@(y) is a bundle map. Thus there exists a curve y:[0,1]—-KY, such that
»0)=1 and $(u(z))=1(z) - ¢(y) for te[0,1].

The K-action on X can be extended to a local K%-action, cf. [K 1]. Thus in a
relatively compact neighbourhood U, of #([0,1]) the operation t—(t)-w,
te[0,1], we U,, is well defined, cf. [H2]. If U,CU is a small neighbourhood of y,
then y(1)- U, is a neighbourhood of k- z which is contained in By(U,)C U. Thus
zek™'-y(1)- U,CU. This proves that U is open.

Recall that the holomorphic K%-space A = KT - ¢(U) is a K-complexification of
@(U). Since 1| U : U—$(U) is biholomorphic, 4 is a K-complexification of U (1.4
Lifting Lemma). Since X is a Stein space, it follows, by the definition of a
K-complexification, that 1 is an open embedding. []

6.4 The categorical quotient for linear actions

Let K be a compact Lie group and ¢: K—GL(C") a continuous representation
which we always assume to be unitary. Let n,,: €*—~@"//K denote the correspond-
ing quotient map. The finitely generated algebra €[z, ...,z,]* defines an affine
algebraic variety which will be denoted by Z.

A set of generators of C[z,,...,z,]¥ defines a surjective map P:€C"—~Z, such
that n, (n,(z))= P~ '(P(z)) for all ze C". Since Z is a normal variety, the complex
space associated to Z is a normal complex space [Z, S, p. 320]. Let @, be the sheaf
of germs of holomorphic functions on Z. Since P:C"—>Z is an invariant
holomorphic map, there is a bijective continuous map P: €"//K —Z such that the
diagram

«
W/ N

C//K 5 Z
commutes.

Lemma. The map P is homeomorphic.

Proof. 1t follows from 5.5 Slice Theorem that for all open subsets Q CC"//K the
map n,: 7, (Q)—~0, ng=n,|n, (Q) is quasi-proper. In particular, C"//K is a
locally compact Hausdorfl space. Since P~Y(P(p))={p} for pe C"/K, it follows
thdt there exists an open neighbourhood Q of p and a connected open
neighbourhood W of P(p), such that P,:Q—W, P,=P|Q is a finite map. Since
Py:n, Q) W, Py=P|=, '(Q) is quasi-proper, Py(ny '(Q))=P(Q) is an analytic
subset in W (see, for example, [G 2]). But W is a connected normal space, so we
obtain Py(Q)=W. This proves that P is open at p. [

Remark. The map K® x ;cV—-C" [g,v]—g-(a+v)in 5.5 Slice Theorem induces an
algebraic map V//K—-C"//K which maps a neighbourhood of =,(0) topologically
onto a neighbourhood of =, (p) (Slice Theorem and Lemma). Thus the map
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V//L-C"//K is biholomorphic at n,(0). Hence one obtains the Slice Theorem of
Luna as formulated in [Lu 1] for the ground field €.

Theorem. The categorical quotient (€"//K, 0F.) is a Stein space.

Proof. We identify Z= P(C") and C"//K as topological spaces. Now we repeat the
arguments of Luna in [Lu 3]. For an open subset Q of €"//K let ¥(Q) denote the
Frechét space of continuous functions on Q. One can identify #(Q) with the closed
subset €(n; H(Q))* of #(n, (Q)) (cf. 2.3 Corollary 3). Thus 04(Q)is a closed subset
of OX.(Q)C¥(Q). For alocal linear slice D at a totally real K-point a € Ey(p) where
pe@"//K one can identify the algebra of K -invariant holomorphic polynomials
on D with a dense subspace of 0,(m,(D)). Since O¢.(K- DY = O, (D)¥s, it follows
that 0 (n, (D))= O%(n,(D)). Consequently, O, OF..

This theorem will now be applied to orbit-convex complete K-subsets of C".

Proposition. Let U be an open orbit-convex complete K-subset of €". Then for an
analytic K-subset X in U it follows that

(i) n(X) is an analytic subset in the open subset = (U) of C"//K.

(i) The inclusion X—>U induces an isomorphism of the C-ringed spaces
(X//K, 0%) and (rn(X), 0, ). In particular, (X//K, 0%) is a complex space.

Proof. Recall that X is an open K-subset of the analytic K-subset A=K%: X of
U =K< U (3.3 Proposition). Moreover, U is a ,-saturated open subset in €" (5.3
Lemma). Thus Q =7,(0)=n,(U)is an open subset in €"//K. We set A =7, '(n,(4)).
The remainder of the proof will be carried out in three steps.

1 n(X)is an analytic subset in n,(U). Since €"//K is a complex space, we can cover
Q=mn,(U) with open Stein subsets Q.. Note that U, ==, 1(Q,) is holomorphically
convex. Hence {U,} is a covering of U with open Stein subsets. Let .# denote the
sheaf of ideals of the analytic subset A= K< X of U. Since U, are open Stein sets,
we have A,=ANU0,={zeU,; f(z)=0 for all fe.#(U,)}.

Since every closed KT-orbit in A is contained in A4 (2.3 Corollary 3), it follows for
A,=AnU,=n;\(n,(A,) that 4,={xeU,; f(x)=0 for all fesf(U)} (23
Lemma). In particular, n,(X)=x,(4)= | ) ,(4,) is an analytic subset in 7, (U).

2 The inclusion j: A— A induces an isomorphism j of the C-ringed spaces(4//K, 0%)
and (n,(4), 0, (»)- Let p be a point in A//K and x a totally real K-point in E ,(p).
Since A is closed in the n,-saturated set A, we have E 4(p) = Ex(x)= E¢(x). For every
open neighbourhood Q of pe A//K one has n;'(Q)=AnU for an appropriate
open subset T in €. There exists a local linear slice D at x which is contained in U
(see 5.5 Slice Theorem). Then, for such a D, = ,(AnD) is an open subset in 4//K.
Since j(n (AND))=n,(AND)=mn,(A)"7,D),it follows that jis a homeomorphism.

Let 0 be an open Stein subset in 7,(0) C €"//K. Since every closed K®-orbit in 4
is contained in A, the restriction @ (Ann, Y(Q)*—0 (Anz; (Q)¥ is injective
and, because O is a Stein subset of 7,(0), it is also surjective (2.3 Lemma). From
Or Tl (DN Q)= 0 x(A ", Q) it follows O, 4, = OK.

3 Theinclusion 1: X — A induces an isomorphism 7 of the C-ringed spaces(X//K, O%)
and (A//K, 0%). The map 7is a homeomorphism (cf. second part of the proof). Let
W be an arbitrary = ,-saturated open subset of 4. Note that Wn X is orbit-convex
(3.2). Since K% (WnX)=W (3.3 Corollary) the map 7:05-i0% is an
isomorphism. []
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6.5 Hilbert’s Theorem for Stein spaces

Let K be a compact Lie group and X a Stein K-space. Then the C-ringed space
(X//K, 0%) is a Stein space.

Proof. Since (X//K,0%) is a complex space (6.4 Proposition and 6.3 Local
Complexification), it remains to show that X//K is a Stein space. But this is
obvious, because, if (p,) is a discrete sequence in X//K, then (nx '(p,)) is a “discrete”
sequence of analytic K-subsets of X and consequently there exists a function
feO(X)X such that f|ng'(p)=k (2.3 Lemma). []

Remark. Using 6.3 and the coherence result of Roberts [R], one can also see that
(X//K, 0%)is a complex space. Moreover, Roberts arguments along with 6.3 can be
used to prove analogous coherence results for Stein K-spaces.

6.6 Complexification of Stein spaces

Let K be a compact Lie group and X a Stein K-space. As before, we denote by wy
the quotient map X—X//K. We now show that the local complexifications
constructed above can be patched together.

Complexification Theorem. For every Stein K-space X there exists a
K-complexification X© which has the following properties:
(i) X is an open orbit-convex complete Runge K-subset of XT.

(i) The inclusion X —XT induces an isomorphism of the quotients X//K and
X%//K. For the quotient maps one has (ny)*=nyc.

(i) If Q is a locally analytic subset in X//K, then K€ n3&(Q)=nc'(Q) is a
K-complexification of nx'(Q).

(iv) The K-complexification X€ is a Stein space.

Proof. First, we summarize the consequences of the Theorem on the Existence of
local Complexifications. There exist:

(1) a covering {U,} of X where U, are open ny-saturated Stein subsets of X,

(2) linear K-actions on appropriate €™ and analytic K%subsets A4, in
n-saturated open subsets of €=, where n, denotes the quotient map C"=—C"//K,
and

(3) orbit-convex open K-subsets Y, of A, with 4,= KT Y, and biholomorphic
K-maps ¢,:U,—Y,.

We can define K-spaces Y,;=Y;nd(Upno, (Y,) and A,,=K®- Y, The
K-spaces Y,; are orbit-convex open K-subspaces of A, ie. A, is a
K-complexification of Y, (3.3). The map 1,5: Y,5— Yp,, 1,5=, 0 ¢5 ' | ¥, extends
uniquely to a holomorphic K-map i7;: A,;— Ap,. Note that 1, is biholomorphic
with inverse 15;. The holomorphic K®-space X®= | ) A,/(if;) contains the open
K-subset | ) Y,/(1,5) which will be identified with X. Since the K-subsets ¥, of 4, are

orbit-convex and complete, this is also the case for the K-subset X. From
K. X =X it follows that X is a K-complexification of X (3.3).

We prove that X€ is a Stein space. For this, let {z,e X; ne N} be a discrete
subset in X, Since X//K = X%//K is a Stein space, we can assume that the sequence
(n%(z,)) converges to pe X//K. There exist a linearly equivariant holomorphic map
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¢:X-»C™ and a ny-saturated open neighbourhood U of ny'(p) such that
A=KE®. $(U) is an analytic subset in a x,,: C"—>C"//K saturated open subset of
C™. Furthermore, the extension ¢T:XT—C™ of ¢ restricted to K U is
biholomorphic onto 4 (6.2). Replacing (z,) by a subsequence, we can assume that
{@(z,); ne N} is a discrete subset of €™. Since €™ is a Stein space, there exists a
fe®(@™ such that |(fo¢%)(z,)=n for all nelN. This proves that XC is
holomorphically convex. The same argument applied to a set consisting of two
points of X®shows that X®is holomorphically separable. This implies that X®is a
Stein space.
The Runge property of X in X© is a consequence of 3.4 Theorem. []

6.7 Applications

In the sequal K denotes a compact Lie group.

(a) Let X be a Stein K-space and assume that O(X)¥=C. Then, of course,
X//K={p}. I x is a totally real K-point in Ey(p), then X® is a closed analytic
K-subset in the K®-vector bundle K® x ;¢ T, X where L is the isotropy group of K
at x. Thus XT=K®x ;¢ Y, where Y is a closed L-subset of the L-vector space T, X
through Oe T.X. Note that K - x is identified with K/L=K-[1,0]CX%. If one
assumes that X is a contractible topological space, then we have H (K/L,Z)=Z
for the homology ring. This implies L= K and consequently X is an open subset in
Y which contains 0. In particular, if X is smooth, then Y=T,X and X is a domain
in T.X which is invariant under the linear K-action on T X.

(b) Let X be a connected Stein K-manifold and assume that the set X* of
K-fixed points is non-empty. If there exists xe X such that O(V,)*=C for the
K-invariant normal space at x to X%, then X® is the normal bundle to the
submanifold XX of X, cf. [H3].

(c) Let X be a Stein S*-manifold and assume X' =@. Then locally X is an open
subset of the vector bundle C* x , _V where Z,,={teS*; t"=1}. Hence X®is a
Seifert ©*-principal bundle over X//S*. The singularities of X//S' are given by
finite quotients with respect to cyclic groups.

(d) Let M be a compact subgroup of the unitary group U(C") which contains
the transformations S={t-idg., t€S'}. If U is an M-invariant domain of
holomorphy in €" which contains the origin, then C"=M®.U is an
M-complexification of U. But then U is orbit-convex with respect to any compact
subgroup K of M (3.2). For such a group it follows that K*- U is a domain of
holomorphy.

In order to give a concrete example, let U be the m-fold product of

Up= {Ze A ?); (Z -w,Z-w)<|w]|? for all weCz\{O}} and M the m-fold

Zy g
product of U(C?) x U(C?). The group K =SU(C?) x SU(C?) can be embedded
diagonally in M and with respect to the diagonal action it follows that K®- U is a
domain of holomorphy. This is a “compact” version of the future tube
example (1.5).

(¢) Let X be a real analytic K-manifold, ie. the action K x X—X is a real
analytic map. From the result of Grauert [G 1] applied to the map K x X - X it
follows that there exists a Stein K-manifold X which contains X as a totally real
K-submanifold. By the Complexification Theorem, there exists a holomorphic
Stein manifold X® which contains X as a totally real K-submanifold. Since X is
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totally real, the K®-orbits through the points of X are closed. The quotient X/K is
a real semi-analytic subspace of XC//K.

From the Embedding Theorem in [H 1] it follows that:

There exists a linearly equivariant closed real analytic embedding of X into some
RY if and only if the K-orbit type of X is finite.

At this point it should be noted, that the Einbettungssatz 2 in [H1] is not
corrected stated. It says that a holomorphic Stein K®-manifold can be linearly
equivariant embedded if and only if the K-orbit type is finite. But finiteness of the
KC-orbit type is only a sufficient condition. The necessary and sufficient condition
is finite K-orbit type. It is easy to see that this condition is necessary [J]. On the
other hand, the finiteness of the K-orbit type implies finite Slice type and this
implies the existence of a linearly equivariant embedding of a holomorphic Stein
K%manifold (this, in fact, is proved in [H1]).

(f) Let Y be a holomorphic K®-space and ¢: Y->R a K-invariant strictly
plurisubharmonic proper function. Let D(¢)={x € Y; #(x)<1}. Then K®- D(¢) an
open Stein K®-subspace of Y.
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