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1 Introduction 

The following assertion was accepted for twenty years when, in 1992, 
R.J. Zimmer and K.R. Gutschera discovered a very important gap in the only 
known proof of it [A1, A2]: 

Theorem A Let C(M)  be the whole con formal group of  a Riemannian 
mani]bM M with d imM = n >-- 2. I f  M is not conformally equivalent with 
S n or E n, then C(M) is inessential, i.e. can be reduced to a group o] isome- 
tries by a conformal change of  metric. 

Let us recall that the case of compact manifolds had been previously 
solved in 1969-71 (cf. [F1] completed by [F4]). (The Obata's proof [O1,O2] 
completed by [L] was concerning Co(M) only). Soon after in 1972-73 D.V. 
Alekseevskii proposed a synthetic general proof, at first in [A1] for Co(M), 
then in [A2] for C(M) itself, which stopped all the research arising from the 
"Lichn&owicz conjecture". 

In fact Theorem A can be divided in two parts of unequal difficulty, namely: 

Theorem A~ I f  M is not conformally equivalent with S n or E n, then C(M)  
acts properly on M (hence is compact i f  M is compact). 

Theorem Az I f  C(M) acts properly on M it is inessential. 

Theorem A2 is almost obvious when M is compact. In the non-compact 
case it follows from Theorem 5 and 6 of [A1]. The proof of these theorems is 
consistent and based on classical arguments (cf. [G] for details). 

Theorem AI is more difficult, especially in the non-compact case, as it 
involves global topological properties of the manifold. Alekseevskii's argument 
is based on the following strong assertion: 
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OP) Let C be a closed group of automorphisms of  a G-structure of  finite type 
on M. I f  all the isotropy subgroups of  C are compact, then C acts properly 
on M. 

A counterexample constructed by R.J. Zimmer has recently proved that (P) 
is not true, even for M compact, and K.R. Gutschera pointed out a non-obvious 
gap in Alekseevskii' proof of it (cf. [G]). Thus Theorem [A1] was not actually 
established in [AI,A2] and the major part of the proof of Theorem A was 
missing. 

By thinking over this problem it seems indeed difficult to prove Theorem 
A1 by using local properties of connections only. Thus the solution was to be 
sought in another direction. 

The purpose of the present paper is to propose a rigorous proof of this 
theorem. Our proof is completely independent from Alekseevskii's one and is 
based on the theory of "global conformal invariants" initiated in [F2] and devel- 
oped in IF8]. The direct method used in [F1] for the compact case was indeed 
not extensible to non-compact manifolds as it is based on direct estimations of 
modulus of continuity. 

The new results contained in [F8] will reduce the general proof of Theorem 
Al to a surprisingly elementary discussion of the behaviour of sequences in 
C(M). This discussion will be divided in three parts respectively relative to 
the following cases: 

a) M is of class II, b) M is of class I, c) M is compact, 

where, for brevity's sake, a non-compact manifold M is said to be of class I 
[resp. II] if its ideal boundary OM satisfies Cap OM = 0 [resp. Cap aM > O] 
(of. [F8] Sect. 6). 

The arguments will indeed not be the same in those three eases and the ne- 
cessity of this distinction follows from the fact that a correct proof of Theorem 
AI must involve the conformal geometry at infinity of M. 

In the case c) the result is not new, but the present proof is much shorter 
and probably more pleasant than the one proposed in IF1]. 

It must be noticed that the case n = 2, which was separately treated in 
JAil, is included in our proof. 

We emphasize that our arguments will not use the structure of group 
of C(M) and that we always deal with sequences of C(M) instead of sub- 
groups. 

in fact, Theorem Al is not actually concerning the theory of Lie groups 
and may be considered as a mere theorem of Analysis. 

This will appear more clearly when we extend this theorem to closed sets 
of uniformally quasiconformal maps IF9] as we have done for the compact 
case in [F1]. 
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2 Topological  preliminaries 

In all sections 2 to 6, M will always denote a non-compact manifold with 
dimension n > 2, and we shall deal with compact manifolds in Sect. 7 only. 
In all cases we will consider C(M) as a subset of Cg(M,M) with the compact- 
open topology, and the assumption that M is C ~ will only be used to obtain 
the closure of C(M) in C~(M,M) (theorem 2.8). 

Notations. a) A~ = M U {oo} is the Alexandrov compactification of M; tom is 
the constant infinite map M ~ M, x ~ c~. 

b) Cg(M) is the linear space of continuous real-valued functions on M. 
c) Cg(M,M) is the space of continuous maps of M into itself with the 

compact-open topology (c-topology for brevity). As M is locally compact and 
satisfies the second axiom of countability, C~(M, M) is metrizable and we are 
allowed to use sequences in proving the compactness of subsets of Cg(M,M). 

The c-topology can be extended to Cg(M, JQ) and thus we are allowed to 
set: 

2.1 A sequence ( f  k ) in qC(M,M) is c-converging to the constant infinite map 
tom if, and only if, for any compact sets H, K of  M, there exists an integer 
ko such that f k ( H )  f) K = ~) for all k > ko. 

We shall use the following criterions of convergence in C~(M,M): 

2.2 A sequence ( f  k ) in ~ (M,M)  is c-convergent if and only if its restriction 
to every compact set of  M is uniformly convergent. 

2.3 In order that a sequence ( f k )  in ~(M,M)  be c-converging to some f E 
r it is necessary and sufficient that .[or any a E M and any sequence 
(ak) converging to a in M the sequence fk(ak) tends to f (a) .  

At last, for applying the Ascoli's theorem, we will use the following lemma: 

2.4 Let F be a subset of  qf(M,M) and H,K  be two compact sets o f  M such 
that, .['or any f E F, f ( H )  C K. I.[' F is not equicontinuous on H there exists 
a sequence ( f k )  in F and two convergent sequences (ak) and (bk) in H with 
the same limit a, such that the sequences (fk(ak)) and (fk(bk )) converge to 
different limits. 

Proper action on M 

The notion of "proper action" is usually defined for groups of transformations 
only. For what follows it will be convenient to extend it to all subsets of 
qf(M,M). Then by using the fact that r is metrizable, we can state 
(Cf. [13] Sect. 4 no 1): 

2.5 A subset F of  qf(M,M) is properly acting on M if and only if, for any 
sequence ( f k )  in F and any sequence (ak) in M such that a = lim(ak) and 
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b = lira fk(ak) exist, there exists a subsequence (gp)= (fkp) o f ( f k )  which 
is c-converging to some f E F satisfying f (a)  = b. 

We have also (of. [13] Sect. 4, no 5, theorem 1): 

2.6 A closed subset F of ~f(M,M) is properly acting on M if, and only if, 
for any compact sets H,K of M, the set P(H,K) = { f  E F/f(H) NK •O} is 
relatively compact. 

The following assertion will perhaps be more vivid: 

2.7 A closed subset F of ~f(M,M) is properly acting on M i/~ and only if, 
every sequence ( fk)  in F which is not c-converging to the infinite constant 
map cog, contains a c-convergent subsequence. 

Proof a) If this condition is satisfied, let denote H, K two compact sets of 
g and ( fk)  a sequence contained in P(H,K) = { f  E F / f  (H)NK~k0}. Then 
( fk)  cannot converge to coM and contains a c-convergent subsequence, which 
proves that P(H,K) is relatively compact. 

b) Conversely, let us assume that F acts properly on M and let ( fk)  be a 
sequence in ~(M,M) which does not converge to coM. Then for all compact 
sets H,K of M there exists an infinite sequence (kp) of integers such that, 
for all p, fkp(H)nK:~O. The sequence (fkp) is contained in P(H,K) and 
therefore admits a convergent subsequence. 

Now for applying these results to the conformal group C(M), we need to 
know when C(M) is closed in qf(M,M). It seems that this problem has not 
been taken in account in [At]. 

It is however not obvious that the closure of C(M) in ~(M,M) is the 
same as the one we can obtain by considering the extension of C(M) to the 
second order fiber bundle ~-2(M), which belongs to ~(ff'2(M), ~'2(M)). Thus 
we will need the following assertion: 

2.8 Let (fk) be a sequence of conformal automorphisms of a C~176 
M which is c-converging to some homeomorphism f Then f is conformal. 

Proof From a classical result (of. [Va] 37.3 for instance) f is 1-quasi- 
conformal, or in other words, it is a conformal homeomorphism; then from 
IF4] (theorem A) f is C ~176 hence f is a conformal diffeomorphism of M. 

We do not know whether there exist other proofs of this theorem; let us 
only recall that the analogous result for isometries has been proved by S.E. 
Myers and N.E. Steenrod in [MS] by using the geodesics of the manifold. 

Remarks. 1) From the discussion of Sects. 6, 7 it will appear that the limit 
of a pointwise convergent sequence of conformal automorphisms is either a 
constant or a homeomorphism, unless M be r equivalent with S n 
or E n. 

2) The proof of (2,8) is the only one in this paper which, until now, 
requires that M is C ~176 
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3 Conformal invarlants 

We simply quote here the definitions and properties that we shall use for 
proving Theorem Ai. Complete proofs are given in IF8]. 

In what follows M will still denote a non-compact Riemarmian manifold 
of  dimension n > 2, which is now only assumed to be of class C 1. 

We set at first some definitions and notations. 

Dl. H ( M )  = qf(M) n WIn(M) is the linear space of continuous real-valued 
functions u on M admitting an Ln-integrable differential distribution, denoted 
~7u by identification with a gradient, satisfying 

I (u ,M) = f l r 'u :dT < 
M 

where 1~Tul is the norm of Wu and dz the volume element defined by the 
Riemannian structure of  M. 

D2. Ho(M) is the subspace of functions u E H(M)  with compact support 
in M. 

D3. The capacity of a compact continuum C of  M is Cap(C) = Infu I (u ,M) 
where u E Ho(M) satisfies u = 1 on C. 

D4. For all (x, y)  E M 2 we set ItM(X, y)  = infc~(x,y) Cap(C) where ~t(x, y)  
is the set of compact continua of M containing x,y. If y = x, I~M(x,x)= O. 

D5. Let Co, Cl be two continua (i.e. closed connected sets) of M, compact 
or not, and A(Co, C! ) the set of  functions u E H(M)  satisfying u = 0 on Co, u = 
1 on C1. Then the capacity of the condenser F(Co, Cl ) defined by Co, Cl is 

Cap(C0, CI ) = inf I (u ,M) 
u~A( Co, c~ ) 

with Cap(C0, C! ) = +cx~ if A(Co, C1 ) = O. 
D6. For all (x, y ,z)  E M 3 with z:~x, z4= y we set: 

vM(x,y,z) = inf Cap(C0,Cl) 
Co,% 

where Co is a non-compact continuum containing z, hence joining z to cr and 
Ci a compact continuum containing x, y. 

This function VM is extended to any point (x, y,z)  of  M3\A, where A = 
{(x,x,x)/x E M} is the diagonal of M 3, by setting VM(X,y,y)= VM(X,y,x)= 
+ ~  if  y4=x and obviously vu(x,x,z) = 0 if x * z .  

Basic properties 

3.1 The functions PM and vM are only dependent on the conformal struc- 
ture of  M and are therefore invariant under any conformal mapping. More 
precisely, i f  f is a conformal mapping of  a manifold M onto a manifold N, 
we have for all x, y, z in M: 

#N(f(x) ,  f ( y ) )  = pM(X, y), vN(f(x), f ( y ) ,  f (Z) )  = VM(X, y , z ) .  
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Proof This follows from the fact that the integral I (u ,M) is only depending 
on the conformal class of the Riemannian metric g of M, and is therefore 
invariant under any conformai mapping. 

3.2 a) The functions Pu : M 2 --' ~ and vu : M3\  A ---, ~ are continuous and 
/zM is always finite. 

b) I f  there exist two points a,b of  M with b # a  such that PM(a,b) = O, 
then pM(C) = 0 for any compact continuum C of  M, hence laM(X, y ) =  0 for 
all (x, y)  E M 2, which is equivalent with Cap OM = 0 (cf  F8). 

Corollary. The two following classes of  non compact C'-Riemannian mani- 
folds are complementary." 

I The class of  manifolds M such that l~M is identically zero. 
II The class of  manifolds M on which the relation PM(X, y)  = 0 is equivalent 
with y = x. 

Moreover, i f  two Riemannian manifolds M, N are conformally equivalent, 
they belong to the same class. 

Examples. Let N be a compact Riemannian manifold. Then 
a) For any finite set S = {ai . . . . .  ak} of points of N, the punctured manifold 

N \ S  is of class I. 
b) For any compact continuum C of N, the open submanifold N \ C  is of 

class II. 
Other examples are given in [FS]. 

Special properties 

3.3 I f  M is o f  class II, then PM is a distance on M, and the topology defined 
by this distance is the same as its topology of  manifold 

3.4 l f  M is of  class I the function VM can be extended to (M x M x I~I)\A 
by setting, for all (x ,y)  E M2 : vM(x,y, oo) = O. Then VM is a continuous 
map of  (M x M x h?I)\d onto ~ +  = F,+ O {+c~} with the topology of  order. 
Moreover 

a) the relation VM(X, y,z)  = 0 is equivalent with (y = x or z = oo). 
b) I f  y # x  the relation VM(x,y,z) = +oo is equivalent with ( z=x or z=  y). 

4 Proof of theorem At for manifolds of class H 

This ease is easy since C(M) is a group of isometries for the metric space 
(M,/zM). The announced result will follow from the following lemma which is 
a slight improvement of the theorem 4.7 in [KN], 

4.1 Let (X,d)  be a connected locally compact metric space and ( f k )  a se- 
quence of  isometries o f  X onto, itself. I f  there exists a convergent sequence 
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(ak) in M such that (fk(ak)) has a limit b EX, then there exists a subse- 
quence ( f i  n) of  ( f  i ) which is c-converging in @(X, X )  to an isometry f and 
the sequence (f-~l) is c-converging to f - i  . 

Proof. Let a = lim(ak). Then the inequalities: d(fk(a),b) ~_ d(fk(ak),b) + 
d(fk(a), fk(ak)) = d(fk(ak),b)+d(a,  ak) show that fk(a) tends to b, and the 
hypotheses of the theorem 4.7 of [KN] are fulfilled. 

With this slight improvement we can give a rapid proof of the convergence 
of (f~-l)  i f  we observe that our hypothesis is in fact symmetrical with respect 
to ( fk)  and (f~-i), by exchanging ak with bk = fk(ak). The sequence (f~-l)  is 
therefore also convergent; its limit g must satisfy g[.f(x)] = l i m f ; l ( f k ( x ) )  = 
x, and similarly f ig(x)]  = x. Hence f is a homeomorphism and g = f - i  

Then by using 2.5 and 2.8 we can state: 

4.2 Theorem The conformal group C(M) of  a non-compact Riemannian 
manifold of  class II acts properly on M. 

Remark. It is possible to define conformally invariant distances on a class of 
manifolds which are not necessarily of class II (Cf. IF2], [FS], for the definition 
of the ~-distance). But the conformal invariant vM will allow us to study at 
the same time all the manifolds which are not of class II. 

5 Proof of  Theorem At for manifolds of class I 

The desired result will follow from the discussion of the behaviour of a se- 
quence ( fk)  in C(M), where M is of class I. After having set aside the case of 
convergence to ogM (Lemma 5.1 ) we shall distinguish two main cases leading 
resp. to propositions (5.2) and (5.3). 

5.1 Lemma If" the sequence ( f  k ) is not c-converging to the constant infinite 
map o~M there exists a subsequence (gp) = (fkp) of ( fk)  and a convergent 
sequence (ap) in M such that the sequence (gp(aj,)) is convergent. 

Proofi From hypothesis there exist two compact sets H, K in M such that the 
set {k E lq / f k (H)NK4:0}  is infinite; hence the existence of a subsequence 
gp = (fkp) of ( f p )  and of a sequence (ap) in H such that, for all p, gp(ap) E 
K, and the announced result is obtained by a new extraction of subsequence. 

5.2 Let ( f  k ) be a sequence of  conJormal mappings of M onto itself. If" there 
exist two convergent sequences (ak) and (bk) in M, with different limits a,b, 
such that the limits ~ = lim fk(ak) and/~ = lim fk(bk) exist, then: 
i) i f /~4:~  there exists a subsequence (01,)= (fkp) of  ( fk)  which is c- 

converging to a conformal map f of  M onto itself, and the sequence (g~l ) is 
c-converging to f -1 .  
ii) if/~ = ~r the sequence ( f  k ) is c-converging to the constant ~. 

The proof is divided into five lemmas. 
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5.2a For any compact set H of M there exists a compact set K of M con- 
taining all the compact sets f k(H). 

Proof. If  it were not true, there would exist a sequence (xp) of points of H 
and an infinite sequence (kt,) of integers such that fkp(Xp) tend to oo. By 
extraction o f  a new sequence we could assume that (xp) has a limit x; then 
the sequence vM(akp, bk,,xt,) would tend to v~(a, b,x) which is strictly positive 
while from (3.4) the sequence vM(f~(a~v),f~(b~p),f~,(x~,)) would tend to 
vu(a, fl, or = 0. But this is impossible since from (3.1)these sequences have 
the same values. 

5.2b The 

Proof If  
( fk )  and 
such that 
Then one 

family ( fk )  is uniformly equicontinuous on all compact set of M. 

not, from (2.4), there would exist a subsequence ( g p ) =  (fkp) of 
two convergent sequences (xp),(yp) in M, with the same limit x 
the sequences gp(xp) and gp(yp) converge to different limits r 
at least of the points a, b would be different from x, let a 4=x for 

precision, and the sequence v~(xp, yp, ak r ) would tend to vM(x,x, a) = 0 while 
v~c(ge(xp), gp(yp), gp(akp)) would tend to v~(~, ~/, g) which is strictly positive, 
but from (3.1) this is impossible. 

5.2c There exists a subsequence (gp) of ( fk)  which is c-converging to some 
map g E qC(M, M). 

This follows from (5.2.a), (5.2.b) and Ascoli's theorem. 

5.2d I f  g~=fl the map g defined in (5.2.c) is a conformal automorphism of 
M and the sequence (g-~l) is c-converging to g-l. 

Proof At first we remark that the sequence (g~l) satisfies the same kind of 
hypothesis as (gl,): if we set gp = gp(akp) and tip = gp(bkp) we have indeed 
limgp = 0q limflp = fl, lim g~l(gt, ) = a, lim g~l(flp) = b. Hence there exists 
a subsequence (hr) = (g~)) of  (g~l)  which has a c-limit h in qC(M,N) and for 
all x E M we have hr[gp,(x)] = x; hence h(g(x)) = x, and similarly g(h(x)) = 
x; this proves that g is a homeomorphism, and from (2.8) g is conformal. 

At last the sequence (g~t) itself tends to g- i .  

5.2e l f  oe = [3 the sequence ( f  k ) is c-converging to the constant ~. 

Proof Let (xk) be a convergent sequence in M with limit x, and ~ a cluster 
point of the sequence fk(xk) in the compact M. Assuming ~4:g we should 
have vM(a,b,x) = lim vM(at, bk,xk), while v~(0c,~,r = 0 would be a cluster 
value of vg(fk(ak), fk(bk), fk(xk)); but from (3.1) this is impossible since 
v~(a,b,x) > O. 

Hence for all convergent sequence (xk) in M, the sequence (fk(x~)) tends 
to ~, which by using (2.3) proves directly that ( fk)  is c-converging to the 
constant g. 

Now we complete (5.2) by the following lemma: 
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5.3 Let ( f  k ) be a sequence in C(M), no subsequence of  which is c-convergent 
(not even to raM). Then there exist a subsequence ( g p ) ~  (fkp) of  ( fk)  and 
a convergent sequence (ap) in M with limit a such that 

a the sequence gp(ap) has a limit ~ in M. 
b The restriction of (gp) to M\{a} is c-converging to infinity. 
c The sequence (g~l) is c-converging to the constant a. 

Proof 
a The assertion a) follows from lemma 5.1, since ( fk)  is not c-converging 

to O~g. 
b Assuming that the assertion b) is not true, we could apply the lemma 

5.1 to M\{a}:  hence there would exist a sequence (bp) in M\{a}  converging 
to some point b # a  such that the sequence gp(bp) would have a finite cluster 
value 8; then we could use (5.2) to prove the existence of a c-convergent 
subsequence of (0p), in contradiction with our hypothesis. 

c Let ~p = 9p(ap) and (~p) be a sequence in M converging to some point 
E M. Then for any convergent sequence ( y , )  in M with limit y~a ,  we 

know that gp(yp) tends to oo; hence the sequence v~(~p,~p, gp(yp)) tends 
to vM(~,~,oo)= 0, and from (3.1) the sequence v~(ap, o~t(~p),yp) is also 
converging to zero. From the continuity of vM, any cluster point ~ of the 
sequence 0~l(~p) satisfies vM(a,~, y ) =  O, hence ~ = a. In conclusion, for all 
convergent sequence (~p) in M, the sequence 0~l(~p) tends to a, which proves 
the c-convergence of (gp)-l  to the constant a. 

Then by using (2.7) the results of the above discussion allow us to state: 

5.4 Let M be a Riemannian manifold of  class I and F a closed part of C(M) 
which is not properly acting on M. Then there exists a sequence (Op) in F 
satisfying one of  the following conditions: 
i) The sequence (gp) is c-converging to some constant �9 E M while (g~l) is 
c-converging to infinity on M\{~}. 
ii) There exists a point a in M such that the sequence (Or,) is c-convergin# 
to infinity on M\{a}  while (g-~l) is c-converging to the constant a on M. 

Remarks. 1) We observe that the conditions i) and ii) are exchanged when 
we exchange (gp) and (g~l). Hence i f F  = F - l  = { f  E C(M)/ f  -! E F}, and 
particularly if  F is a closed subgroup of C(M), the hypothesis of (5.4) implies 
the existence of a sequence satisfying i) and of a sequence satisfying ii), both 
sequences being contained in F. 

2) If  F is a commutative subgroup of C(M), it is easy to see that the point 
in i) and the point a) in ii) are fixed points of F.  

3) In the general case we cannot say anything about the limit of (g~i(~)) 
in i) neither on that of (gp(a)) in ii). 
In the case ii) we can choose a sequence (xt,) converging to a such that gp(xp) 
has an arbitrary given limit y E M: we have but to set x t, = g-~l(y). 

The sequence (#p) is therefore never c-converging to ogM on M, even if 
gp(a) tends to oo. For example let ( f p )  and (gt,) be the sequences of simi- 
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larities defined in E n by f p(x) = l~X + p, gp(x) = px + 1/p; both sequences 
( f ~ l )  and (g~l)  are c-converging to zero, hence we are in case ii) with a = 0, 
but fp(x)  tends to infinity for all x, while gt,(x) is converging to infinity for 
x . 0  only, as gp(0) tends to zero. 

6 End of the proof for non compact manifolds 

In all this section M is still denoting a non-compact Riemannian manifold of 
dimension n _~ 2. By collecting (2.8),(4.2) and (5.4) with remark 1, we obtain 
immediately: 

6.1 The limit of  a c-convergent sequence ( fk )  of  conformal automorphisms 
is either a constant map (possibly infinite), or a conformal automorphism. 
Consequently C(M) is closed in ~(M,M) if, and only if, its adherence does 
not contain any finite constant map. 

6.2 If" C(M) is not properly acting on M there exists a sequence (gp) of  
confbrmal automorphisms of  M which is c-converging on M to some constant 
a E M, while the restriction to M\{a}  of' the sequence (g-~l) is c-converging 
to infinity. 

For brevity such a sequence (9p) will be called degenerating. 
We have now to prove that the existence of a degenerating sequence (9p) 

in C(M) implies the existence of  a conformal map of M onto E n. We will 
start with the following lemma. 

6.3 Let us assume that C(M) contains a degenerating sequence (9p) with 
limit a, and let A be an open neighborhood of  a such that A is diffeomorphic 
with an euclidian closed ball B. Then there exists a subsequence (hk ) = (gpk ) 
of' (9p) such that (h~l(,'])) is an increasing exhausting sequence of compact 
sets .['or M. 

Proof Let (Hk) be an exhausting sequence of  compact sets for M. From 
hypothesis, for all integer k there exists an integer Pk such that for all p ~ Pk, 
gp(Hk) C A, hence g~l(A) D Hk. By a process of recurrence we can choose the 
sequence (Pk) such that the sequence (g-~(A)) is increasing, and (hk) = (gpk) 
satisfies the wanted condition. 

6.4 Corollary. I f  C(M) is not properly acting on M, then M is homeomorphic 
with Rn 

Proof From (6.3) M is the union of  an increasing sequence (h~l(A)) of open 
sets, all homeomorphie with an euclidian ball, hence the result. 

Now by "blowing up" the maps (h~ -l)  of  (6.3) as we did in section 8 
of [F1] for the maps ~bp, we could directly construct a conformal map of M 
onto E n. This process being rather elaborate we reserve it for the extension 
of  theorem Al to the quasiconformal case, where it is the only possible, and 
we will confine ourselves to prove that under the hypothesis of (6.3), M is 
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conformally flat. This fact is almost obvious for n = 2; and for n _~ 3 we  will 
use an argument analogous with an Obata's one [O2], founded on the Weyl or 
Schouten tensor. The adaptation of  this argument given by P. Pansu [P] will 
allow us to give a very short proof. 

6.5 I f  C(M) is not properly acting on M, then M is conformally flat. 

Proof. Let W be the Weyl tensor of  M if  n _~ 4 and Dh the absolute differential 
of  the Schouten tensor if  n = 3, and let us set p = IWl n/z in the first case, p = 
IDh[ 3/z in the second case. As W and Dh are known to be conformaUy invariant 
[L], the integrals fxlWln/Edr and fxlDhl3/2d~c, where X is a measurable set 
of M, are invariant under any f E C(M). Now, e > 0 given, we can choose 
A in (6.3) such that fA pdz < e, and for all compact set H of  M, there exists 

k E N such that H C hfl(A); hence fHpdz ~ fhflca)pdz = fApdz < e and 

finally p = 0 on all compact set of  M, which proves that M is conformally 
flat. 

If n = 2 we can choose A such that there exists a conformal map of A onto 
a hall B, hence M = [-Jk h~l (A) is the union of  an increasing sequence of open 
sets conformally equivalent with B. 

In all cases, from (6.4) and Kuiper's theorem [Ku], M is conformally equiv- 
alent with a simply connected domain of  E n, and the existence of  a degenerating 
sequence in C(M) shows that M is conformally equivalent with E n itself We 
can state: 

6.6 Theorem. I f  the conformal group C(M) of a non-compact Riemannian 
manifoM of  dimension n >= 2 is not properly acting on M, then M is confor-- 
mall), equivalent with E n. 

7 Proof  of  Theorem A for compact  manifolds 

In this section M will denote a compact manifold of dimension n => 2, and we 
shall use the conformal invariant pM defined as follows, with the notations of  
Sect. 3. 

7.1. a For any distinct points a,b,c,d of  M we set pM(a,b,c,d)= 
infc0~aCap(Co, Cl) where Co is a continuum joining a to b in M, and Cl 
a continuum joining c to d. 

h Denoting 3 the set of  points (a,b,c,d) E M 4 three coordinates of  which 
at least are equal, we extend the definition of  pu to M\A by setting 

pM(a,b,c,d)=O if a = b  or c = d  

pM(a,b,c,d) = +oo if {a,b} n {c,d}4=0. 

Then with the topology of order on ~ +  = R+ t.J {oo}, we have: 

7.2. a The function PM : M4\A ~ ~+ is continuous and conformally invari- 
ant under all conformal map of  M. 
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b pM(a,b,c,d) = 0 is equivalent with a = b or c = d. 
e pu(a,b,c,d) = +co is equivalent with (a,b} n {c,d}~O. 

These properties of p~, will allow us to discuss the convergence of se- 
quences in C(M) by an argument analogous with the ones of Sects. 5 and 6. 
At first the following Lemma is a special case of (2.4). 

7.3 [jr F is a subset of  C(M) which is not uniformly equicontinuou$ on M, 
there exist a sequence ( f  k ) in F and two convergent sequences (at), (bk ) in 
M with the same limit a such that the sequences (fk(ak)) and (fk(bk)) are 
resp. converging to distinct limits ~, ~. 

7.4 Let ( f k )  be a sequence as in (7.3). Then there exists a subsequence 
(gp) = (fkp) of  ( f k )  which is c-converging to some constant y on M\{a} 
while the sequence (g-~l) is c-converging to a on M\{y}. 

Proof. a) Let (ck) be a convergent sequence in M with lim(ck) = c#a,  and 
(gp) = (fkp) a subsequence of (fk)  such that gp(Ckp) has a limit y. Then 
for any convergent sequence (xp) in M with l i m ( x p ) = x # a  the sequence 
pM(akp,bkp, Ckp,Xp) tends to pM(a,a,c,x)= 0 and from 7.2 a) the sequence 
p~(gp(akp), gp(bkp), gp(ckp), gp(Xp)) tends also to zero; hence any cluster 
point ~ of the sequence gp(xp) satisfies PM(~, ~, Y, ~) = 0 which implies ~ = y. 
The sequence (gp) is therefore c-converging to the constant y on M\{a}.  

b) for all sequence (~p) in M converging to some point ~ y  we have: 
lim pM(akp, bkp, ckp, g~l(~t,)) = lira pM(gp(akp), gp(bkp), gp(ckp), ~ )  = 

Assuming that the sequence g~l(~p) has a cluster point x # a  we should have 
PM(=,~,7,~) = pM(a,a,c,x)= 0, which is impossible. The sequence g~l(~p) 
is therefore converging to a, and the sequence (g~l) is c-converging to the 
constant a on g \ { y } .  

Remarks. 1) The points a and y are not necessarily distinct, as we can observe 
on the M6bius group c(sn). 

2) As in the remark 3 following (5.4) we cannot say anything on the limit 
of (gp(a)); but even if gp(a) tends to ~, the convergence of (gp) is not uniform 
on M, as gp(akp) and gp(bkp) have different limits. 

The following lemma will give a criterion for c-compacity analogous with 
(5.2). 

7.5 Let ( f  k) be a sequence in C(M), and (xk), (yk), (zk) three convergent se- 
quence in M with distinct limits x, y,z such "that the sequences f k(xk ), fk(Yk), 
f k(zk ) are resp. converging to u,v, w. 

a) I f  u, v,w are distinct, there exists a subsequence (gp ) = ( f  ~p) of  ( f  k ) 
which is c-converging to a homeomorphism g of  M onto itself, while (g~  ) is 
c-converging to g-~. 

b) I f  u, v,w are not distinct there exist a point a of  M and a subsequence 
(gp) of  ( f  ~ ) which is c-converging to some constant on g \ { a } .  
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Proof a) We prove at first that the f~  (k E l~l) are uniformly equieontinuous 
on M: if  not, from (7.3) and (7.4) there would exist a point a of M and a 
subsequence (gp) of ( fk )  e-converging to some constant y on M\{a}. Then 
two at least of the points x, y, z would be distinct from a, let x, y for precision, 
and we should have lim gp(xkp ) = y = lira gp(Ykp ) hence u = v, in contradic- 

tion with the hypothesis. By exchanging fk  with f~-I and (x,y,z) with (u,v,w) 
we observe that the f~-l (k E N)  satisfy the same kind of hypothesis as the 
fk ,  hence the f~-l are also uniformly equicontinuous on M. 

As a consequence there exists a subsequence (gp) of ( fk )  which is 
c-converging to some continuous map 0, while the sequence (gpl) is c- 
converging to some continuous map h, hence h = g- l  and g is a homeo- 
morphism. 

b) If, for instance u = v, the sequence ( f k  l) has the properties stated in 
(7.3) for (fk);  hence, from (7.4), the announced result by exchanging fk with 
f~-l. At last by using (2.8) we can state: 

7.6 I f  C(M) is not compact there exist a sequence (gp) in C(M) and a point 
a of  M such that (gp) is c-converging to some constant b on M\{a} while 
(g-~l) is converging to a on M\{b}. 

For brevity such a sequence (gt,) will be called degenerating. 

Proof. Let us choose three distinct points xl,x2,x3 of M. Every sequence S 
in C(M) contains a subsequence ( fk )  such that ui = limfk(xi) exists for i =  
1, 2, 3. If  the sequence S does not contain any c-convergent subsequence it 
follows from (7.5) that ul,u2,u3 are not distinct and that C(M) contains a 
degenerating sequence. 

Let us remark here that a, b are not necessarily distinct. 

Now if  (gj,) is a degenerating sequence as in (7.6) and A an open neighbor- 
hood of a, (gp(A)) is an exhausting sequence of compact sets for M\{b}. 
By choosing A homeomorphic with an euclidian ball we see that M\{b} is 
homeomorphic with E n, hence M is homeomorphie with S n. At last the same 
argument as in Sect. 6 proves that M is eonformally equivalent with S n from 
Kuiper's theorem [Ku]. We can state: 

7.7 Theorem. I f  the conformal group C(M) of  a compact Riemannian 
manifold M is not compact, then M is conformally equivalent with S n. 

This assertion was the Lichnerowicz's conjecture, already proved in [F1, F4]. 
Another proof of  the same kind as the above one has been sketched in [P]. 

Remark. If  M is a compact manifold the isotropy subgroup Ca(M) of a point 
a can be identified with C(M\{a}). We can cheek that the discussion of Sects. 
5 and 7 give concordant results for the behaviour of this group. 

Conversely the eonformal group of a non-compact manifold M may be 
considered in some way as the isotropy group of e~ in C(M), and we observe 
that (7.6) is equivalent with the following statement: 
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7.8 If  M is a non-compact manifold which is not conformally equivalent with 
E n, then C ( M ) U  {r is a compact subset of ~g(M, ll~l). 

Conclusion. By gathering Theorem 4.2, 6.6 and 7.7 we obtain Theorem Ai .  
As Theorem A2 has been proved in [A1], the proof of Theorem A is finally 
complete. 

Acknowledgements. At last I want to tell my gratitude to Prof. Zimmer and Dr. Gutschera 
for having imparted to me their observations about [AI] and thus allowing me to write the 
present paper. 
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