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1 Introduction 

The Hitchin-Kobayashi correspondence between stable bundles and solutions 
to the Hermitian-Einstein equations allows one to apply analytic methods to 
the study of  stable bundles. One such analytic technique, which has not yet 
been much exploited, is that of dimensional reduction. This is a useful tool for 
studying certain special solutions to partial differential equations; in particular 
it is useful for studying solutions which are invariant under the action of some 
symmetry group. When applied to the Hermitian-Einstein equations, it thus 
provides a way of looking at holomorphic bundle structures which are both 
stable and invariant under some group action on the bundle, i.e. of looking at 
equivariant stable bundles. 

Such ideas are developed in [GP3], where they are applied to certain SU(2)- 
equivariant bundles over X x F l. Here X is a closed Riemann surface and the 
SU(2)-action is trivial on X and the standard one on F 1. In this case, the 
equivariant holomorphic bundles over X x I 'l correspond to holomorphic pairs 
(i.e. bundles plus prescribed global sections) over X. The dimensional reduc- 
tion of the Hermitian-Einstein equations gives the vortex equations, and the 
stable equivariant bundles on X x pl  correspond (by dimensional reduction) to 
z-stable holomorphic pairs on X, with ~-stability as defined in [B2] and [GP3]. 

However not all the SU(2)-equivariant holomorphic bundles over X x pl  
correspond to holomorphic pairs on X. In fact those that do form a rather 
restricted subset of the set of all such equivariant bundles. A very natural 
relaxation of this restriction leads to a class of equivariant bundles on X x pl  
which still corresponds to data on the (lower dimensional) space X, but not 
necessarily to holomorphic pairs. Such bundles on X x F l correspond to a pair 
of bundles on X, together with a holomorphic homomorphism between them. 
We call such data a holomorphic triple on X. 
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In this paper we undertake a detailed investigation of holomorphic triples 
over the closed Riernann surface X. In particular, we define, in Sect. 3, a notion 
of stability for such objects. We explore the relationship between the stability of 
a triple and the stability of the corresponding equivariant bundle over X • ~,l. 
An important feature of the definition is that, like in the case of holomorphic 
pairs, it involves a real parameter. This can be traced back to the fact that the 
definition of  stability for a bundle over X • ~,i depends on the polarization 
(choice of Kahler metric) on X • ~,1. We discuss the nature of this parameter, 
and its influence on the properties of the stable triples. We show for example 
that 

In all cases, with one exception, the parameter in the definition o f  triples 
stability lies in a bounded interval. The interval is partitioned by a finite set 
of  non-generic values. 

Our main result is given in Sect. 4. Loosely speaking, it is that the stable 
triples over X can be considered the dimensional reduction of the stable 
equivariant bundles over X x F I. In other words, 

A holomorphic triple over X is stable if and only if  the corresponding 
SU(2)-equivariant extension over X • F ! is stable. 

In [GP3] dimensional reduction is applied to the Hermitian-Einstein equation 
on equivadant bundles over X x pt .  The result is that on bundles corresponding 
to triples over X, the equivariant solutions correspond to solutions to a pair 
of Coupled Vortex Equations on the two bundles in the triple. By combining 
this result, our dimensional reduction result for stable bundles, and the Hitchin- 
Kobayashi correspondence, we can thus show 

There is a Hitchin-Kobayashi correspondence between stability of  a triple 
and existence of  solutions to the Coupled Vortex Equations. 

This is discussed in Sect. 5. In Sect. 6 we discuss the moduli spaces 
of stable triples. By identifying these as fixed point sets of an SU(2)- 
action on the moduli spaces of stable bundles over X x F I, we obtain results 
such as 

For fixed value o f  the stability parameter, the moduli space of  stable 
triples is a quasi-projective variety. For generic values of  the parameter, and 
provided the ranks and degrees of  the two bundles satisfy a certain coprimality 
condition, the moduli space is projective. 

In Sect. 2 we have collected together the basic definitions and background 
material that we will need. 

2 Background and preliminaries 

2.1 Basic definitions 

Let X be a compact Riemann surface. The product X • •l has an SU(2) 
action in which SU(2) acts trivially on X and via the identification with the 
homogeneous space SU(2)/U(I) on IP I. 
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Definition 2.1 Let F be a C ~ complex vector bundleover X x I *1. Then 
F is said to be SU(2)-equivarlant /f there is an action of  SU(2) on F 
covering the action on X • pt .  Similarly a holomorphic vector bundle F is 
SU(2)-equivarlant/f it is SU(2 )-equivariant as a C ~ bundle and in addition 
the action of  SU(2) on F is holomorphic. 

In order to avoid the introduction of more notation we shall denote a C ~ 
vector bundle and the same bundle endowed with a holomorphic structure by 
the same symbol. The distinction will be made explicit unless it is obvious 
from the context. The following structure theorems were proved in [GP3]: 

Proposition 2.2 Every SU(2)-equivariant Coo vector bundle F over X x pl  
can be equivariantly decomposed, uniquely up to isomorphism, as 

F = ~)p*Ei | q*H | , 
i 

where p and q are the projections from X x pl to the first and second factors, 
El is a Coo vector bundle over X, H is the Coo line bundle over ~l with Chern 
class 1, and ni E Z are all different. 

In this paper we consider only the case where 

F = p'El  �9 p'E2 | q*H | . (1) 

Proposition 2.3 There is a one-to-one correspondence between SU(2)- 
equivariant holomorphic vector bundles F with underlying SU(2)-equivariant 
Coo structure given by (1), and holomorphic extensions of the form 

0 --* p 'El  --~ F --* p'E2 | q*~(2) --~ 0, (2) 

where El and E2 are the bundles over X defining (1) equipped with 
holomorphic structures. Moreover, every such extension is defined by an 
element �9 E Hom(E2,Ei). 

Proof. This is Proposition 3.9 in [GP3]. For convenience, we remind the reader 
that extensions over X x n 'l of the form (2) are parametrized by 

H t ( X  x Pl,  p*(El |  | q*tP(-2)), 

and that by the Kfinneth formula this is isomorphic to 

tt~ E1 | | Ht(F',~(-2)) ~/-/~ E1 | 

After fixing an element in HI (P  1, ~(-2)) ,  the homomorphism ~ can thus be 
identified with the extension class defining F. 

In view of Proposition 2.3, there is a one-to-one correspondence between 
extensions of the form (2) and holomor_phic triples (EbE2,~)  on X, where 

Definition 2.4 A holomorphie triple on X is a triple (Et ,E2,0)  consisting 
of two holomorphic vector bundles El and E2 on X together with a homo- 
morphism 4:  E2 --* El, i.e. an element �9 E H~ 
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By Proposition 2.3, a holomorphic triples over X can clearly be regarded 
as the "dimensional reduction" of an SU(2)-equivariant holomorphic vector 
bundles over X x IP I. In fact, this correspondence between triples on X 
and bundles on X x iP l can be extended more generally to arbitrary 
coherent sheaves. Indeed, if  S~ and $2 are two coherent sheaves on X and 
~v E Hom(S2,Sl), then the triple ($1,$2, qJ) defines a coherent sheaf U over 
X x IP t, given as an extension 

0 -4 p 'St  -4 U -" p'S2 | ~(2) -4 0. (3) 

The proof is the same as for bundles, but with Ht(X x Pl,p*(El | 
replaced by Ext~xl~l(p*S2 @ q*~(2), p'S1 ). 

2.2 Equations for special metrics 

The Hermifian-Einstein equations determine special metrics on holomorphic 
bundles over X x ~ l  Indeed, if (M, to) is any compact KJihler manifold, and 
E is a holomorphic bundle over M, then the Hermitian-Einstein equations for 
a Hermitian metric h are 

v / '~AF,  = 3/e. (4) 

Here Fh is the curvature of the metric connection determined by h, AFh is the 
contraction of Fh with the Kiihler form w, Ie E 12~ is the identity and 
2 is a constant determined by w, the rank of E, and its degree. Recall that the 
degree of a complex bundle over a Ktihler manifold is defined by 

1 fc i (E)  ^ o~ m-t degE = ( m -  1)-----~ u 

where m is the dimension of M and cl(E) is the first Chern class of E. 
For a holomorphic triple (EI,E2,O) on X, special metrics on El and E2 

are determined by the coupled vortex equations introduced in [GP3], i.e. by 
the equations 

ff'L'TAFhl + 00"  = 2nTIEj ) 
- + * +  = " ( 5 )  

In these equations, O* is the adjoint of �9 with respect to the metrics on E! 
and E2, and x and x ~ arc real parameters. If the ranks of the bundles are rl and 
r2 respectively, and we denote their degrees by dl and d2, then the parameters 

and ~' satisfy the constraint 

r,T + r2~' = degE, + degE2. (6) 

On X x lP 1 there is a one-parameter family of SU(2)-invariant K~ler  
me~ries, with ICdhler forms 
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Here COx is the K~ler  form on At, ~ops is the Fubini-Smdy Kiihler form 
normalized to volume one, and ~ r ~,+. Using these Kiihler forms, the cou- 
pled vortex equations can be interpreted as a dimensional reduction of the 
Hermitian-Einstein equations, i.e.: 

Proposition 2.5 [GP3, Proposition 3.11] Let T = (El,E2, 4)  be a holomorphic 
triple and F be the SU(2 )-equivariant holomorphic bundle over X x ~,l asso- 
ciated to T, that is given as an extension 

0 --* p*Et "-~ F ~ p'E2 | q*lP(2) ~ 0. (7) 

Suppose that ~ and ~' are related by (6) and let 

(rt + rz)~ - (degEi + degEz) 

r2 
(8) 

Then El and E2 admit metrics satisfyino the coupled z-vortex equations if and 
only if F admits an SU(2)-invariant Hermitian-Einstein metric with respect 
to o)o. 

Remark. The choice of the K~ihler metric on X x ~l that we have made differs 
from the one made in [GP3]. There the parameter a is multiplying the metric 
on F l, i.e. coe = P'cox (~ aq*copl. This, and the fact that the volume of X was 
not normalized to one, explains why the relation between x and a given there 
is the inverse of (8). 

2.3 lnvariant stability and the Hitchin-Kobayashi correspondence 

The existence of a Hermitian-Einstein metric on a holomorphic vector bundle 
is governed by the algebraic-geometric condition of stability. Recall that a 
holomorphic vector bundle E over a compact K~ihler manifold (M, co) is said 
to be stable if for every non-trivial coherent subsheaf E' C E, 

p(E') < #(E), 

degE' is the slope of E'. where # (E ' )=  rankE' 
The precise relation between the Hermitian-Einstein condition and stabil- 

ity is given by the so-called Hitchin-Kobayashi correspondence, proved by 
Donaldson [D1,D2] in the algebraic ease and by Uhlenbeck and Yau [U-Y] 
for an arbitrary compact K~hler manifold (see also [Ko, L, A-B, N-S]). 

When considering SU(2)-invariant solutions to the Hermitian-Einstein 
equations, we need to introduce the notion of SU(2)-invariant stability. More 
generally, let (M, co) be a compact K~hler manifold and let G be a compact Lie 
group acting on M by isometric biholomorphisrns. Let E be a G-equivariant 
holomorphic vector bundle over M. We say that E is G-invariantly stable if 
#(E') < p(E) for every G-invariant nontrivial coherent subsheaf E' C E. The 
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basic relation between G-invariant stability and ordinary stability is given by 
the following theorem (el. [GP1, Theorem 4]). 

Theorem 2.6 Let E be a G-invariant holomorphic vector bundle as above. 
Then E is G-invariantly stable if  and only if E is G-indecomposable and is 
o f  the form 

n 

E = ~ E I  
i=i  

where each Ei is a stable bundle, and is the image of  E~ under some element 
Gl EG. 

As shown in [GP1], there is a G-invariant version of the Hitchin-Kobayashi 
correspondence. From this, and Theorem 2.6, we can conclude 

Theorem 2.7 Let T = (EbE2,#) be a holomorphic triple over a compact 
Riemann surface X equipped with a metric. Let F --~ X x ~pl be the bundle 
associated to T as above. Let ~ and z be real parameters related by (8). 
Then El and E2 admit metrics satisfying the coupled z-vortex equations if 
and only i f  F is a SU(2)-invariantly polystable bundle with respect to the 
Ka'hler Jbrm cor defined above. 

3 Stability for triples 

3.1 Definition and basic properties 

In this section we define an appropriate notion of stability for a triple, say 
(Et,E2,•). Keeping our earlier notation, Et and E2 are holomorphic vector 
bundles over a Riemann surface X, and r  E2 --~ El is a holomorphic bundle 
homomorphism, i.e. r E H~ We denote the ranks of E! and E2 
by rt and r2 respectively, and their degrees by dl and d2. Before we can define 
stability, we need to define an appropriate set of subobjects of a triple. 

Definition 3.1 A triple T' = (E~,E~, ~')  is a subtriple of T = (El,E2, ~) if 
(1) E[ is a coherent subsheaf of  E ,  for i = 1,2 
(2) we have the commutative diagram 

E2 .... ' El 

l ~  l 
, e l -  

The zero triple T' = 0, obtained taking E~ = E~ = O, and the triple T' = T 
will be called the trivial subtriples. 

Remark. When s tudyi~  stabil/ty criteria, it will suffice, as usual, to consider 
saturated subsheaves) that is subsheaves whose quotient sheaves are torsion 
free. On a Ri�9 surface these are precisely subhundles. 
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Definition 3.2 Let T' = (E~,E l, ~)  be a non zero subtriple o f  (EbE2, ~), with 
rankE~ = r~ and rankE~ = r~. For any real z define 

rl ri +r2 
O~(T')=(#(E~ ~ E I ) - z )  r2r~ + r l ( # ( E , * E 2 ) - z ) .  (9) 

The triple T = (EhEz, ~)  is called z-stable if  

O,(T') < 0 

Jor aH nontrivial st&triples T' = (E~,EI, qb). The triple is called z-semistable 
i f  O~(T') ~_ 0 for  all subtriples. 

It is sometimes convenient to reformulate this definition as follows. 

Definition 3.3 With a a real number, define the a-degree and a-slope o f  a 

st&triple T' = (e~,El, qb) by 

deg,(T')  = deg(E~ (~ El)  + r~a, 

and 
= d e g A r ' )  

The triple T = (El, E2, r  is called a-stable i f  ]br all nontrivial subtriples 
T' = (E[,E'~, ~)  we have 

< 

The triple is called a-semistable if/z~(T ~) < # , ( T ) f o r  all subtriples. 

A straightforward computation shows the equivalence of these two 
definitions. 

rl + r2 (z 
Proposition 3.4 Fix z and a such that a = ~ - #(T)), or equivalently 

r2 
z = #~(T). Let  T' = (E~,E~, ~)  be any subtriple o f  T. Then O~(T') < 0 iv/' 
and only iv/" #~(T') < I~(T). That is, the triple is z-stable if. and only i f  it is 
a-stable. A similar result holds with " < "  replaced by "=". 

Remark. There are two special cases where the notion of stability for a triple 
is especially simple, namely when ~ = 0, and when E2 is a line bundle. 

Lemma 3.5 Suppose that ~ = O. The degenerate holomorphic triple (El ,E2,0)  
is z-semistable i f  and only i f  z = fl(El ) and both bundles are semistable. Such 
triple cannot be z-stable. 

Proof. Subtriples of T = (EbE2,0) are all of the form T' = (E~,E~,O), with 
E~ and E l being any holomorphic subbundles of El and E2 respectively. 
Applying the condition O~(T') <_ 0 to subtriples of the form T' = (E(,0,0) 
gives #(E~)_~ z, while applying the condition to subtriples of the form 
T' = (E~, E2, 0) gives Iz(El/E~) >= z. These two inequalities imply in particular 
that z = #(El ), and hence El is a semistable bundle. Similarly, by considering 
the subtriples (0, E~', 0) and (El, E l, 0), we see that E2 is also semistable. Notice 
that the inequalities cannot be made strict without leading to a contradiction. 
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Corollary 3.6 The map �9 cannot be identically zero in a z-stable triple. 

Lemma 3.7 In the case where E2 = L is a line bundle, i.e. r2 = 1, the above 
definition is equivalent to the notion of  x-stability defined in [GP3]. It thus 
corresponds to the ( z - degL ).stability for the holomorphic pair (El | L*, 4). 

Proof In this case there are only two types of subtriple possible, corresponding 
to ~ = 0 or r~' = 1. In the first case the subtriples are of the form (El, 0, 0), 
where E~ is an arbitrary holomorphic subbundle of El. The condition O~(T') < 0 
then reduces to p(E~) < x. In the second case, the subtriples are of the form 
(E~,E2, 4)  where E[ is a holomorphic subbundle such that O(E2)C E~. For 
such subtriples the condition Ot(T') < 0 is equivalent to p(EI/E~) > z. 

Definition 3.2 can thus be considered a natural extension of the r-stability 
for pairs defined in [B2]. For the more general triples which we are considering 
here however, the number of different possibilities for subtriples is too large 
to reformulate the definition of r-stability in the style of [GP3] or [B2], i.e. in 
terms of separate slope conditions on the various families of subtriples. The 
x-stability of a triple does however imply the following conditions on subtriples: 

Proposition 3.8 Let (Et,E2,0) be a z-stable triple. Let T' be related to z by 

rlz + r2z' = degEl + degE2. (10) 

Then 
(1) #(E[ ) < z for all holomorphic subbundles E~ C El, 

(2) I~(E~) < z' for all holomorphic subbundles E~ C El such that 
E~ C Ker(O), 

(3)/z(E~ t) > z ~ for all holomorphic quotients of  E2, 

(4) #(E~') > z for all holomorphic quotients oJ'El such that ~oO(E2) = 0, 
where ~z: E1 --* E~ ~ denotes projection onto the quotient. 

Proof These are immediate consequences of the stability condition applied to 
the following special subtriples (1) (E~,0,~), (2) (0,E~,~), (3) (E~,E~,~), 
with E~ ~ = E2/E~, (4) (E~,E2,~), with E~' = EllEn. 

Notice that (I0) can be expressed as z ' =  #(El ~E2)  rl - - o ' .  An 
rl @r2 

equivalent formulation of Proposition 3.8 is thus 

Proposition 3.9 Let T = (El,E2, ~) be a o-stable triple. Then 

(1)/~(E~) < /L(T) + r2 o for all holomorphic subbundles E~ C El, 
rl +r2 

(2) #(E~) < Iz(T) rl o for all holomorphic subbundles E~ C E2 such 
rl +r2 

that E~ C Ker 4, 

(3) > ~ o  for all holomorphic quotients, E'~, orE2, 
r I d - r  2 

(4) /z(E[') > /~(T) + r2 o for all holomorphic quotients, E~', of  E1 
rl +r2 

such that 7t o ~(E2)=  O, where ~t: El --~ E~' denotes projection onto the quo- 
tient. 
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3.2 Stable implies simple 

An important consequence of stability for holomorphic bundles is that the only 
automorphisms of  a stable bundle are the constant multiples of  the identity, i.e. 
stable bundles are simple. We now show that an analogous result holds true in 
the case of  hoiomorphic triples. The key result is the following Proposition. 

Proposition 3.10 Let (EbEz, 4)  be a z-stable holomorphic triple. Let (u,v) 
be in H~ 4). Either (u,v) is trivial, or both u and v are isomorphisms. 

Proof Suppose that u and v are both neither trivial nor isomorphisms. Consider 
the triples K = (Ker u, Ker v , 4 )  and I = (Imu, Im v,4),  where Ker and Im de- 
notes the kernels and images of  the maps. Since u4  = 4v, these are both 
proper subtriples of  (EbE2, q)). The r-stability condition thus gives O~(K) < 0 
and Or(l) < 0. We also have the exact sequences 

0 ---* Ker u ~ El ~ Im u ~ 0 ,  

and 

0 ~ Ke r r  ~ E2 ~ Imv ~ 0 .  

Then from the exact sequences and the definition 
riOt(K) + r20~(I) = 0, which is impossible. 

Definition 3.11 Let 

of 0~, we get 

H~ = {(u,v) E H~176 = 4v} .  (11) 

We say a holomorphic triple (El,E2,4) is simple if H~ i.e. 
if the only elements in H~ are of the form 2(I1,I2) where 2 is a 
constant and (IbI2) denote the identity maps on El and E2. 

Corollary 3.12 I f  (EbE2, 4)  is z-stable, then it is simple. 

Proof. Let (u,v) be a nontrivial element in H~ By the above 
Proposition, both u and v are isomorphisms. Fix a point p on the base of  
the bundles, and let 2 be an eigenvalue of v: E21p --4 E21p, i.e. of  v acting on 
the fibre over p. Now define ~ = u - 2/h and t~ = v - 2/2. Clearly (5, ~) is in 
H~ 4), but since t~ is not an isomorphism, it follows from Proposition 
3.10 that both are identically zero, i.e. (u,v) = 2(I1,I2). 

A related, but inequivalent notion to simplicity is that of  irreducibility. We 
make the following definitions. 

Definition 3.13 We say the triple T = (EI,EZ, 4 )  is r e d u c i b l e  i f  there are 
?l E n direct sum decompositions El ~i=l m E2 = ~i=l E2i, and 4 = ~])i=~ 4~, 

such that 4i E Hom(E2i, Eli). We adopt the convention that if  E2i = 0 or 
Eli = O for some i, then 4i is the zero map. With Ti = (EmE2, 4i), we write 
T = ~)~=l 1",.. Thus T is reducible if it has a decomposition as a direct sum 
of  subtriples. 

I f  T is not reducible, we say T is irreducible. 
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Proposition 3.14 I f  a triple T = (El,E2, O) is simple, then it is irreducible. 

Proof Suppose T is reducible, with T = (~=lTi.  Then we can define (u,v) E 
H~ 0 )  by u = (~ffit2tllt, v = (~=12i12i, where for each i, )~i E C and 
111(I21) is the identity map on Eli(E21). Clearly T is not simple. 

We see, in particular, that stable triples are necessarily irreducible. For 
reducible triples, we can however define a notion of  polystability. This will be 
useful when we consider the relation between stability and the coupled vortex 
equations. 

Definition 3,15 Let T = (Et,E2,q0 be a reducible triple, with T = (~7=lTi. 
Suppose that in each summand Tz. = (Eu, E21, #l), the map #j is non-trivial 
unless Eli = 0 or E2i = O. Fix value o f  x, and let T' be related to ~ as in (10). 
We say that T is z-polystable i f  Jor each summand Ti : 

(1) if  #~ 4=0, then Ti is x-stable, 

(2) i f  Eli = O, then E2t is a stable bundle o f  slope ~', 

(3) i f  E2i = O, then Eli is a stable bundle o f  slope ~. 

Remark. It is easy to see, using Lemma 4.3, that both simplicity and 
irreducibility for a triple on X are equivalent to the corresponding SU(2)- 
invariant notions for the associated extension on X x F I. 

3.3 Duality for  triples 

Associated to a triple T = ( E b E 2 , # )  there is always a dual triple 
T* rE* E* ~* O* = ~ 2, I, ), where is the transpose of  #,  i.e. the image of # via 
the canonical isomorphism 

Horn(E2, El ) ~ aom(E~, E~).  

As one would expect, the stability of  T is related to that of  T*. More precisely. 

Proposition 3.16 T = (El ,E2,#)  is z-stable if  and only i f  T * =  (E~,E~,#*) 
is (-'t')~stable, where ~' is related to ~ by (10). Equivalently, T is e-stable 
i f  and only i f  T* is ~-stable. 

Proof Let T' = (E~,E~,O') be a subtriple of T. This defines a quotient triple 
T" = (E[',E~ ~, 0"),  where E~' = EllEn, E~ ~ = E2/E~, and ~b" is the morphism 
induced by ~. Then T"* = (E~"*, E~'*, #"*)  is the desired subtriple of T*. Since 
one has the isomorphism T -~ T** we can conclude that there is a one-to-one 
correspondence between subtriples of  T and subtriples of  T*. A straightforward 
computation verifies that the condition O~(T ~) < 0 is equivalent to the condition 
O_,,(T"*) < O. The equivalence of  the e-stability for T and T* now follows 
from Proposition 3.4 and the fact that if x = #o(T), then 

--T t -/z(EI ~ E 2 ) +  rl 
rl + r2  
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3.4 Range and special values o f  the parameters 

Proposition 3.17 Let (EI ,E2,~)  be a z-stable triple, arid let z' be as in (10). 
Then (1) z > P(EI), (2) z' < #(E2), and (3) z - z '  > O. 

Equivalently, i f  (Ei,E2,~b) is a-stable, then (1) a > # (E l ) - / z (E2) ,  and 
(2) a > 0. 

Proof The first two statement follows from cases (1) and (3) in Proposition 3.8 
with E[ = El, and E~" = E2 respectively. To prove the third statement, let K be 
the subbundle of E2 generated by the kernel of  ~, and let I be the subbundle of  
El generated by the image of  ~. Since the triple is assumed to be T-stable, ~, 
and therefore I,  is non-trivial. By ( 1 ) in Proposition 3.8 we thus have/z(I) < z. 
But we also have 0 ---* K ---* E2 --* I --~ 0. Thus if K # 0, then I is a quotient 
of  E2, and it follows from (3) in Proposition 3.8 that /z(I) > z'. If K = 0, 
then p ( I ) =  #(E2) > z', by part (2). The bounds on a can be obtained from 
those on z by substituting z =/z~(T), and using the fact that a = z - z' if  z t 
is as above. 

Part (1) of  this proposition gives the lower bound on the allowed range 
for z. In almost all cases the rank and degree of  E! and Ez also impose an 
upper bound on z. In fact 

Proposition 3.18 Let (El ,E2,0)  be a triple with rl 4~r2. I f  the triple is z-stable 
then 

r2 Or(El) - ~t(E2)) . (12) z < # ( E l ) +  [rl - r 2 l  

Equivalently, i f  the triple is a-stable, then 

a < l +  Ir~-r2-----~ ( ~ ( E I ) - ~ ( E D ) .  (13) 

Proof Let K = Ker �9 and I = Im ~/i. Consider the subtriples TI = (0,K, ~)  and 
T2 = (I, E2, ~). Since rl #:r2, r cannot be an isomorphism and at least one of  
these must be a proper subtriple. Let r~ = rank K, r~' = rank L d~ = deg K and 
d[ ~ = deg I.  A straightforward computation shows that 

o,(r~) < Or +a2)+r~r~z < 0 (14) 

O~(T2) < 0 r d~2 ' - d l  + (rl - r~)z < 0 .  (15) 

From these equations, plus the fact that d2 = d~ + dr2 ' and r2 = r~ + r'2 ~, we get 

(rl - r2)z < d l  - d2 �9 

If  rl > rz, then we get 

Z < /~(EI) + r2 r2 (/~(EI) _ #(E2)) ' 
r l - -  

To obtain the bound in the ease rl < r2, note that by Proposition 3.16 the 
T-stability of  (EI ,E2,~)  is equivalent to the (-x ')-stabihty of  the dual triple 
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(E[,E~,O*), where x' is given, as in (10) by rtx+r2x' = d l  +d2. Applying 
the above argument to (E~,E~, r  leads to 

X < /~(EI)-I- r2 (/~(EI) _/~(E2)).  
r2 - rl 

Combining the lower and upper bounds on x (or a)  we can deduce 

Corollary 3.19 I f  rankEl and rankE2 are unequal, then a triple (El,E2, ~) 
cannot be stable unless #(E2) </z(El) .  

Furthermore, by the proof of  Proposition 3.18 we get the following corollary. 

C o r o l l a r y  3.20 Let (El,E2, ~) be x-stable and suppose that rl = r2. l f  ~ is not 
an isomorphism, then dl > d2. In particular, in any x-stable triple (El,E2, ~), 
the bundle map ~ is an isomorphism if  and only if  rl = r2 and dl = d2. 

Proof. If  Ker ~b ~ 0, then both (0,K, 4~) and (I, E2, ~) are proper subtriples. The 
proof of Proposition 3.18 thus gives (rl - r2)z < dl - d2. If Ker �9 = 0 but 
is not an isomorphism, then El/Im �9 is a torsion sheaf and it follows that 
d2 > dl.  In particular, if �9 is not an isomorphism then dl ~d2. Conversely, 
if �9 is an isomorphism, then clearly rl = r2 and d l =  d2. 

Notice that when ~ is an isomorphism that the range for x can fail to be 
bounded. For example 

Proposition 3.21 Suppose that El and E2 are both stable bundles of  rank r 
and degree d, and that ~: E2 ---, El is non trivial. Then for any z > #(El ) 
the holomorphic triple (El,E2, ~) is z-stable. 

Proof. Let #(T)=/~(EI~E2) ,  and for a subtriple T'=(E~,E~,~)  set 
/~(T') = #(E~ ~E~) .  Since El and E2 are stable and of  equal slope, we have 
/~(T') < /~(T) for all subtriples. Thus 

< - x) r! 
- r I + r ~  " 

Since �9 is a nontrivial map between stable bundles of  the same rank and 
degree, it must be a multiple of  the identity (cf. [O-S-S]). In particular ~b is 
injective and hence r[ - r~ ~ 0. Thus O:(T') ~_ O. In fact, O~(T ~) < 0 unless 

= r~. But in that case, we can write 

O, (T ' )  = r~( Iz(E; )  - # (E l  ) )  + r ; ( I t ( E ; )  - #(E2)), 

which is strictly negative. 
In principle x is a continuously varying real parameter. The stability 

properties of  a given triple do not likewise vary continuously, but can change 
only at certain rational values of  x. This is the same phenomenon as appears 
in the case of  stable pairs. In both cases it is due to the fact that, except 
for ~ itself, all numerical quantities in the definition of  stability are rational 
numbers with bounded denominators. In the case of  holomorphic pairs, this 
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has the additional consequence that for the generic choice of  z there is no 
distinction between stability and semistability. This is i~ contrast to the case 
of pure bundles, where the notions of stability and semistability coincide only 
when the rank and degree of the bundle are coprime. The next proposition 
shows that for a holomorphic triple both the value of z and the greatest 
common divisor of the rank and degree, are relevant. 

Proposition 3.22 Let T =  (EhE2, O) be a T-semistable triple, and let 
T' = (E~,E~,O') be a subtriple such that OdT') = O. Then either 

rlr~ = r2r~ and Iz(E~ ~E~) = lz(E, ~ E 2 ) ,  (16) 

o r  
r2(r[  + - r (r, + r2) (r) 

= ~ .  (17)  2r[ - 

In particular, i f  rl + r2 and dl + d2 are coprime, and z is not a rational 
number with denominator of  magnitude less than rlr2, then all z-semistable 
triples are z-stable. 

Proof. From the definition of 0~, we see that O~(T') = 0 is equivalent to 

"(el * e ; ) -  + + -  E2) = 

If  r [ r 2  - -  r l r ~ * 0  we g a  (17), and if  r~r2  - rlr~ = 0 then 

r~ rl +re 

and we get (16). 
Next we compare the stability conditions for a triple and for the two bundles 

in the triple. 

Proposition 3.23 Let (EbE2, ~)  be a non-degenerate holomorphic triple. There 
is an ~ > 0, which # e n d s  only on the degrees and ranks of  E1 and E2, and 
such that for #(El) < z < #(El)+ ~ the following is true: 

(1) I f  (EhE2,0) is a z-stable triple, then both El and E2 are semistable 
bundles. 

(2) Conversely, i f  El and E2 are stable bandies, then (EI,E2,~) will be a 
z-stable triple for any choice of  ~ E H~ )). 

Proof. For all subbundles E~ C El the slope/z(E~) is a rational number with 
denominator less than rl. Clearly, if we pick e small enough then the interval 
(#(El ), /~(El ) + e) contains no rational numbers with denominator less than rl. 
The condition #(E~) < ~ is thus equivalent to the condition g(E[) ~ /z(El), 
i.e. to the semistability of El. 

Furthermore, as noted above, if �9 < g ( E l ) + 8  then ~ ' > / z ( E : ) -  rlt. 
re 

Hence if ~ e  is small enough, then the condition ~t(E2/E~) > z' for all sub- 
r2 

bundles E l C E2 becomes equivalent to the condition that g(E2/E~) ~_ #(E2). 
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Conversely, suppose -c = ~ ( E I ) +  6 for some 6 > 0, and that �9 is any 
section of  HO(Hom(E2,EI)). Then for any subtriple (E~,E~, 4 )  we get 

(r[ + r~)O,(E~,E~, 4 ')  = r~(l~(Ei ) - Iz(Et )) + r~(l~(E~) -/~(E2)) 

+ (r2r i -- r~r~)~, 
where ~ = rankE[ and r~' = rankE~. If El and E2 are stable, and 6 is small 
enough, then it follows from this that O~(E[,E~, 4 ' )  < 0 for all subtriples. 

4 Main theorem 

In this section we shall show how the stability of a holomorphic triple over 
X relates to the stability of the associated (SU(2)-equivariant) bundle over 
X x F I. As in Sect. 2, let F - - .  X x R 'l be the extension associated to the 
triple (EbE2,O), i.e. let F be 

0 -~ p'El --, F --, p'E2 | q*~(2) ~ 0 ,  (18) 

where p and q are the projections from X x F I to X and pl  respectively, 
and ~(2) is the line bundle of degree 2 over ~,l. To relate the z-stability of 
(EbEz, O) to the stability o f f  we need to consider some K&hler polarization on 
X x l ~1. The parameter z will be encoded in this polarization. Let us choose a 
metric on X with K ~ l e r  form COx, with volume normalized to one. The metric 
we shall consider on X x ~l  will be, as in Sect. 2, the product of the metric 
on X with a coefficient depending on a parameter a > 0, and the Fubini- 
Study metric on R 'l with volume also normalized to one. The K/ihler form 
corresponding to this metric depending on the parameter a is 

a , 
CO~ = ~ P  Cox ~q*COrl �9 (19) 

We can now state the main result of  this section. 

Theorem 4.1 Let (EbE2, O) be a holomorphic triple over a compact Riemann 
surface X. Let F be the holomorphic bundle over X x I 'l defined by (El,E2, O) 
as in Proposition 2.5, and let 

(rl -b r2)z -- (degEl + degE2) 
a(z) = (20) 

r2 

Suppose that in (El,E2, O) the two bundles El and E2 are not isomorphic. 
Then (EhE2 ,4 )  is r (equivalently a-stable) i f  and only if  F is stable 
with respect to COr 

In the case that Ez ~- E2 ~- E, the triple (E,E, 4)  is x-stable (equivalently 
a-stable) i f  and only i f  F decomposes as a direct sum 

F = p * e | 1 6 2 1 7 4  

and p*E @q*d~(l) is stable with respect to COr 
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Proof As mentioned in Sect. 3, if E2 is a line bundle the z-stability of 
(Et ,E2,~)  is equivalent to the r-stability of the pair (Et |  in the 
sense of Bradlow [132]. In this case Theorem 4.1 has been proved in [GP3, 
Theorem 4.6]. The main ideas of that proof extend to the general case in a 
rather straightforward manner. 

Recall that the bundle F associated to (EI,E2,O) comes equipped with 
a holomorphic action of SU(2). It makes sense therefore to talk about the 
SU(2)-invariant stability of F.  As explained in Sect. 2, this is like ordinary 
stability, but the slope condition has to be satisfied only for SU(2)-invariant 
subsheaves of  F. In order to prove the theorem we shall prove first the 
following slightly weaker result. 

Proposition 4.2 Let (EI,E2, O) be a holomorphic triple over a compact 
Riemann surface X. Let F be the holomorphic bundle over X x pl  
defined by (EI,E2, O) and let a and z be related by (20). Then (EI,E2,O) is 
z-stable (equivalently a-stable) if and only i f  F is SU(2)-invariantly stable 
with respect to c%. 

Proof We shall start by proving that there is a one-to-one correspondence 
between subtriples T~= (E~,E~,O ~) of T and SU(2)-invariant coherent sub- 
sheaves F ~ C F. More precisely, we have the following. 

Lemma 4.3 Let F ---* X x ~,l be the bundle associated to a triple (Et,E2,O), 
i.e. let F be an extension of  the form in (18). Then there is a bijective 
correspondence between SU(2)-invariant coherent subsheaves F ' C  F, and 
subtriples (E~,E6,O') o f  (EI,E2,O). Moreover, the subsheaf F' defined by 
T t is an extension of  the form 

0 ---* p*E~ ---, F' ~ p*E~ | q*@(2) ~ O. (21) 

Proof We first show that every SU(2)-invariant coherent subsheaf F ' C  F 
is a subextension of the form in (21), with E~ c Et and E~ C E2 coherent 
subsheaves. Let f :  F' --~ p'E2 | q*t~(2) be the composition of the injection 
F ~ --~ F with the surjective map F ~ p'E2 | q'd?(2). Consider the commu- 
tative diagram 

0 --, p'E1 ~ F ---, p*E2| --* 0 
T t T 

0 --* K e r f  -* F '  --* I m f  - ,  0 .  

The SU(2)-invariance o fF '  implies that of Ker f and Im f .  It suffices therefore 
to show that if  E is a holomorphic vector bundle over X and if  p*E is the pull- 
back to X x F 1, then every SU(2)-invariant subsbeaf of p*E is isomorphic to 
a sheaf of  the form p*E' for E t a subsheaf of E. Indeed, the action of SU(2) 
on p*E can be extended to an action of SL(2, C). Let F' C p*E be a SL(2, C)- 
invariant coherent subsbeaf. Consider the action of subgroup C* C SL(2, C) on 
X x C C X x F l and let A = H~ be the space of global sections. Clearly 
H~ x C,F') C A[t], that is, H~ x C ,F ' )  = ( ~ _ o  Bk, where an element of 
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Bk is of the form s t  t for s E A. The action of 0t E C* is given by 

�9 (s:) = 

By choosing another subgroup C* c SL(2,IE), the SL(2, C)-invariance of F '  
implies that H ~  • C , F ' )  = Bo and hence F ~ = p*E ~ for E' C E a coherent 
subsheaf. 

To complete the proof of the Lemma, we need establish a bijective 
correspondence between subextensions of the form in (21), and subtriples of 
(El ,E2 ,4) .  Let i and j be the inclusions E~ ,---, El and E~ ,-4 E2, and consider 
the induced diagram 

Hom(E ', 2, Hom(E~,EI ) J- Horn(E2, El ). 

To say that (E~,E~, 4') is a subtriple of (EI,E2, 4) is equivalent to saying that 
i(r = j(4). Under the isomorphisms 

Hom(E~,E~) ~ Extl(p*E~, p*E~ | q*~(2)) 

Hom(E~,Et) ~ Extl(p*Ei, p*E~ | q*~(2)) 

Hom(E2,El ) -~ Ext '(p 'El,  p'E2 | q*~(2)), 

i(4 ~) defines an extension ~(0 which makes the following diagram commutative 

0 ~ p*Et --* p(i) .-, p*E~|  --, 0 

T T II (22) 
0 --* p*E~ --+ F'  ~ p*E~|  --, O. 

In particular F'  is a subsheaf of :(i). Similarly, j ( 4 )  defines an extension F(J) 
which fits in the following commutative diagram 

0 --* p ' E l  --, F ~ p*E2|  --, 0 

II 1" 1" (23) 
0 ---, p*E~ --* F(J) --, p*E~@q*O(2) --. O, 

and in particular F(J) is a subsheaf of F. Since i ( ~ )  = j (~) ,  p(i) ~ p(j) and 
we can compose the above two diagrams to obtain the desired result. 

In terms of the parameter ~' as defined in (10), the relation between 
and x, given by (20), can be rewritten as r = ~ - ~'. If (El,E2, 4 )  is x-stable 
(equivalently, a-stable) it follows from (3) in Proposition 3.17 that ~ defined 
by (20) is positive. The slope of F '  with respect to co~ is defined as 

= deg, 
rank F l " 

Here deg~ F' is the degree of F t, and is given by 

deg~F = 1 x :,c,(F)Ac%. 

The proposition follows now from the following lemma. 
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Lemma 4.4 Let T' be a subtriple of  T and F' the corresponding SU(2)- 
invariant subsheaf of  F. Let ~ be as in Proposition 4.2. The followinff are 
equivalent 

(I)/za(F') < pa(F) 

(2) O~(T') < 0 

(3) p#(T') < ##(T). 

Proofi The equivalence between (2) and (3) corresponds, of course, to the two 
equivalent definitions of stability for T (cf. Proposition 3.4). 

From (18) and (21) we obtain that 

and 

deg El d- deg E2 + at2 
/~(F) = 

rt +r2 

p#(F') = degE~ + degE~ + o'r~ 

where r~ = rankE~ and r~' = rankE~. From Definition 3.2 we immediately 
obtain the equivalence between (I) and (3). 

Remark. As usual, in order for F to be SU(2)-invariantly stable it is enough 
to check condition (I) of Lemma 4.4 only for saturated SU(2)-invariant 
subsheaves, that is SU(2)-invariant subsheaves F' such that the quotient F/F ~ 
is torsion-free. Such a subsheaf F' is subbundle outside of a set of codimension 
greater or equal than 2. Hence by SU(2)-invariance one concludes that F' must 
be actually a subbtmdle of F over the whole X x F l . It is easy to see that the 
saturation of F' implies that of p*E~ and p*E~ |162 in (21), and hence 
E~ C El and E~ C E2 are in fact subbundles. In other words, the one-to-one 
correspondence between SU(2)-invariant subsheaves of F and subtriples of T 
established in Lemma 4.3 sends saturated subsheaves into saturated subtriples. 

To prove the theorem, we first observe that if F is SU(2)-invariantly stable 
then, by Theorem 2.6, it decomposes as a direct sum 

F = F ~  + F 2 + . . . @ F k  (24) 

of stable bundles, where Fi is the transformed by an element of SU(2) of a 
fixed subbundle FI of F. 

For the remaining parts of the theorem, the proof splits into two cases, 
corresponding to whether El and E2 are isomorphic (as holomorphic bundles) 
or not. We treat the non-isomorphic case first. Notice that in this case, the 
map �9 certainly cannot be an isomorphism. Clearly if F is stable it is in 
particular SU(2)-invariantly stable and hence by the previous Proposition, the 
corresponding triple will be x-stable. Suppose now that (El,E2, ~) is c-stable, 
and that �9 is not an isomorphism. Our strategy to prove the stability of F will 
be to prove that F is simple, that is H~ ~ C, and hence there must be 
just one summand in the decomposition of F given by (24). 
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To compute H~176 *) let us tensor (18) with F*. We 
obtain the short exact sequence 

0--, p'El OF* ~ F OF* ---, p'E2 O q*~(2) OF* ---, 0 ,  

and the corresponding sequence in cohomology 

0 ---, H~ O F*) --, H~ O F*) --, H~ O q*~(2) O F* ) ~ . 

(25) 
We first compute H~ OF*). Dualizing (18), tensoring with p*Eb 

and using that H~ @E~)Oq*~(-2))=O, we have the sequence in 
cohomology 

0--, H~ O F * )  ---, H~ | | 1 7 4  q*~( -2 ) ) .  

(26) 
By the Kiinneth formula 

H~ O E~)) ~- H~ | 
and 

H~(t,'(E~ 0 E~) | q*~(-2)) -~ H~ O e~). 

Using these isomorphisms, g can be interpreted as the map 
H~ | E~) ---, H~ | E~) defined by ~, i.e. g(u) = u4~. Furthermore, from 
the x-stability of (EI,E2,O) one has from Corollary 3.12 that (EI,E2,O) is 
simple. Thus Ker g -~ 0 and from the exactness of (26) one obtains 

H~ O F * )  = 0 .  (27) 

To compute H~ we dualize (18) and tensor it with 
p'E2 | q*~(2), to get the sequence 

0 ~ H~ OE~)) ~ H~ | q*d~(2) |  

- ~  H~ | E2) o q*~(2)). (28) 

Lemma 4.5 Let (EI,E2,~) be x-stable and suppose that ~ is not an iso- 
morphism, then H~ | E2) = O. 

Proof. Suppose that there is a non-zero homomorphism ~P: El ~ E2. Let 
u = O ~  E H~ and v = ~'O E H~ Then u~ = Ov and, since 
(El,E2, ~) is simple, we have that u = Z/~ and v = Z/E2 for ,~ ~ 113. If 2 #0 ,  
we easily see that �9 is an isomorphism, contradicting the assumption of the 
Lenmaa. Thus 2 = 0 and then Im Y' C Ker ~ and Im ~ C_ Ker qL 

We can therefore consider the subtriples of (El,E2, ~) given by Tl = 
(K, E2, ~ )  and T2 = (0,/, ~), where K = Ker W and I = Im ~v. Let r~ = rankK, 
r~' = rank/, d~ = degK and d~ = degI. Applying the x-stability condition to 
T! and T2 we get the inequalities 

r2 i - l ~ l r ' td  d2) + rlr{'~ < 0  

d'~ - d t  + (r~ - r~)~ < O.  
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From this and the fact that rm = r~ + r[ t and d~ = d~ + d~', we obtain that 
z < p(Ei ~)E2), or, equivalently, o(z) < 0. This contradicts the x-stability of 
(E~,E2, r 

From the Kfinneth formula and Lemma 4.5 we get that 

~~ | E2) | q'O(2)) ~ ~~ | E2) | ~~ -~ 0, 

and from (28) we get H~ | q * ~ ( 2 ) |  H~ | From this 
and (27), the first three terms in (25) reduce to 

0 ---, H~ | F*) i He(E2 | E~ ). 

Since F is SU(2)-invariantly stable then it is SU(2)-invariantly simple, i.e. 
the only SU(2)-invariant endomorphisms are multiples of the identity. Let 
~P ~ H ~ 1 7 4  *) be a non SU(2)-invariant endomorphism o f F ,  i.e. ~vg4: ~v 
for some g ~ SU(2). Since i must be compatible with the action of SU(2), we 
get i(~ vg) = (i(~v)) o. On the other hand, (i(~P)) g = i(~v) since the action of 
SU(2) on H~ | E[) is trivial. Hence i (~ )  = i(Tg) contradicting the injec- 
tivity of i. Thus H~ | F*) ~ r which concludes the proof of our theorem 
for the case whore El and E2 are not isomorphic. 

Now suppose that El ~ E2. We first prove 

Lemma 4.6 Suppose El "~ E2. Then for any x > #(El), the triple (EI,E2,r  
is x-stable if  and only if r is an isomorphism and El is stable. 

Proof Suppose that the triple is x-stable. Then (by Corollary 3.20) r is an 
isomorphism. Now consider the subtriples of the form T' =(r 
These have r~ = r~ and, since r is an isomorphism, #(T t) = #(E~'). Hence 
O~(T') = #(E~')-p(E2),  and thus the x-stability of the triple implies the 
stability of  E2. Conversely, if  E2 ~ El and both are stable, then all non trivial 

are isomorphisms. R now follows as a special case of Proposition 3.21 that 
the triple (El,E2, ~) is z-stable. 

Suppose that El ------ E2 -~ E and that the bundle F associated to (E,E, r  is 
of the form 

F = p*E | q*0(l)  @ p*E | q*~( l ) .  (29) 

If  we assume now that p*E| is stable, then E is also stable and 
hence H~174 *) ~ r Thus there is only one non-trivial extension class 
(corresponding to r = 2/). We must now examine this (unique) non-trivial 
extension 

0 -* p*E -~ F ~ p*E | q*g~(2) --* 0 .  

This is of  course nothing else but the pull-back to X x F 1 of the non-trivial 
extension on 1 ~ 

0 --, �9 ~ ~ ( 1 ) ~  ~(1) -~ ~(2) --. 0 ,  

tensored with p*E. Thus the action of SU(2) permutes the two summands 
in (29) and from Theorem 2.6 we conclude that F is an SU(2)-invariantly 
stable bundle. The x-stability of (EbEz, r  follows now from Proposition 4.2. 

Conversely, suppose that (EbE~, ~) is z-stable, then from Lemma 4.6 we 
obtain that E~ ~ Ez ---- E is stable and ~ is hence a non-trivial multiple of the 
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identity. From the above discussion we conclude that 

F = p*E | q*d~(1 ) ~ p*E | q*d~(l ) .  

On the other hand, from Proposition 4.2, we argue as before that F is certainly 
invariantly stable. Also (25),(26) and (27) show that we have an exact 
sequence 

0 --, H ~ 1 7 4  *) ---, H~ | q*CP(2) |  

Using that H~ | E*) "~ C, the exact sequence (28) becomes, 

0 --4 C --, H~ | q'd)(2) | F*)  --+ C 3 . 

From these two exact sequences, we see that 

1 ~ h ~ 1 7 4  *) ~_ h~174174 *) _~ 4 .  (30) 

But since F is invariantly stable it is given by the direct sum (24). In 
that case, 

H~ | F*) ~ GL(k, {E), 

where k is the number of stable summands in F. It follows that since 
h~ | F*)4~ I, then h~ @ F*) = k 2 - I for some integer k. The only possi- 
bility consistent with the constraint (30) is thus h~174 *) = 3, i.e. k = 2. 
Hence the bundle p*E| in the decomposition of F is stable, which 
finishes the proof of the theorem. 

Notice that the conclusion of Proposition 4.2 extends straightforwardly to 
cover polystable objects. We thus get the following corollary, which will be 
useful in the next section. 

Theorem 4.7 Let (EI,E2,~) be a holomorphic triple and F be the cor- 
responding holomorphic bundle over X • pl. Let z and a be related as 
above. Then (EI,E2, 4) /s v-polystable if and only if F is SU(2)-invariably 
polystable with respect to co#. 

5 Relation to vortex equations 

In this section we relate the x-stability of  a triple on X directly to the existence 
of  solutions to the coupled ~-vortex equations. Using the idea of dimensional 
reduction, statements about triples on X can be reformulated in terms of  equi- 
variant bundles on X x p i .  The equivariant version of  the Hitchin-Kobayashi 
correspondence on X x F s then yields the following result. 

Theorem 5.1 Let T = (EI ,E2,~)  be a holomorphic triple. Then the following 
are equivalent. 

(1) The bundles support Hermitian metrics hi,h2 such that the coupled 
~-vortex equations are satisfied, i.e. such that 

~/'L'~AFhl + ~ *  = 2nzle~, (31) 

~ ' ~ A F h  2 - ~ * ~  = 2~'IE2 , (32) 
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with 

rtz + r2z' = degEl + degEx, (33) 

(2) The triple is ~-polystable. 

Proof. Keeping our earlier notation, let F --~ X x pl be the SU(2)-invadant 
holomorphic bundle corresponding to the triple (Et,E2,~). Let coo be the 
K~aler form on X x F l, as defined in (19), and with a determined by (20). 
By Proposition 2.5 there is a bijective correspondence between solutions to the 
coupled z-vortex equations on (Eh E2, ~), and SU(2)-equivariant metrics on F 
which satisfy the Hermitian-Einstein equations with respect to coo. By [GP3] 
(Theorems 4 and 5), the bundle F admits an SU(2)-equivariant Hermitian- 
Einstein metric with respect to co~ if and only if F is invadantly polystable 
with respect to co#. Finally, by Theorem 4.7, F is SU(2) invariantly polystahle 
with respect to co# if and only if the corresponding triple (EI,E2,O) is 
z-polystable (with z and a related by (20)). 

Notice that the statement and conclusion of this theorem make no 
mention of X x pl  or the SU(2)-equivalent bundle F. One might thus expect 
a more direct proof that does not use dimensional reduction. We will not 
attempt to prove both directions of the biconditional in the theorem in this 
way, but the one direction is quite easily seen. That is, one can show how the 
z-stability condition can be derived directly as a consequence of the coupled 
vortex equations. This can be done as follows. 

Given metrics which satisfy the coupled z-vortex equations, consider any 
holomorphic saturated sub-triple, say T'=(E~,E~,~), of T. Let Et =E~ <gE~', 
and E2 = E~ $ E~' be smooth orthogonal splittings of El and E2. With re- 
spect to these splittings, we get a block diagonal decomposition of vZZTAFhl, 
Vr~AFhe as 

vr~-TAFh, ( vr~A~, :+Hi * )  (34) 
= V/'L-1AF: ' - Hi ' 

where Hi is a positive definite endomorphism coming from the second fun- 
damental form for the inclusion of E[ in Ei. We also get a decomposition 
of O as (: o) 

q' = O" " (35) 

The coupled vortex equations thus split into equations on the summands of 
El and E2. An analysis of these, involving straightforward modifications of the 
arguments used in [B2], shows that 

(I) T splits as a direct sum of triples (Eu, E2i,~i), i.e. El ={~Eu, 
E2 = ~ E2i, and �9 = ~ r 

(2) each summand (Eu, E2i, Oi) is either a v-stable triple, or r = 0 and 
both bundles are stable. In the latter case, the slope of Eli is z and the slope 
of E2i i8 .ft 
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6 Modull spaces 

6.1 Moduli spaces of  stable triples 

Recall that two triples T = (EI,E2,r and T' = (E[,E~,~') are isomorphic if  
there exist isomorphism u: Et ---* E~ and v: E2 --* E~ such that ~ o v = u o 4~. 
After fixing the topological invariants of our bundles, that is the ranks rl and 
r2 and the first Chern classes dl and d2, let $ff/be the set of equivalence classes 
of  holomorphic triples and ~ c ~ / b e  the subset of equivalence classes of 
z-stable triples. Our goal in this section is to show that ~ has the structure 
of an algebraic variety, more precisely: 

Theorem 6.1 Let X be a compact Riemann surface of  genus g and let us fix 
ranks rl and r2 and degrees dl and d2. The moduli space of  z-stable triples 
~l~ is a complex analytic space with a natural Kahler structure outside of  
the singularities. Its dimension at a smooth point is 

1 + r2dl - rid2 + (r 2 + r 2 - r l r2X g-  1). (36) 

The moduli space, ~ is non-empty if and only i f  z is inside the interval 

where 

(//(El),//MAX) (37) 

r_2 ) #(E2)) (38) 
#MaX =/ / (Et  ) + [rl r21 (//(El - 

/f  rl 4= r2, and//MAX = oo /f  rl = r2. 
Moreover ~l~ is in general a quasi-projective variety. It is in fact projec- 

tive i f  rl + r2 and dl + d2 are coprime and z is generic. 

Proof There are several approaches one can take to prove this theorem. One 
can use standard Kuranishi deformation methods as done in [B-D1, B-D2] for 
the construction of  the moduli spaces of stable pairs. Alternatively one can use 
geometric invariant theory methods to give an algebraic geometric construction 
of our moduli spaces, generalizing the construction of the moduli space of 
stable pairs given in [T, Be, HL]. We will leave these two direct methods for a 
future occasion and instead will exploit the relation between ~-stable triples and 
equivariant bundles over X • p1. This method is used in [GP3] to construct 
the moduli spaces of triples when E2 is a line bundle, as well as the moduli 
spaces of stable pairs. Apart from smoothness considerations, which we shall 
discuss later, the steps in the proof are the same as those in [GP3]. 

Let a be related to z by (20) and let co# .be the Kiihler form on X • p l  
defined by (19). Let ./t'~ be the moduli space of stable bundles with respect 
to o9r whose underlying smooth bundle is defined by (1). Let us exclude for 
the moment the case rl = r2 and dl = d2. Let F -* X • ~,1 be the bundle 
associated to (EI,E2,~) as in Proposition 2.3. Theorem 4.1 says that the 
correspondence (EbE2, 4 ) ~  F defines a map 
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The action of SU(2) on X x F l defined in Sect. 2 induces an action on ~ 
and, since the bundle F associated to (El, E2, ~)  is SU(2)-equivariant the image 
of the above map is contained in ~ u ( 2 ) _ t h e  set of fixed points of .~o under 
the SU(2) action. As proved in [GP3, Proposition 5.3] the set .~sv(2) can be 
described as a disjoint union of a finite number of sets 

= U 
iE/ 

The index I ranges over the set of equivalence classes of different smooth 
SU(2)-equivariant structures on the smooth bundle F defined by (1). Of course 
the way of writing F in (1) already exhibits a particular SU(2)-equivariant 
structure, but in principle the bundle F might admit different ones. The set .~'~ 
corresponds to the set of equivalence classes in .~'~ admitting a representative 
which is SU(2)-equivariant for the smooth equivariant structure defined by 
i E I. An equivariant smooth structure defines an action on the space of smooth 
automorphisms of the bundle F and, as shown in [GP3, Theorem 5.6] the sets 
. g i  can be described as the set of equivalence classes of SU(2)-equivariant 
holomorphic structures on the underlying smooth SU(2)-equivariant bundle 
defined by i, modulo SU(2)-equivariant isomorphisms. 

Let i0 be the C~176 structure on F defined by (1). As 
shown in Proposition 2.3 there is a one-to-one correspondence 

{holomorphic triples) (l-l) {i0-equivariant holomorphic vector bundles). 

(39) 

Furthermore, the equivariant homomorphisms between two equivariant holo- 
morphic bundles F and F '  corresponding to triples T and T', respectively, are 
in one-to-one correspondence with the morphisms between T and T ~. In fact the 
correspondence (39) descends to the quotient and thus from Theorem 4.1 we 
can identify ~,~ with .//~. The properties of ~,~ follow now from standard facts 
about the more familiar moduli spaces of stable bundles -//o [D-K, G, M, Ko], 
and more particularly of the fixed-point sets .//~ (see [GP3, Theorem 5.6] for 
details). Namely, 

Theorem 6.2 ~r is a complex analytic variety�9 A point [F] E .At'/ is non- 
singular if  it is non-singular as a point of  .,go. The tangent space at such a 
point can be identified with the SU(2)-invariant part of Hl(X x ~'l,EndF). 
. g i  has a natural Kiihler structure induced from that of  ~//o. Moreover if a 
is a rational number then .l/i~ is a quasi-projective variety. 

From this theorem and the identification of ~ with ~r we deduce that 
is a complex analytic variety with a K/ilaler metric outside the singularities. 

To compute the dimension of the tangent space at a smooth point [T] it suffices 
to compute the dimension of the SU(2)-invariant part of HI(X x H 'l, EndF). 
This can be done in a similar way to that of [GP3, Theorem 5.13] to obtain 
that 

dim ~h  = 1 + x(EI | E~) - x(End El ) - x(End E2 ), 

which by Riemarm-Roch yields (36). 
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We consider now the case rl = 1"2 - r and dl = d2 = d. In this case by 
Corollary 3.20 and Lemma 4.6 we can identify the moduli space ~ with the 
moduli space of stable bundles of rank r and degree d on X. The theorem 
follows now from well-known results about this moduli space [A-B, N-S]. 

The fact that ~ is empty outside the interval (37) if rl oer2 and out- 
side (ft(Et),oo) if  rl = r2 follows from Proposition 3.18. As explained in 
Proposition 3.22 the non-genetic values divide this intervals in subintervals 
in such a way that the stability properties of a given triple do not change for 
two values of ~ in the same subinterval. Therefore we can always choose 
(and hence o') to be rational, which by Theorem 6.2 gives that ~ is quasi- 
projective. 

To show the compactness of ~P~ when rl + re and dl + de are coprime 
and z is generic (we are also assuming that rl oere or dl oede) we consider a 
sequence of points in ~4r This sequence must converge in . ~ - t h e  Uldenbeck 
compactificafion of ~g#. Using SU(2)-invariance one can see that the limit 
has to correspond to a polystable element, but by Proposition 3.22 this has to 
be actually stable, that is the limit must be in ~g~ and hence in ~4r since 
this is closed. The compactness when rl = r2 and dl = d2 follows from the 
compactness of the moduli space of stable bundles of rank r and degree d 
when r and d are coprime. 

The compactness of ~ can also be obtained (as it is done for pairs in 
[B-D1]) from the fact that it can be identified with the moduli space of solutions 
to the coupled vortex equations and these are moment map equations as we 
shall explain later. 

It was shown in [GP3, Theorem 5.13] that when E2 is a line bundle our 
moduli spaces are smooth for every value of z. This does not seem to be the 
case when Ee is of arbitrary rank. However we can show the following 

Proposition 6.3 Let T = (EbEe, O ) be a z-stable holomorphic triple such that 
�9 is either injective or surjective, then [T] is a smooth point of ~'G. 

Proof. Let 
0 ---, p*E~ --, F - ,  p'E2 | q*d~(2) --, 0, (40) 

be the extension over X • F l corresponding to T. To prove the smoothness of 
at the point [(EbEe, O)] it suffices to show that H2(X • pi ,  EndF) = 0. 

Tensoring (40) with F* the last terms in the corresponding long exact sequence 
are 

H2(p*El |  --* He(F |  --* He(p*Ee | q*dT(2) | F*) ---, 0. (41) 

By Serre duality 

H2(p*El | F*) ~- H~ | K) | F)* 

H2(p*E2 | q*@(2) | F*) -~ H~ | K) | q*~(-4)  | F)* ,  

where K is the canonical line bundle of X. 
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It is easy to see that H~ |174162174 To analyse 
H~ | K) | F) we tensor (40) with p*(E~ | K) | q*~(-2), and since 
H~ | El | K) | q*~9(-2)) =~ 0, we obtain 

0 ---} n~ | K)q*d~(-2) | F) ~ H~ | E2 | K)) 

Z H*(p*(Ei | E~ | K | ~ ( -2 ) ) .  (42) 

The map f in the above sequence is essentially the map 

H~ | E2 | K) s H~ | e~ | K) 

~4oT. 

Assume now that 4 is injective, if we prove that f is also injective, by the 
exactness of (42) we would be done. Suppose that Ker f 4=0. This means that 
there exists a non-zero map ~v: El --* E2 | K, and since h v o 4 = 0, Im ~v is a 
non-trivial subsheaf contained in Ker 4 contradicting the injectivity. 

To prove smoothness when 4 is surjective, we consider the dual triple 
T*= (E~,E~,~*). 4" is now injective and the result follows from the fact 
that T = (EI,E2,4) is a smooth point if and only if T* = (E~,E':,4*) is a 
smooth point. 

6.2 Abel-Jacobi maps 

As shown in Proposition 3.23 there is a range for the parameter r such that the 
z-stability of a triple (El,E2, 4)  implies the semistability of E1 and E2. Let ~t0 
be the moduli space of z-stable triples for z in such a range. Let N(r,d) be 
the Seshadri compactification of the moduli space of stable bundles of rank r 
and degree d over X, that is, the space of S-equivalence classes of semistable 
bundles. 

There are natural "Abel-Jacobi" maps rq and re2 

~P*o -~ N(r2,d2) 

N(rl, d l ) 

defined as 

7q([(EbE2,r = [El] and ~2([(EI,E2,4)]) = [E2]. 

We know also from Proposition 3.23 that if both El and E2 are stable then 
the intersection of the fibres ~i-l([El]) and ~21([E2]) can be identified with 
P(H~ | E~)). In general, though, this intersection for non-stable points is 
hard to describe. 

If #(El | E~)  > 2g - 2, that is if 

r2dl - rid2 > rlr2(2g - 2), 

where g is the genus of X, then HI(El | = 0 for El and//2 stable and the 
projection from ~ to N(rbdl) x N(r2,dz) is a fibration on the stable part. 
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Recall that if (rl ,dl)  = 1 and (r2,d2) = 1 then stability and semistability 
coincide and there exist universal bundles 

El --* X • N(rl ,d l )  and IE2 --* X • N(r2,d2). 

Let us denote by Pl,P2 and n the projections from X • N(rbdz)  • N(r2,d2) 
to X • N(rbdl) ,  X • N(r2,d2), and N(rt ,dt)  • N(r2,d2) respectively. It is 
clear that ~ can be identified with 

H'(7~,(p~lEi | p~l~)). (43) 

But in the non-coprime situation we have no universal bundles IEI and E2 
available and the analogue of (43) has to be constructed as a moduli space in 
its own right. 

As explained in Theorem 6.1 the moduli space of z-stable triples is non- 
empty if and only if z is in the interval I = (/~(El), #~tx). We saw in Sect. 3.4 
that the stability properties of a given triple can change only at certain rational 
values of z (the critical values) which divide I in a finite number of sub- 
intervals. The moduli spaces for values of z in the same open subinterval 
are then isomorphic, and they might change only when crossing one of the 
critical values. We expect that, as in the case of stable pairs [B-D-W, T], the 
moduli spaces for consecutive intervals must be related by some sort of flip- 
type birationai transformation. This, as well as the construction of a "master" 
space for triples (el. [B-D-W]) containing the moduli space of triples for all 
possible values of z, will be dealt with in a future paper. 

6.3 Vortices 

Thanks to our existence theorem the moduli space of stable triples can be 
interpreted as the moduli space of solutions to the coupled vortex equations. 
To understand the meaning of this'statement one needs to regard the vortex 
equations as equations for unitary connections instead of equations for metrics. 
This point of view corresponds to the fact that fixing a holomorphic structure 
and varying the metric on a vector bundle is equivalent to fixing the metric 
and varying the holomorphic structure-or the corresponding connection. Recall 
that the space of unitary connections on a smooth Hermitian vector bundle can 
be identified with the space of ~-operators which in turn corresponds with the 
space of holomorphic structures on the bundle. 

Let El and Ea be smooth vector bundles over X and hi and h2 be 
Herrnitian metrics on El and Ez respectively. Let ~r (resp. ~r 
be the space of unitary connections-on (El,hi) (resp. (Ea,h2)). Let 
(AI,A2,O) E .~l • d 2  • ~~ The vortex equations can be re- 
garded as the equations for (AI,Aa, O) 

m 

~/'Z'IAFAI + ~ *  = 2~zl~l I " (44) 
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The connections A I and A2 induce holomorphic structures on Et and E2 and 
the first equation in (44) simply says that ~ must be holomorphic. 

Let ffl  and (02 be the gauge groups of  unitary transformations of  (El,hi) 
and (E2,h2) respectively, fat x f#2 acts on act x ar x f~~ by the 
rule 

(gt, g2) �9 (AI,A2, ~) = (glAi gf  1, #2A292 t, gt ~Y2 t ). 

The action o f  f#t x (#2 preserves the equations and the moduli space o f  coupled 
z-vortices is defined as the space o f  all solutions to (44) modulo this action. 

The moduli space of  vortices can be obtained as a symplectic reduction (see 
[GP3, Sect. 2.2]) in a similar way to the moduli space of  Hermitian-Einstein 
connections: Offl x 0if2 x O~ )) admits a K ~ l e r  structure which is 
preserved by  the action o f  fit  x if2. Associated to this action there is a moment  
map given precisely by 

(AI ,A2 ,~ )  ~ (AFA, - v / - ~ ' T ~  * + 2x/~-Tzcz, AFA2 + x['ZTr + 2v tL-Tm ' ) .  

(45) 
Let # be  this moment  map restricted to the subvariety 

JI f = { ( A t , A 2 , ~ ) E  ~/ t  x d~2 X Q~ = 0} .  

The moduli space o f  z-vortices is then nothing else hut the symplectic quotient 

and Theorem 5.1 
correspondence 

~/--1(0,0)/~1 X (~2, 

can be reformulated by saying that there is a one-to-one 

] . /-- l(0,0)/~l  X ~2 (1--1 ~0~t " 
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