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0 Introduction 

In conformal field theory for free fermions, the Fock space plays a central role and 
provides a link among several branches of mathematics such as representation 
theory of the Virasoro algebra, theory of KP equation, moduli of algebraic curves 
and formal groups [BeSc, KNTY]. On the other hand, string theory drew much 
attention to the theory of elliptic genera, cf. [La]. 

Our original motivation having been to give a systematic account of elliptic 
genera in the context of (arithmetico-geometric) conformal field theory [KSU1, 2], 
we are led to a basic understanding of the connection between the complex 
cobordism ring MU* and the boson Fock space ~r ,o .  As an application, we give a 
new interpretation of genera (multiplicative sequences) in terms of the KP 
hierarchy. 

To formulate the main results, let us introduce some notation. The boson Fock 
space ~T,O is a polynomial ring over Q in indeterminates tl, t2,..., cf. (2.2). We use 
the notation t =(t l ,  t2 . . . .  ) for short and also kt =(ktl, kt2,...) for k ~ Z. There is a 
natural pairing of g r .  o with itself (3. I), which plays an important role in the theory 
of the KP hierarchy. 

The Chern classes followed by the augmentation define the linear functionals 
Gtl ~t 2 cl c2 ... on MU*, which are linearly irldependent. In other words, we have the 

pairing"Chern number" between MU* and the polynomial ring Ch* over Q in the 
indeterminates "universal Chern classes" cl, c2 . . . . .  

Then the main results are the following: 

Theorem 0.1 (=  (3.3)). The ring homomorphisms 

M U * |  K , ~((r,o =Q[ t l ,  t2 . . . .  ] :  Pn~--,pn((n + l)t) 

Ch* = Q[c 1, c2,...] K t  ~,~rt 0 = Q[tl ,  t2,...] : ci ~ ( - 1)~p~(- t) 

* Partially supported by Max-Planck-Institut fiir Mathematik 
** Partially supported by Grant-in-Aid, Ministry of Education of Japan 
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are bijective and transforms the pairing "Chern number" between M U * |  and 
Ch* into the natural one of ~r ,0  with itself. Here pi(t) denotes the i-th Schur 
polynomial cf. (2.2). 

There is a formula of elementary nature calculating arbitrary genus, as an 
application of this theorem, cf. (3.13). 

Under these identifications, we regard an (arbitrary) multiplicative sequence 

T(c)= ~ T~(cl, ..., c,) 
n=O 

as a formal power series in the variables ti's: zr(t) := Kt(T(c)), where, by abuse of 
notation, K t denotes the natural extension of K t to the completions C-~ ~ r ,  o. 
This function will be named as the z-function associated to T. It has the following 
remarkable property. 

Theorem 0.2 (=(3.9), 1)). 

zr(t)=exp (i_>_~1 (-1)i+lbiti) ' 

Here b~ is the coefficient of ci in T~(cl,..., ci). 

We also have an expression of T(c) as a determinant of a matrix of infinite size 
(3.9), 2). This result, together with Theorem(0.2), implies the following: 

Theorem 0.3 (= (5.3)). 1) The power series zr(t ) can be identified with a z-function in 
the theory of  K P  hierarchy. 

2) The Lax operator associated with the z-function in 1) is d x. 
3) There is a one-to-one correspondence between the set of multiplicative 

sequences over Q and the subset 1 + ~ 1Q~d~ 1~ of  all the wave operators. 

For the precise formulation and the statement of the above theorem, see 
Theorem 5.3. 

We have the following observation which connects the above identification K 
with the one by Morava [La2, Appendix] and Bukhshtaber-Shokurov [BuSh]: 

Theorem 0.4 (= (4.4)). The ring homomorphism 

cp : Jgr, O ~ ~T.O : ti ~-~ p i ( - t )  

sits in the commutative diagram: 

M U * |  ~ ~r ,o  

g .,~g'r.0 

where [3 is given by the coefficients of the Chern-Dold character. 

As a corollary of this Theorem, we can determine the image K(M U*) in ~r o, cf. 
Theorem (4.7). 

The connection of cobordism ring with conformal field theory was also 
discussed in [Mo, MoSh]. Generalizations of elliptic genera were also discussed by 
[Hir2, Kr, T]. 

The contents of this paper are as follows. First we recall basic terminologies: the 
multiplicative sequences, complex cobordism ring, etc. in Sect. 1 and the boson 
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Fock space in Sect. 2. The connection between the boson Fock space and the 
complex cobordism ring is established in Sect. 3. The comparison with the result of 
Morava and Bukhshtaber-Shokurov is in Sect. 4. In Sect. 5 is the second main 
result, namely, the interpretation of multiplicative sequences in terms of 
~-functions in soliton theory. 

1 Preliminaries from topology: 
multiplicative sequences, complex cobordism rings, etc. 

1.1. Let A be a commutative ring with a unit 1. 
A multiplicative sequence is a formal power series in z 

: 1 +  . . . .  

j>_l 

(ci's are indeterminates for i > l  and Co= 1), which satisfy the multiplicativity 
condition: 

then T(c, z) T(c', z) = T(c", z). 

Therefore Tj(c) is a homogeneous polynomial of degreej with respect to degci = i, 
el. [Hirl]. 

The group A(B)= 1 + zB~z~ with multiplication of power series defines a group 
scheme B ~ A(B). (B is a commutative ring with 1.) Then a multiplicative sequence 
is nothing but an endomorphism of A-group scheme A(for B; A-algebras) 

~r:  Z ci zi~'~ T(c,z). 
i>=o 

The A-group scheme A is affine and representable by the ring 

Ch* := A[c x, cz ... .  ], 

where c~'s are indeterminates as above. Thus to a multiplicative sequence T 
corresponds a ring homomorphism 

*-  * - ~  *"  Ti(c) .  ~T. ChA Cha, ci~-~ 

In Sect. 3 we will use the abbreviation Ch*= Ch~. 

1.2. The complex cobordism ring MU* is equal to the value MU*(pt) at the one 
point space of a complex-oriented cohomology functor with the same 
notation M U*. 

The Euler class eMv of complex vector bundles over a manifold X defines the 
cobordism Chern class ei~MU2i(X) and the total Chern polynomial 
ct ~ M U*(X)[tl, t2,...] in the same way as for any complex-oriented cohomology 
theory. 

(M U*, eMv) is universal in the sense that for any complex-oriented cohomology 
theory (h*, eh), there is a natural transformation 7 : MU* ~h* such that eh = ?" euv. 

The total Landweber-Novikov operation 

s , : M U * ~ M U * [ t l ,  t 2 . . . .  ] 
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can be given by the formula 

s , ( x ) :=  f , ( c , (N: ) )  e M U * ( X )  [ t , ,  t 2 . . . .  ] ,  

where x is an element represented by a map f :  Z--, X and iV: = f *  T X  - T Z  is the 
virtual normal bundle of f. To each multi-index ~=(~1,~2, ...) corresponds a 
cohomology operation s~ of M U *  as a coefficient of t ~ = t ] ' t ~ . . ,  in st. 

The totality of s~'s is known to form a subalgebra S of the algebra of all stable 
cohomology operations, by Landweber and Novikov. S acts on M U * =  M U * ( p O  
by definition. 

1.3. Next we recall the relation ofmultiplicative sequences and genera in algebraic 
topology. 

A genus with values in a commutative ring A is, by definition, a ring 
homomorphism 

< p : M U * ~ A .  

When A is a Q-algebra, this notion is equivalent to a ring homomorphism 

r : M U ~  : = M U * |  A ,  

or to the following formal power series ("logarithm" of 9) 

f~(z)= E ~o(P"-') - -  :~AW~, 
n>__l n 

for M U ~  is a polynomial ring on the generators P" [ =  the cobordism class of 
P"(C)], with the convention po=  1 (Milnor). The logarithm f ( z )  is related to the 
characteristic power series Q(z) associated to a multiplicative sequence T(c, z) by 
the formula: 

z = T(i +z). Q(z) = -?=r~ 

Examples. I) (Todd genus) 

z 
: ( z ) = - l o g ( l - z ) ,  Q(z}= l_e_= ,  ~o(e")=l (u 

2) (elliptic genus) Consider the equation (Jacobi quartic): 

yZ = R(x )  = 1 - 2 6 x  2 + ex  a . 

A genus is called elliptic (after Ochanine) if its logarithm is given by the elliptic 
integral: 

f(z)= i dt 

o 1 / ~  
Then we have 

z 

Q(z)= sn(z)' ~'(P~')=&(6/~):/~' <P(P~'- ')= o, 

where sn(z) is Jacobi's sine function and P.(z) is the n-th Legendre polynomial: 

P,(z)=~n., ~ {(z2-1)n} - 
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2 Preliminaries from CFT: boson Fock space 

We briefly recall some notions from [KNTY, KSU1]. 

2.1. Conformal field theory (CFT) is a kind of 2-dimensional quantum field theory 
(QFT) with conformal symmetry. It is initiated by Belavin, Polyakov, and 
Zamolodchikov and a model of CFT involves representations of the Virasoro Lie 

algebra L, a. It is a Lie algebra over Q,Q[z,z-1]  a dz ~)Q" c with the following 

bracket: 

f d ,  d =(fg'-f 'g)-~z + -~ Res~=~ 
dz g-d-zz .~ 

c ~ the center of L#. 

c and L ,=  - z  "+ t d (n ~ Z) form a basis of ~ ,  familiar in the liter- The elements 
ature. 

We also use the completed version 

d 
~ : =  Q((z)) dzz t~Q .c, Q((z))=Q[[z]] [z-1].  

Fock representations are defined by a free fermion field [U(1)-current], namely 
by an extended Heisenberg algebra, and become .~e-modules through the so-called 
Sugawara construction. We need only their bosonized version, L,'s being 
expressed in terms of differential operators. We refer the reader to [DJKM], [TK, 
Appendix] for details of the boson-fermion correspondence and to [KSU 1] for its 
arithmetic version. 

2.2. The boson Fock space of central charge 1 is defined to be: 

~ r  = Q[tl, t2, '" "] [U, U- 1] (tl, t2 . . . .  are indeterminates) 

~et~ v = Ql-tl, t2,...]u p = charge p sector of ~T (P E Z). 

Note that, in [KNTY, KSU1, 2], the completions ~ ~r .o  with respect to 
degh = i, degu = 0 are considered and the completed version ~ s  called the boson 
Fock space. 

The action of Z# on ~v r is defined by 

L,= ~ m t m - -  + L, + u (n>__l) .=, ~t.+m 2.=1 dt. St._. ~ 

L _ . =  m=l Y" (n+m)t,+,, ~ + 2 ~=1 m(n-m)t.tm+nt.u-~ 

1 
L o =  _ mr.  u N 

c----1. 

We are mainly interested in the charge 0 sector A:r,o. It has an obvious 
Z-structure 

~T, o(Z)= Z[h, t2,...]. 
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But, for arithmetical purpose (cf. [KSU1]), more natural one is given by 

~'f~o(Z) = ZIp l(t), p2(t),...], 
where the elementary Schur polynomials pj(t) (j>= 1) are defined by the formula: 

s~o Pi(t)z'=exp(,~l t,z"). 

Here t abbreviates (tl, t2 ... .  ) and po(t) = 1. 
We note that a natural Z-basis of ~Vfo(Z ) is given by the Schur polynomials Za(t), 

2 being a partition 2=(2~,-..,2e), 2~ > 2 2 ~  ... _>-2e>0, s 
Z~(t) = det (p~ + i -  i(t)) 1 =< ~, j =< e. 

Considering p,'s as variables, we also denote it by Aa(p). The polynomial pj(t) 
corresponds to 2 =(j) and gs(t):= (-Dips(- t )  to (1 ..... 1) (j times). 

2.3. We briefly review the appearance of the boson Fock space in a geometric 
setting of abelian CFT. We consider the setting over C. 

Let ~gg, t denote the fine moduli space of projective smooth algebraic curves of 
genus g with level f structure, # being divisible by 4, as in [KSUI,  Sect. 4]. Then the 
universal family of curves n: ~g ~ Jgg, e --- . / / and  a theta characteristic/2 ~/2, i.e. a line 
bundle on cg with f2 a/2| ~ t2~/.~, are at our disposal, and we have the determinant 
line bundle 

L=detRlr.(f21/2) 

on ./,/g. 
We have the dressed moduli space ~r introduced by Beilinson and 

Kontsevich, cf. [BeSc, KNTY].  A point of Jr ~~176 corresponds to a triple 
Y" = (C, Q, t), where C ~ ~r162 Q E C and t is a choice of a formal local parameter 
~c,Q~C[[z]]. 

An important property of ~,~oo) is that the completed Virasoro algebra 5~ acts 
infinitesimally on .~t'~ ~~ with central charge 0: 

T~t~~176 ~-C((z)) d / H~ O c( * Q)) . 

The natural projection ~t'o~| g factorizes into ~go~|  The morph- 

ism Ir':~go~~176 is easily seen to be a principal homogeneous space under the 
affine group scheme 

D ~o) = Autc(C[[z]] ) . 

We have ~*L on ~/r ~~ which is the determinant line bundle for the family 
x ~ t ' ~ J ~ g / g  t~~ Then it turns out that the infinitesimal action of -~ on ~//~| 

lifts to the one on $*L with central charge l, by the following diagram (cf. [KNTY, 
KSU1]): 

~r ~,, Grass(C((z))) ~'~ P(~o) ~ P(~r~r.o) 

Kr is the morphism given by Krichever's construction and PI denotes the Pliicker 
embedding, ~o  is the completed fermion Fock space (of charge 0), and B is the 
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bosonization isomorphism. ~*L is the line bundle associated with the pull-back of 
the C*-bundle ~o\{0} ~P(,~0). 

Let us recall the structure of the group D ~~ cf. [KNTY, Sect.2]. The 
presentation 

D(~ = {z ~ uz + tlz 2 + t2z 3 +.. .}  

shows that D ~~ has the coordinates u, t~ (i> 1). Therefore we have 

F(D 6%,o,) = C [ h ,  t2,..-] [u, u -  1 ] ,  

which is nothing but o~fr| 
A final remark about this setting of abelian CFT is that everything goes well 

over the ring Z (or at least over Z[�89 cf. [KSU1]. 

3 Identification of the complex cobordism ring 
with the boson Foek space 

In the rest of this paper, Ch* denotes the ring Ch~, cf. (1.1). 

3.1. Let us recall the natural pairing (,) on ~'~r,0, [SN, KNTY]: for P(t), 
O(t) ~ ~ r ,  o, put 

(P(t), Q(t)) : = P(~Q(t) l, = o. 

H e r e , = ( ~ t l  1 0 1 O ) 
' 2 ~t 2' "'" n ~t.' . . . .  

The basis {X~} consisting of the Schur polynomials is orthonormal with respect 
to this pairing: (Za, Zr = tSa.~. 

Because of this pairing we put ~r* o = Q [  ~ ~ . . .]  (the dual of ~r,o). The 
' t_ ~t-1 ' ~ t 2 '  _1 

1 6  
pairing gives rise to the identification '~ ~ �9 3r = o~ta71,o, t,~-*ncgt n. 

3,2. Next we recall the natural pairing ("Chern number") between Ch* and MU~: 
for P(c)= P(c 1, c 2 .... )e Ch* and a manifold M, 

(P(c), [M]) : = P(c) [M] 

=degree d imM part ofP(q(M),  c2(M) .... ). 

As a basic example, we recall that the calculation of Chern numbers of P". 
Working in the Chow ring CH*(W) of P" or in MU*(W), the total Chern class is 
G(P") = (1 + ~z)" + 1, where ~ = ~, is the class of hyperplane in P". Hence 

c i ( P ~ ) = ( n + l ) ~  ' (O<i<n) 

and 
a~ ak n _ _  k ( n + l ~  aj 

%. . .%(P  ) -  H 
j =  1 ij \ ]  

for ~ afij=n, especially cn(W)=n+l .  
j = l  
We are ready to state the first main result. 
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Theorem 3.3. The ring homomorphisms 

K : M U~ ~ ~ r ,  o : P~ ~ p,((n + 1)t) 

K* : Ch* ~ d,~r, o : C i ~ ( -- 1)ip~( _ t) = qi (t) 

are isomorphisms which preserve the pairings in (3.1). Here p, is the n-th elementary 
Schur polynomial (2.2) and kt =(k t  1, kt2 . . . .  ) for  k =  n + 1 or - 1 .  

Remark 3.4. 1) The correspondence K* can be written as 

2) The above ring isomorphisms can be naturally extended to the completions 
with respect to degc~ = i, degt~ = i, degP ~= n. They will be denoted by the same 
symbols. 

3) M. Furuta also gave a proof of Theorem (3.3). 

3.5 Proof  o f  Theorem (3.3).  The bijectivity of K and K t are clear. 
We compare the values of the pairing at the basis elements. Put u~ = nt, for 

convenience. Let us calculate 

( (K*)- l (ui , . . .u j ) ,  P t ' x  ... x Pi') 

and 

(ujl...u;,, K(P ~ x . . .  x Pi0) 

with ~ ik= ~ j e=n .  
k = l  d = l  

For simplicity, we omit (Kt) - 1 during the calculation of 

((K*)-l(uj~...uj,), W' x . . .  x pi,). 

It is the degree n part of FI uje(Pi~ x ... x pi,) [-in CH*(P~I x ... x P~')o or in 
d = l  

MU*(P i' x . . .  x Pt')e ]. 
By the example in (3.2) and Remark (3.4), 1), we have 

Z ( - 1 )  ~+a u~(P") z ~ = l o g ( l + ~ , z ) , + l _ _ ( n + l  ) X ( - 1 )  i+' ~i~, z i. 
i > l  i i > l  i 

Hence we get u,~P")=(n+ 1)~i,. In a similar manner, from 

c,(P ~' x . . .  x pi,)= f i  c~(pi~), 
k = l  

we obtain 
• . . .  •  

k = l  

Consequently we conclude 

fi fi 
~ = 1  d = l  k = l  

We look for its degree n part. Since ~r for l >n  and ~ i k = ~ j e ,  only the term 
~1 ~" does not vanish in the expansion of the above product. Such a term exists 
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s 
only when (Jl, .--,J,) refines (q,. . . ,  is), i.e. there exists a partition {1 ..... r} = k~l Ik 
s.t. i~ = F, j for any k, = 

jElk 
In such a case, the coefficient of ~i'1-..~i~ is 

F, l~I (ik+l) ~ ,  (1) 
{lk} k=  1 

where the summation ranges over all the possible partitions as above. This is just 
the value of ((K t)- 1(u jl...u j), pil x . . .  x pis). 

Next we calculate (uj~...ujr, K(P i~ x . . .  x P~)), namely 

h 0 . FI Pi~((ik+l)t)[,=o. (2) 
g = l  ~ k = l  

[Notice that uj corresponds to ~ under the identification Jt~r. o ~ j~,o~, o in (3.1).] 
- - j  

Since pj(t) is a homogeneous polynomial of degree j, putting t = 0 means taking the 
constant term. 

Note that 0 
p,(t)=p,_~(t), t~tm 

which easily follows from the definition 

~=oP.(t)z"=exp(,~lt, z" ), 

with p. = 0 for n < 0. 
O 

A variant: ~i--p.(at ) = ap,_m(at). 

By this fact combined with Y, ik=Zje, the term 

k = l  J k k = l  

for each refinement (j,, ...,j,) of (i,, ..., is) contributes to the constant term in the 
expression (2) (without It=o). Therefore, the value of (2) is just equal to the 
number (1). 

3.6. Let us consider the integral structures on ~'~r,o, MU~ and Ch* and their 
interrelation through K, K t. ~r ,0  has two different Z-structures ~o(Z), ~ r ,  o(Z) 
cf. (2.2). MU~ has a usual Z-structure MU* and another one: 

MU*(Z) = {z e MU~; (y, x) s Z for Yy e Ch~}, 

meanwhile Ch~ is a natural Z-structure in Ch*= Ch~, cf. (1.1). 
Then we have the following: 

Proposition 3.7. 1) Kt(Ch *) = Yfo(Z). 
2) K(MU*(Z))= ~o(Z). 

Proof 1) follows easily from the fact that 

Z[q I (t), q2(t), ... ] = Z[p l (t), p2(t) . . . .  ] .  

For 2), recall that the Z-dual of ~o(Z) with respect to the pairing on ~ r ,  o is ~'r 
itself. Then use 1) and Theorem (3.3). 
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3.8. We now state the second result. Let T(c, z) be a multiplicative sequence with 
coefficients in Q (1.1), and put 

T(c): = T(c, Z) lz =1 ~ "C~" 

Here, like ~r~r, O, ~ denotes the completion of C-~ with respect to degc i = i. Then 
we define 

zr(t) : = K*(T(c)) ~'~r.o 

and call it the tau function associated to T 
Then we have the following result. 

Theorem 3.9. 1) We have the following relation: 

zr(t)=exp (,~1 ( -  l)'+lb~t') ' 

where b i is the coefficient of ci in the polynomial T,(c 1 ..... ci). 
Moreover, there is a one-to-one correspondence between the set of multiplicative 

sequences T(c,z) and the set of sequences (bl, b2,...) through the above relation. 
2) ZT(t) or T(c) has an expansion of the following form: 

T(c)=l  + E E Aa(a)A~(c). 
n_-->l 2 

Here ). runs through all the partitions of n, A a(c) is the Schur polynomial (2.2), and ai' s 

are the coefficients of the formal power series E ( -  l)ia~ zi= 1/Q(z), where Q(z) is 
i>_O 

the characteristic power series associated to T(1.3). 

Remark 3.10. Hirzebruch knew the formula (3.9), 2) long ago, which he mentioned 
in a letter to Todd in the case of Todd genus. It is this letter which motivated 
Theorem (3.9) and the interpretation as z-function in Sect. 5. The rest ofthis section 
is devoted to the proof of this Theorem. 

3.11 Proof of Theorem (3.9),1). Note first that K:Ch*~-~vT, O induces an 
isomorphism of group scheme over Q by taking their Spec: 

K* :Ga~176 

Since a multiplicative sequence T corresponds to an endomorphism ~r  of the 
group scheme A, we denote by ~ r  the induced endomorphism of G~. 

Consider ~/::G~(Q)~G~(Q). Since G~(Q)=Q ~ is a Q-vector space, the 
additivity of ~ r  implies its Q-linearity. Thus ~ r  should be of the form 

t~--~ ~ aotj(Vi), ~ijeQ. 
j= l .  

On the other hand, K* and ~7- are degree-preserving with respect to the degrees 
on Ch* and ~ r  o (deg ti = de~c~ = i). Therefore ~ r  is also degree-preserving. Finally 
these two facts'imply that qi r is of the form t i ~-. bi t~CCi) for some bi e Q. 

It remains to prove that these b~'s are (up to sign) the coefficients of T~(c~, ..., c~). 
From the commutative diagram 

G~(Q) K., A(Q) 
~ | , 

G~(Q) r ~  A(Q) 
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we obtain the relation: 

exp (,~1 ( -  1)'+lbit'z')=1+ Tlz + T2z2+ .... 

Differentiate both sides with respect to t, and set (tl, t2 .... ) =(0, 0 .... ). Then we 
get 

(-- 1)"+Xb.= ~ T, It=0 . 

Since T~ is homogeneous of degree n and e,=(-1)"p.(-1)=(-1)"+lt, 
(modtl, ..., t._ 0, the right hand-side is equal to ( -  1) "+ 1 times the coefficient ofc.  
in T~. This proves the assertion. 

3.12 Proof of Theorem (3.9), 2). We have to relate the multiplicative sequence 
T(c) with the Schur functions. For this purpose, we use the theory of Schur 
functions as developed in ILl, Chap. VI l, 

Introduce the virtual Chern roots Yx, ~2 .... by 
N N 

1+ Y, cizi= I] ( l+yiz)  
i = 1  i = l  

N 

for arbitrary N. Since the series T(c) is obtained in the limit N ~  m from FI Q(~), 
i = 1  

we want an expansion formula for it into Schur functions. But it is nothing but the 
formula [Li, p. 103, (V)]: 

N 

1-I Q(Ti)= 1 + Y, Aata)Aa(c) 
/ = 1  2 

where 2 runs through all the partitions with 2~ < N  for all i. (Note that F(x,), {2}, 
{x; 2} in [Li] correspond to Q(r,), A~(a)= {~r ,~}, Ax(c)= {y; 2} respectively, ~'being 
the conjugate of 2.) 

3.13 An application to the calculation of genera. We have the following remark 
about the calculation of values of a multiplicative sequence. Let T be a 
muttiplicative sequence and M a compact complex manifold. Then we have 

T(c)[M]=pu(bl, b2 l) '+~b'  ) 
2 . . . . .  ( -  T ' " "  " 

Here Kt(T(c))= z r(t)= exp (i~>1 ( -  1)ibi t,) and K([M])=  pu(t). By Theorem (3.3), 
N / 

we get 

T(c)[M]=exp ( ~ (_l),+~ b i O) , i p , , ( t ) l , = o ,  

which is equal to the right hand-side of the above formula. 

4 Comparison with homotopy-theoretic results 

In this section, we show a connection of Theorem (3.3) with the result of Morava 
[La2, Appendix] and Bukhshtaber and Shokurov [BuSh], and give, as an 
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application, a description of Z-structure of ~ r .  0 corresponding to MU* under the 
identification K. 

4.1. First we reviev~ some fundamental facts on complex cobordism, cf. (1.2) 
and [A]. 

The complex cobordism ring MU* is equipped with the one-dimensional 
formal group law F~tv: 

FMv(eMu(L O, eMo(Lz)) = eMv(L1 | L2) , 

where eMV is the Euler class for MU*, (1.2). 
Then it is known that MU* with FMv is isomorphic to Lazard's ring with the 

universal one-dimensional formal group law. 
We are going to define a genus with values in WT, o(Z) (1.1). Consider the formal 

power series 

0(z)= • t,z "+1 (to=l), 
n > O  

and put 

O-l(z) = E a.(t)z "+1. 
n>=O 

Then the polynomial a,(t) is homogeneous of total degree n with respect to deg t~ = i 
and is given by the formula [A, II.7.5]: 

(,) (n+l)a,(t)=degree n part ofb -"-1 (n>l )  

b:= E ti. 
i>_-O 

We define the genus fl:MU*---~,,~r,o(Z) to be associated with the one- 
dimensional formal group law: 

F(zl, z2) = 0(0- t(zx) + O- l(Zz) ) 

by the universality of (MU*, FMv). Thus 0-l(z) is the logarithm of F. 
Note that ~ can be identified with the Hirewicz homomorphism n,(MU) 

~H, (MU)  for the ring spectrum MU as is shown in [-A, II]. 
Next we recall the relation of Wr. o(Z) with the Landweber-Novikov algebra S 

(1.2). S has a (graded) Hopf algebra structure with the coproduct: 

As,o= Y~ s,o, @so,~. 
(01+(02=03 

Then its dual Hopf algebra S, can be identified with ~ r .  o(Z), the dual basis of {so,} 
being the monomials {to,}. For the coproduct of S,, cf. [A, 1.6.5]. 

Finally we recall the formula [A, 1.8.1 ] showing how the operation s, acts on the 
cobordism class [P"]: 

(#)  s,([P"])=(s,,b-n-~)[P"-II~ll], (n>O). 

where we put b= ~ q, ]lall = Y, i~i for a=(al ,a2 .... ) and (,) is the evaluation 
n_>l i_>l 

pairing S x S , ~ Z .  

4.2. The work of Morava [La2, Appendix] and Bukhshtaber and Shokurov 
[BuSh] gives an interpretation of the Landweber-Novikov algebra S and the 
cobordism ring MU* by the automorphism group of the formal line and its 
coordinate ring. We recall it briefly in the following. 
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First introduce the group subscheme D ") of D ~~ (2.3). For a commutative ring 
R, its R-valued points are 

D {I}(R) = {z ~ qS,tz) = z + t 1 z 2 + t z z a +. . . }  C D(~ = Autg(R[[z]]) .  

Then the coordinate ring of D tl) is just equal to the boson Fock space: 

r(D"~, ~o,~,)= ~'~er, o(Z). 

Therefore Jet'r. o(Z) has a structure of Hopf algebra. 
Consider the following operation D, on Jfr,  o(Z) for ~ = (~1, ~t2 ... .  ), a~ �9 Z>__ o, 

[~1 = E ~ < ~ :  
i>_-I 

P(u,o}= E (D~P)(u)v ~ for P(t) �9 
~t 

0 
De = -~, + ~ (k + l--n)tk_ . 0 

k = + 1 t~ t k "  

The totality of linear combinations of D/s is closed under the composition and 
is a subalgebra 5Pof Endz(~T,o(Z)). 

In order to relate S and 50, let us define a map 

fibs : M U* ~ S, ~ ~ r .  o(z) 

by the formula: (fins(m), s) = #(s(m)) for m �9 MU*,  s �9 S, where # is the augmentation 
/~ :MU*~Z.  fibs is a ring homomorphism and extends to an isomorphism 

fibs : MU*(Z) '~ 'S ,  �9 
See (3.6) for MU*(Z). 

Let us observe the coincidence of fiBs and/~ in (4.1), since the authors could not 
find a suitable reference. 

Lemma. fiBs=fit. 

Proof. Let us check fss(P") for n=> 1. By [A, II.9.1] and (*) in (4.1), 

f(P") = (n + 1)a,(t) = degree n part of b -" - 1 

On the other hand, we have by (~)  in (4.1) 

fiBs(P") = E P(s~(P")) t '=  E (s , ,b-"-a)  t" 
II~ll =n ll~ll = .  

= degree n part of b-"-1  

We are already to state the main result of [BuSh, La2, Appendix]. 

Theorem. 1) The map S-}5r :a~ ~ D, is an isomorphism of Hopf  algebras. 
2) fibs is equivariant with respect to the isomorphism of  1). 
3) fBs(MU*) = {p �9 ~r o(Z); f*(P) �9 ~'ut~ Here ~* is the automorphism of  

�9 ~fr. o induced by the element Y(z) = 1 - e-"  �9 D")(Q). 

The above characterization of the image fBs(MU*) relies on a theorem of Stong 
and Hattori, and is found only in [BuSh]. 

when we put 
r = r 

D, can be easily expressed as a linear differential operator; e.g. for 
n 

e ,=(0  . . . .  ,0, L0, . . . ) ,  
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Finally we recall the relation of 6 e with the Virasoro algebra &#. 
The Lie algebra of the group D r as a C-group scheme is equal to the Lie 

subalgebra s o f ~  spanned by L,(n ~ 1). In terms of S, the operations s,, satisfy 
the same commutation relation (up to sign) as L.'s: 

ESem, Se "] = ( n - - m ) s  . . . .  �9 

4.3. Now we define an endomorphism of ~T,o, which connects K (3.3) and p 
above. 

Consider the following ring homomorphism: 

(p : ~ r ,  o--* o%#r, o: ti~--~p~(-t ) . 
It is immediate that (p is an automorphism. Then we have 

Theorem 4.4. The following diagram is commutative: 
M U * |  P-~ J~r,o 

K ~ r , o .  

Proof. We compare the values K(P") and q)(fl(P")). First we remark that K(P") 
=p.((n + 1)t) is given by 

exp (i~, (n + l ) t iz  i) 
/ d z .  

1 
p.((n+l)t)= ~ ~ z,+l 

Similarly for fl(P"): 
n + 1 O- l(z) 

f l(P")=(n+ 1)a.(t)= ~ ~ ~ dz. 

To calculate the effect of q~ on/~(P"), consider the following: 

w=q~(O(z))= i>=o ~ Pi(-t)z'+l=zexp ( -  i>=1 ~ t~zi)" 
Then we have 

dw= (1 -  i~ ~ itizi) exp ( -  i~ ~ tiz~) dz. 

Since w = ~0(0(z)) is the inverse power series to (p(0-l(z)), we get 

n+ 1 dw 
e(/~(e")) = ~ ~ o-~(w) w.+2 

2~i ~ Y" exp z" + x- 

Now observe the relation: 

~" it'z'= 1 d ( ) i>=I -ff-~ Z-~z i~x (n+ l)tizi 

1 d 

1 
- n + l  ,~1 jpj((n+ l)t)z'exp ( - , ~ ,  (n+ 1)qz'). 
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Hence we have 
n + l  

cp(fl(P"))= - ~ / ~  exp ( ~ ,  (n+ 1)t,z') dz zn+ l 

1 dz 
2r~i ~ j~> l ]Pi((n+ 1)t)zJ z "+1 

= (n + 1)p,((n + 1) t ) -  np,((n + 1)t) = p,((n + 1)t). 

This completes the proof. 

Remark 4.5. Unlike the map/~, the map q~ is not equivariant with respect to the 
action of Y. More precisely, the action of Virasoro generators L,(n > 1) on ~r o is 
given by ( 1 )  0 

L. = J>=,Z -- ~ (n + 1) p j_ .  Opj 

using pj(t)'s as variables. Meanwhile, the action of L. on ~ r , o  as the  coordinate 
ring of D (1) is given by De, (4.2). 

4.6. We determine the image of MU* by the map K (3.3) using the above 
Theorem (4.4), 3), el. (3.7). 

Let us calculate the effect of g* on the generators t[s. By definition of{*, we have 

Therefore we get 
g*(q)= -p i+  1(-  1, - t x  ..... - t i )  (i> 1). 

Then the image K(MU*) is described in the following 

Theorem 4.7. 
K(MU*) = Z[rl  (t), rz(t) . . . .  ] c~ 9ego(Z) �9 

Here ,ego(Z) denotes Z[pl(t), p2(t) .... ] (2.2) and ri(t) is the following polynomial: 

1 
ri(t) : = o <=~j<i j ~ - i  Pi-)(--  (J + 1)t). 

Proof By Theorem (4.4), 3), we have 

K(MU*)  = r 

while we know, by Bukhshtaber-Shokurov's Theorem, 3) in (4.2), that 

p(MU*) = ~r o(z)m(t*)- ' ( ~ ,  o(Z)). 

Thus we get 

K(MU*)  = q~(JfT, o(Z))c~ ~~ f*)-  ~ (gCfT, o(Z))" 

But we know that the polynomials ( -  1)ipi( - 1) = qi(t) for all i generate the ring 
Wo(Z). Hence we have ~o(~'~r, o(Z))=_~[o(Z) �9 

So it remains to calculate q~" ([*)- (ti) (i>= 1). Look at the maps: 

~r.o ~" afr.o _e, aer.o 
. 

[*(tl) ~ ti ~-~ q~(q)=p~(--t) 
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To avoid confusion in the calculation below, we rename the generators in the left 
-~r, o as si's. 

In order to calculate ~p. (f*)- 1, we set the generating series for •* and q~ equal: 

Y~ ~*(s~)z~= ~ q~(t~)z ~. 
i>O i>=O 

But the left hand side is 

- ~ p ~ + l ( - 1 , - s l  .. . . .  - s i ) z~=-z  -1 ~ p i + l ( - 1 , - s l , . . . , - s i ) z  i+1 
i=>0 i=>O 

= - - z - l ( e x p ( - - i ~ o S , Z i + l ) - - i  ), 

while the right hand side is 

i~>=O P'(--t)zi:exp(--i~>= 1 tizi) �9 

Let us solve the equality in s~'s. Then it will give the expression of ~p. (E*)- ~(t3 in 
ti" S. 

(,-zex, (- 
Z n 

Z n 
- -  Pro( - -  n t )  z m  

i>-O 0 ~_i j  . - p i - j ( - ( j + l ) t )  
z~+l 

This gives nothing but the definition of r~(t) i n the  statement of the Theorem. 

It might be interesting to find the generators of the subring K(MU*) of ~r 0, 
since it is isomorphic to Lazard's ring which is a polynomial ring. 

5 Genera and r-functions 

In this section, we explain how the formal power series zr(t) can be interpreted as a 
z-function in the theory of the K P  hierarchy. 

5.1. Here we point out that the expansion of rr(t) of T(c) ( 3.9), 2) can be interpreted 
as the following determinant: 

/ 
/~ 

i i c1 c2 C3 
det 1 c I c2 

1 c t 
1 

C3 
C2 C3 
C1 C2 C3 1 

/ ' .o  

1 

al 
a2 

... a3 

1 
a I l 
a2 al 
a3 L a2 
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det is a product of a Z < o x Z-matrix and a Z x Z < o-matrix, cf. [SN]. Then the 
above determinant is the limit m, n~oo  of its truncated version: 

det(Dm.~(c)'D,~,n(a)). 

Here D,,.~(c) denotes the following m x (m+ n)-matrix: 

i ' "  C1 C2 C3 
m 1 c 1 c 2 c 3 

l Cl. C 2 C 3 �9 �9 �9 

l c t c 2 c 3 
m n 

Now apply the following formula: for a p x q-matrix A and a q • p-matrix 
B(p<=q), 

det(AB)= Y. AIB~, 
I 

where A I (resp. BI) denotes the p-minor of A (resp. B) consisting of the columns 
(resp. rows) corresponding to IC {1 ..... q} with #I=p.  

In our case, the m-minors appearing in the above expansion is of the form 

det  ! " 
\Cko-m+l ... C~,,_,--m+l/ 

for 0 < k 0 < k l  < . . .  <km-i  <m+n. But this is equal to Aa(c) for 2=(21, ...,2m), 
2~ = kin-5 - ( m -  i) and 2 runs through all the partitions of depth < m. Similarly for 
A~(a). 

Therefore the expansion in question is equal to 

L Aa(a)Aa(c), 

where 2 runs through all the partitions of depth < m and of width < n. Taking the 
limit m, n ~ ,  we find the expression of (3.9), 2). 

5.2. Let us briefly recall z-functions in the theory of the KP hierarchy. The proofs 
of the facts recalled below can be found in [S, SM, SN, Sh]. 

A series of non-linear equations such as the Kadomtsev-Petviashvili equation 
( -  4u, + u,,x,, + 12uu,, = 0) form the so-called KP-hierarchy, which has the following 
form ("Sato equation"): 

c3,nW=BnW-WO ~ (n=1,2,3 . . . .  ) 

Bn=(Wa~W-t)+ 
We 1 +gc ( - -  1)|  t2 . . . .  ]]" 

Here 8 c ( -  1) denotes the totality of microdifferential operators of one variable x of 
order ___<-1, and ()+ means the differential operator part (i.e. the part not 
involving negative powers of a~,). 

These are equations for the coefficients of W. We can consider a solution of the 

form W= ~ wj(x, t)~f j (w o = 1), called the wave operator (for L). Note that 
j = 0  

L= Wc~xW - t  ~ c3,+ ~fc(- 1) |  t2 . . . .  ]] 
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satisfies the equation of Lax type: 

O,L=[B~,L] ,  B,=(/~)+ (n=1,2 ,3  .. . .  ). 

Note also that L is determined by W up to multiplication by an element of 
1 + a~- ~c[[a2 ~]]. 

We know by [DJKM]  that for a solution W, there is an element z(t) �9 ~ o(C) 
=C[ [ t l ,  t 2 . . . .  ]], called the z-function associated to L, satisfying: 

( 1 1 ) 
W = z ( x  + t)- lz X + t l - -8~  l, t2 - ~ t~  2 ....  , t ~ -  -n d~n ....  

. = o ~(x  + t) 

5 =  0,,, ~ ~,~,..., -n O, . . . . .  , x + t = (x  + tl, t2,. . .) .  

The condition for z(t) ~ ~ o(C) to be a z-function for some L is equivalent to the 
so-called Hirota's bilinear equations, or the Pliicker relations for the coefficients 

{~ )  of the expansion of z(t) = ~ CaXa(t). 

The totality of z-functions has a structure of C*-bundle over the Grassmannian 
Grass(C((z))) (of charge 0), IS, DJKM].  A z-function can be represented by a frame 

(a Z x Z < o-matrix) for the corresponding subspace of C((z)), [KNTY, Sects. 1, 4]. 
It is given as the determinant z(~, t )= det(t~o �9 r in the sense explained in (5.1), 
where 4o is the reference frame (6,+ln)i~zn~z<o and ~(t)=exp(n~ 1 t,A~) �9 ~is the 

/ 

time-evolution of 4, A =(6i+~n)in~z. 
Thus the correspondence ~ ~ ~(~, t) induces 

{frames ~}/SLz<o(C)-~{z-functions of the form z(r t)), 

which is the C*-bundle over Grass(C((z))). 
Now we are ready to state our theorem. 

Theorem 5.3. 1) I f  we substitute t'=(~'l,t'2 . . . .  ) with ~=( -1 ) i+ l t~  into zr(t ), then 
z(t) = zr(t') is the z-function corresponding to the frame ~ = tD(a) where a is given in 
Theorem 3.9, 2). 

2) The Lax operator associated with z(t)= zr(t~ is ~ .  
3) There is a one-to-one correspondence between the set of multiplicative 

sequences over Q (resp.C) and the subset l+~- lQ[- [d~- l ]  -] (resp. 
1 +d~-IC[[ t~  1]]) of all the wave operators. 

Remark 5.4. The above theorem says that the time-evolution of W corresponding 
to the frame tD(a) does not move the Lax operator L. Let us consider a mapping 

WI___~ L =  W ~ x W -  1 

from the set of wave operators to the set of Lax operators. Then the fiber over ?~ of 
this mapping is 1 + O~- tC[-[d; ~]]. 
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5.5 Proof of 7-heorem (5.3). First we remark the following identity: 

t~o.exp ( .~  ~ t.A") =t~O n~__ 0 p.( t )A" 

PI P2 P3 
= 1 P2 P3 =:D(p). 

Pl P2 P3 
Pl P2 

Therefore we have z(~,t)=det(D(p).~). Remember that we have K*(c,) 
= ( -  1)"p,(-  t), (3.3). If we replace t = ( .... t . . . . .  ) by t'= ( .... ( -  1)"+ it,, ...), we have 

'~o-exp ( .~ ,  ( -1 ) "+ l t .A  ") = '~o-exp (.~1 ( - t . ) ( -A)" )  

=t~o ~, p . ( - -1) ( -A)"  
n = O  

=re o ~ (-1)"p.(-t)(A)" 
n = 0  

= 2 K*(c.)A"=K*(O(c)). 
n = 0  

The result in (5.1) says that ZT(t)=det(D(c).tD(a)). Therefore, by the above 
calculation, we have 

zr(t) = det (~otD(a) (t]) . 

Hence 
Zr(t') = det(~otD(a)(t)). 

This proves the first assertion. 
Let us calculate the wave operator for ZT(t). By (3.9), 1), 

=exp  - -- 02 i =1+ ~ p~ --bl, , 02 i 
i x i i = x  2 " ' "  " 

H e r e p i ( _ b , , b 2  b2) ( b2 ) T h i s  2 ' "'" . means the value ofpi at t =  - b l ,  2 . . . . .  

W is clearly of constant coefficients. Thus we get 

L = WO~ W-  a = Ox. 

This proves the second assertion. 
For  the third assertion, recall that a multiplicative sequence is determined by 

the corresponding sequence (bl, b2 . . . .  ) in (3.9), 1). It means that z-functions of the 
form 

exp (,~a ( -  1)'+'b,t 0 

bijectively correspond to multiplicative sequences. 



570 T. Katsura et al. 

Thus it remains to show that z-functions of the above form up to scalar multiple 
are in one-to-one correspondence with wave operators with constant coefficients. 
By 2), it suffices to prove that 

W = I +  Z d.O;" (d.~Q) 
n__>l 

comes from a z-function of the above form. 
Let us solve the following equation for z = z(t): 

W=l+ Z dZ;"= Z p.(-O)~~;.. 
n > l  n>O "C 

Hence, we have 

p.(-~Y)z = d.z ( n > l ) .  

Note that 
1 

P"(-  ~) = - n 0t" + (terms in dtl, ..., c~t,_ 1). 

In particular, we have P l ( - ~ ) =  - 0 t c  Then, by induction on n, we conclude that 
z(t) has the form 

z ( t ) = e x p  (,=~ ~ (-1)'+'b, ti)'z(tn+l.t.+2 .... ) 

for some b, EQ. This proves the third assertion and completes the proof of 
Theorem (5.3). 
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