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0 Introduction 

Since their introduction by Poincar6 and Dulac, normal forms have been used to 
investigate non-elementary stationary points of ordinary differential equations, 
in particular their stability; see Arnold and Anosov [2], Bruno [3], Guckenheimer 
and Holmes [101 and Takens [15], among others. Although it is known that - due 
to possible divergence of the normalizing transformation, cf. Bruno [4, 5-1 - 
general differential equations may have a more complicated behaviour near a 
stationary point than differential equations in normal form do, this c/ass certainly 
deserves to be considered in its own right. While properties of normal forms have 
been used in many particular cases and there is much work on Hamiltonian 
systems in normal form (for instance Cushman and Rod [7], van der Meer [16], 
and Kummer [12]), there seems to be little work - with the exception of Bruno 
[4, 5] - on general properties of differential equations in normal form and their 
reduction to systems of lower dimension. The purpose of this article is to present a 
general theory of this class of differential equations. 

By ~( we denote the field of real or complex numbers and by V a finite 
dimensional vector space over K. Let N be some open neighbourhood of 0 in V 
and f :  N ~ V analytic with f(0) = 0. Thus, the series expansion of f about 0 is of the 
type f(x) = Bx + ~ f~(x), with B: Vo V linear and the fj: V~ V homogeneous of 

j_~2 
degree j. Furthermore, let B=Bs+B~ be the decomposition of B into its 
semisimple and nilpotent parts. The differential equation 

=f(x) 

is in normal form about 0 if [Be, f ]  = 0 (where [ . , .  -1 denotes the usual Lie bracket); 
this is equivalent to [Bs, fj] = 0 for all j >  2 in view of [B~, B~] = 0. More precisely, 
this is the normal form with respect to the semisimple part considered by Bruno 
[3-5]. It is called "preliminary normal form" by Arnold and Anosov [2]. The 
further normalization in case B~ 4= 0 which was extensively studied in recent years 
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will not be investigated here. (On this topic cf., for instance, Arnold and Anosov 
[2, Part I, Chap. 3, Sects. 3 and 7], the historical notes in van der Meer 1-16, 
pp. 42-45] and Cushman and Sanders I-8].) 

In the following (Proposition 1.9) it will be shown that there is a decomposition 
of V as a direct sum of two B~-invariant subspaces U and W (one of which may be 
zero; W is the largest B~-invariant subspace on which every polynomial first 
integral of :t = B,x is constant), which yields a decomposition of the differential 
equation: For x = u + w ~ U@ W, :~ =f(x) splits into 

ti =f(u),  

= g(u, w) ; 

more precisely, U is f-invariant and g(u, w): =f(u + w)-f(u)  ~ W for all u and w. 
If a solution of ti =f(u) is known, then the remaining equation on W can be 

reduced to linear differential equations and is therefore, in a sense, harmless. 
If B Jr4:0, then there is a solution-preserving map from ~i=f(u) to some 

differential equation on an algebraic variety of smaller dimension as will be shown 
in Sect. 3. This follows essentially from the existence of a nontrivial symmetry 
group for ti =f(u). If a solution of the reduced equation is known, then solutions of 
a=f(u)  can be found by integration alone. More important, many special 
properties of ti =f(u) are preserved by the reduction. 

1 Preliminary results and a decomposition 

Given a fixed basis (and system of coordinates) on V, the notion of a polynomial 
map from V to V (or K) with respect to these coordinates is unambiguous. 

By #~d(V) we denote the Lie algebra of all polynomial maps from V to V; this is 
a Z-graded Lie algebra: #~d(V)= ~ #~j, with ~j:=. {p ~ ~d(V):  p homogeneous of 

degree j +  1} for j ~ -  1 and ~ j : =  {0} for j < -  1. By d(V)  we denote the Lie 
algebra of all power series Z fj, with f j ~ j - 1 ,  which converge in some 

j_->o 
neighbourhood of 0; we identify s/(V) with the (germs of) analytic functions about 
0. Furthermore, the (associative and naturally graded) algebra of all polynomial 
maps from V to K is called S(V) and the algebra of all power series (p = ~ ~0~ 

./>__o 
[q~j ~ S(V), homogeneous of degree j]  which converge near 0 is called A(V); again, 
the latter is identified with the algebra of functions analytic in 0. 

For q~S(g)  [or A(V)] and f ~ d ( g )  [or ~r let Ly(q~)(x):=D~o(x).f(x). 
Then Lr is a derivation of S(V) [or (A(V)] - this is the usual relation between 
vector-valued functions and vector fields - and the identity Lty ' g] = LILg-LgLI 
holds. L I is called the Lie derivative of (p with respect to f. 

We call ~o a first integral of ~ =f(x) (or, briefly, of f )  if LI(~p)= 0; thus all level 
sets of q) are invariant sets of ~ =f(x). In particular, let l(Bs) be the set of all 
polynomial first integrals of Bs and/-(B~) the set of all analytic first integrals near 0 
of B,. These are subalgebras of S(V), A(V), respectively, and furthermore 
q) = ~ q~j ~/-(Bs) if and only if every q)j ~ I(Bs). 

j_zo 
Finally, let qg(B,) = {f~ ~,~t(V): [B,, f ]  = 0} and C~(B,) = {f~ a'(V): [Bs, f ]  = 0}. 

These are Lie subalgebras of #~(V)  resp. ~r and f =  ~ fj  ~ ~(B~) if and only if 
every f~ ~ ~(Bs). J -~ o 
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Let g be analytic in a neighbourhood ~ of 0 in a finite dimensional K-vector 
space V. Let H:  N--*N analytic such that H(0) = 0. We call H a solution-preserving 
map from ~ =g(x) to ~ =f(x)  if H maps parametrized solutions of :~ = g(x) to 
parametrized solutions of~ =f(x). Thus, whenever z(t) is a solution of~ = g(x) in ,~, 
then H(z(t)) is a solution of ~ =f(x). The following is well-known: 

(1.1) Lemma. The analytic map H is solution-r~L reserving from :~ = g(x) to Yc =f(x)  if 
and only i f  OH(x) .  g(x) = f ( n ( x ) )  for  all x ~ N.  

Suppose that f ( x )  = Bx  + y. fj(x) is the Taylor series of f about 0. If ~'= V and 
j_>-2 

H is invertible, then g(x)= Bx  + ~ gj(x), thus g(0)= 0 and B and/~ are conjugate; 
j_->2 

we will assume that they are equal in the following. 
Note that for every homogeneous polynomial p : V~ V of degree m > 1 there is a 

unique multilinear and symmetric/9" V =---r V such that/9(x .. . . .  x) = p(x) for all x. We 
will no longer distinguish p and/9 typographically from now on. In particular, 
Dp(x) . q(x) = rap(x,..., x, q(x)) for all q ~ ~d(10.  

Now suppose that H = ~. h i is invertible near 0 (equivalently, hi is invertible). 
j>_l 

Using Lemma 1.1 and comparing homogeneous terms of degree m > 2 shows, after 
a few modifications, 

(1.2) Lemma. The local analytic diffeomorphism H is solution-preserving from 
~=g(x) to :~=f(x) / f  and only i f  [B, ht] =0  and 

m - - 1  

[B, h~] (x) = ~, ~, f~(he,(x) . . . . .  hcj(x)) 
j = 2  g l  . . . . .  ~'./> 0 

8, + . . .  +gj=ra 

ra--1 

-- ~, ihi(x . . . . .  x, g :  + 1 -i(x)) + f ~ ( x ) -  gin(x) 
i = 2  

holds for  all m > 2. 

Next we shall investigate the structure of C~(Bs) and I(Bs). Let 

21 . . . .  ,2,  be the eigenvalues of B~ (counted with multiplicity); 

el . . . .  , e, a corresponding eigenbasis and 

x 1 . . . .  , x, the coordinates with respect to this basis. 

(This may require complexification of a real vector space but the results will also be 
valid for K = R,  as will be indicated separately when it is not trivial.) 

For m >  1 let us investigate the action of a d B =  I-B, .] on ~m-1. 
For the "monomial" 

p(x): = x~' ... x~"e~ 

(with ml . . . .  ,m ,>O,  m l + . . . + m , = m ,  and l < j < n )  one computes [B,,'p] 
= (m~21 + . . .  + m,2~- 2j)p. 

Thus, every monomial is an eigenvector of adB~ on ~ . _  1. As these monomials 
form a basis of ~ , _  1, we have proven the first part of the following proposition, 
the remaining assertions are standard (see Humphreys [11]): 

(13) Proposition. (a)adB~l~._~ is semisimple. 
(b) adB.l~.~_, is niipotent. 
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(c) The decomposition o f  adBl~,,,_, into semisimple and nilpotent part is given by 
adB,l~,,_, + adB, l~,m_ ~. 

In particular, p e ~(B,) if and only if m~21 + . . .  + m , 2 , - 2 j  = 0 (in the notation 
above), and, by linear algebra, every homogeneous q e C~(B~) of degree m is a linear 
combination of monomials in ~(B~). 

In an analogous manner, one can characterize the action of L ,  on SjC S(V) 
(subspace of homogeneous polynomials of degree j): 

For ~p(x): = x{' ... x~'(j l , . . . ,  j ,  > O, Jl + . . .  +J,  = J) one has LB,(~p) 
=(j~2~ + . . .  +j,2,)q~, and thus 

(1.4) Proposition. (a) L~,ls~ is semisimple. 
(b) LaJsj is nilpotent. 
(c} The decomposition of  Ln\ss into semisimple and nilpotent part is given by 

Ls,Isj+LBnlsj. 

Again, with the notation above, cp e I(B~) if and only if rn~2~ + . . .  + m,2~ = 0, and 
every homogeneous ~p ~ I(B~) is a linear combination of monomials in I(B~). 

For p, q~ ..... q, ~ ~ ( V ) ,  p homogeneous of degree r, q~ homogeneous of degree 
st suppose [B, p] = [B, qJ = 0 for all i, hence 

s~qi(x . . . .  , x, Bx) = Bq~(x) (1 < i _-< r) 

and 
rp( x, . . ., x, Bx) = Bp(x) ; 

= F. p(ql(x) . . . .  , Bqi(x),. . . ,  q , ( x ) ) -  Bp(ql(x) , . . . ,  q~(x)) = O. 
i=1  

This observation (with B, instead of B) is essential in the proof of 

(1~) Proposition (Bruno [4, Theorem 2, p. 155]). IfYc = g(x) and s =f(x)  are both in 
normal form and H is solution-preserving f rom 2 = g(x) to Y~ =f(x),  then iBm, h ~  = 0 
for  all m >__ 1. 

Proof. For m = l ,  this follows directly from (1.2). Proceed with induction: If 
i/Is, hj] = 0 for all j < m, then what was said above shows that the right-hand side of 
the equation in (1.2) is contained in ~(B,). Thus [B,  [B, hm]] = 0, which implies 
ibm, h=] = 0 by the Proposition 1.3, since ad B stabilizes the eigenspaces of ad B~ and 
is invertible on the eigenspaces for nonzero eigenvalues. [] 

The proof given here is different from Bruno's and less complicated. 
The following proposition is known; the proof of the first part (generalizing an 

idea of E. Noether) is due to Weitzenb6ck [18]: 

(1.6) Proposition. (a) I(B~) is a f initely generated K-algebra. 
(b) ~#(Bs) is a f initely generated I(B~)-module. 

equivalently 

~p (y l , . . . ,By i  .. . .  ,y ,)=Bp(yl , . . . ,y ,)  for all Yl ..... y ,~V.  
i = l  

Define f(x): = p(ql(x) . . . .  , q,(x)). Then [B, f ]  = 0. Indeed, 

[B, f ] ( x )  = ~ p(ql(x), . . . ,  siq~x,. . . ,  x, Bx) , . . . ,  q,(x))-- Bp(ql(x) . . . .  , qr(x)) 
i = 1  
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Proof. It is sufficient to prove both parts for K = •. 
(a) Let J be the ideal of S(V)  which is generated by the homogeneous elements 

of positive degree in I(Bs). As S(V) is noetherian, there are homogeneous 
~ol,..., go, ~ l(Bs) of positive degree which generate J, and we contend that l(Bs) 
= ~[gol . . . . .  tp,]. Indeed, let go e I(Bs) be homogeneous of degree m. If m = 0, then 
~0 ~ ~[gol . . . .  , go,] trivially, and by induction we may assume that the assertion is 
true for all degrees <m. There are homogeneous (!) t r l , . . . , t r r ~ S ( V  ) such that 
go = algol + . . .  + trrgor. Using (1.5), tri = ~ tri, ~ with Ln(tri, ~) = fltri, ~ for all i, and LB(go) 

# 
=LB(go~)=0 ( l < i < r )  shows go=trl,Ogol+...+ar.OgO ,. Thus a~,o~l(Bs) and 
~i,o E IE[gol . . . .  , go~] by induction hypothesis. 

(b) Fix t~{1, . . . ,n} and consider all the monomials x ~ l . . . x ~ e e ~ ( B ~ ) ;  
equivalently, all the n-tuples (m~ .. . .  ,m,) of nonnegative integers such that (*) 
m t 2 ~ + . . . + m , 2 , - 2 e = 0 .  We show that there are finitely many among these 
monomials such that every monomial of the type above is a product of a first 
integral and one of the finitely many monomials. If there are only finitely many 
n-tuples of integers satisfying (*), this is obvious. If not, let {(mkl . . . .  , ink,): k ~ N} be 
the set of n-tuples of integers satisfying (*). There is a r E N such that for every k > r 
there is a j < r satisfying mj~ < m~i for 1 < i < n. For otherwise, to every r e 1'4 there 
would be a k > r such that mki < mji for all j < r and some i e { 1 . . . . .  n} depending on 
j. Then there are sequences (r~, r2 . . . .  ) and (kl, k2,...) such that r,+~ ~ k, for all n, 
and (with j =  k,) there is an i e {1,..., n} satisfying ink,§ ~.i < mk,,i. Taking subse- 
quences, if necessary, we may assume that i is constant for all n. But then 
(mk~,~, mk~.~ . . . .  ) is a strictly destrictly decreasing sequence of nonnegative integers, a 
contradiction. Therefore, for k > r we have 

x'~ ~ ... x ,"~ e e--  (x~ m~ - "J~ �9 ~=~" - "J"~""J~,~l �9 .. x ~ " e  e , 

and the first factor on the right-hand side is in I(Bs). [] 

(1.7) Corollary. r~(Bs) is infinite dimensional i f  and only i f  I(Bs):t: K .  

Proof. If 7 e l ( B s )  is not constant, then {vJB,: j e lq}  is an infinite K-linearly 
independent system in C~(B~). 

The reverse direction follows from (1.6). [] 

The proof of (1.6a) shows in particular that there are monomials %(x) 
=x~'" ... x~" (1 < i < r )  in the eigencoordinates which generate I(B~). We may 
assume that {(ml~ .. . . .  m:,), ..., (ms~ .... .  ms,)} is a maximal {~-lineady independent 
system in {{m~, . . . ,  m l , ) , . . . , (mr i , . . . ,  mr,)}. Then go~ .. . . .  gos are algebraically inde- 
pendent [consider the contribution to a monomial of highest degree in Xl,..., x, in 
a hypothetical relation Y(goD-.-, go~) =0, y =t= 0], and go~, ..., go~, % are algebraically 
dependent for all j > s, as some power of go~ is a product of powers of go ~, ..., go~ by 
linear algebra. 

Thus, we have a system of generators tpl .. . . .  q~ of I(B,)  and go~ .. . . .  gos is a 
maximal algebraically independent subsystem. We shall use this system of 
generators later on; for K = R  it is easy to obtain a real system of generators 
from it. 

After we are done with the preliminaries, we turn to properties of differential 
equations in normal form. From now on suppose that 

=f(x)  = B x  + E f~{x) 
j_>2 

is in normal form. 
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(1.8) Proposition. I f  tOeA(V) is a first integral of ~=f(x) ,  then tOeI(B~). 

Proof. We may assume that tO is nonconstant and tO(0)=0, thus tO = ~ r and 
r_>_l, tO, 4: 0. j~o 

Decomposing L~4~)= 0 into its homogeneous parts, we obtain Ls(tO,)= 0 and 

(*) LB(to,+~)+Lf~(tor+j-~)+ ... +Lf,§ for all j=>l.  

From (1.5) we find LB,(~0,)= 0. Assume by induction that LB,(~0, +k) = 0 for all k < j. 
Then applying Ln, to the equation (*) gives 

0 = LB,Ln(to,+j) + LgLf,(to,+I_ ~) + ... + LB,Lf, + ~(r 

From LBLf~=Lf~LB. for all k > 2  and the hypothesis we find that every 
term on the fight-hand side, excep~the first, is zero, and thus Ls Ln(~0,+j)=0. 
Since Ln is invertible on the Ln-eigenspaces for nonzero eigenvalues, we 
find LB,(~a,+~)=0. []  

Now let W be the maximal B,-invariant subspace of V on which every to e I(B,) 
is constant, and U the B~-invariant complementary subspace of W in V. Using the 
eigenbasis, we get U = ({ek: there is a ~o = x~*.., x'~ ~ e I(B,) with mk> 0}> and W is 
spanned by the remaining ej. Note that, for every eigenvalue, the whole eigenspace 
is contained either in U or in W, and in case ~ ( = R  the eigenspaces for complex 
conjugate eigenvalues are simultaneously contained either in U or in W. This 
follows from x'~ ~ ... xT"e I(B~) ~ m12~ +. . .  + m,2n = 0. Thus, we have the decom- 
position V= U@ W (possibly with U = {0} or W= {0}) in any case. For the sake of 
convenience we will assume U = ( e l  . . . . .  e,> and W=(e~+l  .....  e,> for some 
r {0 . . . . .  n}. 

From the definition of U we see that there are positive integers sl, . . . ,  s, such 
that (*) st21 + . . .  +S t2 ,=0  and thus ~ ... x~/el(B,). 

The importance of this decomposition for differential equations in normal form 
is illustrated by 

(1.9) Theorem. For every y ~ V, u E U and w ~ W, f(u) ~ U and f ( y  + w ) - f ( y )  ~ W. 
Thus, one has a decomposition of :~ =f(x)  for x = u + w a U ~ W: 

fi =f (u) ,  

= g(u, w), 

with g(u, w) = f(u + w ) -  f(u). 

Proof. By construction, U and W are B-invafiant, and it is sufficient to show the 
assertion for every homogeneous p~C(B,) of degree m ~ 2  and even for the 
monomials p(x)=x~l ...x~"ej with ml . . . .  ,m,>O, m~ +. . .  +m~=rn and 
m12t + ... + m , 2 , -  ,~j = 0. N o w x  e U ,~  x,+ 1 . . . . .  x, = 0  and to show p(U)C U it 
is sufficient to prove that m12~ + . . .  + re,A,--2j = 0 (with ml + . . .  + mr = m) implies 
j~_r. There is a k e n  such that k . s i - m t > O  for l < i < r  [with st , . . . , s ,  as in (*) 
above]. Using 2 ~ s ~ + . . . + 2 r s , = 0  and m ~ 2 ~ + . . . + m , 2 , - 2 ~ = 0 ,  we have 

(k. s~-mi)Ai+ 2j=O. Therefore, x~'  t '  .. X~,-mr. x~e l(n,). Since the expo- 
1--1 
nent of xj is positive, ej e U and j <-r by definition of U. 
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Furthermore, if ~. m~2~-2~ = 0 and m k > 0 for some k > r, then j > r because 
i = l  

j<r would imply ~ (m,+si-6,j)2i+ ~ mi;[,=0, and, therefore, ekeU, a 
i = l  i = r +  l 

contradiction. This implies Dp(x)w ~ W for all x ~ V, w ~ W, and p(x + w) -  p(x) ~ W 
follows. [] 

This decomposition can (in disguise) also be found in Bruno [4, Theorem 4, 
p. 163], but Bruno's reasoning deals exclusively with the question how the 
eigenvalues of B~ are situated in the complex plane, and is more complicated. The 
characterizations of U and W given above and the proof of (1.9) are new. 

If a solution of ti =f(u) is known, then solutions of ~ =f(x) can be found from 
= g(u, w). Thus, the investigation of differential equations in normal form is split 

into two tasks, considering the equations on U and W. We will first take a closer 
look at W in the following section and return to U later. 

2 The equation on W 

In this section, W:t: {0}. Recall that for U # {0} there are positive integers sl ..... s, 
such that s121 +. . .  +s,)~,=0. 

(2.1) Lemma. Let j > r >  1 and m,+ 1, ...,m,e]N o. 
ra n (a) There are ml .... ,mr~N o such that p(x):=x~t' ... Xn ejEC~(Bs) if and only if 

n 

mi2i- 2 ieZ21 +... + Z2,. 
i = r +  1 

(b) ~ mi~,it~ 7~,~l-lL ....-~- 7~, r i f  and only if mr+ l . . . .  =m,=0.  
i = r + l  

Proof. (a) There are E1 .... , ~ , eZ  such that ~ mi2~-2j=r162 
i = r + l  n 

Choose k ~ lq such that mi : = k. s i -  f~ ~_ 0 for 1 < i < r, then ~ mi2i- 2j = 0, 
which shows the "if" part. The other direction is trivial, i= 

(b) In the same manner it follows from ~ m~2ieZ2t+. . .+Z2,  that there 
~ ,  i = r +  1 

are ml .... ,m ,~N o such that mi2i=O. Hence tp(x):=xT~.. .x~I(B~) and 
i = l  

m,+; = . . . =  m, = 0 from the definition of W. [] 

If r=0,  i.e. U =  {0}, Lemma 2.1 trivially holds with Z21 + ... +Z2r replaced 
by {0}. 

Denote by ~ the image of ze(~ ,  +)  in the factor group r + ... + 7.2,), if 
r>__l, and let g=z  in case r=0. 

(2.2) Lemma. (a) For every j > r  there are at most finitely many 

(m,+l ..... m,)~N~ -~ such that ~ m i ~ - ~ = O .  
i = r + l  

(b) Let j, E>r and furthermore mr+D . . . ,m,>0 with me>0 and k,+l .... ,kn>O 

with k~>0 such that ~ m ~ i - 2 j = 0  and Y, kl~-Xe=O. 
i = r + l  i = r + l  

Then me=kj=l  , mi=O for i4:~, ki=O for i:l:j and ~e=X~. 

Proof. (a) follows from (2.1) and the proof of (1.6b). 
I1 

(b) Adding both relations yields ~ (mi + k i -  6 o -  6ie)~ = 0 and the assertion 
follows from (2.1b). []  i : ,+l  
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In particular, (2.2) implies that there are relations L m ~  = ~-j of maximal 
n i = r + l  

length; i.e., with Z m~ maximal. 
i = r +  1 

After changing indices, we may assume that precisely ~-s + l,..., ~-n (for some s > r) 
appear on the right-hand sides of relations of maximal length. Obviously, 
Wt : = <es+ t, . . . ,  e,> is B-invariant, and one has a corresponding subspace in case 
K = R .  

The implications for the differential equation ~ =f (x)  in normal form are shown 
by 

(2.3) Lemma. For every y e V and wl e W 1 we have f ( y  + w l ) - f ( y )  ~ Wl. 
Furthermore, D2f(y)(w, wl) = 0 for every y e V, w e W, and w I e W r 

Proof. It is sufficient to prove the assertions for p(x)=x~' ... x~"e~e~(Bs) and 

~ mi>2. Thus L mi2~-2i=0.  For the first assertion it is sufficient to show: If 
/=1 i = i  

mt>O for some f>s, then j>s; this implies Dp(y)w, e WI for all y,w I. 

We have ~ mi~-~-j=O and j>r from (2.1), and there is a relation 
i = r + l  

kiwi = ~-e of maximal length. Substitution yields 
i = r + l  

i = r +  1 i = r +  1 
i * r  

The length of this relation does not exceed ~ k~, hence m e = 1, m~ = 0 for i . :  
and ~ = ~-t, showing j > s. i=, +~ 

If the second assertion were not true, there would be : , > r ,  : z > s  and 

me,, me, e N such that L m ~  = 2-~ for some j. Substituting ~-e~ from a relation 
i = r + l  

~. kiX~=Y(e~ yields a relation of length greater than L kj; a contra- 
i = r + l  i = r + l  

diction. []  

Let Wo be a B-invariant complement of I4", in W; actually Wo = <e,+ ~,..., es> is 
uniquely determined. We can refine the decomposition of the differential equation 
given in (1.9): We have ~ = g(u, w), and for w = W o + w t e  14/0 ~ W, we have g(u, w) 
= g(u, Wo) + (g(u, wo + w , ) -  g(u, Wo)), the latter term being in W, from Lemma 2.3. 

Thus we have 
% = ho(u, Wo), 

r = h~(u, Wo, w~), 

and the second part of (2.2) shows that 

h i ( u ,  w O, w1) = C l ( U ) w  1 q- ~l(U,  Wo) 

with C,(u)eHom(W,,  W,); furthermore, ~l(U, Wo) contains neither constant nor 
linear terms in w0, for else Xe = ~-, for some : < s. 

By Lemma 2.3, the passage from V to V/W, yields a solution-preserving map 
from ~ = f ( x )  into the (well-defined t) differential equation (x+--T-W0=f(x+ 14:,); 
therefore, we can repeat the argument on V/W, and use induction to obtain 

(2.4) Theorem. There are subspaces W 1 .. . . .  Wk of W such that W= W, ~ .. . t~ Wk 
and ~ = g(u, w) is given by ~l = Ci(u)wi+ hi(u, wi+ a +. . .  + wA) (l ~_ i~_ k) for 
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w = wl +. . .  + Wk ~ W1 ~ . . .  ~ Wk; where Ci(u ) ~ Hom(Wi, W/) and h i contains neither 
constant nor linear terms in w~+ t +. . .  + Wk. 

This theorem was proven - with a different method - by Bruno [4, Theorem 6, 
p. 172-1; the access chosen here seems new and less technically involved. A 
consequence is that in W there is "only" a sequence of linear equations to solve, 
starting with ffk = Ck(U)Wk. In the special case V= W, the equation is autonomous. 
Furthermore, we have 

(2.5) Corollary. I f  V= W then ~ =f(x)  can be solved with elementary functions. 

Proof. In this case, Cj = #j Id + N j, with Nj nilpotent, and the terms in h~ are linear 
combinations of monomials xT' ... x'~"ee with mz2~ + . . .  + mn2~ = #j. Therefore, 
the equation in Wk is YC = g~X + NkX, which can be solved by elementary functions, 
and substituting for hj from the known solutions in Wk,..., Wi+ 1, we get in Wj: 

Yc = #ix + Nix  + c(t)e gjt with c(t) a polynomial in t. It is simple to verify that this 
equation has general solution dj~t)e ~'j~ with a polynomial dj. [] 

It may be worthwhile to illustrate the background of (2.4) and (2.5) and exhibit 
the basic property of the differential equation on W. 

�9 Let ~ C ~'o#(W) be spanned by those monomials x'f:~ ~ ... x~"e~ (j > r) such that 
%+ ~2~+ ~ +.. .  + m ~ 2 , - 2 j e  Z2~ + . . .  + 292,; in view of (2.1) these are precisely the 
monomials p for which there is a ~p e S(V) such that ~p. p e ~(B,). Because r162 is a 
subalgebra of ~or .~ is a subalgebra of 9~(W).  By virtue of (2.2), .~ is a finite 
dimensional Lie algebra of vector fields [which inherits the natural grading of 
Nor and the reasoning leading to (2.4) shows that the subspaces Z o = {0}, 
Z i = W 1 ~ . . .  ~ W~ (1 < i -< k) satisfy [p, zi] e Z i_ 1 for all p e .~, z, e Z, and 1 < i < k, 
furthermore [adwl(...(adwA...)p, z i]eZi_~_ ~ (or Zo for ~ > i - 1 )  for all 
wt ..... we e W. Since [_p, Z J  C Zj  and [q, Z J  fi Z~ also imply [[p, q-l, Zi- 1 ( Z j  (as is 
seen by using the Jacobi identity in W/Z~), we obtain 

(2.6) Theorem..~ and W generate a finite dimensional transitive (i.e. containing all 
constant maps) and graded subalgebra of ~ ( W ) .  

These algebras were investigated in detail in [17], in particular, (2.4) is a 
consequence of the reducibility of these algebras. 

3 Reduction of the equation on U 

In the following we will discuss the restriction of the differential equation 
in normal form ~=f (x )  to the subspace U; we may - and will - assume that 
U = V  from now on. Thus we have positive integers sl . . . . .  sn such that 
~(x): = ~ . . .  x~ ~ I(B,), and l(Bs) is generated by monomials 9 t . . . .  , % such that 
~0~ ..... ~p, form a maximal algebraically independent subset; of. the remarks 
following (1.7). (In case K = •; ~p and the ~p~ can obviously be chosen real-valued.) 

Let C~(x) :=xf j  for 1 <=j<=n. 

0.1) Proposition. For m ~_ 1 and every homogeneous p ~ ~( Bs) there are ~ 1 . . . .  , T~ and 

~Pl ..... ~pn ~ l(Bs) such that p(x)= ~ yj(x) . . . .~  
a polynomial for l <- j<__n, j=l w- -~  c'~x)andtp~ . . . .  'u2~dividew'andwl" xjis  
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Proof. It is sufficient to consider p(x) = xT1.., x~"ej with ~ m~2~- 2j = 0. Therefore 

with si2i = 0 (m~ + s i -  6u)2~ = 0. This relation has nonnegative coef- 
i i = t  

ficients; therefore y(x): = I:I x~" +s,-a,,)~ I(B,) and p(x)= ~ Cj~x), which shows 
the assertion. [] i= ~0txl 

Note that an analogous statement for K = R can be obtained by separating the 
real and the imaginary parts of Cj. 

A direct consequence of (3.1) is that the differential equation ~ =f(x) is of the 
type ( 

:~i=xi 2i+ Y', Yi~x)'~ ( l ~ i ~ n )  
.~_ i v~.(x)/ 

with Yim, ~Pim e I(B~) and every lpt m dividing 1/). 
Another consequence is 

(3.2) Theorem. Let s be the maximal number of algebraically independent elements 
in I(B,). Then there is a (n-s)-dimensional abelian Lie subgroup G of GL(V) such 
that every Tr G is solution-preserving from s =f(x) into itself. 

Proof. The number s is equal to the degree of transcendence of the quotient field of 
I(B,), hence uniquely determined and equal to the maximal number of algebra- 
ically independent monomials among the 91 ..... ~0, (so the labelling "s" is 
correct). ( l i t  

C~(x):=xfj for l < j < n ,  let ~r162 ~D= ~ /~iC~: tPl,...,tp, are With first 
t i = 1  

integrals of D~. With the notation following (1.7) we see ~ ~iCi ~ J-r if and only if 
J i = l  

~mji~i=O for 1 < j < s ,  hence dr is an abelian Lie algebra of dimension n-s.  
I = l  

Furthermore, D r .g  ~,  91 ..... ~o, are first integrals of D *~. every element of I(B,) 
is a first integral of D. From I-D, Cj] = 0 for all D ~ ~r and all j and Lo((p) = 0 for all 
D r and all cp el(B,) we get [,D,p] =0 for all D ~Jr  and all homogeneous 
p ~ C~(B,) from (3.1). Therefore [D, f ]  = 0, since ~ =f(x) is in normal form. Let G be 
the (connected) Lie group with Lie algebra ~/, then T f = f T  for all T~ G, which 
shows the assertion. [] 

Note that the proof is constructive and can easily be modified for the case 
K = R .  

Thus, if B~ 4: 0, there is a nontrivial symmetry group of the differential equation 
=f(x). Of course, this is immediately clear from [B,, f ]  = 0, but (3.2) shows that 

the dimension may be larger. It is common knowledge that the existence of a 
nontrivial symmetry group should imply (locally) the reducibility of the differen- 
tial equation; i.e., the existence of a solution-preserving map into some equation of 
smaller dimension s, cf. Olver [,,14-1. However, it is usually assumed that all the 
G-orbits near the point of interest have the same dimension. This is not the case 
near the interesting point 0 and indeed, the quotient space of V with respect to the 
action of G may have quite a strange topological structure, for example, the 
induced topology on V/G need not be Hausdorff. Therefore, direct employment of 
the quotient space does not seem appropriate. One of the results given by Bruno 
[-4, Theorem 4, p. 163] shows that there is a rational solution-preserving map from 
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~=f(x)  to some s-dimensional equation (whose right-hand side is a Laurent 
series); but this rational map does not seem very useful for qualitative analysis, as it 
is in general not defined in the interesting point 0. 

We will show that there is a quite well-behaved reduction map, using the 
invariants of G [i.e. l(Bs)] instead of V/G itself. Note that these two methods are 
not identical if the invariants do not separate orbits, as is often the case with 
normal forms. For  the Hamiltonian case the approach is essentially the same as the 
one described, in Arms et al. 1,19] and Cushman and Sjamaar I-9], as will be shown 
in (3.13). 

Let ~o 1 . . . .  , cp, be the homogeneous generators of I(B~) introduced before. For 
every homogeneous ~p~I(B~) there is a a e S ( K  r) such that ~p=a(cpl . . . .  ,tp,). 
Consequently, for every tp ~ ?-(Bs) there is a formal power series 

k ~ O  kl + ... + k r = k  

such that ~p = ~(cp~, ~.., ~0,). 

(3.3) Lemma. For every lp e [(B~) there is a ~ e A(K')  such that ~p = r(qh . . . .  , q~,). 

Proof. According to construction, cp~ .. . .  ,q~, are normalized monomials in 
x t . . . . .  x,. Let si:=deg~0 i for 1 <i<n .  

We have ~p(x)= E E %1 ..... j x~ . . .  x~'. 
j>=O J t + . . . + J ~ = J  

Since ~p converges in a neighbourhood of 0, there are positive M, 0 such that 

E I~j~ ..... j.[ ~ M Jl+... +j.=j ~ for all j ~ N o .  

If %~ ..... j=~0, then j , 2 , + . . . + j ~ 2 , = 0 ,  and there is a r-tuple (~, . . . . .  ~,) of 
nonnegative integers [depending on (J1 .. . . .  J,)] such that x{'.., x~" 
= cp, (x) t ' . . .  cp,(x) e'. 

Let y(y)= ~%~ ..... j . ~  ... y e,, where summation extends over all ( j ,  . . . , j ,)  
eN~ with j 1 2 1 + . . . + j ~ 2 , = 0  and (~1 . . . .  ,E~) is chosen as above for every 
(j~ ... .  ,j,). In particular, J l + . . - + J ~ = ( ~ s : + . . . + E , s , < ( ~ l  + . . . + ( r ) .  S, where 
S :=max {s~ ... . .  s,}. Therefore, contributions to the coefficient flk~ ..... k, of a given 
~ . . .~"  can only be made by monomials in x~ .. . . .  x, of degree < k . S ,  with 
k = k~ + . . .  + k,. Hence 

= =~o .(I k.  S)M [ilk1 . . . . .  kr[ < Y. Z 1%, ..... j.[<= -~__<max 1, + . 
j = 0  J l +  ... + f i t=J  J= 

A further estimate for every k ~ No shows 

Y. Iflk, ..... k,I -<rk'max ( l + k . S ) M ,  
k l  + ... + k r = k  

a 0 tfo.owst at ,y, .....  , o vor osfor. ,. mi t  t [] 

Note that ~ is, in general, not uniquely determined by lp, as there may be 
relations between tp~, ..., q~,, and therefore divergent series y which "represent" (for 
!nstance) ~p = 0. This explains why it is necessary to prescribe the construction of y 
~n some way. The requirement that tp , . . . ,  q0~ be monomials was made to facilitate 
the proof of (3.3); we can drop it from now on but we still will require ~o~, ..., q~ to 
be homogeneous of positive degree and that ~0~, ..., ~ form a maximal algebrai- 
cally independent subset. 
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( ~ol(x) 

Now consider the map � 9  V~IC,  ~(x) = " 

From L B L $ = L r L e ,  we get that L~(qh)e-[(B,) for 1 < i < r ;  according to (3.3) 
there are y 1,..., y, e A(K r) such that Ly((pi)(x)= Dqh(x ) . f ( x )=  y~(r ~p,(x)) for 
all sufficiently small x e  V. In other words: 

(3.4) Proposition. For every f eC~(Bs) there is a g~zff(K ~) such that D ~ ( x ) . f ( x )  
= g(g~(x)) for  all sufficiently small x ~ V. Thus �9 is solution-preserving f rom 5: =f(x) 
to ~ = g(x). 

So far, we have not necessarily reduced the dimension of the problem, as one 
can easily exhibit examples where even r >  n. But the image of �9 has smaller 
dimension, as will be seen in Theorem 3.6. 

(3.5) Lemma. Let  ~ ~ A(I(.9 and ~o : = y o ~ ~ A(V). 
Then Ll(cp)(x)=Lg(7)(q~(x)) for  all sufficiently small x ~ V. 

Proof. 

Ls(cp)(x) = Drp(x) . f ( x )  = D((7 o dp) (x)) " f ( x )  

= Dy(C)(x))' DC~(x). f ( x )  = OT(qB(x))" g(r [] 

For the moment, let IK = qE, J : = {y ~ S(K'): ~(~o t(x) . . . . .  q~,(x)) = 0 for all x a V} 
and ~': - {~, ~ A(K'): y(~o t(x) . . . .  , ~o,(x)) = 0 for all sufficiently small x ~ V}. Then J is a 
prime ideal in S(IC), because for 71,726S(~ r) and 71-72EJ one has 
~l(~(x))-y2(~(x)) = 0  for all x e  V. Hence, Yl ~ ~ = 0  or 72 o ~ = 0 ,  showing Yl e J  or 
Y2 e J. By the same argument, J' is a prime ideal in A(K'), , 7=J .  A(K') and 
Y: = {y e IC: 7(Y)= 0 for all y e J} is an irreducible algebraic variety. By construc- 
tion, ~ V )  ( Y. Since dim Y= s (the maximum number of independent polynomial 
functions on Y) and the rank of D~ is equal to s at most points of V (both facts are 
due to the algebraic independence of qh .. . . .  ~0,), ~(V) contains a Zariski-open (and 
dense) subset of Y, which is also open and nonempty with respect to the norm 
topolol~Y on Y. An analytic map in a neighbourhood of 0 in Y, i.e. an element of 
A(K') /J ,  is therefore uniquely determined by its behaviour on ~(V). 

Now let , / r  Y is an invariant set for ~=h(x)} and 
./f* : = {h ~ ~r h(v) = 0 for all sufficiently small y e Y}. Jr  can be characterized 
as follows: h e ~ '  .~  ~ (y)eJ '  for all 7eJ'. For " ~ "  note that, with a solution z(t) of 

Yr = h(x) and z(O)~ Y, z( t )e  Y for all t; hence ~ (y(z(t)))= L~(y)(z(t))= 0 for all t, and 

use Hilbert's Nullstellensatz in A(K'), ef. Kunz [13]. To prove the reverse direction, 
take generators 0t,..-,0~ of Y; then ~l(Z(t)) . . . . .  Ok(Z(t)) satisfy a system of linear 
equations with initial value 0. It is easy to verify that ~ / i s  a Lie subalgebra of 
zr and ./r is an ideal of J / .  (Hence J / / ~ ' *  may be considered as the set of 
analytic vector fields near 0 on Y.) 

We now show g r [notation as in (3.4)]: Let 7 e.7, hence ~0: = ~ o �9 = 0. From 
Lemma 3.5 we get O=L~(tp)(x)=L~(~)(~x))  for all sufficiently small x z V. Since 
~ V )  contains an open (-dense) subset of Y, we see L~(~,) z 2' and g e dr'. 

For K = R ,  the argument on the dimension of ~(V) remains true, and this 
implies that all what was said above is also true for I ( = R  (cf. Kunz [13, 
Chap. I, Sect. 3, 7] for a real version of the Nullstellensatz). 
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We have proven 

(3.6) Theorem. �9 is a solution-preserving map from Yc =f(x)  on V to S' = g(Y) on the 
invariant set Y C K r, and g+ ~g* is uniquely determined. 

In the sense of this theorem, we have found a solution-preserving map from 
=f(x) to a differential equation on the algebraic variety Y. 

We call � 9  V~ Y a reduction map. Note that the construction of �9 is determined 
by properties of B~ alone; hence �9 associates a g r Jg/~g* with every f E  ~(B~). The 
dimension of Y is equal to s, as was to be expected from the dimension of the 
symmetry group in (3.2), and ~ =f(x)  can always be reduced unless Bs = 0. 

It follows from (3.1) t h a t -  given a solution of ~ = g(y) on Y-  solutions of ~ =f(x)  
can be found by integration alone. 

Let us take a look at some examples: 
For B = d i a g ( i , - / )  ( i 2=-1 ) ,  the Lie algebra of G is spanned by B, I(B) is 

generated by ~0(x)= xlx2, and the reduction map is r  
For B = diag (i, - i, ia~, - io~), where co r @, the Lie algebra of G is spanned by 

diag(i, - i, 0, 0) and diag(0, 0, i, - i), thus G is two-dimensional. I(B) is generated by 
~o 1 =xlx2 and cp 2 =xax  4, which are algebraically independent. 

Thus, one has a reduction map r : K 4 " 1 (  2. 
These examples are well-known; of. Anosov and Arnold [21 Takens [15], 

where polar coordinates were employed for the equations in normal form. As can 
be seen, the important point is that the radial coordinates are first integrals of B; 
the angular coordinates are not of particular importance for the reduction. If 
K = P, (i.e. the system comes from a real differential equation after transformation 
to an eigenbasis of B), then the reduced equation can be employed to investigate 
the stability of the stationary point; cf. [2, 15]. 

Another example is given by B = diag( im,-  ira, ip, - i p )  with relatively prime 
positive integers m and p [the (m, p)-resonance]. In this case, G is one-dimensional, 

p m I(B~) is generated by ~ol=xlx 2, tp2=xax 4, q~3-xlx4, and ~04=x~x ~ (this is a 
minimal system of generators!), and for ~P(Y):=Y~YT-Y3Y4 one has the relation 
~p(~ ... . .  ~04)=0. Therefore, the reduction map �9 maps I (  4 to 
Y: = {y ~ I(4: ip(y) = 0}, a three-dimensional variety. [If a real system of generators 
of I(B,) is desired, take ~01, q~ 2, Retp 3 and Im~p 3 and replace ~p by 

: = Y~Y~2 - (y2 + y~).] Note that this setting is again suitable for the determination 
of stability criteria. 

The next proposition shows that analytic functions near 0 E V which are 
constant on the orbits of G can be considered as analytic functions on ii. 

(3.7) Proposition. (a) I f  ~p~A(V) is constant on the orbits of G, then there is a 
~ A(K r) such that ~p = 7 ~ q). 

(b) I f  Z is a ~(-vector space, h e ~ ( Z )  and ~ : N ~ Z  is analytic on the 
neighbourhood N of O, constant on the orbits of G, and solution-preserving from 
x. = f(x) to ~ = h(z), then there is an analytic F: ,~ ~ Z (with ~ a neighbourhood of 0 
tn l(') which is solution-preserving from 3)= g(y) on Y to ~ = h(z). 

Proof. (a) Since B~ lies in the Lie algebra of G, we have in particular ~p(exp(tBs)x) 
~p(x) for all (sufficiently small) x and t; differentiation shows La,(~p)=0 , hence 
~0e [(B~). The assertion follows from (3.3). 

(b) From (a) we obtain the existence of a F such that ~U=Fo ~, and 
OF(r g(~(x))= h(F(~(x))) can be verified directly. 

Because ~(V) contains an open subset of I1, the assertion follows. [] 
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Thus, if ~ =f(x)  can be reduced further (which will not be the case in general), 
then this can be seen from p =~(y). One should not expect that the reduced 
equation can be solved in dosed form (unless I(Bs) is generated by one element) 
but, as will be shown in the following, if ~ =f(x)  has additional nice properties, 
these properties will be transferred to the reduced equation: 

(3.8) Proposition. There is a bijective correspondence between the analytic first 
integrals near 0 of ~ = g(y) on Y and the analytic first integrals near 0 of ~ =f(x), 
given by T ~ T ~ ~. 

Proof. Of course, "first integral on Y" means Lg(7)~ J. 
Thus, with tp: = ~ o ~ and (3.5): 0 = Lg(~)(~(x)) = Lf(q~)(x), and ~0 is a first integral 

of f .  The map ~ ~ T ~ ~ is obviously linear, it is injective, as ~ o �9 = 0 implies ~ e J. 
The nontrivial part is surjectivity, and this follows from (1.8): If ~0 is a first integral 
of f ,  then q~ ~/-(B~), and q~ = ~ o �9 for some ~ by (3.3). [] 

Of course, in general there will be no nonconstant analytic first integrals of 
=f(x)  in a neighbourhood of 0 but if there are, their existence can be verified 

from the reduced equation. In the same manner, in general there will not be more 
automorphisms of ~ =f (x)  than those in G (and the one given by f itself) but if 
there are, they are inherited by the reduced equation: 

(3.9) Proposition. Let H E r ( V )  be invertible near O, H(0)=0 and DH(x) . f (x)  
= f(H(x))  for all sufficiently small x. Then there is a H* ~ ~ ( K ' )  which satisfies �9 o H 
= H* o ~ and is solution-preserving from ~ = g(y) on Y to itself. 

Proof. Let H =  T, hi. Then [ H , B ~ = 0  from (1.3). 
i>_1 

If tp ~ T(Bs), then ~p o H e ](B~), as follows from 

O ( ~  o H ) ( x )  �9 8~x  = D~ , (H(x ) )  �9 OH(x) .8~x 
= D q~(H(x)). B,H(x) = LB, (q~) (H(x)) = O. 

Thus, there is a H*~ ~r such that �9 o H = H*o �9 by (3.3). 
The remaining assertions are easily verified. [] 

The reduced equation can also be employed to find invariant sets for ~ =fix): 

(3.10) Proposition. I f  Z C Y is invariant for p=g(y), then O- I (Z)  is invariant for 
=f(x)  and is furthermore G-invariant. 

Proof. The invariance for ~ =f(x)  is obvious, the G-invariance follows from the 
fact that �9 is constant on the orbits of G. [] 

Some invariant sets for p = g(y) are found from the variety Y without any work: 

(3.11) Proposition. Let Z be the set of all singular points of Y. Then Z is invariant 
for ) = g(y). 

Proof. Let Qt . . . .  ,Qm be generators of the prime ideal J'. 
Then there are/~j ~ A(K') such that 

(*) Lo(O,)= ~ I~uOj for 1 < i <  m, 
j = l  
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as follows from the proof of (3.6). The singular points of Y are precisely those for 
6& 

which the derivative f - - ]  does not have maximal rank s. Let J* be generated by 
\ ,Sxj] 

( cSe, h Q~ ..... 0m and all the (s • s)-subdeterminants of \ ~ x J "  We will show Lg(J*)CJ*,  

which implies the invariance of Z. In view of (*) and the possibility to change 

i n d i c e s i t i s s u N c i e n t t o p r o v e L g ( a ) e J * f o r a : = d e t ( C ~ O ~ l  . For  x e K "  let (,liX, t 
g(x) = " . Then we have (where summation is extended over all permut- 

\ g,ix) / 
ations rc of s numbers) 

k= 10xk  \ ~ Oxbow"" Ox,(~) / " gk 

aO~ 
\ \ ox~ m axk,I Ox~2~ "" cg-~c~ ) + "'" 

+ (eL 
"'" cgx~t ~ " " ,~x~_ , \ ~x~,~ dxk ,l.] " gk 

= ~ sgnlr ( L g ( Q 1 ) )  "'" dx~(~) + "'" 

"'" Ox,,o) "" d~=~*---1) Lg(o" 

r Cggk dQ1 dO2 dO~ 
- -  - - ~  . . .  

+ c90~ t?O~__~l_ 80, Ogk.'~ 
"'" dX~o ) "'" C~X,,(~_ ~ ) CgXk dX,,o),/ " 

By virtue of (*), the first term lies in J*. The second term is equal to 

_ ~ Z sgnz(~gk c~O,,l)aO,,2) c~O,o) + 4 t~gk 630~(1) 6qO'(s-l' dO'(s"~, 
k=~ ~ \ax~ c~xk Ox~ "'" gx~ "'" ~gx~ c~x~ "'" gx~_~ gx~,') 

(cJO,~ Jgl, and this is a linear combination of (s • s)-minors of \ ~ x J  with coefficients ,~x~' 
hence in d*. []  

Note that this proof works for every analytic differential equation which has an 
invariant (irreducible, with no loss of generality) algebraic variety. Thus, in our 
case, it is an advantage to have singular points in the variety! 

As an illustration consider again the (m, p)-resonance discussed after (3.6), with 
Y the zero set of v2 = y~yr~z- YaY4 in K '~. 

If m > 1 and p > 1, then Z = {y e K4: y~ = Ya = Y~ = 0 or Y2 = Ya = Yg = 0}. Among 
the ~-preimages of Z are {x: Xa = x 4 = 0 }  and {x: xt =xz  =0}. If ~ = f ( x )  comes 
from a real system, then these invariant sets correspond to plane orbits of ~ =f(x).  

Next, let us show that certain subalgebras of C~(B,) are also in a sense preserved 
by the reduction map. This follows from the result below, the proof of which is 
elementary: 
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(3.12) Proposition. Let f , f ~ ( B ~ )  and g,~,~J/.[ such that D~(x).f(x)=g(q~(x)) 
and D~(x).j'(x)=~(#(x)) for all sufficiently small x. Then D~(x) .[ f , f ] (x)  
= [g,g~](~(x)) holds for all sufficiently small x. Thus, �9 induces a Lie algebra 
homomorphism from ~(B~) to ~ /~[* .  

In particular, the natural grading in ~(B~) induces a grading in ~r and 
graded subalgebras of C~(B~) are mapped to graded subalgebras of J//./r In 
general, it will not be true that proper subalgebras of C~(B~) are mapped to proper 
subalgebras of ~'/./r but this is true in the important special case of Hamiltonian 
systems. We use the terms Hamiltonian system, Poisson bracket, etc. in the sense 
of Olver [14, Chap. 6]. Furthermore, it should be noticed that there is no problem 
to extend the definition of a Poisson bracket (Olver [14, Definition 6.1]) to real or 
complex algebraic varieties and analytic functions on this variety. The example we 
have in mind is Y and A(~')/J. We call a Poisson bracket on V homogeneous with 
respect to our special system of coordinates Xl,..., x,, if the structure functions 
(Olver [14, Chap. 6, p. 383]) are homogeneous polynomials of the same degree in 
xl ..... x,. Examples of homogeneous Poisson brackets are the canonical Poisson 
bracket (Olver [14, Example 6.2]) and the Lie-Poisson bracket (Olver [14, Chap. 6, 
p. 385]). 

(3.13) Proposition. Let {-,.  } be a homogeneous Poisson bracket on V, and let 
=f(x) be Hamiltonian with respect to this bracket. Then there is a Poisson bracket 

{ . , .  }' on Y such that the reduced equation 3~= g(y) is Hamiltonian with respect 
to {.,.}'. 
Proof. Let ~ be the subalgebra of cg(B~) which contains all the Hamiltonian vector 
fields with respect to { . , .  }. Then .~ is a graded subalgebra of C~(B~), in particular 

(i) For 71, 7: ~ A(K') there is a 7"~ A(K') such that 

(*) { 1o o *o 

To see this, let ~ : = 7 i  ~ ~ for i= 1,2 and define the Hamiltonian vector field q by 
Lq(0_): = {0, ~2} for all 0 ~ A(V) (cf. Olver [14, Chap. 6]). From LB,0P2)= 0 we get 
q e Cg(B~), hence q s ~ .  Let h e ~ such that D~(x). q(x) = h(,l,(x)). 

According to Lemma 3.5 (Lh(~'0)(~(x))= L~(toO(x)= {91, to2} (x). The assertion 
follows with 7" : = Lh(?0. 

(ii) 7*+ Y is uniquely determined by (*); therefore, we define 

{yt, y2}'eA(K')/Y by {yl,~2}/~ o!~, 72o~}. 

In order to prove the properties of a Poisson bracket for {. , .  }' on Y, we first note 
that it is sufficient to do this for K = 112, and furthermore, it is sufficient to verify the 
properties for all points of O{V) C Y, since 4~(V) contains an open-dense subset of ii. 

For instance, the Leibniz rule holds because of 

and the Jacobi identity follows immediately from 
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(iii) Because f is Hamiltonian, there is a tp cA(V) such that Lj.(VJ) = {W, ~0} for all 
tp e A(V). Since q~ is a first integral of ~ = f(x), we have q~ e I(Bs) by (1.8), and there is 
a 7 e A(K') such that tp = 7 ~ # [cf. (3.3)]. 

For any ~ ~ A(]K r) and t~:= ~7 o ~ we get 

{~, 7} '0 • = (~, ~P} = LS(0) = Lo(~)o 
from (3.5). Thus, g is the Hamiltonian vector field on Y corresponding to 7- [] 

Note that the proof is constructive. The result also follows from Arms et al. [1] 
or Cushman and Sjamaar [9], but the proof given here is different. As an 
application, we will discuss the Hamiltonian (m, p)-resonance. This example has 
been treated before by other authors, cf. Cushman and Rod [7], and Cushman et 
al. [6] for the semisimple and non-semisimple (1,1)-resonance, and van der Meer 
[16], and Kummer [12] for the general case. The purpose of this example is to 
illustrate that (and how) the reduction can be carried out naturally within the 
framework of normal forms alone. 

Given the standard Poisson bracket 

{~,W}= &o 0VJ &p 0W 0~ 09 0~o 0W 

OX 1 OX 2 OX 2 OX 1 + OX 3 0 X  4 OX 4 OX 3 

on 1124, let f be a Hamiltonian vector field in normal form with semisimple linear 
part Bs=diag(im,-im, ip,-ip), where i 2 = - 1  and m,p are relatively prime 
positive integers. 

Let v2 be the Hamiltonian of f ,  thus ~0 = Y. ~Ps with v2j homogeneous of degree ] 
j>_2 

and in particular lp 2 = imxlx2 + ipx3x4 +gh,., where to2, . = 0  for (m, p)~(1, 1) and 
v22, . belonging to the nilpotent part of B=B~+B n if m=p= 1. 

We assume that 2=f(x)  comes from a Hamiltonian system in 1/4 after 
transformation to an eigenbasis. Thus, the real coordinates are Re xt,  Im x ~, Re x3, 
and Imx3, furthermore x2=)~1 and x4 =23. 

The algebra I(B~) is generated by Ol=xlx: ,  tp2=XaX 4, q~a=x~x'~ and 
qo4=x~x~; and 0(~01 .... .  tO4)=0, with O(y)=y~y~-y3Y4 is (essentially) the only 
relation satisfied by rpl, ..., tp4. 

An easy computation shows 

{tPx, tP2} = 0, {rPl, (~ = -Pq~3, {qh, q~4} =Pq~4, {tP2, tPa} =mq~3, 

{~02, q~4} = -- m~p,, {q~a, (04} = P2~~ - ~cP~'-- m2tp~o~ ' -~.  

Therefore, {yl, y2}'=0, {y ,  y3} '=-PY3 and so on. With the "reduced" Hamil- 
tonian ~ on Y (given by 7 ~ ~ = ~P) we obtain the reduced equation 

07 07 
Y~= --PYa ~3  + PY4-'~-y ~ , 

. 0 7  _ my4 Y2 = mY3 ~Y3 ~ . 

�9 07 --mya~y2+tr(y)~f4 Ya = PYa ~y~ 

.~4=--PY4~yt +mY4~2 --a(Y)~3 

with tr(y) = p2y~l- l,,,n.r2--,,,"2"V*"-yl.r2 1 
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Of course, Y is invariant for this equation (and only the restriction to Y is of 
interest). Note that y and my1 +PY2 are first integrals of the reduced equation, 
hence ~p and mq~l +Pq~z are first integrals of ~=f(x) .  The second first integral 
(reflecting FB~, f ]  =0) is a specialty of the normal form. 

Since ~ =f(x)  comes from a real system, it is desirable to obtain a real reduced 
system. Furthermore, we can use my1 +PY2 as one coordinate: 

To this end, let z x = m y l + p y  2, Z2=~yl+fly  2 (with ~ , f l e R  such that 
m f l - p c t  = 1; a further condition will be introduced later), z 3 = Y3 + Y4 (= 2 Rey3) 
and z 4 = - i (ya-Y4)  (=  21my3). 

With z(zl  . . . . .  z4): = i.  ~(yl(zl  . . . . .  z4) . . . . .  y4(zl,  ..., z4)) we get in new coordinates 

zl = 0 ,  

~2 = 2 z 4 ~  + 2 z 3 ~ ,  

2z Oz - 2#(z) O'r 
23 ~--- - -  4 OZ 2 OZ 4 ' 

& = - 2z3 ~ + 2~(z) 

with O(z) = (flzt - pz2) p - 1 (_  az l  + mz2) m- t ( p2 (_  ez  I + m z 2 ) -  m2(flZl - pz2)). Here 
we have first integrals z and z t ,  and only the invariant set 

4 @ 1  = ,  + mz )" - - z l  = o .  

is of interest. 
A further reduction is achieved by considering an "energy surface" 

z l = c = c o n s t .  In order to preserve the stationary point 0 for the remaining 
equation in any case, we choose ~t and fl such that --otp2--flm2=O, hence 

m p 
~t= p ( p + m ) '  ~ =  m(p+m-----~" 

The final version is then the above equation with 

P z m . - 1  
~(Z) = ( ~ ( p ' - ~  1--pg2)P-l(p(p+m)Zl+mz2) "mP(m+P)Z2. 

Now let zl = c > 0 and define zc and #c by putting zl = c. Then we have the system 

�9 Oz, Oz~ 
g 2 = 2Z 4 ~ + 2Z 3 dZ 4 , 

_ &, ct'c~ 
23 = - 2z4 ~ - 2#,(z2, z3, z4) 0z---44' 

0% _ Oz~ 
24 = - 2z3 ~z2 + 2a~(z2, z 3, z4) ~3z3 

on the invariant surface F~ in R a given by 

4 P 
k*/' m 

m) 
and c < z2 ~ ~ (from Yl > 0 and Y2 -~ 0). 

p(p + m) m(p + m) 
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Furthermore, ~c is a first integral. 
The geometric information obtained from the reduced equation is as important 

as the equation itself. Fc is a rotation surface in R 3, and its intersection with the 
(z2, z3)-plane is easily discussed, c 

Ifm = p = 1, then Fc is an ellipsoid, while for m > 1 there is a cusp at z 2 = - -  
c m(p+m) 

and for p > 1 there is a cusp at Zz = p(p + m)" These cusps are stationary points of 

the equation (cf. Proposition 3.11) and their ~-preimages yield plane solutions 
2=f(x). Moreover, these preimages are invariant for G={exptBs: tER} and 
thereby actually plane periodic solutions unless they contain a stationary point. In 
an analogous manner, periodic solutions of the reduced equation give rise to 
invariant tori of 2=f(x), and the qualitative discussion of ~=f (x )  is indeed 
reduced to the two-dimensional surface F~ and its intersections with the level sets 
of zc. 

The work of Cushman and Rod [7] and Cushman et al. [6] on the (1,1)- 
resonance illustrate that there is always a reduction of the system depending only 
on the semisimple part of the linearization. Of course, the behaviour of the system 
will in general be strongly influenced by a nonzero nilpotent part. 

Finally, we want to show that reversibility (among more general properties) is 
preserved by the reduction map. We need some preliminaries first. 

For T~ GL(V), p e ~r and ~p ~ A(V) let T*p : = TpT- 1 and T*tp = tpT- 1. The 
following rules are immediately verified: 

T*[p,q]=[T*p,T*q], T*(~pT)=(T*tp)(T*y) for all p, q e ~ ( V )  and all 
cp, 7 e A(V); furthermore, (ST)* = S* T* and Lr.p(T*~p) = T*Lp(q~). 

In the following let G be a finite subgroup of GL(V) which stabilizes I(Bs) and 
~(B,). An important class of examples is given by finite subgroups of N(B~) 
= { Te GL(V): there is a ~((T) ~ 112" such that T*B~ = z(T)B~}. 

(3.14) Lemma. Let {~1 ..... tp,} be a minimal system of homogeneous generators of 
I(B~). Then there are homogeneous generators q~i ..... tp, of I(B,) such that 
Ktp 1 +... + K~p, is G-invariant. 

Proof. We may assume that ~p~ ..... ~p, are the elements in {~vl ... . .  ~p,} of smallest 
degree m o > 0. The homogeneous elements of degree m o in I(B~) are then the linear 
combinations of ~p~ . . . .  ,~p~; in particular ~(~p~+...+K~ps is G-invariant. We 
proceed by induction: 

Assume that ~o~, .-.,~Pt are of degree <m, K~p l+ . . .+ I ( tp  t is G-invariant, 
{tp ~ ..... q~t, v2t + ~ .. . . .  ~ }  generate I(B~) and deg ~Pt + ~ . . . . .  deg u2~ = m, deg ~p~ > m 
for j > v. Then the subspace In, of all homogeneous dements of degree m in I(B~) is 
the sum of Am:=lKv2t+l + ... +I(~p~ and the subspace B ,  spanned by all the 
products of tpl . . . .  , tp t of degree m. Due to minimality this sum is direct, and Bm is 
G-invariant according to hypothesis. Now Maschke's theorem shows the existence 
of a G-invariant complement I(tp t+ ~ + . . .  + K~p~. [] 

From now on, suppose that Ktp~ + . . .  +~(~p~ is G-invariant and consider the 

reduction map q~= : V ~ K ' .  Then for every T~G there is a unique 

~e GLfK') such that ~ (T-~x)=  7"-~(x)  for all x e E It is easily verified that 



312 S. Walcher 

T ~  is a homomorphism from G to GL(Kr). Differentiation shows 
Dr T -  Ix). T -  1 = ~ -  i D~(x). 
Now, let 5r =f(x) in normal form and g e off(g(') such that DR(x) .f(x) = g(qB(x)). 

(3.15) Lemma. Dq~(x). ( T ' f  (x))= 7"*g(~(x)) for all Te G. 

Proof. 

~ -  'D~(x)" T f (T-  ix)= DR(T- 'x)" T -l" T f (T - i x )=  Dq~(T- i x ) . f (T -  ix) 

=g(~(T-lx))=g(7~-lch(x)). [] 

If we consider the natural grading on r and the induced grading on de/,//* 
[of. the remark after (3.12); thus g + vg * e Wj if and only if D cI.,(x), f(x) = g(ch(x)) for 
some f e  cr r then, according to (3.15), there is a homomorphism of 
G-modules :gF* ..A. i for every j. Since there are only finitely many irreducible 
G-modules (up to isomorphism) and the image of an irreducible G-module is either 
isomorphic to the given module, or trivial, (3.15) also implies 

(3.16) Proposition. Let 2=Bx  + ~, f~x) in normal form and p=g(y)= ~ g:(y) 
j~2 j>_l 

the reduced equation on Y (with the grading as above). 
I f  B and every f j lies in the same (up to isomorphism) irreducible G-module, then 

this also holds for every g~+ Jl[* (resp. gj+ ~r =0). 

In particular, for abelian groups (where every irreducible G-module is one- 
dimensional) one gets 

(3.17) Corollary. I f  T* f=x(T) f  for all TeG, then T*g-x(T)gmodJr  for the 
reduced equation. 

One can apply these results to prove that certain ~p e/-(Bs) are also first integrals 
of 5c=f(x) if the situation of (3.16) or (3.17) is given. We illustrate this by two 
examples: 

First, let B=diag(1 +i, 1 - i , - 1  + i , - 1 - 0 .  Then I(B) is generated by the 
algebraically independent elements yl(x)=xlx 4 and ~2(x)=x2x3. 

0 0 0  
For T=  0 0 one computes T*B=iB.  

0 1 
If the equation 2 =f(x)  = Bx + F. fj(x) in normal form satisfies T ' f =  if, then 

1~_2 
we get an analogous relation for the reduced equation on K 2. Since T*y~= 72, 
T*~2 = 71, we get for the generators ~ol 2: = Yl -+ Y2 that T*~o~ = qh, T*~o2 = -q~;. 

V1 1 0-] ' "h Thus, ~ = [ ~  - l l  and g=g++g_ in the reduced equation p=g(y), wit 
t . .Z  ..I 

~ * g  + = g + , T ' g _  = - g _ .  On the other hand, ~*g = ig and therefore g = 0. Thus, 
Yl and y2 are first integrals of ~ =f(x). [Note that this result also holds if ~ =f(x) 
comes from a real system; it doesn't matter that the entries of T with respect to a 
real basis are complex.] 

As a second example, we consider once more the (m,p)-resonance with 
B = diag(im, - im, ip, - ip) and (for example) p > 1. 



On differential equations in normal form 313 

- -  p m p m We choose the system of generators tp~ =x~x2, tp2=x3x 4, t p 3 - x l x 4 + x 2 x  3, 
�9 p m  p m  

- tp3 +~p4=4r and this relat ion defines ~p4= t(xlx4--x2x3) of  I(B~), thus 2 2 , m 
Y c K  4. 

Now l e t T = [ 0  K O ? w i t h K = [ ~  10J. 

If T ' f =  - f  for f =  B + ~ f j  in normal  form (note that  this is compat ible  with 
./_>2 

T ' B = - - B ) ,  then ~ * g = - g m o d , / / *  for the reduced equat ion )=g (y ) ,  and we 
may assume ]~*g= - g .  

Since T*tpi=rpl for 1 _<i_<3, and T*rP4= --~P4, we have 7~=~diag(1,1, 1 , - 1 ) ,  
and 7'*g = - g  implies that  the reduced equat ion on  Y is of  the type 

-- Y4~ 1(Yl, Y2, Y3, Y4) ) 1 ~ 2 

)2 = Y 4Y2(Y 1, Y 2, Y3, Y~) 
)3 = Y473(Yl, Y2, Ya, y2) 

) 4  = Y 4 ( Y l '  Y2 '  Y 3 '  y 2 )  

or  (*) 

3)1 = Y4Yl(Yl, Y2, Y3) 

J)2 = Y4Y2(Yl, Y2, Y3) 

3)3 = YeY3(Y1, Y2, Y3) 

3)4 =)~4(Yl, y2, Y3), 

taking into account  the relation y 2 =  _ y 2  +4y{y~' on Y. 
If ?t(O) # 0 for at least one i, 1 < i <  3 (and it is easy to see that  this is the generic 

case), then the equat ion  )i =)'~Yl, Y2, Y3), 1 ~ i <  3, has two independent  analytic 
first integrals ~Pl, ~P2 near  O, because 0 is not a s ta t ionary point. Then ~Pl and ~P2 are 
also first integrals of (*), and f rom (3.8) we see that  ~ = f ( x )  has - in the generic case 
- two independent  first integrals analytic in O. 
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