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1 Introduction 

Investigating the properties of anti-self-dual metrics, LeBrun [Le] constructed 
complete zero scalar curvature asymptotically fiat metrics on/3 k § 1) for any integer 
k>0. Here L is the total space of the universal line bundle L~CP1 with Chern 
class - 1. Computing the masses of these metrics, he gave counterexamples to the 
generalized positive action conjecture of Hawking and Pope [HP]. 

Starting from a different problem we were led to the consideration of LeBrun's 
ideas and its possible generalizations. In fact, our motivation was primarily to 
study the behaviour of constant scalar curvature K/ihler surfaces under the blow- 
up procedure, and in particular, the conditions under which the blow-up of a 
K/ihler surface of constant scalar curvature was another manifold of this type. We 
soon realized that concrete examples were not abundant and even for the 
seemingly innocent problem above, models for the desired metric is a neighbor- 
hood of the exceptional divisor were in general not available. Following LeBrun's 
approach in dealing with the problem mentioned before in the zero constant scalar 
curvature case we proved that, depending on the sign of the constant, one can 
indeed put K/ihler metrics of constant scalar curvature either in C " - 0  or in some 
punctured neighborhood of the origin in C". To obtain complete K/ihler manifolds 
we need to replace the origin with the complex projective plane CP,_ 1. Thus, the 
resulting metrics naturally live on the total space of a disk bundle over CP,_ 1. A 
careful analysis in the case when the scalar is nonpositive permits us to find these 
n~etrics in the blow-up of the origin in C", a line bundle over CP,_ ~, while in the 
case when the scalar is positive our metrics live on the blow-up of a proper 
neighborhood of the origin in C", a disk bundle over CP,_ 1. This paper contains 
the details of our work. 

The examples are constructed using a result concerning radially symmetric 
Solutions of the nonlinear differential equation satisfied by the scalar curvature. 
We present this in Sect. 2 and discuss the examples separately in Sect. 3. The 
striking form of a particular solution of the nonlinear scalar curvature equation in 
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the case when n = 2 and the constant is positive allows us to exhibit a disk bundle 
D ~ CP1 whose k power/)| is a K~ihler manifold of constant scalar curvature for 
any k > 1. We also include this result in Sect. 3. 

2 Preliminaries 

Consider a K/ihler potential 4~ in C". The (1, l)-form 

is the Kfihler form of a K/ihler metric. If we let the expression 

r A W=Co^n=inVdzt ^ d~ 1 A dzZ A d~. 2 A ... ^ dzn A d~ n (1) 

define the function V(u), then the Ricci form 0 is given by 

0 = iO~-log V, 

and the scalar curvature a satisfies the equation 

a~o^"=O^~ ^~"-1~. (2) 
Let u stands for the square of the distance to the origin which in coordinates is 

written as u = zX~ ~ + z2~ 2 + . . .  + z"~'. The key to our construction is contained in 
the following result. 

Proposition 1. Let a be a real constant and consider (2) as an equation in (a. Then: 
1. There are radially symmetric solutions of the form 

4~(u) = a logu + s(u) 

on some maximal neighborhood [t3, ~) of u = O. Here ot is a positive constant and s is a 
smooth function of u with nonvanishing first derivative at the origin. 

2. I f  the initial condition g'(O) is positive, the function ~(u) remains positive on the 
domain of definition [0, ~). I f  tr > 0 the interval [0, ~t) is bounded, and for a > 0 we 
have )., 

V=nt +~ (~+u~)>0,  ue [0,~), 

where V is the function defined by (1). 
3. When a < 0 and ~(01 > O, the domain of  definition of  s(u) equals [0, oo) and 

the function V is positive on it. Furthermore, solutions of the form 

q~(u) = a logu + bu + c, 

for a, b, c constants, occur only when n = 2 and cr = O. 
4. I f  n = 2  and t r>0  there are radially symmetric solutions of  the form 

~b(u) = ~ 3 ( k -  1) l o g u -  ~3 log(1 _uk) ' 

where k is an arbitrary positive integer. 

Proof. Suppose the K~ihler potential is just a function of u, ~b = ~(u). In solving (2) 
the symmetry permits to carry the computations on z 2 = z 3 . . . . .  z" = 0. If we set 
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~v = log V then: 

j = 2  

O~w=(~+#)az'̂ de'+~ ~ az,^az,, 
./=2 

at z Z = z  a . . . .  = z " = 0 .  Therefore: 

o9 ̂  n = inn! 4 ~- 1(6 + u~)dz  I A de  I ^ . . . d z "  ^ d~' ,  
. . : ' N .  . 

co^t"- l )=in- l (n--1)  r [ 4 n - z ( 4 + u ~ )  E dzl  ^ ea ^ .  . .dzs ^ ~? ̂  ... ^ dzn ^ d~' 
L j * l  

+ 4 " -  ldzZ ^ dzZ ^ ... ^ dzn ^ dY'] ,  

where as usual, the dz j ^ f l  means that the term dz j A ~.i is omitted from the product. 
Then (2) is just: 

,,,~4( 4 + ul;) = 4(,~ + ur + (n-  ~ ),i,( 4 + ui;) , 

which is clearly equivalent to 

4 a ~ ( r  ~unr =0" 

Consequently, 

un 4n -  ~(o - aun 4n = A , 

where A is a constant. Set ( = u 4 .  Since V = n ! 4 n - l ( 4 + u ~ ; )  we have 

V ~ _ _ - -  u n -  1 

and therefore: 

(n- 1)r n -  1 ~= logV-  1 dV = ~ ' +  
V du ~ r u 

Plugging this into the previous expression and writing the result as an equation for 
~, we obtain: 

d_ (ur +n~"-'~ + A~, 
du 

from which it follows that: 

~r~ "+~ +(n+ 1K" +(n + 1)A~+ B =Cn + J)u~"-1~, 

where B is another constant of integration. This expression in terms of q~ becomes: 

a(u4) .+l  + ( n +  l ) (uc~) .+(n+ l ) A u ~ +  B = ( n +  l )u(u~)n-1(4+u~5) .  (3) 

We want a solution ~b = a log u + s(u) with a > 0, and where in principle we only 
required s(u) to be C z. Later we shall see that such function s will be necessarily 



242 S.R. Simanca 

smooth. Then: 
a +g ,  ~ =  a r 

Equation (3) in terms of s is: 

tr(a + u~)" + 1 + (n + 1) (a + u~)" + (n + 1 )A(a + u~) + B 

= ( n +  1)u(a + u~)"- l(~ + u~). 

Although it does not appear so in principle, the constants A and B in the 
previous expression are already determined by the special form of the solutions we 
search for. Indeed, the right side vanishes at u = 0 and we thus obtain the relation: 

tra"+ l + (n + 1)a" + (n + 1)Aa + B = O. 

After some simplifications the equation becomes: 

(n+ 1) (a + u~)"- l(~+ u~) 

=(7 ~.  . an+ l - J u J - l g  "i 

j= l  

+(, (7) a'- uJ- l'J+(n+ 1)A' - 

Evaluating this expression at u = 0 and using the nonvanishing of 3(0) yields the 
relation: 

A = -- ( n -  1)a"- 1 _ aa", 

and therefore: 

B = ntra" + 1 + (n + 1) ( n -  2)a". 

Simplifying once again, we finally obtain: 

( n +  l ) ( a + u ~ ) ~ - l g  

~7 
= ~ ((a+u~),,+ 1 _ a , +  1 - - ( n +  1)anuS) 

+ (n + 1)____.__an ((a + u~) ~- 1 _ a"-  1 _ (n- -  1)a n-  2u~). 
u 2 

Setting w = ~ this becomes: 

r tr((a+uw)n+ l - a n +  l - ( n +  1)anuw) 

uZ(n+ 1 ) ( a + u w ) " -  1 

a((a + uw) n- 1 _ a"-  1 _ (n - 1)a n- 2uw) 

+ u2(a + uw)n- 1 

= f (u ,  w).  (4) 

The function f ( u ,  w) is smooth in a neighborhood of u = 0. The theorem of 
existence and uniqueness of solutions to ordinary differential equations allows as 
to find a smooth function w(u) satisfying this equation for any initial condition 
w(0) = 3"(0). There is in fact one such function defined on a maximal domain [0, ~). 
Integrating it we obtain s as desired. 

If the initial condition w(0)= ~(0)= b is positive, the solution to (4) remains 
positive for any u in I0, at). This is so because i fw(u)  were zero at one positive value 
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of u, both w(u) and if(u) would be zero at that point and, by uniqueness of solutions 
of differential equations, w(u) would have to be identically zero. If we assume 
furthermore that a > 0 ,  the function f(u, w) is clearly positive for u e [0, ~) and 
positive values of w. It follows that w is always increasing and since 

we have 

V=n! (a  +w)  (w+uf(u,w))>O 

on the domain of definition of the solution. It is clear that i > ~rw2/(n + 1) and thus 
w blows-up in finite time if ~ > 0. Therefore, [0, ~) is bounded if ~r > 0. 

When a = 0 the solution w to (4) cannot go to + oo in finite time. In fact, if n > 2 
and we assume otherwise, near the value of u where this occurs, the solution w(u) 
would have derivative i uniformly close to a/u 2, which is a contradiction. Thus, if 
o = 0  we have ~ =  m and w(u) is defined on [0, m). 

If n > 2 the function w cannot be constant. This follows easily by looking at the 
ihnction f(u, w), derivative of w. When n = 2 this function vanishes only if a = 0. In 
that case, integration leads to solutions of the form ~b = a logu +bu + c as stated, 

When a is strictly negative and w(0) = b > 0, the solution w(u) cannot go to + 
in finite time either. In fact, as w ~  + m and for nonzero u, the function f(u, w) is 
asymptotically equals to awZ/(n + 1)< 0. Thus, w is a decreasing function when its 
value is large. We then conclude that e = oc in this case also, but we need to be more 
careful in the analysis of V. For  that we look at (3) as a first order differential 
equation in uq~. Since uq~ # 0 for u #0 ,  the only way V could vanish is if the 
derivative of uq~ vanishes. But the polynomial in uq~ in the left of the equation, 
divided by u, is positive as u ~ 0  +. Hence, for the derivative of uq~ to vanish at some 
point Uo > 0, its value there must be a positive root, Uo~(Uo), of that polynomial. By 
the uniqueness of solutions of differential equations, u~b would have to be constant, 
which is a contradiction if ~(0)= b > 0. Thus, the derivative of uq~ does not have a 
zero on [0, m) and V is positive. 

To prove the last part of the proposition we go back to (3), use n = 2  and 
consider solutions where the constant B is set to zero. To integrate this equation it 
is easier to trace back to the variable ff=u~b. Then if a~2+3~+3A 
= (r(~ + ~1) (~ + cc2), we obtain the solution: 

3 

~u= \~+~1! 

Here ~ is a positive constant of integration. Notice that ~ 1 + ~ 2 = 3 / a  and 
�9 1" a2 = 3A/~. Therefore: 

3 3 ~ 4A~r 3 3 ~ 4A~r 
~1 = ~-a + 2 - ~  1 3 ' ~2 = 2a 21a[ 1 3 ' 

V 4Aa ar o'(~1 - ~2) = sga 1 
Y= 3 3 ' 

where sga is the sign function. Solving for ~ we obtain: 

0gllg?-- g2 =U~. 
~= l__u r 
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If t r> 0  we choose A such that 7=k.  Solving for q~ we obtain: 

~b= ~2-~1k log(1--uk)--ot21ogu = --~-3 log(1--uk)--O~21ogu, 

where ~2 = 3 ( 1 -  k)/2. This completes the proof. []  

Remark 1. The fact that the K/ihler potential a logu + bu in C n - 0  produces a 
metric of constant scalar curvature only when n = 2, in which case the curvature is 
zero, was apparently discovered by Burns and stated in a 1986 AMS lecture in 
Charlotte, NC. This result is contained in the third part of the proposition above. 

We should observe that the Taylor series expansion of the function s(u) found in 
the first part of the proposition above is of the form 

s(u) = s(0) + bu + + 2a ,1 ---2-- + .... 

Hence, when b > 0, it is clear that a nonvanishing a does play a role in determining 
the neighborhood of the origin where the function s(u) will be defined and where 
q~ = a logu + s(u) is the K/ihler potential of a constant scalar curvature K~ihler 
metric. When n = 2, (r = I, a = 1, one can explicitly integrate (4) and see that the 
interval [0, 0t) may in general be bounded. This particular example was very helpful 
in leading us through our work. 

3 Construction of the examples 

Let L~)CPn_ 1 be the universal line bundle [GH]  obtained by blowing-up C" at the 
origin. This is just the subvariety {(z I . . . . .  z", tl, ..., t n) : tfz i -  z~d = 0, Vi, j} of 
C n x CP,_  1 viewed as a bundle over CP ~- 1. Here zl , . . . ,  z ~ are coordinates in C ' 
and t 1, ..., t ~ are homogeneous coordinates in CP~_ t. Near the zero section of this 
bundle and on the complement of tt = 0  we can use zt, t2/t  1,...,t~/t ~ as the 
coordinates of a point which projects to (z 1, zt t2/ t l , . . . ,z~t ' / t  1) in C " - 0 .  Hence, 

u =  Y.j zJ~i=z'~ 1 ( 1 +  ,>-~5" t~/t 1) 

and therefore, 

aslogu=mog (i+ ,>_-,x ,'/,'), 
the K~ihler form of the Fubini-Study metric on CP,_  1. This shows that r in 
C ' - -O pulls back and extends smoothly to a (1,1)-form on D. An entirely similar 
argument shows that 0~-s(u) defines a smooth (1, 1)-form on D if s is a smooth 
function on C'. Therefore, if we consider a solution ~ of(2) of the form 0(u) = a logu 
+ s(u) with 3(0) = b > 0 and s defined on the interval [0, c0 as given by Proposition 1, 
the (1,1Fform d~0(u) extends to a smooth (1,1)-form on the blow-up D of the open 
set U = {z ~ Cn:lEz II < ~}, and the positivity of the function V proven in Proposi- 
tion l shows that this is the K/ihler potential of a metric in D. Thus, in the cases 
where ~(= oo, i.e. when a___0, we obtain a K~hler metric of constant scalar 
curvature (r in L as D and L coincide, while otherwise, i.e. when a > 0, we obtain one 
such metric in the disk bundle D which sits properly inside L. 

Let us consider once again the coordinates v = z  1, w 1 =z2/zl , . . . ,  w ' -1  =z,/z  1 
where the divisor is given by v = 0. A more explicit understanding of the metric on 
/) is obtained if we write the potential as 4)(u) = a logu + bu + g(u) where g(u) = s(u) 
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-~(0)u = s(u)-bu, and compute to get: 

(o=i (bye+ a((1 + w~)-wJ~ ' )~  ~ J dwJd~ + ib(wJfdvd~ + ~vdwJdv -) 

+ ib(1 + w~)dvd5 + iS~-g(u) 

= co s + i~g(u), 

where cos is the K/ihler form of the K/ihler metric in L associated with the potential 
a logu + bu. 

To show completeness of the metric it will suffice to compute the distance from 
the zero section in the normal directions, and prove that it is an exhausting 
function, i.e., it approaches + oo as we get closer to the boundary ofthe fiber, in the 
case there is one, or as we get to oo when there is no boundary at all. This amounts 
to estimate the function 

h(u) = i (g(r) + rj(z))�89 
0 

and show it blows-up as u ,,~ ~. If (r > 0, ~(u) blows-up in finite time and that result is 
clear since ~, = g> 0 satisfies (4). When o = 0 the function g(u) is increasing and the 
result is also obvious because 0t = oo. 

When o-<0 we have to be more careful. In general the function ug(u) is 
increasing and when a < 0  it is defined on [-0, oo). Furthermore, it is bounded on 
intervals of the form I0, p). Since g + ug is positive, given the differential (4) that g 
satisfies, ug(u) must be globally bounded. Therefore this function must approach a 
positive limit at oo. From this, and using the differential equation once again, we 
conclude that uZg must also converge and thus, g + ug~O as u-o oo. We look at the 
function q(u) = u2(~ + u~). F rom (4) and the converge of the various terms above, we 
conclude that q(u) cannot approach 0 at ~ ,  and in fact, it remains positively away 
from zero as u goes to oo. Therefore, ~ is asymptotically as C/u for some 
positive constant C and, consequently, its integral growth as logu near ~ ,  showing 
the desired statement for the growth of the function h(u). 

This shows that the metrics we obtain are complete. We summarize this 
discussion in the following 

Theorem 1. Let o be a real constant. Then blowing-up a sufficiently small symmetric 
neighborhood of the origin in C ~ we obtain a disk bundle D ~ C P . _  t whose total 
space carries a complete Ka'hler metric of constant scalar curvature tr with radially 
symmetric Kiihler potential. I f  tr < 0 the bundle D can be taken to be the universal line 
bundle L ~ C P . _  l of Chern class --1, while in the case where ~ > 0 the bundle D is 
properly contained in L. 

Suppose now that a is a positive constant and n = 2. Given an integer k > 1, by 
proposition 1 (2) has solutions of the form 

qb(u)=alogu- -3 log(1-uk) ,  

where a = 3(k-1) /2  > 0. Expanding in Taylor series we get: 

4)(u) = a log u + 3 uk + p(u)---- ~0(U) + p(u), 
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where we let the expression define both, ~bo(u ) and p. We claim that ~bo is the K/ihler 
potential of a complete metric on L ok. That will indicate that ~b(u) itself stands a 
chance of being the Kfihler potential of a metric in the blow-up of {z e C 2 :llz II < 1} 
at the origin. 

Indeed, consider the projection map C 2 - 0  r ' ,CP1. If z=(zt ,  z2)eCZ-0 ,  the 
inverse image under pr of [zl, z2]eCP1 is the punctured complex line 
{2 (z l , z2 ) :AeC-0  ). Therefore on the fiber 8~u k is just k~uk-td).d~. Hence 
changing r to 8 = II zllk- l ? / k  while changing 0 to 0 =  kO simultaneously, the metric 
on the fiber given by Ilzll I1,~112t~- 1)(dr2+r2d02) becomes (dP2+ ~Zdff2). This is a 
smooth metric in the quotient of the fiber by the discrete group Zk and therefore, 
since the logarithmic term produces a nonnegative contribution, q5 o is the K/ihler 
potential of a smooth metric on L | as stated. The completeness is rather clear. It is 
worth mentioning that the arguments here follow closely those related to the 
discussion of the Eguchi-Hanson metrics [EH] (see also [Le]). 

To obtain our example we now proceed as before and consider the bundle 
D-~CP1 obtained by blowing-up {z ~ C2: Ilzl[ < l } at the origin. Since 

0u~_uk,~ 3 Ojuk + 
O~d?(u)=O~alogu+ cr(l --Uk~ 1 --u ~ ] 

3 
=OJalogu + o(1 --uk) 2 

x (ku ~- l(1 - uk)O~u + ku ~- 2 (k -  1 + uk)Ou~u), 

it is fairly clear that this will define a K/ihler metric in D | and the boundary of the 
fibers of this bundle are at 0% the distance measured from the zero section in the 
normal directions. 

We summarize this discussion into the following 

Theorem 2. Let a be a positive real constant and k an arbitrary integer greater than 
1, Then blowing-up {z E C z : Ilzl[ < 1} at the origin we obtain a disk bundle D-~CP1 
such that D | is a complete Kiihler manifold with Kdhler potential 

~(u) = 3 ( k -  1____~) l o g u -  3 log0  - uk), 
2 a 

for u =  llzll 2. 
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