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0 Introduction 

Let E be an n-dimensional ellipsoid centered at the origin in R" and let Gr(k, n) 
denote the Grassmann manifold of k-dimensional subspaces L through the origin 
in R n. The following formula was discovered by Furstenberg and Tzkoni [8]: 

Ck, n{Vol.(E)} k= ~ (Volk(Ec~L)}"dL. 
Gr(k, n) 

Here dL is the normalized rotation invariant measure on Gr(k,n). We will 
sometimes write dL as d#k(L) to emphasize the dependence on k. The constant Ck,. 
is chosen to make this an equality when E is the ball. Thus 

n n k k k " 

Furstenberg and Tzkoni give two rather elegant derivations of their formula, 
based on the representation theory of the group SL.(R). They indicate that for k = 1 
this volume formula is just integration in polar coordinates and is valid for any 
symmetric star shaped body in R", while for general k the identity does not appear 
to reduce to any well-known formula, and they do not know in what generality it 
holds. Miles [15] gives a very simple derivation of this identity based on a classical 
formula of Blaschke and Petkantschin. He remarks that his derivation suggests a 
negative answer to the question of extendibility of this formula to more general 
regions. Finally, in a much earlier paper, Busemann [5] proves the estimate 

Vol, (M~' - 1 > c. o, ~, ~- 1, .) { Vol, _ 1 (M c~L)}"dL 

(valid for a convex body M C R") and shows that equality holds only when M is an 
ellipsoid centered at the origin. (Actually, this follows from a more general estimate 
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involving several convex bodies, as we shall see below.) The methods found in these 
papers are sufficient to handle the case ofgeneral k, but it does not appear that they 
have been put together before. After treating some preliminaries in Sects. i-3, 
including a projection analog of the cross-section integral, we adapt these methods 
in Sect. 4 to the case 1 < k < n and give slightly more detailed proofs for some of the 
basic steps. We show that if E is a convex body in R ~ then 

ck..{V~ k> I (Volk(EnL)}"dL, 
Grlk, n) 

with equality precisely when E is an ellipsoid centered at the origin. In Sect. 5 we 
replace R" by C" and give an estimate which reduces to an identity for complex 
ellipsoids and characterizes these among all convex bodies in C". We should also 
mention the paper of Guggenheimer [10]. There he gives the following variant of 
the Furstenberg-Tzkoni formula: 

c, VoI~(E)"- 1 .  Vol._ a (dE) = ~ Vol._ 1 (EnL) "+ ldL, 
Gr(n - 1 ,n) 

valid whenever E is an ellipsoid centered at the origin. This derivation is based on a 
curvature calculation and is somewhat different from the previous formulae; we do 
not know isoperimetric inequalities associated with it. Some of the results in this 
paper were announced in an I.H.E.S. preprint (see Grinberg [9]). We thank 
E. Lutwak for some valuable discussions and the referee for helpful remarks. 

1 Quermassintegrals 

The n + 1 Quermassintegrals Wo(K), WI(K), ..., W~(K) of a convex body K in R" are 
defined by letting Wo(K) = ~,, the volume of the unit n-ball, and for 0 < k < n, 

Wn-k(K)=~zn ~ VOlk(KlE) dltk(E ). 
Gr(k,n) ~k 

In the above integral d~k is the rotation invariant probability measure on Gr(k, n), 
and VOlk(KIE ) denotes the k-dimensional volume of the orthogonal projection of 
K onto E e Gr(k, n). 

The n + 1 dual Quermassintegrals of K, fro(K), frl(K), ..., fr,(K) are defined in 
exactly the same way, except that the projection K IE is replaced by the intersection 
KnE. 

The inequality between the volume of K and its Quermassintegrals is 

ff'k(K)~nk/"V(K)("-k)t"< Wk(K), ( 0 < k < n )  

with equality in the fight inequality iff K is a ball, and equality in the left inequality 
iff an origin centered ball (see Burago-Zalgaller [3]). Note that the right inequality 
is the ( n -  l)-direct extension of the plane isoperimetric inequality. The case k = 1 is 
the classical inequality between volume and surface area while the case k = n -  1 is 
the classical (Urysohn) inequality between volume and mean width. 

The n +  1 affine Quermassintegrals of a body K in R", ~o(K), ~I(K) . . . .  , ~.(K) 
are defined by letting ~o(K) = V(K), ~.(K)--- ft. and for 0 < k < n by: 

�9 .-kIK) = C,k [Vol IKIE)/  ] -'d kt  Jl-1,.. 
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The n + 1 dual affine Quermassintegrals of K, ~o(K), ~I(K) ..... ~,(K) are 
defined by letting ~o(K) = V(K), ~,(K) = n, and for 0 < k < n by 

~._~(K)=~.[ I [Volk(r,r~e)/~d"d#~(e)] ~/". 
LGr(k, n) d 

These integrals were first introduced by Lutwak [-12-14]. As we shall prove in 
the next section, his usage of the adjective affine is justified. Clearly, from Jensen's 
inequality it follows that 

(*) 17gk(K ) < ~k(K) and ~k(K) < Wk(K ), 

for all k. It had been conjectured by Lutwak that a stronger inequality than (*) 
holds. Specifically, the inequality between the volume of a body and its affine 
Quermassintegrals is 

(**) ~k(K ) < x~/n V(K)(,- k)/, < ~k(K), (0 < k < n-- 1) 

with equality in the right inequality if and only if K is an ellipsoid and equality in 
the left inequality if and only if K is an origin centered ellipsoid. The case k = n -  1 
of the right inequality follows from the Blaschke-Santal6 inequality, see Lutwak 
El2]. The case k = 1 of the right inequality is the Petty projection inequality [-16]. 
The case k = 1 of the left inequality is the Busemann intersection inequality I-5]. 
The fact that for ellipsoids there is equality in the left inequality is known as the 
Furstenberg-Tzkoni formula, while the fact that there is equality in the right 
inequality is the dual Furstenberg-Tzkoni formula and was first proved by 
Lutwak. 

The cases 1 < k < n - 1  for both the left and right inequalities in (**) had been 
open. In this article the left inequality, with equality conditions, will be shown to 
hold for all k. We hope that the right inequality may be handled in the future using 
similar ideas. 

2 Affine invariance 

In accordance with common usage in the convexity literature we define the group 
of affine transformations in R" to be the group of linear transformations generated 
by translations and by unimodular linear automorphisms. We will show in this 
section that the affine Quermassintegrals ~k(K) and the dual affine Quermassin- 
tegrals ~k(K) are affine invariants, justifying the adjectives used. 

Theorem 1. Let K be a measurable body in R n and let g be an affine transformation. 
Then for 0 < k < n, ~k(K)= ~k(gK), provided g is linear. 

Proof. Let H denote a k-plane in R" and let g be an affine transformation. Then the 
function 

Volk(g(Kc~H)) 
Ok(g, H)-- VOlk(KnH ) 

is a multiplier function on the symmetric space Gr(k, hi, [8]. The Radon-Nikodym 
derivative 

dg- IH 
aG"k'")(g'H)= dH 
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is also a multiplier on Gr(k, n) and a calculation presented in [81 shows that 

o'~(k ,.)(g, H)=  irk(g, n ) - " .  

Now 
~._k(gK) = n. [ . ~ ( k . . ) [ V  ol k (gK r3H)/zrj"d#k(H )]1/. 

= re. [ ~ [Volk(gKngH)/nk]"dpk(gH)] '/" 
LgH ~ Gr(k, n) J 

= ~._,(K). [] 

It is clear that the intersection integrals are not translation invariant. To prove 
affine invariance for projection integrals (i.e. ~k(K)= ~k(gK)) we emulate the 
intersection case and use multipliers. For this we will need a projection volume 
identity. 

Lemma 1. Let K be a body in R" and let 4 be a k-plane. Then for all q5 e SL.(R) 

Volk(~bK I ~) = VOlk(g I ~t~)O'k(q 7, 4) 

Proof If 4, is an orthogonal matrix then the identity is trivially true. Assume now 
that ~b is lower triangular with respect to the coordinate system {~, ~l}. This means 
that ~bt~ = ~ and we have the matrix representation 

o) 
Now Volk(Kl~bt~) = VOlk(Kl~), while 

Volk(~K I ~) = VoI~(AEK I ~-1). 

By definition oftrk(., .), the right hand side above is trk(A, O" VOlk(K 14)- This proves 
the original assertion for ~b lower triangular. In the general case we write ~b as the 
product of a lower triangular matrix and an orthogonal matrix and combine the 
two previous observations. [] 

Theorem 2. Let K be a measurable body in R" and let g be an affine transformation. 
Then for 0 < k < n, ~R(K)---- ~k(gK). 

Proof We now parallel the intersection integral case: 

~._k(gK)=rC.[H~(k,.)[Volk(gKiH)/TZk]-,dpk(H) ] -  1/. 

= ~. [ j [Volk(KlgtH)/ZCk] -"{trk(g', H)} -"dttk(H)~- 1/. 
L H �9 Gr (k, n) J 

= ~. [ $ [Vol~tKIn) /nd - "{ak(g', g -'H)} -"dl',(g-tH) 1 - 1/, 
L H e Gr(k, n) J 

-- ~. [ ~ [Vol~ ( K I m / ~ d  ~"(~k(g', g-~H)} -" 
L H ~ Gr(k, .) 

• (ak(g -~, _H)} -"d,~(m 1 - '/" 
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and using the multiplier property of trk 

= 7~n [ S [Vol k (KjH)/rck] -.d#k(n) ] -  1 t. 
[_H e Gr (k, n} J 

= ~.-k(K). [] 

It should be noted that the non-invariance of q~(K) under affine transformations 
has been conjectured a number of times and attempts at counterexamples have 
been made. With this simple proof the invariance is settled and the exponent - n is 
distinguished as the "right" one to use. A routine modification yields a complex 
version of all this. 

3 Ellipsoids and Banach norms 

Let V be a finite dimensional real Banach space with norm function II" 11- Below we 
list some well known facts in functional analysis. 

Proposition 1. The following are equivalent: 
i) The Banach norm [1' II is induced by a Hilbert space structure. 

ii) I1" II satisfies the parallelogram law 

Ilx +Ytl2+ I lx-yl l2= 21lxll2 + 211yll 2 . 

iii) The hypersurface {v e V IH v II = l )  is an ellipsoid. 

Using this we can get another characterization of ellipsoids. 

Theorem 3 (Busemann). Let E be a convex body in R'. Let k be an integer with 
1 < k < n. Suppose that for every k-plane L through the origin the intersection E n L  is 
an ellipsoid. Then E is an ellipsoid. 

Proof We use Proposition 1 above. Notice that E is symmetric about the origin 
(x ~ E ~ - x  E E). Choose a convex defining function N(x) for E so that N is 
positively homogeneous of degree I and 

E= {x ~ R"IN(x) < I } . 

Then N(x) defines a Banach norm function in R". We verify that this norm satisfies 
the parallelogram law. Select vectors x and y ~ R". Then x, y, x +y ,  x - y  all lie 
in some 2-plane through the origin. Take a k-plane L containing this 2-plane. 
Since E n L  is an ellipsoid in L the restriction of N to L satisfies the parallelogram 
law. In particular, 

N(x + y)2 + N(x - y)2 = 2N(x)2 + 2N(y)2. 

Since this is true for arbitrary x, y ~ R", N(. ) satisfies the parallelogram law on all of 
R" and by Proposition 1, E is an ellipsoid. [] 

A slight variation of this yields a characterization of ellipsoids by complex slices., 
A real ellipsoid in C" is called Hermitian if it is defined by a Hermitian quadratic 
form. 

Theorem 4. Let E be a convex body in C". Let k be an integer with 1 < k < n. Suppose 
that for every complex k-plane L through the origin the intersection E n L  is an 
ellipsoid. Then E is an ellipsoid. I f  each slice is Hermitian then E is Hermitian. 
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Proof. Almost the same as the proof of Theorem 1 above. The punchline is that any 
two vectors x, y in C" are contained in some complex k-plane L through the 
origin. [] 

Note that to detect real ellipsoids we never have to use complex norms but only 
the complex vector space structure in the proof. In this case the complex planes 
form a much "thinner" detector than the set of all real 2k-planes. 

The case k = n -  1 of the real theorem (3 above) is needed in Busemann's paper 
[5], but is not explicitly mentioned there. On the other hand, Busemann gives a 
more general theorem in his book [6]. A further generalization may be found in 
Burton [4]. The proof given here seems to be known but not widely exposed in 
the literature and usually rediscovered in applications. For this reason, we have 
chosen to include it. 

4 Real ellipsoids 

Let Pl . . . . .  Pk be points in a k-dimensional vector space V. We denote by T ( p l ,  . . . ,  Pk) 
the k-dimensional Euclidean volume of the parallelotope defined by these points 
and the origin. Let M t . . . . .  M k be convex bodies in V. Here and henceforth all 
convex bodies are assumed compact and with interior. Departing somewhat from 
Busemann's notation [5] we denote by r~' the functional 

z '~(M, , . . . ,Mk,  V) = S ... ~ T(p, . . . .  ,pk) 'dVm. . .dVp~.  
p l e M 1  pkeMk 

Theorem 5. Let  M 1 . . . .  , M k be measurable sets in R". Then 

Vol,(Ma)... Vol,(Mk) = % ,  ~ ~ , - k (M 1 c~L . . . .  , Mkc~L,L)dL .  
L,2 Gr(k, n) 

Here Gr(k, n) is the real Grassmann manifold of k-planes through the origin in R" 
and dL  is its rotation invariant measure with total mass adjusted to make this 
identity hold in the case where all the bodies in question are spheres. 

Proof  Let Z k be the "incidence manifold" 

{(L, x] . . . . .  x~)lL ~ Gr(k, n), x] ~ L .. . . .  x~ ~ L}. 

Then Zk is just the k-fold power of the tautological bundle over Gr(k, n). Let X 
denote R" and let X k denote the k-fold cartesian product of X with itself. Then 
there is a map 4~ : Z ~ X k  defined by 

+ ( L , x  . . . .  . . . . .  

Clearly, ~b is onto. Let d V  denote the Euclidean volume form on Xk; this is just the 
k-fold wedge of the volume form on X. Then a calculation presented in Miles [15] 
and Santal6 [17] and attributed to Blaschke and Petkantschin gives 

k 

~b*(dV)= T(x] . . . . .  x~)"-kdlz(L) [[ dx~(L). 
i = 1  

Here dl~(L) is the unnorrnalized measure on Gr(k, n) (with total mass adjusted to 
make the formula true) and dx~(L) is the Euclidean measure in the k-plane L (which 
can be viewed as a fibre-density on the tautological bundle over Gr(k, n). The 
theorem follows from this last identity and the change of variable formula. [3 
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The case k = n -  1 can be found in [5] (the case k = n -  2 is also implicit there). 
Recall now the Stedner symmetrization process (see, for example, Guggen- 

heimer [10]). Let E be a convex body in R" and let P be a hyperplane through the 
origin with unit normal v. Then E is a union of 1-dimensional line segments parallel 
to v. Take each such segment I and slide it parallel to itself until its midpoint lies in 
P. The resulting set/~ is again convex and has the same volume as E. In general, ifp 
is a point in E we will denote by p its image under symmetrization (implicitly, this is 
with respect to P, but we'll not always say so explicitly). Likewise, the image of the 
entire set E under symmetrization will be denoted by/~. Steiner symmetrization 
can also be performed on compact, non-convex bodies. In that case, one assigns to 
the set E n v  an interval I through v with center in P and length equal to the 
1-dimensional Hausdorffmeasure of E n v .  See Federer, [7, Sect. 2.10.30]. 

Theorem 6. Let  M I  . . . .  , M  k be compact (but  not necessarily convex)  bodies in 
V=R k. Then for  any hyperplane P the functional z~ does not increase under 
simultaneous symmetrization in P: 

z ~ ( M t ,  . . . ,  M k, V) > z~(M 1 . . . . .  lVl k, V) . 

Proof. We give a coordinate free variation of Busemann's original proof; this will 
be useful when we consider complex analogs. Let v denote a unit normal for the 
hyperplane P. Assume first that the Mi are convex. Choose points 

Pt e M1 . . . . .  pk  ~ M k  �9 

Then there are unique points q~ ~ P and real numbers ti (i = 1, ..., n) so that 

Pi = qi + tiv . 

By standard properties of determinants (multilinearity and antisymmetry), the 
volume 

T(Pt,-.., Pk)-- T(qi . . . . .  qk, tl . . . . .  tk) 

is the absolute value of a linear (real) function in t - ( t i )  for fixed q = (qi). We'll 
denote this function by f(t) .  For each i let p'~ denote the reflection of Pi about the 
center of the interval through p~ in M~ parallel to v. Then if p = (P3, P' = (P'3 then 
p = q + tv, p' = q + t'v and the collection of center vectors c satisfies 

C= 2 

Hence 

t - t ' )  
2 T ( p - c ) = 2  f ---2-- < l f ( t ) l + l f ( t ' ) l =  T(p)+ T(p'). 

Since p~-ci  = ~  is the image of the point Pi under P-symmetrization and since 

z~(M1 . . . . .  Mk) =- ~ ... ~ T(pl . . . .  ,pk)mdVp~...dVp~, 
pteMt pkeMk 

and 
z~'(M~ .. . .  , M k ) - - S  --. S T(p'~ . . . . .  p'k)mdFa~...dVp~, 

plUM1 pkEMk 

we see that z~ does not increase under symmetrization. In the case that the M i are 
non-convex, we appropriate the (almost always) measurable sets Md~(pi+Rv) 
by finite unions of intervals and apply the same arguments above. []  
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The theorem for convex bodies M i is given in Busemann's original paper. To 
decide the case for equality above, we will use an n-dimensional version of the 
following result. 

Bertrand's Theorem. Let C be a convex plane curve. I f  the midpoints of parallel 
chords of C are always collinear then C is a conic. 

See Bertrand, [1]. An n-dimensional result may be obtained from this theorem 
by applying the arguments of Sect. 1. Blaschke has also given a theorem in this 
direction (see Blaschke [2]). Here we will give an alternative argument which was 
hinted at in Busemann's original paper. 

Theorem 7. Let B be a convex body in R". I f  for each vector v 4 = 0 the chords of  B in 
the direction v have their midpoints in a f ixed hyperplane Q = Q(v) then B is an origin 
centered ellipsoid. 

Proof. Note that the hypothesis on B is stated entirely in terms of the affine 
structure of R n and so it holds for all affine images of B. By a result of C. Lrwner 
(see Guggenheimer, [10, p. 149]) there is a unique ellipsoid E containing B, centred 
at the origin and of minimal volume. Let P be the hyperplane through the origin 
with normal v and consider the Steiner symmetrization of B with respect to P. The 
symmetrization map p~f f  is realized by a global affine transformation T (this is the 
punchline of the proof). In fact, any point x e R k can be written uniquely as 
x = q + tv, where q e Q and t is real (since B has interior, the hypothesis on B implies 
that v is transverse to Q). Then ~ = H(q) + tv where/-/is orthogonal projection from 
R k onto P. This affine map takes the minimal circumscribing ellipsoid E into a new 
ellipsoid/~. Since T is volume preserving, Vol(E) = Vol(E) and this implies that E is 
the minimal circumscribing ellipsoid for B: if B had a smaller circumscribing 
ellipsoid F then T-  ~(F) would be a smaller circumscribing ellipsoid for B. Now B 
inherits the properties of B and so this argument may be repeated. There is a 
sequence of symmetrizations of B which converges to a sphere with volume VoI(B). 
This sequence carries the minimal "surrounding" ellipsoid E with it at every step. 
In the limit, the image of this ellipsoid must coincide with the limit sphere, and 
hence it has the same volume. Thus the original bounding ellipsoid must have had 
the same volume as B and so B = E, an origin centered ellipsoid. [] 

Remark. The Lrwner ellipsoid is, of course superfluous to the argument. The 
argument can be made entirely in the realm of a compact set of affine 
transformations. However, we have kept the ellipsoid construction for a number of 
reasons. First, it retains the spirit of Busemann's original paper. Second, the proof 
of compactness in the purely affine-map argument is tantamount to the 
introduction of the ellipsoid. Third, the conclusion that B approaches and finally 
coincides with its Lrwner ellipsoid has geometric appeal. And finally, it suggests an 
argument for the complex analog (see the next section). 

Theorem 8. I f  equality holds in Theorem 6 and each body M i is convex then the M~' s 
form a homothetic family of  origin centered ellipsoids. 

Proof. We retain the notation of the proof of Theorem 6. Note that when p = c, i.e. 
when the p~ are centers of intervals, T(p) must vanish identically, hence the p~ must 
all lie in a hyperplane. By varying just one p~ while keeping all the others fixed we 
see that all the "centers" must lie in just one hyperplane. The previous theorem 
implies that each Mi is an origin centered ellipsoid. 
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To show that for every i and j  the ellipsoid M~ and Mj are homothetic, choose a 
principal axis v of M~ and let P be the hyperplane through the origin with normal v. 
Then the centers of all chords of M~ in the direction v lie in P, so the same must be 
true of Mj. Thus P is a plane of symmetry for M i and hence v is a principal axis. To 
show that the lengths of the axes of M~ and Mj are in the same ratios, choose two 
such axes u and v. Put  w = u + v. Then the plane composed of centers of chords of 
M~ parallel to w depends in a one to one fashion on the ratios of the lengths of the 
axes u and v in My Since this plane coincides with the corresponding one for Mi, 
the ratio of lengths must be the same. []  

Theorem 9. Let M I, ..., M k be convex bodies with interior points in R". Then 

VoI.(M1)-.. Voln(Mk)=>Ck, n ~ VOlk(MIAL) n/k... VOlk(MkAL) n/kdL 
Gr(k,  n) 

with equality only for homothetic ellipsoids centered at the origin. 

Proof. We start with the identity 

Vol . (M0 �9 .. Vol.(Mk) = Ck,. ~ Z~,-k(M 1 nL, . . . ,  MknL,  L)dL. 
L�9  

We now perform a series of simultaneous Steiner symmetrizations of the bodies 
M~c~L in the k-plane L. This does not increase the right hand side above. The 
symmetrizations can be chosen so that in the limit we obtain from M~c~L a ball B~ 
in L of volume VOlk(MinL ). Let D i = Di(L ) be the ball in R" satisfying B~ = DinL. 
Then we have shown that 

VoI.(M1) ... VOI.(Mk)>Ck,. S Z~,-k(D1 n L  ..... DkChL, L)dL, 
L E Gr(k, n) 

and by Theorem 5 this is 

= ck, . S Voln(DI(L)) .-. Vol.(Dk(L))dL 
L E Gr(k,  n) 

= Ck,, ~ VOlR(M1 nL)"/k... VOlk(MknL)"/kdL, 
L �9 Gr(k,  n) 

since Voln(Di)=C'k.n{VOlk(Bi)} n/k. This gives the inequality. If equality actually 
holds then, by Theorem 8, for every k-plane L the slice M i n L  is an ellipsoid for 
every i. By Theorem 3, each M i is an ellipsoid. Moreover, Md~L and Mjc~L are 
homothetic for every i and j and any k-plane L. Therefore, Mi and Mj must have 
the same axes (consider an L containing an axis of Mi and an axis of M j). Further, 
the lengths of the axes must be in the same ratios (just look at two axes at a time, as 
before). [ ]  

Corollary 1. Let M be a convex body in R". Then for any k with 1 < k < n we have 

VOI.(M)k> Ck,. ~ VOlk(Mc~L)"dL 
Gr(k,  n) 

with equality if and only if M is an ellipsoid centered at the origin. 

3 Complex ellipsoids 

We now replace R k by C k and consider the corresponding isoperimetric 
inequalities. Let Pt . . . . .  Pk denote points in a complex k-dimensional vector space V 
and let J(Pl . . . .  ,Pk) denote the absolute value of the complex determinant of the 
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k x k matrix with columns Pl .. . . .  Pk" We denote by ~ '  the functional 

~ ( M I  .. . .  ,Mk, V)-- ~ ... I J(Pl .. . . .  Pk)'dVpl ...dVpk. 
pluM1 pkeMk 

Then we have the following variant of Theorem 5. 

Theorem 10. Let M1,. . . ,  Mk be bounded measurable sets in C". Then 

Vol.(M1) ... Vol. (Mk) = ck,. ~ ~r~n-k~(M1 n L  ..... MknL ,  L)dL. 
L ~ Grc(k, n) 

Here Grc(k, n) is the complex Grassmannian of complex k-planes through the origin 
in C". 

The proof amounts to a direct emulation of derivations found in [-15,17] which 
lead to Theorem 5, but wherever a form appears in the real case, we now put the 
corresponding holomorphic form of the same degree times its complex conjugate. 
A representation-theoretic proof in the spirit of Furstenberg-Tzkoni is also 
possible. 

Let E be a real convex body in C" (i.e. a convex body in the underlying R2n). We 
say that E is a complex ellipsoid centered at the origin if E is a real ellipsoid centered 
at the origin and E is circular (z ~ E, 0 ~ R, =, ei~ ~ E). Equivalently, E is the unit 
ball of a complex Hilbert space structure in C ~. 

Lemma 2. Let M be a convex body in C n. Then there is a unique complex ellipsoid E 
which contains M, is centered at the origin, and has minimal volume. 

Proof. There exists at least one such minimal ellipsoid, by the same proof as in the 
real case, using the Blaschke convergence and selection theorems, see [10, p. 149]. 
We have to show that this complex ellipsoid is unique. 

IfA and B are symmetric positive semi-definite m x m matrices then we have the 
following inequality for their determinants: 

det > Met(A)[ 1/2. ldet(B)[ ~/2, 

as follows from Brunn's inequality. If both A and B are non-singular then equality 
holds precisely when A and B are scalar multiples of one another (again, see 1-10]). 
Now if A and B are complex n x n matrices let Aa and B~ denote the real 2n x 2n 
matrices which represent the corresponding linear transformations in R 2". Then 
Idet(A~t =ldet(A)l 2, where the first determinant is in the sense of real 2n x 2n 
matrices, while the second is in the sense of complex n x n matrices. The map 
A ~ A  R is clearly additive and linear over the reals, so we have for Hermitian 
positive semi-definite matrices A and B 

[det ( - ~  B-) ~[det(A)ll/2ldet(B)l 1/2 �9 

Let { z l z A z * = l }  and { z l zBz*=l}  represent the boundaries of two minimal 
complex ellipsoids E and F containing M. Then A and B are Hermitian matrices 
and Vol(E)=c,ldet(A)1-1, while Vol(F)=c,[det(B)1-1. As in the real case, the 

{I " t hypersurface z z ~ z = 1 also bounds a minimal ellipsoid (it contains 

Ec~F) and has smaller volume (by the above inequality) unless E and F are 
homothetic. []  
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Theorem 11. Let M 1 . . . . .  M k be convex bodies in V = C  k. Then for any real 
hyperplane P the functional trr~ does not decrease under symmetrization in P: 

cr~(M 1 ..... M k, V) >= tT~'(M 1 .. . . .  /~k, V). 

Furthermore, equality holds above for arbitrary P after any sequence of symmetri- 
zations if and only if the Mi' s are complex ellipsoids centered at the origin and are 
homothetic to one another. 

Proof. The non-increase of a under symmetrization is proved essentially in the 
same way as in Theorem 6 above, but note that the corresponding function f is 
now complex valued. We turn to the case of equality. 

This part of proof of the real case hinged upon the fact that for arbitrary 
"center" points cl E M1 .. . . .  cke Mk we have T(G .... .  ~ ) = 0  since the ~'s move 
into a real hyperplane. Here however we are considering a complex determinant 
J (~ .. . . .  Tkk) and we cannot conclude that it is zero since our symmetrization 
process is still a real process and moves the c~'s into a real hyperplane, but not 
necessarily into a complex hyperplane. Our argument will interplay the real and 
complex geometry. 

Fix a real hyperplane P in C k with normal v. Put w = ~ Iv and let R be the dual 
real hyperplane to w; note that U -  Pc~R is a complex hyperplane. Let ci s M~ be 
"center points" with respect to the direction w which are orthogonal to v. These are 
precisely center points of the set M~c~P with respect to the direction w. After 
symmetrization in the direction w (all in the ambient P) the c~ become real 
orthogonal to both v and w and hence lie in U, the complex hyperplane through the 
origin with (complex) normal v. This is the crux of the argument. Since 
J ( ( ,  ..., Ck) = 0, such c~'s must all lie in a single complex hyperplane Q and, since M~ 
has interior, the only possibility is Q = U. Now center points in U are not moved at 
all under symmetrization in the direction w, so we have M~c~P=M~nP. In 
particular, M~3Msc~P. Let Es (resp. Fs) be a complex, minimal volume, origin 
centered ellipsoid containing Mi (resp. ~ ) .  Note that E~ is actually the unique 
minimal surrounding ellipsoid for the set S - { e / : x ~  Ms[ 0 ~ R} (which may or 
may not coincide with M~). Also, since for any x ~ R" there is a 0 e R so that 
eg:~~ ~ P, S = {e f : i ~  (MsnP)[0 e R}. This implies that E~ is the unique minimal 
ellipsoid containing Msc~P. But F~ is an ellipsoid containing MsnP, so we must 
have Vol(F/) > VoI(Ei). 

Starting with Mg there is a sequence of symmetrizations tending to a ball of 
volume VoI(M~). The previous paragraph shows that the volumes of the minimal 
surrounding ellipsoids of the symmetrized Ms cannot decrease. These volumes also 
tend to VoI(M~) so the volume of the original ellipsoid E~ must have been precisely 
Vol(M~) and hence Ms = E~. Finally, the Mf are homothetic by the same argument 
as in the real case (here "axis" means complex axis, however). [] 

Note the difference between the real and complex proofs: in one case we have a 
sequence of equalities corresponding to symmetrizations, while in the other case 
they are inequalities. 

Theorem 12. Let MI,  ..., Mk be convex bodies with interior points in C". Then 

Vol,(M 0 . . .vo l . (Mk)>ck , .  ~ Volk(MlraL) "/k...volk(Mkc~L)"/kdL 
Grc(k, n) 

width equality if and only if M is an ellipsoid centered at the origin. 
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This is proved just  like in the real case, but  using Theorem 4 instead of  
Theorem 3. 

Corol lary 2. Let M be a convex body in C". Then for any k with 1 < k < n we have 

V~ k~ck,n ~ Volk(Mc~L) ~dL 
Grc(k,n) 

with equality if  and only if  M is a complex ellipsoid centered at the origin. 

It appears  that  a cor responding  analysis is possible in the quaternionic  
category. In  the octonionic  category it is not  possible in general to define a 
manifold structure for the Grassmannian ,  bu t  in some special dimensions it may  
be possible to detect octonionic ellipsoids by volume integrals based on the 
construct ion of  the Cayley plane. 
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