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Abstract. The obstacle problem for elastoplastic bodies  is considered within 
the f ramework o f  general existence results for unilateral problems recently 
presented by Baiocchi et al. Two models  o f  plasticity are considered:  one is 
based on a displacement-plast ic  strain formula t ion  and the second, a 
specialization o f  the first, is the s tandard  Hencky  model.  Existence theorems 
are given for the N e u m a n n  problem for a body  const ra ined to lie on or  above 
the half-space {x ~ R3: X 3 ~ 0}. For hardening materials the displacements  are 
sought  in the Sobolev space Hl(f~,  R 3) while for  perfectly plastic materials 
they are sought in BD(f l ) ,  the space o f  funct ions o f  bounded  deformat ion.  
Condi t ions  for the existence of  solutions are given in terms of  compatibi l i ty  
and safe load condi t ions  on applied loads. 

1. Introduction 

There has been considerable  progress in the last decade in the qualitative s tudy 
o f  boundary-  and ini t ia l -boundary-value problems in plasticity. The existence 
theory  for the quasi-static rate problem for perfect plasticity was first a t tempted 
by Duvaut  and Lions [DL] ,  and subsequently improved  upon  by Johnson  [ Jo l ] ,  
who later [Jo2] extended his work to include hardening.  These authors  have 
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formulated the problem in terms of stresses, and in [Jol]  the problem of finding 
velocities is subsequently considered, though the result is too weak to obtain 
information about the strains. Suquet [$2], [$3], on the other hand, has 
approached the evolution problem for perfect plasticity and proved the existence 
of velocities in the space BD(f~): this space, introduced independently in [S1] 
and [MSC], consists of integrable vector-valued functions for which certain 
combinations of  derivatives, corresponding to the strain, are bounded measures. 
Related work has been carried out by Anzellotti [All  in the context of the 
quasi-static rate problem. 

It is worth pointing out that when hardening is present, the problems which 
lead, in perfect plasticity, to the abandonment of  the Sobolev spaces in favor of 
BD(I)), are not present. The existence theory for the rate problem may then be 
approached within the conventional framework of a functional which is coercive 
and weakly lower semicontinuous in a Sobolev space. This has been carried out 
by Jiang [Ji] and by Reddy et al. [RGM]. 

Another problem which has evoked much interest is the deformation theory 
or holonomic theory problem of plasticity, in which plastic behavior is approxi- 
mated by a constitutive relation for total stress in terms of total strain. Here, too, 
there are no fundamental difficulties if the perfectly plastic problem is approached 
using a formulation in terms of stress, as in [DL] and JOWl, or if hardening is 
present, as in [RG]. But the displacemen t formulation for perfect plasticity runs 
into difficulties which are again circumvented by seeking solutions in the space 
BD(I'~); for the Hencky model [DL] this problem has been investigated extensively 
by Temam IT1], [T2] and by Temam and Strang [TS1], these authors adopting 
an approach which draws on duality arguments. Independently, Anzellotti and 
Giaquinta [AG1], lAG2] and Anzellotti [A2] have investigated the same problem, 
exploiting the similarities between this problem and the minimal surface problem 
posed on the space of functions of  bounded variation [G]. Further contributions 
have been made by Hardt and Kinderlehrer [HK]. 

Unilateral problems in plasticity have been all but ignored, at least as far as 
the qualitative theory is concerned. As far as we know the only work in this area 
has been that of  Haslinger and Hlavfi~ek [HH],  who have considered the problem 
of contact between two perfectly plastic bodies, using a stress formulation. 

The aim of this contribution is to consider the unilateral problem for elastic- 
perfectly plastic bodies, within the framework of  a general existence theory for 
unilateral problems developed in [BBGT1] and [BGT]. We are concerned with 
the deformation theory problem, and use a displacement formulation. To be 
specific, we consider the Neumann problem for an elastoplastic body which is 
constrained to lie in the upper half-space. 

Two models of plasticity are considered: one is based on a displacement- 
plastic strain formulation [RMG] and the other, the Hencky model, is a speciali- 
zation of the first and is a displacement formulation (see, for example, [DL]). 
In both cases we prove the existence of solutions provided that the data satisfy 
natural compatibility conditions on the resultant force and resultant moment of 
external forces, and a safe load condition involving the geometry of the body, 
its plastic modulus, and the intensity of the forces. 
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This paper is organized as follows. In Section 2 the unilateral problem is 
formulated for the elastoplastic material law proposed by Reddy et al. Both the 
hardening and perfectly plastic cases are treated, and the problems based on 
these two cases are formulated as minimization problems. The existence theorems 
are stated. Section 3 is devoted to the proofs of  the theorems in Section 2. Section 
4 treats the Hencky problem, which is viewed as a special case of the problem 
treated in Sections 2 and 3. In Section 5 we give an indication of the relationship 
between our methods and the methods of limit analysis [ET], [T2], [TS2]. 

In a forthcoming paper a Signorini-type problem with constraint acting only 
on the boundary (v3(x) -> 0, a.e. H ' - ~ x  ~ Ol't c~ {x3 = 0}) for an elastoplastic body 
is solved (see [To3]). 

2. Formulation and Statement of Results 

Consider a body which in its undeformed state occupies a bounded domain f~ 
in R 3={x~ R 3 :  x3>0}. The boundary Of~ of f~ is assumed to be Lipschitz. On 
0f~ a surface traction vector field g(x )  is prescribed, and there is a vector field 
f ( x )  of body forces defined on fL 

A rigid obstacle occupies the lower half-space {x c •3:x3 < 0} and the body 
is constrained to lie on or above the obstacle. The body is assumed to obey a 
holonomic elastic-plastic constitutive law in which total stress is related to total 
strain. We make use here of  such a law discussed in [RMG]; based on linear 
kinematic hardening and the von Mises yield criterion. For simplicity, and with 
little loss in generality, we confine attention to initially unstressed, undeformed 
bodies (the constitutive law in [RMG] assumes in general that the body has 
initial stress and deformation fields). 

A classical (formal) description of this problem is as follows: 

Problem P1. 
field p ( x )  which satisfy 

{~r,j(u, p)}j  +f,  = 0 ] 
! 

o',j = aohk ( e,,k ( u ) -- Phk ) [  
t 

~ru - rlp~i c aq ' (p)  [ 

I 
Pii = Po, Pii = 0 J 

t i = &  on8~ ,  i = 1 , 2 ,  

t3 >-- g3 on 0~-~, t3 ---- g3 

x3 + u3(x) -> 0 

Find the vector displacement field u(x )  and the plastic strain tensor 

in l~, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
o n  0U~ c~ {x  3 -~- u 3 > 0},  

for all x c ~ .  (2.6) 

Here and henceforth conventional indicial notation is used, including the summa- 
tion convention. A subscript j following a comma denotes partial differentiation 
with respect to xj. Cartesian coordinates {xi}3=~ are used. 
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In (2.1)-(2.6), o)j is the symmetric stress tensor, e U is the strain tensor with 

e,j(u) = l(u,,j + uj,,) (2.7) 

and aUhk is the elasticity tensor; aijhk has the symmetries 

aiihk = ajihk = ahkO. (2.8) 

The variable r/ is a given scalar field called the hardening parameter;  in the case 
of  a perfectly plastic material we have 

7/= 0. (2.9) 

The function xF: M 3 ~ •, where M 3 is the set of  real symmetric 3 × 3 matrices, is 
called the plastic work function, and is given by 

~ ( p )  = k ip  I = k (pop~)  '/2, (2.10) 

where k is a positive scalar field. The subdifferential O ~ ( p )  o f ~  at p is given by 

Oq~(p) = {r c M3: ~ ( q )  - ~ ( p )  - ~':(q - p )  -> 0, Vq ~ M 3} 

= ( { k p / [ p l t ,  p ~ 0 
[{TE M3: r:q<-alr(q),VqeM3}, p = 0 ,  

where a:b  = aqbij denotes the inner product in M 3. 
Equations (2.4) indicate that p is symmetric and traceless, the latter arising 

from the physical observation that no volume change occurs as a result of  plastic 
deformation. In (2.5), h = o-~vj where ~,j is the outward unit normal to 01~. 

We now proceed with a variational formulation of Problem P1. For this 
purpose it is necessary to define certain spaces. We denote by Hl ( f l ,  N 3) the 
Sobolev space of vector-valued distributions which together with their first deriva- 
tives are in L2(fl), and we define the space 

V = { w  = (v, q): vc Hi(O, ~3), q e  L2(n, M3)} (2.11) 

which is a Hilbert space with the norm 

i lwllv=(llvll~, ,( . ,~)+ll~(v ) _  ~ ~ , /2  q L ( a , g  J • (2.12) 

Here M 3 denotes the set of  real, symmetric matrices with zero trace. 
The space of M3-valued measures on f~ with bounded total variation is 

denoted by M. This space is endowed with the norm 

,,ml[~ = s u p { I n  mij~Pij: q~c~J(l), M3), ~oijtp/j-----1}, (2.13) 

where @(l), M 3) is the space of  M3-valued test functions on fL We note that 
the action of  a bounded measure on a continuous function is shown by an integral 
without the differential term dx. 

The space BD(II)  of  functions of  bounded deformation is defined by 

BD(O) = (v c L ' ( f l ,  a3): e ( v )  e M}, (2.14) 

and is endowed with the norm 

IIvlIBD(m = II VlI,'(,,,~) + II ~(v)lb,. (2.15) 
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Finally, we define the product space 

W = { w = ( v , q ) : v c B D ( D ) , q ~ , t r q = O , e ( v ) - q e L 2 ( f ~ , M 3 ) }  (2.16) 

with the norm 

Ilwll w = Ilvll Boc . )+  l i E ( v ) -  qll ~-'~..~'). (2.17) 

The set of  admissible displacements and plastic strains is the closed convex set 

K = {w = (v, q): (x + v(x)) • e 3 >- 0 a.e. in l~}. (2.18) 

It is to be understood later that K ~ V for problems with r />  0, and K c W for 
problems with r /= 0. 

With regard to the smoothness of the various material coefficients we assume 
that 

tlijhk E L°~(f~) (2.19) 

and that aijh k is strongly elliptic: there exists a constant a > 0 such that 

a,jhk(X)¢~j~'hk --> ~1~12, 

We also require that 

r/~ L°°(f/), r/(x)->0 

and that 

k ~ L°°(I~), 

0 <  ko < - k(x) <- kl <oo 

V~" E M 3, a.e. in ~.  (2.20) 

a.e. in f~, (2.21) 

(2.22) 

a.e. in l~, (2.23) 

for constants ko, k~. We note here that assumption (2.22) needs to be strengthened 
in the case of  perfect plasticity ( r /=  0) (see the discussion after (2.25)). 

We define the functionals 

F: W ~ R ,  

F(w) = ½ f aOhk(e~i(V ) -- qij)(ehk(V) -- qhk) dx 
Ja 

F: ~t-~ R, 

and 

(2.24) 

F(q)= fnklql+½ I *7lql2 dx. 

(2.25) 

Remark. If r / (x) ->r /o>0 (the case of hardening), then the set {w: F(w)+ 
F(q)<oo} turns out to be V, so we consider the hardening problem in V; the 
first integral in (2.25) is then the usual Lebesgue integral. If r /=  0, the case of 
perfect plasticity, the problem has to be considered in W and the first integral 
in (2.25) represents the total variation of the bounded measure klql. In order for 
(2.25) to be meaningful when ~7 = 0, we assume that 

k ~ C°(I)) when ~7 = 0. (2.26) 
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The prescribed forces f and g are assumed to be related through the 
expressions 

f = ~ - Go, j, g~ = Gijv~, (2.27) 

where G is a symmetric tensor. If { and G are sufficiently smooth then Green's 
formula 

holds. We wish the right-hand side of (2.28) to be meaningful for v c BD(I)), so 
we assume that 

gc  L3(I), R3), G ~ C°(12, M 3) (2.29) 

(for v in H1(12, R3), say ri -> rl0> 0, G needs not to vanish at the boundary), and 
define the linear functional 

L: BD(12) ~ , ,  Lv= fo 4. vdx  + fo  G:e(v).  (2.30) 

We observe that (2.29)-(2.30) are the most general assumptions which ensure 
that L is weak*-continuous on W. It is also important to note that the resultant 
force and moment do not depend on G: indeed, for smooth enough f and G, 

and 

f n f ^ ( x - £ ) d x + f o n g ^ ( x - g ) d s = f t ~ f ^ ( x - £ ) d x  fo rany  g ~ R  3. 

We are now ready to give a variational formulation of the problem defined by 
(2.1)-(2.7). Set 

J(w)  = F ( w ) +  F(q)- Lv; (2.31) 

we define 

Problem P2. Find z = (u, p) ~ K such that 

J(z)<--J(w), VWC K. 

The formal equivalence of  Problem P2 to the classical Problem P1 is consistent 
with the equivalence established for the case ri > 0, without unilateral conditions, 
in [RG]. We now record the main results of the present paper. 

Theorem 1. Assume that r i (x)-~rio>0,  and that 

(i) e ' .  Sn gdx= e 2. Sn f dx=O,  
(ii) e 3 • ~n gdx < O, and 

(iii) there exists Xo~ 12 such that ~n (x - Xo)^f(x) dx = O) 

Then there is a solution (u,p) of  Problem P2 such that (u ,p)6Hl( f~ ,R3)× 
L2(n, M~).  

0 

It is enough assuming xo in the interior of  the convex hull of 1~: co'~.  
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Theorem 2. Assume that ~7 = O, that conditions (i), (ii), and (iii) of  Theorem 1 
hold, and that there exists eo > 0 such that 

(iv) IIGII L~,~.M3)+ C~llgll L3<~.~) -< (1 - eo)k0, 

where Cn is the Sobolev-Poincard constant (see (3.13)) and ko is as defined in 
(2.23). Then Problem P2 has a solution. 

Remark. Condition (iv) is referred to as a safe load condition (see [AG1]). As 
will become evident in the proof  of Theorem 2 (see Lemma 3.1 and its consequen- 
ces) the safe load condition can be weakened at the expense of strengthening 
assumptions (i) and (ii), in order to balance the relationship between the applied 
forces, the geometry of 12, and the constant k0. We give two examples, whose 
proofs are easily obtained by slightly modifying the proof  of Theorem 2. 

Theorem 2'. Assume that ~7 = O, that condition (iii) of Theorem 1 holds, and that 

(i)' e ~. g ( x ) =  e 2. g ( x ) =  0 a.e. in f~, 
( i i ) '  e 3 .  ~(X)--<0 a.e. in ~2 and e 3" ~ ~dx  <O, and 

(iv)' there exists eo > 0 such that II G II ~ , ~ .  M~) <- (1 - ~o) ko. 

Then there is a solution of  Problem P2. 

Theorem 2". Assume that ~7 = O, that conditions (i), (ii), and (iii) of  Theorem 1 
hold, and that 

(iii)' ~ g^(x -Xo) dx = O, and 

(iv)" II Nil L~<,~.~)+ C,~llgll~- < (1-- ~o)ko, 
where g= (e I • g, e 2. g, (e 3 • g)+). Then Problem P2 has a solution. 

Remarks. 1. It is mathematically obvious that the functional J is not bounded 
from below on K, without some smallness assumption on L (or at least on G) 
and this seems physically reasonable (see Remark 2 below). This is also the case 
in the problem of finding graphs of prescribed mean curvature [G]: 

I a x / - ~ l V v ] 2 + I n f v + I , .  g v ~ i n f ,  

where v is scalar-valued, subject in a suitable sense to a Dirichlet condition on 
0fI\FN. The situation here is somewhat different, though: in the present case the 
main difficulty arises since we do not assume any Dirichlet condition. 

2. The safe load condition is mechanically reasonable since it is a bound on 
the intensity of that part of the applied force which is not controlled by either 
the elastic energy or the rigid obstacle. Such a bound is given in terms of the 
constant /% (see (2.23)) and the geometry of O coupled with the term g which 
gives the contribution to the resultant force. Note also that Cn is large if the 
diameter of O is large and hence for a prescribed volume it is larger when f~ has 
outward stings. This fact could be interpreted by saying that plasticity does not 
support even small loads applied on thin branches of the body, if these loads 
are not pointing toward the rigid obstacle. 
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3. Assumptions of the type (i)-(iv), (i)', (ii)', and (iv)', known in the literature 
as compatibility, or safe load conditions, are explicit conditions which imply the 
condition 

J°°>-0 on K, 

which is in turn necessary in order to have the inferior boundedness of  J (see 
definition (3.1)). More precisely we can say that 

Proposition 1, Conditions (i) and (iii) o f  Theorem 1 and 

(ii)" e 3 . S n [ d x < - 0 , a n d  
(iv)" L v < - F ( e ( v ) ) ,  Vv:  v ( x )  " e3>O a.e. in 

are necessary in order to have a minimum. 

Proof  Violation of (i) or (ii)" gives the existence of a translation ¢ e K °° subject 
to J~(z)  < 0. 2 Violation of  (iii) implies that either the system of forces is a couple 
(which cannot be equilibrated by an obstacle) or there is a central axis which 

0 

does not cross co 12, and, for this last case, Fichera has given a general counter- 
example even for the elastic case (see [F]). Violation of (iv)" implies that there 
is • ~ K ~ such that 

• = (iT, e (17)), L~7 > F(e(g)) ,  

with 

J~(ff,) < F~(ff)  =0.  [] 

3. Proofs and Further Remarks 

Set ~ = R u {+oo}. We recall the following classical definitions of  convex analysis 
(see [R]): assuming that (Y, or) is a topological vector space, for any A: Y ~  
convex, proper, and ~r-lower semi-continuous (tr-l.s.c. in short) the recession 
functional A °° of  A is defined by (assuming 0-neighborhoods are absorbing) 

A~ (y ) =  lim 1 A ( y o + h y )  , Vy~ Y, (3.1) 
A --* +co /~ 

for any yoC dom A; and, for any nonempty convex tr-closed subset T of Y, the 
recession cone T ~ of T is defined by 

T =A 1 
x>o A ( T - y o ) ,  (3.2) 

where Yo is any element of  T. Note that ( A , + A : ) ~ = A ~ + A ~ ,  for all A1, A: 
convex and tr-l.s.c, such that dom(A1 + A2)# Z.  Moreover, y s T ~ iff y ~ Y and 
) 7 + y s  T for all )7~ T. 

2 See definitions (3.1) and (3.2). 
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The following definition, introduced by Baiocchi et al. in [BBGT2], holds 
for any map  A: Y ~ R ,  not necessarily convex and /o r  tr-l.s.c.: the sequential 
recession funct ional  A ,  of  A, with respect to or, is defined by 

A~(y) = inf lim inf 1 A(,~,y,): An ~ +oe, Yn ---' Y • (3.3) 

Referring to [BBGT1], [Tol] ,  and [To2] for main properties, we just note that 

A~ = A ~ when A is convex and cr-i.s.c. (3.4) 

Theorem 3. Let Y be a Banach space, let or be a topology such that the closed unit 
ball is sequentially o'-compact and let ( Y, o-) be a Hausdor f f  vector space. Let T c y 
be convex and sequentially ~-closed, and let A: Y ~ ~ be convex and sequentially 
cr-l.s.c. Moreover, assume the following: 

Compactness.  There exists Yo ~ T c~ dom A such that for  all bounded 
sequences {Ym} in Y satisfying Y m - ~  Yo and A(y, , )~A(yo)  we have 
Y,, ~ Yo (strongly). (3.5) 

Necessary condition. A°~(y)-> 0 for  all y ~ T ~. (3.6) 

Compatibility. T ° n ker A ~ is a subspace. (3.7) 

Then A achieves a finite min imum over T. 

Remarks. 1. The compactness assumption in the form (3.5) has already been 
introduced in an analogous abstract minimization context (see Theorem 4.1 of  
[BBGT2]),  but this was done in a nonconvex and nonsequential framework. 
Hence the compactness was coupled there with a compatibili ty condition more 
implicit than (3.7). 

2. The statement of  Theorem 3 can be deduced as a corollary of  the sequential 
versions of  Theorem 3.4 of  [BBGT1] by taking into account (3.4) and expressing 
the compatibili ty condition in a suitable form for convex functionals as the one 
showed in Theorem (3.12) of  [BBGT1]. Nevertheless, for the sake of simplicity, 
we give here a direct proof  of  Theorem 3. 

Proof  o f  Theorem 3. (I) For any R > 0, define XR as the solution of  minimal 
norm among solutions of  the problem 

A(XR) = min{A(x): x ~ T, Ilxll--- R}. 

(II)  It is a well-known consequence of  convexity that any x~ such that 
IIx~ll < / ~  is a global minimizer. So assume by contradiction that there is no such 
/~, and hence that there is a sequence {Rn} such that Rn-~ +oo and llxR,,ll = R,. 

( I I I )  y,, = x ~ , , / R ,  ~ '~y  as n--, +oo with y e  T~°c~ Ker A °°. 
(In fact, for all 37e T, (1 -R~1) .~+R~lxR.  ~ T and is o-2convergent to 37+y 

which is then in 7". So y ~ T ~°. For all ~ > 0 and for n large enough 

A(yo + )ty) -< lim inf A((1 - ,~R~ ~)yo+ ; tR~xR, , )  

--< iim inf[(1 - AR~)A(yo) + ;tR-~A(xR,,)] <- A(yo), 

hence A~(y)-< 0 and (3.6) gives A ~ ( y ) =  0).) 
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(IV) Now we exploit the compactness condition (3.5): set w, = 
( 1 - R ~ l ) ( y o - y ) + y , , ;  then w, is a bounded sequence, w,, ~'Tyo, and the con- 
vexity, tr-l.s.c., and the fact that T~'c~ Ker A ~ is a subspace together give 

A(yo) - lim inf A(wn) -< lim sup A[(1 - R, , ) -~ ( yo -y )  + RSI(R,,y,,)] 
n n 

-< lim sup[(1 - R n ) - l A ( y o - y )  + R~IA(xR,,)] = A ( y o - y )  = A(y0). 
n 

So 

lim A(w.,) = A(yo) 
n 

(w, ~ y0 and Yn ~ y strongly). 

(V) Thus (XR,,--y) is a minimum for A over T n  BR,. But 

II x,~,,-Yll = I1(1 - R.)-lXR,, + (Y. -Y)[[ -< (1 - R.)-'llx~,, [I + IIY. -Y[[ 

= IIx.,, II + [ l y .  - y II - 1 < [ Ix . , ,  11 

for n large enough and this is a contradiction. [] 

Coming back to our mechanical problem, as a space Y we consider V=  
HI(~),R3) x L2(~, M 3) when 7/>0,  and W = B D ( O ) x L 2 ( O ,  M 3) if 7 = 0 .  As a 
mapping A we have the functional J given by (2.31), together with (2.19)-(2.30) 
and T = K given by (2.18). It remains only to choose a topology ~r, in order to 
apply Theorem 3. We choose, for Y = V, 

o- as the product of  the weak-H~(f~,~ 3) topology on the first 
component ,  with the weak-L2(f l ,  M 3) topology on the second 
component  ( e ( v ) - q ) , (3.8) 

and, for Y = W, 

tr as the product of  the weak*-topology of BD(f~) on the first 
component ,  with the weak-L2(f~, M 3) topology on the second 
component  (e (v )  - q). (3.9) 

We recall that BD(fD is the dual of a Banach space (see [TS1]) and satisfies a 
Sobolev-type embedding (see [T2]) 

BD(O) c LP(O, ~3), 1 - < p - 2 ,  

with compact  embedding if p <3.  

Thus there is a weak*-topology on W and the closed unit ball in W is sequentially 
weak*-compact  (since V is reflexive, its closed unit ball is sequentially weakly 
compact  too); hence 

the closed unit ball of  W is sequentially tr-compact; 
the closed unit ball of  V is sequentially o--compact. 

(3.10) 
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We say that a sequence {w,} = {(v,, q,)} in V (respectively W) is tr-convergent 
to w=(v,  q), and write w, -~"w, iff 

v, ~ v weakly in H l ( f l ,  R3), 
(3.11) 

e (v . ) -q , -~  e ( v ) - q  weakly in L2(f~, M 3) 

(respectively, 

v, ~ v weak* in BD(fD, 

e ( v , ) - q , ~ e ( v ) - q  weakly in L2(f~, M3)). 
We recall the following result (see [K]). Set 

= {v: I~ ~ R 3 s.t. v(x) = Ax + b, A skew symmetric}. (3.12) 

For any bounded Lipschitz open set to in ~3, there are a linear map R and a 
constant C,o such that R: BD(to)--~ ~ satisfies Rv = v, Vv ~ ~ ,  and 

Rv = a(v)^(x -Xo)+fl(v),  Vv, 

with a (v ) ,  f l ( v ) ~ R  3 and fl(v) = Js,~x,, ~ v(y) dy where Br(xo)C c to, r > 0 ,  and 

I]v-RvlIL3/"<-C'° ),o [e(v)l, Vv ~ BD(to). (3.13) 

In the following we refer to Co, as the Poincar6-Sobolev constant of  to. 

Lemma 3.1. The compatibility conditions (i), (ii), and (iii) of Theorem 1 imply that 

fnl" vdx<-C.lltliL'.~.~', f le(v)' 
for all v z BD(fD such that e 3. v(x) > 0 a.e. in fL 

Proof. By using the map  R defined in (3.13) we get 

Rv = a(v)^(X-Xo)+ fl(v), 

where 

O/(/)) ,  f l  ( / ) )  E R 3 , Xo is defined as in (iii). 

Now 

Ioe. vdx= e.(v-Rv)dx+ #.[fl(v)+a(v)^(X-Xo)]dx 

<-Ilglll~31lv-RvHt?/2+(e3.fl(v))(e3.I~ gdx ) 

+ a( v) • _ .Jq ( x -  Xo)^ C dx 

-< c.ttell. [ I~(v)l, 

where we have used the Poincar6-Sobolev inequality (3.13), and the fact that 

(fl(v).e3)=(Rv)(Xo) • e 3 = ~  e 3. v(y) dy>-0. [] 
J B, ( xo) 
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Since in both cases (K c V and K c W) the g-topology is stronger than the 

(3.14) 

strong Ll-topology on the first component,  

K is convex and sequentially g-closed. 

It is well known (see [A2], [AG1], [G], and IT2]) that 

F and F are sequentially cr-l.s.c., and L is sequentially o'-continuous 
on bounded subsets of  W if r /= 0, and on bounded subsets of  V if 
r />  0. J is obviously convex. (3.15) 

Finally, we define the set RBM of rigid body motions: 

RBM = {w = (v, q) • W: e(v) = q = 0}. (3.16) 

Proof of Theorem 1. We check the assumptions of Theorem 3, with the choice 
Y =  V, r / (x)--  r/o>0. Because of (3.10), (3.14), and (3.15) it suffices to check 
(3.5), (3.6), and (3.7). 

Compactness. Take y o = 0 •  V. Then 0 • K n d o m J .  Moreover, J(w,)~O=J(O) 
and w, ~ ~0 imply Lw, ~ 0 and F(w,)+ F ( q , ) ~  0, hence w, ~ 0 strongly. 

Necessary condition. We have 

J~(w)=F~(w)+F~(q)-Lv, Vw=(v ,q) •  V, (3.17) 

and, due to the homogeneity properties and the fact that "0 > 0, 

F~(w) = j'+oo if e(v)~q, 
(3.18) Lo if e(v) = q, 

and 

{OC° if q ~ 0  , 
F~(q) = if q =0.  (3.19) 

Thus 

J~(w) = + ~  iff w ~ RBM, (3.20) 

and we have to check that J~(w)>-0 only for w c K°°n  RBM. 
For definition (2.18) of  K, we have 

K~={w = (v, q)~ K: v. e3-> 0 a.e. in ~}. 

Now, if w • K ~ n R B M ,  then w=(v ,  0) with v=a^(X-Xo)+fl for suitable a, 
• ~3 and 

(ce^(X-Xo)+fl). e3>-O a.e. in fL 

Since Xo • 12, we also have 

fl" e3~>O 

and, from (i), (ii), and (iii), 

-Lv=- ( f l . e3 ) ( e3 .  I~ Idx)>-O, Vw=(v,q)•K°~nRBM. (3.21) 

Thus (3.20) and (3.21) give J~(w) >- 0, V w • K ~ n RBM. 
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Compatibility. From (3.17)-(3.19), 

Ker J ~  = RBM n Ker L, (3.22) 

where, by an abuse of notation, w ~ Ker L means v c Ker L. 
For any w = (v, q ) c  K ~ n  Ker jo~ we thus have 

e 3" I)>--0, q = - - O ,  V=--cr^(X--Xo)+fl a.e. in fL (3.23) 

Moreover, from (i), (iii), and the fact that v ~ Ker L, 

(e3.fl)(e3. f~ tdx)=O. (3.24) 

Condition (ii) and (2.24) give 

e 3 • f l  = 0,  (3.25) 

and so (3.23) and (3.25) give 

e 3" (o~^(X--Xo))=e 3" (1)-- f l )>O a.e. in ~2. (3.26) 

Since XoEf~, for any ~" in ~ there are ¢ 'Ef~ and 0 e ( 0 , 1 )  such that Xo = 
0 ¢ +  (1 - 0)~". 

Substitution of ~" and ~' in (3.26) gives 

e 3"  ( a ^ ( x - -  Xo)) = 0 a.e. in fl. (3.27) 

Finally, (3.25) and (3.27) give - w  c K °~, hence 

-w c K°~n RBM n Ker L. (3.28) 

Hence the cone K°~n Ker J ~  is a subspace too. 
We conclude from the abstract Theorem 3 that the problem (1.29) has a 

solution. [] 

Proof of Theorem 2. We again use Theorem 3, but now Y--  W (see definition 
(1.11)). Equations (3.10), (3.14), and (3.15) still hold, and the compactness 
condition (3.5) holds with Yo = 0 as in the proof  of  Theorem 1. But now, checking 
(3.6) and (3.7) is different, since F grows only linearly. 

Since F is quadratic, for all w -- (v, p) we have 

J°~(w) = F°~(w) + F~(q) - Lv, (3.29) 

F ~ ( w ) = [ + ~  if F(w)~O (e(v)~q), 
if F ( w ) = 0  ( e ( v ) = q ) ,  (3.30) /o 

and 

Ker J ~  = Ker F n Ker(F ~ -  L ) .  3 (3.31) 

3 Here and  in the fo l lowing  there  is an abuse  of  no ta t ion  which  does  not  create any  ambigu i ty :  

we write (F ' ~ -  L)(w) = F ~ ( q )  - Lv for all  w = (v, q) ~ W; Ker  1 "~ = {w = (v, q): l ' < (q )  = 0} and  Ker  L = 
{(v, q): Lv : 0}. 
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We now show that  

K ~ n Ker  F n Ker (F  ° ° -  L) = K ~ n Ker  F n Ker  F ~ c~ Ker  L. (3.32) 

The  e m b e d d i n g  K ~ n Ker  F n Ker(F  ~ -  L) D K * n Ker  F n Ker  F * n Ker  L is 
obvious.  On the other  hand,  assume that  

w = (v, q) ~ K°~n  Ker  Fc~ Ker(F  ~ -  L), (3.33) 

then e ( v ) = q  in M and e 3 • V-->0 a.e. in FL So (2.23) together  with L e m m a  3.1 
give, for  all w ~ K ~ n Ker  F, 

Lv= I~ g" vdx + In G:e(v)<-(Cn":'[ L~ 'R")+  I'G"L~'~'M-") I~ 'e(v)[  

--< (1 -- eo)ko f n  le(v)l-< (1 - eo)F~(e(v)) = (1 - eo)F~(q).  (3.34) 

Thus 

F~(q)-Lv>eoF~(q)>_O, V w s  K ~ n  Ker  F. (3.35) 

Equat ions  (3.33) and (3.35) give F ~ ( q ) =  0, say q = 0, and 

w ~ Ker  F ~ n  Ker  L, (3.36) 

so that  (3.32) is proved.  
Since F->0,  (3.29), (3.30), and (3.35) give 

J°°(w)>_O, Vw~ K ~, (3.37) 

and the necessary condi t ion (3.6) is thus proved.  
Equat ions  (3.31) and (3.32) give 

K ~ n Ker  jo~ ___ K ~ n Ker  F n Ker F ~ n Ker  L 

= K~n RBM n Ker L. (3.38) 

Starting f rom (3.38) we can repeat  the same a rgument  used to prove  the compat i -  
bility condi t ion in Theo rem 1. [] 

4. The Obstacle Problem for Hencky Plasticity 

The unilateral  boundary-va lue  p rob lem based on the Hencky  mode l  of  perfect  
plasticity m a y  be recovered f rom (2.1)-(2.7) by setting r / =  0 and  by assuming 
addi t ional ly  that  the mater ial  is elastically isotropic:  then the elasticity tensor  is 
given by 

auh~ = ,X Sij&,k + ~z (Si~,~;~ + &h Sjk ), (4.1) 

where 6~i is the Kronecker  delta and A,/.t are Lam6's  constants.  To  conform with 
previous investigations o f  the Hencky  p rob lem we assume fur ther  that  the mater ial  
is homogeneous ,  so that  A,/x and  the scalar  k in (2.10) are constants .  According 
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to the von Mises yield criterion, the elastic region is the set of stresses for which 
]o "D] < k: thus, using (4.1) we obtain 

o "s = (3A + 2/x)eS 1 (4.2) 
o.D = 2/Z8 D j when [enl<k/2tz .  

(4.3) 

Here and henceforth a superscript D denotes the deviatoric part of a tensor and 
a superscript S its spherical part: 

tr = o "D + ¢r s, (4.4) 

where 
D 1 tr ij = or 0 -- ~O'kkaO, (4.5) 

o.S 1 = ~%k6 U. (4.6) 

In the region of plastic behavior ]¢r D] = k, p is a scalar multiple of o -D (recall that 
pS= 0) and we find that 

e D - p  = orD/2/-t  (4.7) 

and 

I p l - - l e D I -  k/2tz, (4.8) 

so that 

tr s = (3A + 21x)eS 1 
tr D = keD/]eD] j when le D] - k/2lx. (4.9) 

The formal boundary-value problem corresponding to the Hencky formulation 
is then given by equations (2.1), (2.5)-(2.7), (4.2)-(4.3), and (4.8)-(4.9). 

Upon substitution in (2.24) and (2.25) we find that the first two terms on the 
right-hand side of (2.31) become 

E ( v ) :  I,, qb(eD(v)) + ~  (div v)2, (4.10) 

2 M s where X = A +3p- and ~: --, R is defined by 

. ( s )=~k ls] - ]k=/4P. ,  ]sl>-k/2tt, 
t •lsl-, Isl < k/2tx. (4.11) 

With an appropriate formulation of the minimization problem in mind, we set 

P(D) = {v c BD(12): div v c L2(I'I)}; (4.12) 

this is a Banach space with the norm (see [AG1]) 

Ilvll pro, = I lvl l . , . , . ,  + Ildiv vii L:.,,. (4.13) 
If v e BD(I)) with div v e L2(f~), then cO(v) belongs to ~ (see (2.14)), hence the 
integral J'a ~(ec'(v)) is defined by (see [AG2]) 

I n * ( e D ( v ) ) = I a * ( ( e r ' ( v ) ) " ) d x + k l n l ( e D ( v ) ) * l ,  (4.14) 
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where for any measure m of  bounded variation we denote by m = m" dx+ m s its 
Lebesgue decomposition. 

The functional L corresponding to external forces is still given by (2.30), but 
the additional regularity of  functions of  P(f~) permits the assumptions on G to 
be weakened: we assume that 

C~ L3(12, M3), 

GD¢  o Co(12, M3) ,  (4.15) 

tr G ~ L2(I~). 

I f  in addition G belongs to C~(~, M3), then as before we can express L in terms 
of  body forces and surface tractions: 

Lv= f~  f. vax+ f~a g.  vds  

with 

f = t ' -  div G, g = l(tr  G)  v. 

We now formulate the unilateral problem for the Hencky material. 

Problem P3. Find u ~ P(12) c~ K such that 

I (u )  = inf I (v ) ,  (4.16) 
vE P ( ~  )c~ K 

where I = E - L. 

Remark. The existence of  a solution to the unconstrained version of  Problem 
P3, that is, minimization over all v c P(12), has been shown (see [AG1], [AG2], 
IT1], [T2], and [KH]).  

Theorem 4. Assume that (i), (ii), and (iii) of Theorem 1 hold, and that the 
following safe load condition holds: 

II GDIIL~,~.M3~ + Callell,3,~.~3~ < k, (4.17) 
where Cn is the Sobolev-Poincar~ constant defined in (3.13). Then Problem P3 has 
a solution. 

As with Theorem 2, alternative conditions for the existence of  solutions may 
be laid down here as well. 

Theorem 4'. Assume that conditions (iii), (i'), and (ii') of Theorems 2 and 2' 
hold, and that 

Then there is a solution to Problem P3. 

Lemma 4.1. Conditions (i), (ii), and (iii) o f  Theorem 1 imply that 

f, e" vdx<-C,,llellL'.,.o., f leD(v),. 
V v 6 P ( f ~ )  such that e 3.v(x)>=O a.e. in 12 and d i v v = O .  
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Proof L e m m a  3.1 tells us that  

fa g" v dx <- Cal'g"L3m,~3) Ia 'e( v )'. 

Moreover ,  since Io-12= 1~°12+1o-s12 for all o-¢ M 3 and div v = 0 ,  we have 

fale(v)l=f, leD(v)' 
and the result follows. [] 

Proof of Theorem 4. We still use Theo rem 3, with the choices Y = P(f~),  T is 
the convex  set K={vcP(O):  (x+v(x)).e3->Oa.e. in f~}, cr is the weak*-  
topo logy  on P(I~) (that is, vn ---~ v iff vn ~ v weak* in BD(f~) and  div vn --* div v 
weakly  in L2(ll)) ,  and  A = / ,  say 

A(v)  = I(v) -~ F(v) + F(eD(v) )  -- Lv, (4.18) 

where  

f a  ]div v] 2 dx, (4.19) X F(v) =~ 

F(eD(v) )  = fn  ~ (eD(v) ) "  (4.20) 

Then the closed unit ball  o f  Y is or-compact,  ( Y, ~r) is a Hausdor f f  vector  space,  
I is sequential ly  o--1.s.c, on bounded  subsets of  P(f~),  K ~ =  {v • P( I ) ) :  v.  e 3>  - 
0 a.e. in l~} which is convex,  sequential ly o--closed, d o m  / = P, and 

{+oe if div v ~ 0, 
F~(v)=,_  if  d i v v = 0 ,  (4.21) 

F ~ ( E D ( / ) ) )  = k fn  leD(v)l '  (4.22) 

Ker  F ~° = Ker  F = {v • P(f~): div v = 0}, (4.23) 

K e r r  ~° = {v • P(lq):  eD(v) = 0}, (4.24) 

F°(v) = F ~ ( v )  + v°° (e  o ( v ) )  - Lv. (4 .25)  

Compactness. Take y o = 0 ~  K ° ° n d o m  I = K ~, and  a sequence  {v,},  in P(f~) 
with v,---,'~ O, I(v,)= I (0) .  Then the B a n a c h - A l a o g l u - B o u r b a k i  theorem gives 

Lv, ~ L0 = 0 (4.26) 

and since F and  F are nonnegat ive,  

F(v,)~O ~ d i v v n ~ 0  strongly in L 2, (4.27) 

F (v , )  ~ 0 .  (4.28) 
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We claim that (4,28) implies (notice that now F is not homogeneous of degree one) 

a leD(v,)] ~ 0. (4.29) 

In fact (4.14) and (4.28) give 

f ~p(eD(v,,)")dx+kI~ [eO(v,,)s'~O 

as n ~ co, and, since both terms are nonnegative, 

I, IED(vo)fl--, 0 (4.30) 

and 

In~(eD(v,,)"(x)) ~ (4.31) dx 0 

as n ~ ,  X~(eD(v,,)a(X)) being in L1(f~). 
Set O,  = {x c f~: eD(v,,)a(x) < k/2tz}. Then 

I "~l:'(v,,)°(x)l dx= I~,, leD(v.)"(x)l dx + I~\,a, leD(v)°(x)l dx 

~_ I n . l l / = l l e ° (  v.)llL~<.,, ~ 

1 

+~fn,a,~'(e°(v,)°(x))ax+~[~\,°l. (4.32) 

The first and second terms on the right-hand side of inequality (4.32) tend to 
zero thanks to (4.31). The third term tends to zero too, since otherwise we can 
argue by contradiction: by assuming that, up to subsequences I£~\~,1-> 6 > 0, we 
get 

f O(eD(v,)a(x))>-fO(e°(v°)a(x))dx>-k26/4~>O 
\~Tt,, 

which contradicts (4.31). So 

I [(eD(v.,)"(x))l dx~O as n~oo ,  (4.33) 

and (4.30), (4.33) prove (4.29). 
So (4.27), (4.29), and the fact that the ~r-convergence entails v, ~ v strongly 

in L~(fl, ~3), prove that v, ~ v strongly in P(I~). 
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Necessary condition. Due to (4.21)-(4.25), Lemma 4.1, and the safe load condi- 
tion (4.17), 

I°~(v)>_F~(eO(v))-Lv>_eoI leO(v)l>-O, V v e K  °~, (4.34) 

for some eo > 0. 

Compatibility. From (4.25) and (4.34), referring to (3.12), we get 

K°~n Ker I°°= K°°n Ker F n Ker F°~n Ker L = K°°n ~ n Ker L (4.35) 

and we can repeat the argument used in the proof  of  Theorem 1 to show that 
K°°n  Ker I °° is a subspace. [] 

5. Necessary Conditions and Limit Analysis 

As we have already noted, whenever a functional E has only linear growth at 
infinity (or possibly only linear in some directions and superlinear in the others, 
as in our case (Problem P3): E = F + F  with F quadratic and F having linear 
behavior) we have to add additional conditions on the dead loads L, in order 
that the problem 

( ~ )  inf I(v) (5.1) 
v ~ K  

admits a finite minimum over the admissible set K, even if K is the whole space. 
Usually such conditions are obtained through the method of limit analysis 

(see [ET], [T2], and ITS2]). The method is as follows: for h e R, h ->0, introduce 
the problem 

(~A) i n f ( E - h L )  
K 

and check that inf ~a > - o o  for h = 1. The set of  values of  h satisfying the 
requirement of  finiteness of  the infimum is an interval containing at least 0. 

Under rather mild conditions, by using the definition of  a polar function, 
dual problems, and extremality conditions of  convex analysis, we find that 
infK ~ > -oo corresponds to 

inf(A - L) > -oo, (5.2) 
h~ 

where A is the part of  the functional E having linear growth. (In our case 
A ( v ) = ~  ~ ( e ° ( v ) )  where ~s is the support  function of  the set of  admissible 
stresses S = {77 e M3: I~TDI--< k}. 

Note also that the (dual) functional 

2 1 
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has quadratic growth, hence it is coercive and it has a minimum provided the 
admissible set 

O ° = {o': lorD[-< k, ~r/~ = aOhkehk(V), V C K }  

is nonempty.  
Since A is positively homogeneous and K °° is a cone the requirement (5.2) 

is equivalent to 

inf(A - L )  > O. 
K ~ 

But A = F °° (when finite) since F °° is either 0 or + ~ .  So the condition may be 
rewritten in the equivalent form (again referring to Problem P3) 

r~(~D(v)) 
inf 

vc  K~:  div v=O,Lv~O Lv  
->1 

o r  

inf F~(eO(v)) - -  1 (5.3) 
v~ K~:  div v = O , L v = l  

which is the usual limit analysis problem. 
The above analytic procedure has a self-explanatory physical meaning in 

terms of the limit load condition of mechanics and it actually produces the "safe 
load condit ion" of  engineering. On the other hand, the argument is rather involved 
and depends on conjugate functions which are often difficult to compute,  and 
lead to implicit conditions. 

We underline that, in a different language (in terms of recession functionals), 
(5.3) simply implies the necessary condition 

E°°(v) >- Lv, Vv  c K ~, 

which is actually a weaker condition ( remember  that E °° = F°°+ F °~ and F°~(v) = 0 
if F(v)  =0 ,  F°~(v) = +oo if F ( v ) ~ O ) .  

We stress that A °~--- 0 is a necessary condition for finiteness of  the infimum 
of  any functional A which is convex and l.s.c, on bounded sets, without any other 
assumption. On the other hand, the assumption A ~ -  > 0 alone is not sufficient to 
get i n f A > - ~ .  But together with the compatibility condition (Ker A °° is a sub- 
space), the necessary condition becomes sufficient in order to have i n f A > - o o .  

We notice that, coming back to Problem P3, if 

inf F~(eD(v)) > 1 (5.4) 
vE K~:  div v=0,  Lv= 1 

then the minimizing sequences of  E - L have bounded energy E: actually assump- 
tion (5.4) is a compactness assumption and is essential in our proof  of existence 
of  equilibria in the presence of a rigid constraint. An analogous assumption was 
used in [AG1] and [T1] for the existence of displacements in the unconstrained 
case, though they used different techniques. 
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Finally, we notice that this viewpoint of finding explicitly conditions of 
solvability in terms of recession functionals extends naturally to nonconvex 
constraints and functionals (see [BBGT1] and [BBGT2]). 
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