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We would like to study in this article the moduli of  "conformal structures" on a 
given 4-manifold. Here the moduli of conformal structures or more precisely the 
moduli of  half conformally fiat structures means the set of all half conformally flat 
structures [g] on a 4-manifold M modulo the action of  the gauge group Diff(M), the 
diffeomorphism group of  M.  

There is a significant notion in conformal geometry, the conformal flatness. 
A Riemannian n-manifold (M, 9) is called conformalty flat if (M, 9) has at every 

point a locally defined conformal map into a Euclidean space R ~. When n >_- 4 this 
is equivalent to vanishing of  the Weyl conformal tensor W. 

In four dimensional case one has another notion "half conforrnally flatness", in 
other words, vanishing of  a half part of  W,  W + or W - .  

Let (M, g) be an oriented Riemannian 4-manifold. Then a 2-form ct E f22 splits 
with respect to the star operator �9 into the self-dual part ~+ = (c~ + ,c~)/2 and the 
anti-self-dual part c~- = (c~ - *c0/2,  c~ = c~ + + c~-. 

The Weyl conformal tensor W viewed as an End(TM)-valued 2-form decomposes 
into W = W + + W -  and we say (M, 9) is self-dual or anti-self-duN (or simply half 
conformalty flat) if W -  = 0 or W + = 0. 

Obviously a conforrnally flat 4-manifold is self-dual and anti-self-dual. 
Examples of  conformally flat manifolds which are well known are manifolds of  

constant curvature and Riemann surfaces. These manifolds are divided into spaces of 
positive, negative and zero curvature. Similarly the sign of  the scalar curvature divides 
the set of  all Riemannian 4-manifolds up to conformal change into three classes (see 
Sect. 2 for the details and also [5, 461) so that a half conformally flat structure [9] is 
called type positive, zero or negative according to the sign of  the scalar curvature. 

We denote by WM the set of  smooth conformal structures on a given compact 
connected oriented 4-manifold M and define an action ~Y: ~M ~ N; 9Z'(7) = 
1/2 f IW(g)I~ dvg = 1/2 f T r W  A *W for W = W(g), the Weyl conformal tensor 

M M 
of a representative g of  7. 
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The topological identity r (M)  = 1/(127r 2) f ( tW+ 12 - ]W-  12) dv a then indicates 

the absolute inequality; ~//'(7) = 6~-zI~-(M) I for the Hirzebruch signature of M, r(M),  
and the equality holds if and only if 7 and g is self-dual (necessarily T(M) => 0) or 
anti-self-dual (T(M) < 0). 

The moduli ~ = J d  M of anti-self-dual conformal structures on M is defined 
as all equivalence classes of anti-self-dual conformal structures. Her 7, "/1 E ~M are 
equivalent if gl = w*g for a diffeomorphism ~ of M and for some representatives g 
and 91 of 7 and 71, respectively and we write 71 = qo*7. 

Definition 1. The moduIi of anti-self-dual conformal structures J/d M is defined as the 
quotient 

�9 ~ M  = {7 = [if] E ~'C~M; W(g) § = 0}/Di f f+(M) ,  

modulo the group of orientation preserving diffeomorphisms of M,  Diff+(M). 

To simplify the argument we deal mainly with anti-self-dual case, since reversing 
the orientation transfers each anti-self-dual conformal structure into a self-dual 
conformal structure. 

Another type of definition of the moduli is 

J ~ M  = {[.q] E ~M; W(g) + = 0}/Dif f~  

where Diff~ denotes the group of diffeomorphisms isotopic to the identity id M. 

Then -//~M ~ J/riM is a fibration whose fibre is the "mapping class group". 
The moduli -/~M corresponds to the Teichmtiller moduli of Riemann surfaces. 
Works for moduli of some special geometric structures, for instance the moduli of 

Einstein metrics on 4-manifolds, are recently done by several geometers [32, l, 44] 
and our investigation of the moduli of half conformally flat structures seems to be 
an approach along the similar lines. However, there are other moduli spaces which 
share common feature with our moduli from conformal geometric viewpoint, namely 
the moduli of Riemann surfaces and the moduli of Yang-Mills instantons [7, 16]. 

Being guided by established theories of these moduli spaces one can develop the 
study of our moduli. Like the Yang-Mills instanton case our moduli has a "quantum 
number", r corresponding to the instanton number. It admits also an elliptic complex 
describing the local data. 

We have few examples of manifolds for which the moduli is completely known. 
For S 4 the moduli consists of a single point, the standard conforrnally flat structure 

[36]. 
The complex projective plane C P  2 has the Fubini-Study metric as an isolated 

point in ./Zd [27, 45]. 
The conformally flat case is another example whose moduli is somewhat known. 

In fact each conformally flat structure has by making use of the developing map 
a holonomy correspondence 7r1(M) ~ 80(5,  1), the conformal group of S 4 with 
the standard metric, so that the moduli of conformally fiat structures is mapped 
into the representation space .9~(~rl(M); $0(5,  1)), the space of conjugacy classes 
of representations 7rl(M) ~ S0(5,  1). 

A product 4-manifold 57 k x C P  1 with metrics of opposite constant curvatures is a 
nontrivial example of  conformally fiat 4-manifold. Here S k denotes a genus k(> 1) 
compact Riemann surface. 

By counting the dimensions the moduli of conformally flat structures on Sk • CP~ 
is naturally embedded in ~g(Trl(Sk); S0(5,  1)), since dim ~ = 3 0 ( k -  1) is the minus 
sign of the index (1.1). 
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As in the Yang-Mills instanton case J/~ is, in a sense of local moduli, described 
locally as a conformal group quotient of a real analytic subvariety in a finite 
dimensional vector space, the first cohomology group H 1 of the elliptic complex: 
C~ --~ C ~ ( H o m ( ~  +, g2-)) --+ C~(S0(f2+)) (see Sect.3, (ii) for the precise 
definition). 

This complex has the index 

dim 1I-]I ~ - d imH 1 + d imH 2 = 1/2(29~-(M) + 15x(M)) (1.1) 

from the Atiyah-Singer index theorem (x(M) is the Euler characteristic of M). 
The 0-th cohomology group H ~ = Ker L at 7 E ~M is the Lie algebra of the 

conformal group C~ = {~ E Diff~ qo*7 = 7}- 
By applying a slice theorem (Theorem 3.4 in Sect. 3) and the Kuranishi map 

(Theorem 3.5 in Sect. 3) one has indeed 

Theorem 2. For any ~ E "//~M there exists a neighborhood U#, in the sense of local 
moduli, represented by the group quotient of the zero's of a map q~ :H 1 ~ H2; 

U~ = Zero(~:H~ --~ H2)/C~ , 

where H~ is a neighborhood of O in H 1. 

Note that one can define the local moduli of half conformally fiat structures by 
{[9] E ~M; W(g) + = 0} modulo the action of a germ in Diff~ around id M. The 
set U# in Theorem 2 means a neighborhood of the local moduli and one says that it 

gives a neighborhood of -/~M in the sense of local moduli. 

The topology of ~//d M and J ~ M  is one naturally induced from the following 
diagram 

~ M / D i f f + ( M )  

~/~ M C ~M/Diff+(M) �9 

Here ~@M is the space of all Riemannian metrics on M. 
We remark that . ~ M  and JZ~ M are Hausdorff [30]. This Hausdorff property is 

shown by applying the Yamabe problem. 
By virtue of the formulation of ~M given in Sect. 3, the tangent space T.~ ~M is 

identified with C~(Hom(~? +, ~?-)). A positive definite inner product on it is defined 
as  

IIAII 2 = / ( -  Tr AA*) (x)dVg(z),  .4 ~ C ~ ( H o m ( D  +, ~?-)) (1.2) 

M 

in terms of a "canonical" volume form dVg, where A* is the adjoint of .4. 
The notion "canonical" requires dVg to satisfy the conformal invariance and the 

naturality with respect to diffeomorphisms, from which the inner product IIA[I z is 
Diff+(M)-invariant. 

By using a basis of H + = {self-dual harmonic 2-forms}, for instance, which is 
orthonormal with respect to the cup product on H2(M; Z) one can exhibit such a 
canonical volume form (see Sect. 3, v) for the details). 
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Thus this L2-inner product is able to descend to the quotient ~M/Di f f~  �9 By 
restricting this inner product to the moduli we have 

Theorem 3. Ira 4-manifold M has b2(M) > O, then the moduli ~ M  of anti-self-dual 
conformal structures is endowed with a Riemannian metric at each point ~/ even when 
it has a quotient singularity. 

We would like to state several consequences and applications of our theorems. 
The first one is a local Torelli-type theorem on a "period map". 
There is a natural map, the period map, p:~C~ M ~ G:+ (H 2) = {positive b+-planes 

in H2(M;IR) ~ Rb2}, where H2(M;I~) is equipped with the cup product of type 
(b+,b - )  [17, Appendix]. At a tangential level this is 

p .  : C~176 (Horn(J2 + , /2-) )  ~ Hom(H +, H -  ) (1.3) 

for the spaces H • of self-dual (anti-self-dual) harmonic 2-forms. 

Theorem 4. For a K3 surface the map p,  restricted to the tangent space of J~'M 
at any Ricci flat metric becomes an isometry with respect to the L2-metric and the 
invariant metric on Hom(H +, H-) ,  so that the component of ~ M containing a Ricci 
flat metric (and hence a type zero anti-self-dual conformal structure) is isometric onto 
some open domain in the symmetric space SO(3, 19)/5'O(3) • SO(19). 

This theorem is already shown in terms of polarized Ricci flat Ki~hler metrics ([32, 
8] and see also for a brief survey [2]). However this theorem will be verified from 
our formulation of d 6  M in Sect. 5 (Proposition 5.2). 

As a consequence of this theorem there is no type negative anti-self-dual conformal 
structure on a K3 surface M, close to any Ricci flat metric. 

The moduli -~M is divided into disjoint three parts 

according to the sign of constant scalar curvature. 
The presence of each piece implies a geometric restriction on M. In fact, if ~ + )  

is not empty, then M is homeomorphic to Cp2~ . . .  ~ CP  2 (b2-times) provided M 
is simply connected. 

On the other hand, if ~ (M ~176 ~= 0 and H + =~ 0, then M must be a K/ihler surface 
with an extremal K~ihler metric in the sense of Calabi, namely a K~ihler metric of 
zero scalar curvature [13] (see Sect. 2, and [28] for the classification of candidates of 
those M's  of nonempty JA~(M~ 

So we obtain a map from JbT(~ into the moduli of complex structures on M, gM' 

For a ruled surface, a typical anti-self-dual 4-manifold of which Jg(M ~176 =~ 0 we are 

able to present J6(M ~176 as in the representation space ~.~(Trl(M); SL(2, ~)  x PU(2)), 
PU(2) = SU(2)/7'. z whose dimension coincides with the dimension of gM (see 
Theorem 5.1). 

The importance of half-conformaUy fiat 4-manifolds is that they are equipped with 
twistor spaces. It is an interesting question how our moduli relates with the moduli 
of complex structures on the twistor space, while we only remark on it in Sect. 5. 

However, more interesting is an investigation of ends of the moduli of half 
conformally flat structures. The action -~Y/'(7) = 67rZl'r(M)[ holds for any q E J/~M 
so that a bubbling off phenomenon may occur at points where the Weyl conformal 
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tensor concentrates. A Uhlenbeck's type theorem is expected as in the Yang-Mills 
instanton case. 

The essential difference from the Yang-Mills instanton case is that by bubbling off, 
a half conformally flat 4-manifold may separate into some half conformally flat 4- 
orbifolds J~ll, . . . ,  M k such that M = M l ~ . .. ~ M k (see also [2, 44]). So possibility 
of  bubbling off is detected by a structure of  the quadratic form on H2(M; Z) [23]. 
Here the connected sum is considered as generalized one being attached along S3/F,  
a finite quotient of  the 3-sphere S 3. At any rate the one point blown up of  C 2 

with anti-self-dual K/~hler metric whose conformal compactification is Cp2  with the 
Fubini-Study metric [31, 42] and the Eguchi-Hanson metric on an ALE 4-manifold 
must play roles as "one-instantons" in the compactification of  the moduli. 

We discuss in Sect. 2 the scalar curvature type and the connected sum operation. 
In Sect. 3 we review briefly the fundamental properties of  the Weyl conformal tensor 
and study the moduli of half conformally flat structures to show the main theorems 
(the real analytic subvariety theorem and the L2-metric theorem). 

We specify our argument in Sect. 4 to the moduli of Ricci flat metrics of  unit 
volume, identified with the moduli of  type zero conformal structures when the 
Hitchin's bound X + 3/27 = 0 is satisfied, and exhibit the detailed proof for the 
local Torelli-type theorem. Section 5 is devoted to the investigation of  the moduli 
~ / ~  in terms of complex structures. 

We summarize in Appendix several formulae needed in deriving the linearization 
of the Weyl conformal tensor. 

For general references of (hal0 conformally flat manifolds we refer to [38, 4, 8, 
15, 28, 41]. 

2 Scalar curvature type 

(i) 

Before discussing the moduli of  half conformally fiat structures we begin with scalar 
curvature type. 

As is shown as Yamabe problem solved by Aubin and Schoen, a compact connected 
Riemannian 4-manifold (M, 9) admits a constant scalar curvature metric, conformally 
equivalent to g [5, 46]. 

A conformal change gr = f2g, f E C a ( M )  > O, has the scalar curvature QP 
obeying the equation 

o ' f  3 = 6 A f  + Qf (2.1) 

for the Laplacian A = A 9 and the scalar curvature 0 of  g. 
From (2.1) one has the following proposition from which the value of constant 

scalar curvature is unique up to volume-normalized conformal change provided the 
value is nonpositive. 

Proposit ion 2.1. Let g and gr be conformally equivalent metrics of same volume. I f  
they have constant scalar curvature < O, then g' = g. 

Proof. We assume f dv 9 = 1. The metric gJ = f2g is a conformal change. So 
M 

f f4dv 9 = 1. The proposition is obvious if 0 = 0 p = 0. So assume 0 = 0 ~ < 0. We 
M 
have A f  = --giJOiOdf > 0 at a point x E M where f has the maximal value. Then 
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t - f2(x) > 0 from the equality ( - o ) f ( 1  - f2) = 6 A f  and hence 1 __> f on M. So 
f _= 1 because f f4dv~ = 1. The case O' <_- P < 0 is similarly proved, qed 

M 

Now we divide ~M, the set of conformai structures, into three parts ~M +), ~M ~ 

~M -) according to the sign of the constant scalar curvature and decompose ~ M  as 

To every 7 E ~m \ ~ + )  we choose a representative g of unit volume and assign 
the value of constant scalar curvature of a conformal change of g within the volume- 
normalized conformal class. So we get a map, Diff(M)-invariant p: ~M\~M +) ~ R 
which descends to a "smooth" function on ( ~ M \ ~ § 1 7 6  in certain Sobolev 
norm. 

(ii) Nonnegative type 

The following are known with respect to half conformally flat 4-manifolds of 
nonnegative type. 

Theorem 2.2 [14, 9, 15, 28]. Let (M,g) be a connected 4-manifold endowed with 
a complex Kiihler structure. (i) I f  (M, 9) is compact and self-dual, then (M, g) is a 
complex space form, i.e., C P  2 with a Fubini-Study metric, C2 / A with a flat standard 
metric, D2 /_r ' with a standard Kiihler metric, or a compact quotient of D l • CP 1 with 
opposite curvature metrics (here D 1, D 2 are the unit balls). (ii) ( M,  g) is anti-self-dual 
if and only if the scalar curvature Q = O. 

Theorem 2.3 [41]. Let (M, g) be a compact connected oriented anti-self-dual 4- 
manifoM of type positive or zero. I f  M admits a harmonic self-dual 2-form 0 ~- 0 i.e., 
b+(M) > O, then (M, 9) carries a complex structure for which 9 is a Kiihler metric of 
type zero and the normalized form [0[--10 is the K?ihler form. 

It follows from Theorem 2.3 that (i) if Jb~(~t) =~ 0, then b+(M) = 0, namely the 
intersection form of H2(M; Z) is negative definite or zero so that for such M of 
7r I = 1, M is homeomorphic to the connected sum of b2(M) copies of CP  2, C P  2 
with reversed orientation, due to Donaldson's theorem [16] and (ii) if ~ :~ ~ and 

b+(M) > 0, then . / ~ )  = 0 and M carries a complex structure with a Kahler metric 
of zero scalar curvature. 

It is concluded moreover from Theorems 2.2, 2.3 that (i) type positive self-dual 
compact K~hler surface is only C P  z with a Fubini-Study metric, (ii) type negative 
self-dual compact K~hler surface is only a complex space form of negative constant 
holomorphic curvature, (iii) a K~ihler metric is anti-self-dual if and only if it is type 
zero and (iv) compact conformally flat K~ le r  surfaces are only a Kahler flat torus 
T 4 and a compact quotient (D 1 x CP1)/F.  

The last 4-manifold is in the terminology of algebraic geometry a complex ruled 
surface M k, a holomorphic C P  1 bundle over a Riemann surface S k of genus k(> 1). 

We remark against this 4-dimensional special feature that every conformally flat 
K ~ le r  manifold of complex dimension > 3 is flat [48]. 

A Hopf surface, diffeomorphic to 81 x S 3, is an example of compact conformally 
flat 4-manifold [11, 40]. Its scalar curvature type is positive. 
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(iii) Connected sum 

A fundamental operation in conformal geometry is taking a connected sum. The class 
of conformally fiat manifolds is closed under the connected sum operation [37]. The 
subclass, a class of  type positive conformally flat manifolds is also closed under this 
operation [47]. 

For half conformally flat case the connected sum operation must be specifically 
important since the "quantum number" ~- behaves additively, ~-(M ~ N)  = ~-(M) + 
~-(N) and it is reasonably expected that the operation ~ works on half conformally 
fiat 4-manifolds with "one instanton" C P  z with a Fubini-Study metric, Actually a 
connected sum of n copies of C P  2 for arbitrary n is endowed with a self-dual 
conformal structure [45, 21, 18, 43, 39]. 

(iv) Negative type case 

Type positive manifolds are well investigated because of  Lichnerowicz-Hitchin 4 -  
vanishing theorem for spin structure. 

However, type negative 4-manifolds seem so far to be less known. 

Theorem 2.4. Let M = N 1 ~ N 2 be a connected sum of  compact connected oriented 
conformally flat 4-manifolds. I f  N i, i = 1,2, is a flat torus or a ruled surface M k, 
k > 1, with a conformally flat structure, then M admits a conformally flat structure 
and moreover any conformally flat structure on M must be of  type negative. 

Proof. From Kulkarni's theorem [37] M admits a conformally flat structure. Let 
[9] be any conformally flat structure on M.  Assume its type is nonnegative. Since 
b+(M) = b+(N1) + b+(N2) > 0, ( M , 9 )  must be K~ihler from Theorem 2.3 so 
that M is T4(b 2 = 6, X : 0) or Mk(b 2 = 2, X : 4(1 - k)). On the other hand 
b2(M) = b2(N1)+  b2(Nz) ,X(M)  = x ( N 1 ) +  x(N2) - 2. So the topological type of 
M differes from T 4 and M k. 

Remark. The class of  type negative conformally flat 4-manifolds is closed under the 
connected sum operation, as pointed out by Lafontaine [40]. 

3 Moduli of  anti-self-dual conformal structures 

(i) 

Let M be a compact connected oriented 4-manifold. 
For a smooth metric g on M we denote by [g] the conformal structure represented 

by 9. The volume form o f g  is d% = V " ~  dx 1 A dx 2 A dx 3 A dx  4. 
We note first that any conformal structure " /has  the unique representative metric 

whose volume form coincides with dvg. We call this metric the volume-normalized 
representative of  7 with respect to the fixed metric 9. 

Since any 9 on M is a positive definite symmetric tensor on T M  at each point, 
we regard conformal structures as smooth sections of  a fibre bundle V --~ M whose 
fibre at x E M is S + ( T * M ) / I R  +. Here S + ( T * M )  is the cone of  positive definite 
symmetric bilinear forms on T x M  and ]R + operates by scalar multiplication so that 
we identify ~M ~ C~ V).  
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This is the standard description of conformal structures which is valid for arbitrary 
dimension. 

We have another formulation of ~M from the four dimensionality. 
The star operator ,:122 _+ 122 which depends on a conformal structure and the 

orientation of  M give the splitting/22 = / 2 +  @ 12~-, x E M,  into 4- eigenspaces 12 +, 
/2~- satisfying 12 + A ~ -  = 0 in such a way that the wedge product �9 A. :/22 ---, Y24 = 
Rdv  is positive definite on 12+ and negative definite o n / 2 - ,  respectively. 

Conversely a choice of  an appropriate 3-dimensional subspace U of 122 on which 
�9 A.  is positive determines uniquely a conformal structure 7 at x E M so that U 
and the subspace U • annihilated by U give the splitting Y2~ = 12 + | S2f, 12 + = U, 
n2 = U • 

So if we have a 4-manifold M,  then fixing a conformal structure means equiv- 
alently a choice of  an appropriate rank 3 subbundle /2' o f / 22  __~ M (see [21, 17, 
Appendix] for this formulation). Thus, once we fix a conformal structure 7 with split- 
ting /22 _____ 12~- @ ~.~-, we can identify ~M with an open set in C~176 +,/2;~-)) 
as  

~M ~= {A E C~(Hom(12+,/2~));~7 /x ~? + A~? /\ A~ > 0,~7 E ~2+}. 

Remark. These two identifications are very natural because we have an SO(4)- 
isomorphism between the spaces /2+ |  and S o ( T ' M )  = {traceless symmetric 
2-tensors}: 

S2 + | Hom(/2 + , / 2 - ) )  ---* S o ( T ' M )  
(3.1) 

(rl +, II-)  ~ h = (hij) , 

hi j -kL+ ~ -  [10, Lemma 4.6] and h E S o ( T ' M )  induces a homomorphism 
= Y "qik'qlj 

A + A = Ah:12 + / 2 - ,  A~ + = ( ~ij); 

A~?+= k + k + ~+ /2+ hi rlkj + hj rlik , E (3.2) 

giving the inverse. 
We adopt the Einstein summation convention throughout this article unless any 

confusion occurs. 

(ii) Elliptic complex 

Our next investigation is to derive the linearization of W +, the self-dual part of the 
Weyl conformal tensor W. 

The tensor W is composed of  the Riemannian curvature tensor R, the Ricci tensor 
Ric and the scalar curvature Q. 

R is regarded as a self-adjoint operator: /22 ~ / 2 2 ;  

R(e i A ej) = 1/2R~jkte k A e t 

for an orthonormal basis {ei} of  1-forms in such a way that 

( R  ++ R+- ) R=\R-+ R - -  
z 

with respect to the splitting 122 = /2+ @ 12-. Each of  R ++, R - -  has W + E 
C~176177 as the traceless component and they are written actually as 

R ++ = W + + 1 /120 id ,  R - -  = W -  + 1 /12o id ,  

where S0(D +) denotes the traceless symmtric product o f / 2 +  [4, 241. 
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We denote by D = D~:C~(So(T*M))  --~ COO(S0(O+)) the directional derivative 
of W + at 7 = [g], PT(h) = (6W+)(h) for h E T.v~ M. The tangent space T.y~ M is 
here identified, through the identification of ~M, with the space of traceless symmetric 
2-tensors COO(So(T'M)), since as we note in (i) we can choose for any 7 c ~M the 
volume-normalized representative metric with respect to g within 7 �9 

Proposition 3.1. Let 3' = [g] be an anti-self-dual conformal structure. Then the 
directional derivative D is a second order differential operator represented as 

D(h) = (6Wg(h)) + , h E COO(So(T'M)), (3.3) 

that is, D( h ) is the self-dual part of the directional derivative of the full Weyl conformal 
tensor W. 

Proof. The proof involves only calculation. The self-dual part W + is W + = 
(P+9, P+g ) W where (P+9, P+g): 222 | ~2 .__+ g2+ | ~2+ is the product of the projection 

P+g = 1 /2 ( id+ ,9 ) :  J22 --~ .Q+. Then 

(~W;) (h) = (P+g, P+g) ((~Wg(h)) + ((~(P+, P+)g (h)) (W) . 

Since 

(6(P+ , P+)g (h)) (W)  = ((6(P+)g (h), P+g) (W)  -4- ( P+g, ((~P+)9 (h)) (W)  

and W = (Wijkz) E ~c~2 @ d,~2 is anti-se[f-dual with respect to both ( i , j )  and (k,1), 
the term (6(P+, P+)g (h)) (W)  vanishes. So (6Wg +) (h) = (6Wg(h)) +. qed 

The action of diffeomorphisms of M on ~m yields the Lie derivative operation on 
the tangent space T T ~  M by choosing a representative g within 7. Every diffeomor- 

phism ~ induces a conformal structure [~*g] by pulling back the metric g. This con- 
formal structure has the unique representative f ~* g for some f = f~ E C~176 > 0 
in such a way that its volume form coincides with dvg. The Lie derivative operation 

L(X) ,  X E COO(TM) is then defined as d/dt(f~t(~t)*g)lt= o, ~t = E x p t X  and is 
written as 

L = Lg:C~ ---* C~(So (T*M)) ;  X ~ L(X) ,  

L(X)  0 = V i X j  + V i X  i - 1 /2(ViX~)gi j .  
(3.4) 

We derive then a complex at each anti-self-dual conformal structure 7 = [g]; 

COr ) Lg COO(So(T,M)) D___~g COC(So(J,~+)) (3.5) 

Proposition 3.2 [21]. This complex is elliptic. 

This complex has the index 1/2(29~-(M) + 15x(M)). See also [20]. 
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(iii) Slice theorem 

To get a real analytic variety structure theorem for the moduli ~ M  we discuss a slice 
theorem and then a Kuranishi map theorem, even though these theorems are quite 
common for the Yang-Mills instanton case [22]. 

We now study the argument given by Ebin in case of the space of Riemannian 
metrics. 

For a fixed smooth Riemannian metric g on M we define spaces 

C~(End~(TM))  = ( h E C~(End(TM));  g(h(X),  Y)  = g(X, h(Y))} 

and 

C~ = {h E C~ g(h(X),  Y)  is positive}. 

These spaces are identified with the space ~ M  of Riemannian metrics on M and 
the tangent space T g ~  M at g, respectively; ~ M  -~ C~(End+(TM)),  T g ~ M  = 
C ~ ( S ( T * M ) )  -~ C~(Ends(TM)).  We notice that there is a bijection between these 
spaces since we have a bundle isomorphism End~(TM) ~ End+(TM), h ~-~ exp h. 

An infinitesimal deformation of g in direction of a vector field X, the Lie derivative 
Lxg ,  defines a linear operator 5 ~ : C ~ ( T M )  -+ C~(End~(TM)); X +-+ (Lxg)  ~ 

where (Lxg)  } = gik(Lxg)~j. 
The kernel of the LE-adjoint L~* of S in C~(End~(TM))  gives a slice in J~1" 
We need here the Sobolev space completion of -'~M with respect to certain L~- 

no r m.  

Choose a sufficiently small ball ~ in Ker ~ * .  
Ebin defined two Diff+(M)-invadant inner products on the space -~M, an L 2- 

inner product and a "strong" inner product which defines the same topology with the 
L 2-norm and obtained 

Theorem 3.3 [19]. For any Riemannian metric g in ~ M  there is a slice g"  in 
~ M ,  g E ~"  given by ~7" = exp (~ )  which satisfies that (i) any ~ E I~ fixes 

97" invariantly (here ~ = {O E Diff~ r = g} is the isometry group of g), 

(ii) / f r  E Diff~ r  J ' 4 0 ,  then 0 E I ~ (iii) there is a local section 

X: Di f f~  --~ Diff~ defined on a neighborhood U of the origin such that the 
map F: (u, h) ~ (X(u))* h: U x . ~  ~ "~M is a homeomorphism onto a neighborhood 
of g, diffeomorphic off foced points of I~ a. 

We now consider the case of conformal structures. 
Suppose that 7 E ~M is a conformal structure on M not conformally equivalent 

to the standard sphere metric. Then the conformal group of 7 is a compact group and 
7 has a representative g for which ~ = 6'0(7). 

Since each 7i has the unique volume-normalized representative gl with respect 
to g (namely, dv#~ = dvg), we have a lift of ~M tO ~ M  by assigning gl to each 
71 and then we can identify ~M with ~M,d,g,  the space of volume-normalized 

Riemannian metric with respect to g and hence with L2+I(End+,I(TM)) = {h E 
L2+1( End+(TM)); det h = 1 }. 

The tangent space T T ~  M at 7 is also identified with the space of traceless 

symmetric endomorphisms, L2+I(Ends,o(TM)). 
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Define a map 

~o: L2+1 (Ends,0(TM)) • (Oiff~ - .  L~+ 1 (Ends,0(TM)) 

by ~ (h ,~ )  = h 1 in such a way that the metric qo*(gexph) given by (h,~)  is 
conformally equivalent to a metric g exp h 1, namely its volume normalized conformal 

change fqo*(9 exp h), f = f~o,h, coincides with g exp h 1. Here (Oiff~ denotes 

a germ at the origin o in the coset space D i f f ~  and each ~ in it has a lift in 

Diff~ from Ebin's argument. 
Consider the following composed map 

L 9 o k~:L~+~(Ends,0(TM)) • (Diff~176 o ~ LE(TM). 

The equation L*(~(h, ~)) = 0 gives a diffeomorphism gauge fixing condition. 

The differential of Lg o ~r at (h, ~) = (0, o) is 

(L~ o ~), (h, X) = L~(h + L~X) 

for X E To(Diff~ The tangent space To(Diff~ is the orthogonal 
complement of Ker Lg = {g-Killing vector fields on M}. 

So, the partial differential in the second factor is a self-adjoint elliptic operator. 
Since Lg has trivial kernel over (Ker Lg) • L* o Lg is invertible by standard elliptic 
theory. From the implicit function theorem in Sobolev space one has a neighborhood 
Og in L~+I(Ends,o(TM)) and a map ~:Og -* (Diff~ = o) in the 

following way: for any h E Og there exists a diffeomorphism ~o = ~o(h) E Diff~ 
(~0(h) is a lift of @(h)) close to id M in such a way that the volume normalized 

*( metric f~,h~O gexph)  is represented by g e x p h  I for a unique h I E KerL* C 

L~+I(End~,o(TM)). 
So, the map 

~:  Og --~ Ker L~ • Diff~ ~ 

@(h) = (hi, 9~(h)) gives a local diffeomorphism. 
L* coincides with ~r restricted to the sapce of traceless endomorphisms 

L~+I(Ends,o(TM)) so that Y = {gexph,  h E ~ ' }  in ~M,dv9 gives a slice hav- 
ing a local effectiveness. 

Theorem 3.4. For any 7 E ~M which is not the conformal structure represented by 
the standard sphere, there exists a slice fi~ in ~ M  at a representative 9 of 01 such 
that (i) every @ E C~ Y invariantly and (ii) there exists a local section 
X: Diff~176 -* Diff~ (qo --- X(~)) defined on a neighborhood U of the 
origin such that the map F : Y  • U --* ~M,dvg;(gl,~) ~ f~,~lqo*(gl),f~,gl E 
C~176 > 0 is a homeomorphism onto a neighborhood of g, diffeomorphic off ftred 
points of C~ 

From this theorem the quotient space Y / C ~  gives a neighborhood of the local 
moduli. 

Remark. The global effectiveness of our slice, namely the property (ii) of Ebin's 
theorem is not guaranteed, because ~M,d~g is not Diff+(M)-invariant. However, by 
using the arguments of Yamabe problem we can assert the global effectiveness. In 
fact, each 7 in ~M \ ~ + )  has a unique volume-normalized Yamabe metric so that one 
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can identify ~M\~M (+) with the subspace in ~"~M consisting of Riemannian metrics 
of unit volume whose scalar curvature is nonpositive constant. The latter space is 
Diff+(M)-invariant and one may apply directly Ebin's theorem. 

(iv) Kuranishi map 

Let 3' be an anti-self-dual conformal structure on a 4-manifold M and g a represen- 
tative of % 

Consider the anti-self-dual equations in the local slice Y 

W+(91) : O, L*(h) = 0. (3.6) 

Here gl is in Y and h E C~176 is determined by 9t defined by 
ga((exp h) (S) ,  Y) = g(g, Y). 

The star operator is *gl = ((exp h)*) -1 c ,g c (exp h)*). Then the first equation is 

replaced by ((exp h)* (W(gl)))+9 = O. So we can rewrite (3.6) as 

((exp h)* (W(g l)))+g = 0, L* (h) = 0. (3.7) 

Define a map 

w + :S ---* L~(S0(/2+)), h ~ ((exp h)* (W(91))) +g . (3.8) 

We expand w+(h) as 

w+(h) = W+(g) + Do(h) + R(h) 

with a remainder term R(h) = Ra(h). Since 3' is anti-self-dual, we have 

w+(h) .--- Dg(h) + R(h). (3.9) 

As a routine business for solving the equation zu-;(h) = 0 we introduce a map 69 --- 69g, 

the Kuranishi map, from a small ball in L2k+I(So(T*M)) into L2k+1(So(T*M)); 

O : h  ~-~ h + D*G(R(h)) (3.10) 

for D*, the adjoint of Dg with respect to the L2-inner product and G = Gg, the 

Green operator of DgD~ on L~(S0(~2+)). 
As was discussed in the deformations of complex structures [35] we can show the 

following, since the map O is locally invertible and C~ 

Theorem 3.5. (i) There exists for small e > 0 a C~ map ~l, from an 
~-ball H~,~ of H~ ~- KerL* N KerD 9 to H~ ~- Ker DgD* : h ~-+ 7rR(69-'(h)) such 
that anti-self-dual conformal structures in the slice ~ are described as Zero(O) = 

{h 6 ]~,e;4i(h) = 0} and ( i i ) for  each gauge equivalence class ~ the quotient 
Z e r o ( ~ ) / C ~  by the conformal group C~ yields a neighborhood of the local 
moduli. Here 7r is the projection of C~176 So(12+ ) ) onto H2~. 

(v) L2-metric 

As a first step towards for defining a Riemannian metric on the moduli ~ M  we 
define a Diff+(M)-gauge invariant L2-metric on ~M. 

Throughout this section we keep the identification 

~M c C~176 +, n-)). 
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For A E C~(Hom(g2 +, 52-)) define the adjoint A* :52.~- --+ 52+ with respect to 
the volume form dv h (g is a representative of 7), in other words 

~7+ A A * q - = ( A ~ ? + ) A ~  - ,  ~7• E 52 •  (3.11) 

Then the trace - T r A A *  is a scalar function on M, positive definite and depends 
only on 7. 

In fact, choose at each point orthonormal bases {r/+}, {rlf} of 527 • i.e., • A 

J -  Then * -  A*) j -+  = A ~li = ( iqj has  71f ,Sijdvg, i = 1,2,3 and set A~? + = Airl j .  
�9 J i i i (A )i =- - Aj and hence - Tr AA* = AjAy is positive definite. 
From this definition the trace is independent of the choice of 9. 
A diffeomorphism 9~ acts on C~(Hom(~2 +, /2-) )  as 

A E C~(Hom(52 +, D~-)) ~-* A ~ E C~(Hom(52+~, 52~ )), 7x = qo*7 

by the following diagram 
tPx 

52+ + 9,~(x) ~ 52~* g,x 

A~(x) I I (A'P)x 

( *~--! where x E M and g is a representative of 7. So (A~)x = ~* o A~(x) o ~ )  and 
(A~) * = ~* o (A*)w(=) o (F , ) - I .  Then the pointwise inner product satisfies 

( -  Tr A'e(AW) *) (x) = ( -  Tr AA*) (r (3.12) 

To define an LZ-inner product on UM, invariant under the Diff+(M)-action we need 
from (3.12) a "canonical" volume form 9 ~ dVg satisfying the conformal invariance, 
dV.fg(x) = dVg(X), f E C ~ ( M ) ,  > 0, and the naturality, dV~.g(x) = (~*dVg)(x). 

Assume the existence of the canonical volume form. We then obtain an L2-inner 
product on C~(Hom(52 +, 52~-)) as 

IIAII 2 = / ( -  Tr AA*) (x)dVg(x), A E C~(Hom(52 +, 52-)), (3.13) 
, /  

M 

integrated in terms of the canonical volume form. 
So the remaining problem is to verify the existence of such a volume form. 
To investigate it we notice that the quadratic form induced from the cup product: 

HZ(M; Z) x HZ(M; Z) --* Ha(M; Z) -~ Z 

gives a nondegenerate symmetric form on HZ(M; ]r of type (b +, b-) ,  identified with 
the wedge product on the de Rham cohomologies: 

H2(M; ~)  x HZ(M;//~) ---r Ha(M;/1~) = ~[dv]; ([0], [~]) ~ [t9 A w] 

(dv is a volume form of unit volume). 
For any metric g Hff, the space of (anti-)self-dual harmonic 2-forms, are b +- 

dimensional subspaces of H/(M; ]1r respectively. 
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To simplify the argument we assume b + > 0 (when b + = O, b -  > 0 is assumed 
so that b z > 0 is primarily assumed.) 

We choose an orthonormal basis ~'~b + ~,, 1 < i < b +, of H +. The orthonormality 
t g , i ~  - -  - -  

is measured by the cup product; [~b +] A [~b +] --- 6~j[dv] for ~p+ = ~+ 
Define 

b + 

dVa = Z [l~+[[Z~(x)dvg (x) '  x c M ,  (3.14) 
i=1 

where I[ " [la is the norm measured by 9. 
This does not depend on choices of orthonormal basis. This is conformally invariant 

since for each i 11r = W~ A ,r = r A ~ .  
The canonical volume form (3.14) depends smoothly on the metric g, since 

b + = dimH + is a topological invariant (see for examle [35, Theorem 4.5, p. 178]). 

The naturality of dVg(x) is indicated as follows. Any ~ E Diff+(M) induces a 

quadratic form isometry qp* :H2(M; Z) --+ H2(M; Z) so that (qg*~ + } gives rise to an 
orthonorrnal basis of H.g+ and hence 

I1r II,(~(x)) (~* dv g) (x) . 
i i 

Thus one has 

Theorem 3.6. The inner product (3.13) is positive definite and Diff + ( M)-invariant. 

dVg is the Riemannian volume form dv 9 multiplied by a nonnegative weight 
function which has in general a zero locus. The positivity of (3.13) is shown in the 
following way. Suppose that I[AII 2 = 0 for A E C ~ ( H o m ( O  +, I2-)). Then A must 
be zero at least at points where dV is positive and from the result of [3] these points 
are open dense in M. Therefore A vanishes at every point. 

Theorems 2 and 3 in Sect. 1 follow from Theorems 3.4, 3.5 and 3.6. 

Remark. In some special case dV 9 coincides with dv~ up to a constant scalar factor. 

Indeed this is the case when each of ~b + has constant norm. 

We remark also that through the identification (3.1) - T r A A *  is just 4Tr  hh, for 
A = A n from (3.2). 

4 K3 surfaces 

Recall the following formula for a compact connected oriented Riemannian 4-manifold 
(M, 9) l /  1/ 

x ( M )  + 3/2v(M) = ~ [ W + l  2 + ~ {02 - 3]Ric[ z} (4.1) 

(see [24, p. 72]). So as an easy observation from (4.1). 

Proposition 4.1. Let M be as before a compact connected oriented 4-manifold. If  M 
satisfies 2x(M) + 3 r (M)  = 0 (this is the case for a complex torus, a quotient of a 
complex torus, a K3 surface, an Enriques surface and the quotient of an Enriques 
surface by an antiholomorphic involution [26]). Then any anti-self-dual Riemannian 
metric 9 is of zero scalar curvature ~f and only if 9 is Ricci fiat. 
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The moduli J~(M ~ of type zero anti-self-dual conformal structures on M of 
2X + 3T ----- 0 is then identified with the moduli of  Ricci flat metrics of  unit volume. 

Now let M be a K3 surface, a simply connected compact complex surface with 
the trivial canonical bundle K M. 

The topological invariants are X = 24, b 2 = 22, (b+,b - )  = (3, 19) so 7- = - 16 
and 2X + 37- = 0. 

The moduli J~(M ~176 is well investigated in terms of  the period map. Actually the 
quadratic form qM on H2(M; 7/.) has type (3, 19) and the Grassmannian G + = 
S 0 ( 3 ,  19 ) /S0 (3 )  • SO(19) of  oriented positive definite 3-planes in H2(M; R) gives 
the Ricci flat Kfihler metrics on M provided we ignore the action of  Aut(H2(M; Z); 
qM); P : ~ ~ G+- Here ~ denotes the moduli of Ricci flat metrics of unit volume. 

Then ~ admits a structure of 57 dimensional symmetric space with an invariant 
metric. This means that the space Hom(H +, H - )  = H -  | (H+) * gives the tangent 
space Tg ~ and the invariant metric is - tr X X  ~, X E Hom(H +, H - )  from the standard 
argument of  symmetric spaces. 

On the other hand the index of the complex (3.5) is - 5 2  and dim lE O = 0 and 
moreover from Corollary A.5 in Appendix dim H 2 = 5. The virtual dimension of  our 
moduli at each ,~ represented by a Ricci fiat metric g is then at most 57. 

The following proposition asserts as exhibited in Theorem 4, Sect. 1 that J~(M ~ 

has actually 57 dimension and the connected component of ~//~M containing J~7(M00) is 

itself J~(M ~176 and is isometric to the image p(~)  in G +. As an easy observation there 

is no type negative anti-self-dual conformal structure nearby J~'(M ~ 

Proposition 4.2. Let g be a Ricci fiat metric on a K3 surface M .  Let ~+ E H +, 
a = 1, 2, 3 and r  E H - ,  b = 1, . . . ,  19 be harmonic 2-forms being orthonormal 
bases of  H +, H - ,  respectively. Then ~ [  @ ~p+ E H -  | H +, 1 < a < 3, 1 -< b -< 19 
form through the identification H + ---- (H+) * an orthonormal basis o f  the tangent space 
T~//~M, 7 = [g] with respect to the L2-metric. 

Proof. First we remark that the metric g is K~der  from Theorem 2.3 and each r  
is covariantly constant so that dVg = 3dvg and then the L2-inner product (3.13) is 

just the ordinary inner product Ilhll 2 = f T r h h d v  a of C ~ ( S o ( T * M ) )  through the 
identification (3.1). M 

Let h E C ~ ( S o ( T * M ) )  be given via the map (3.1) by ~/, / |  r  Then h = (hij) 
_klr r = r 

is hij = y ik lj ik ~,~ ;j" 
We verify h E KerL* A K e r D  at g. Since d*~,-  = 0 and V r  + = O, L*(h)  is 

from (3.4) L*(h)  = - 2gt iVJhj t  = - 2gti(VJr +k = 0, so that h E KerL*.  

To show D h  = 0 we make use of the anti-self-duality of  ~b- and apply (3.3) and 
(A.1), Appendix. Apply r  ViCj- k + Vjr i t to + V k r  ~ = 0. Then we have 

and hence 

Vihj t  - Vjhi t  + V 8 r  r  = 0 

VkV~hjl -- VkV~h~l + ( V k V s r 1 6 2  "8 = 0 ,  

or interchange k and l 

V tVih jk  - V i V j h ~ k  + ( V i V s r 1 6 2  +8 = 0 .  

(4.2) 

(4.3) 

(4.4) 
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So the tensor U E C~176 | $2 2) defined in (A.2) is 

2U~jk~ = (VkVs~b~)~b +~ - (VlVs~)~b~-*.  (4.5) 

D(h) is the S0(g2+)-component of U since g is Ricci flat. 
Without loss of generality we can assume r  = co, the K~hler form and ~ b+,2 

~b~- are the real and imaginary parts of a covariantly constant holomorphic 2-form, 
respectively. 

We use the complex coordinate indices. 
= 

For r = ~, r = ~/%-iq, ~b;* = - x / - S ] q ,  i , j  = 1,2 and oLhers are zero. 

Then Uijkt = 0 for k, l  E {1,2} and i , j  E {1,2, i ,2}  since [Vk,V z] = 0, and also 

Uijkt = 0 for i , j  E {1,2} and k, l  E {1,2, i ,2} since ~ -  is a (1, D-form 
Similarly Uijk l  : 0 for all indices running over 1,2. Therefore the components of 

U in O + |  + remain to be shown to be zero are only the co | w-component. But it 
is yJ~ytkUijkt = g~*g*k(xTkV t + VgVk)~i3 which vanishes from the fact that ~ -  is 
a primitive form. 

The similar argument works for other ~+, r  so that ~b  | r  E KerL* f~ KerD  
for any a, b. 

That Cb | ~+, 1 < a < 3, 1 --< b -< 19 enjoy an L2-orthonormal basis of T.r./f/~ M 
follows from the definition of the L2-inner product (3.13) and the remark mentioned 
at the beginning of the proof, qed 

5 Half conformal flatness and complex structures 

(i) Moduli on ruled surface 

The Kodaira-Spencer complex for complex structure deformations for a compact 
complex surface M has the index 1 /6(7~(M) - 5c2(M)) = 1 /6 (2 I t (M)  + 9x(M)) 
[34]. 

This index is for M = M k, a ruled surface, 6(1 - k), so that HI(Mk, ~ M )  has the 
virtual complex dimension 6 ( k -  1). This dimension will coincide from Theorem 5.1 
with the "complex dimension" of J ~ .  

This phenomenon is fortunately not accidental. 
Let M be a compact surface of pg = 0 (or equivalently b+(M) = 1). Then from 

Theorem 2,3 every type zero anti-self-dual structure '~ E ~ t 0 )  yields the unique 
complex structure J r  (up to diffeomorphisms) such that one has a map 

J : ~  ~ ~M = {complex structures on M}/Di f t~  ~ ~ [J r ] .  

Relative to a fixed complex structure there are two possibilities of conformal structure 
deformations. One is a deformation fixing a complex structure and varying a metric 
and another is a deformation varying a complex structure. 

We postpone investigating in the forthcoming paper how the moduli of complex 
structures affects our moduli. 

Suppose that M is now a ruled surface. 
Since any ruled surface M = M k has r = 0, every anti-self-dual structure is 

conformally flat. ~ )  = 0 because b + = 1. The moduli of "conformally flat" 



Moduli of half conformally flat structures 703 

structures on M k, J ~ M  = . / / ~  ]_[ J/~M), is considered to lie inside the representation 
space ~(Tr l (M);  SO(5, 1)), as explained in Sect. 1. 

Now we are interested in S/~(M ~ the moduli of  type zero conformally flat structures 
on M k. 

Let q E ~ ( M  ~176 Then one has from Theorem 2.3 a representative 9 of  y, a K~ihler 
metric of  zero scalar curvature. From Theorem 2.2 (Mk, 9) is then covered by the 
K~ihler product D 1 • C P I ;  (Mk,9)  = D l x C p 1 / F  for a discrete subgroup F of 
Aut(D 1 • C P  1) = SL(2 ,~)  • PU(2)  acting freely and properly discontinuously. 
Since every a E PU(2)  has a fixed point on C P  1, F is the graph of a homornorphism 
O:F 1 c SL(2, R) ---+ PU(2)  = Aut(CP1), where F 1 is a subgroup isomorphic to 
7rl(Sk) acting on D l freely and properly discontinuously. 

It follows then that every type zero conformally flat structure '~ E ~ ( ~  one- 
to-one corresponds to an appropriate conjugacy class of representation 7q(S k) --~ 
SL(2, I~) • PU(2) .  More precisely, ~ -7~  is exactly the set of  all conjugacy classes 
[~b] containing 05:7r1(S k) ~ SL(2, ~ )  • PU(2)  satisfying that 05 is the composite of 
01 :Tri(Sk) ~ SL(2,1K) and 02: Im(q~l) C SL(2, ~ )  --~ PU(2)  and q51 acts on the disk 
D 1 freely and properly discontinuously. 

Since the homomorphism 052 induces a PU(2)  flat connection on a complex vector 
bundle over the Riemann surface S k = Dl/ Im051;  D 1 x,~ 2 C 2 ~ Z' k, the following 
fibration structure theorem is available. 

Theorem 5.1. The moduli ~/~(~ on a ruled surface M = M k, k > 1 has a structure of  

fibration .~/~~ M) --~ / /~sk  ' the Teichmiiller moduli of  Riemann surfaces, whose fibre over 
a Riemann surface represented by [4)1], 051:7rl (Sk)  ~ SL(2, R) is the moduli of PU(2)  
flat connections on the complex smooth vector bundle induced by ~2 : Im q)l -"* _PU(2). 

From this theorem it is expected that the fibration yields a Riemannian submersion 
with respect to the L2-metric and the Weil-Petersson metric on ~-Tck such that the 

L2-metric restricted to each fibre is the metric introduced in [29]. 
Since SL(2,N) • PU(2)  is immersed in SO(5, 1) as a proper subgroup, 

~(Trt(Z'k); SL(2, ~ )  • PU(2))  and hence dbT(~ is immersed in 5~(7r I (MR); 5 '0(5,  1)). 
Therefore 

Corol la ry  5.2. Any ruled surface admits type negative anti-self-dual structures around 
any type zero anti-self-dual structure. Namely, if . ~ ( ~  M) ~= O, then ,//~M ) is also not 
empty. 

Remark. There is a ruled surface admitting no type zero anti-self-dual conformal 
structure [121. 

(ii) Remark for  twistor spaces 

By the twistor correspondence any anti-self-dual conformal structure 3' on a 4- 
manifold induces a complex structure J.y on the unit sphere bundle U(S? +) over 
M ,  called the twistor space Z = Z M = (U(I2+), J.y) [27]. 

This correspondence induces a canonical map from J/gM tO the moduli 57 z of  
complex structures on Z. This map is an embedding since there is a twistorial 
characterization of complex 3-manifold [8, Theorem 13, 69]. 
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Correspondingly to this we have a homomorphism between the comp]ex (3.5) and 
the Kodaira-Spencer complex of Z (see (3.3) in [21]); (5.10) 

L D 
C ~ ( T M )  > C~176 +, S2-)) ) C~(So(f2+)) 

1 1 + o o o 
C ~ ( T Z )  , C ~ ( ~  ~ |  , C~(S2 ~ | qrz) , C~(S2 ~ | 

which induces the injective homomorphism of the first cohomology groups, the 
"tangent spaces" of J/~M and ~z" 

A conformally flat structure corresponds to a holonomy homomorphism lrj (M) --* 
SO(5, 1). As was pointed out in [4, p.439] the natural homomorphism S0(5 ,  l) --* 
SO(6, C) --~ P S L ( 4 , C )  then defines on the twistor space Z = U(Y2 + ) a projectively 
flat complex structure [25, 33]. 

The twistor space of a conformally flat 4-manifold is in fact represented locally as 
a neighborhood in C P  3 containing a complex line. 

Our investigation of the moduli of conformally flat 4-manifolds yields examples 
of family of projectively flat complex 3-manifolds. 

A projective flat cmpact complex 3-manifold Z M satisfies for Chem numbers 
16c3(Z) = 8/3 c~cz(Z) = c~(Z) = 32x(M) ([33, p. 135] and [27]). 

Appendix 

In this appendix we will show 

Proposition A.L Let 9 be an anti-self-dual co,formal structure. Then the linear map 
C ~ ( S o ( T * M ) )  --+ C~~ h ~-~ (6Wa(h))+ is written as 

(SWg(h)) + = U(h) + + V(h) + , (A.1) 

where U +, V + are the So(g2+)-components of U, V E C~176 2 | f2 z) defined by 

Uijkl  ~- 1 / 2 ( V k V j h  a - V i V j h i k  -- V k V i h j l  + V i V i h j k ) ,  (A.2) 

V~jkt = -- 1/4(Rkj h~ - Rlj hik -- Rei hjl + R~ihjk) , (A.3) 

for h = (h~j) e C~176 

The proof needs a straightforward calculation. For two metrics g and ~ we calculate 
the difference of the Christoffel symbols as 

{j/k} -- {j~k} = 1/2g~t(gzsVjh~ + 9jsVkh~ - gjsV~hSk) (A.4) 

for h -- (h~) E C~ satisfying g(hX,  Y )  = O(X, Y) .  
From this one has 

6{Sk} (h) = 1/Z(Vjh~ + V k h  ~ - V'hjk) ,  
(A.5) i ik hij = d/dtgij(O),  hj = g hk j .  

Applying the chain rule, one gets 

5Rg(h)~kt = Vk(${jit} (h)) - Vt(${j~k} (h)), 



Moduli of half conformally flat structures 705 

and then from (A.5) 

Hence 

5Ra(h)}~ t = 1 / 2 ( V k V t h  ~ - ViVkh}) 

+ 1/2(V~V~h~ - VtVyh~) 

- l / 2 ( V ~ V i h f l  - V l V ~ h j k ) .  (A.6) 

(6Rg(h))iy m -= 1 / 2 ( V k V j h  a - V ~ V j h i k  - V k V i h j t  + VzVihjk) 

+ 1 / 2 ( h ~ R t j k l  + h~R~tm).  (A.7) 

The Weyl conformal tensor W has three parts 

W = R +  R ' +  R '1, 

R'ijkt = -- 1 /2 (g ikRj t  - g~rRy k + Rikgj t  - R a g j k ) ,  (A.8) 

R'~kl = 1/6~(gikgjl  -- gitgjk)" (A.9) 

By calculating SR' and 6 R "  we derive the following formula valid for any metric 
and any h E C ~ ( S 2 ( T * M ) ) .  

Formula A.2. 

~Wg(h)~jkL t = (h~Wt~kt + h~W~tk~) + U~jk~ 

- 1/2(h~R,jk~ + h~R~kl )  

- 1 /2(gikSR~gj t  - gia~SRtkgjt + gitSRtkgjz -- gi t6R~gjk)  

+ 1/6(50)  (gi~gfl -- g~gjk)"  (A. 10) 

Now assume that g is anti-self-dual and h is traceless. Then the So(~2+)-component 
(6Wg(h))+ is 

(SWg(h)) + = U + + V + , 

where V + is the So(~+)-component of the third term V of (A.10), since the first 
term and the last two terms of (A.10) vanish when we take the So(~+)-component. 
Here we characterize the traceless symmetric product So(~ +) as 

Lemma A.3. The traceless symmetric product  So(J2+ ) o f  Y2 + at a point  x is the space 
o f  Ricci  f lat  curvature like tensor defined at x sastisfying the first  Bianchi identity, 
namely 

S o ( a D  = { z  = (z~jk~); g~kZ~kz = 0, Z~kL + Z~k~ + Z~Z~ = 0} .  

We substitute R = W - R '  - R"  into V as 

y~j~t = -1/2(h~W~ + h~W.~) 

t H ht  l:p/t ; 
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and take its S0(/2+)-component. Then 

Vij+~ = -1/4(Rkjhr - Rljh~k - Rkihjt + Rlihjk) + 

from which Proposition A. 1 follows. 

Remark. If g is anti-self-dual and Einstein, then V + = 0, namely (~Wg(h))+ = U +. 
We would like to obtain a formula for the adjoint D* of  D, D* : C~(So(F2+)) --* 

C~(So(T*M)) .  

Proposition A.4. For an anti-self-dual conformal structure "y = [g] D* has the form 

(D*Z)~j = VkV~Ziktj + VtVkZ~klj + R~Z~ktj.  

Proof. D* is defined as 

f (h, D*Z)dva = / ( D h ,  Z)dvg. 
M M 

From Proposition A.1 (Dh, Z) is (Dh, Z)  = (U +, Z)  + (V +, Z). Here 

(g  +, Z)  = (V  k V jhil -- V k Vihj l )  Z ijkl 

and 

(A.11) 

(V +, Z) = hi jRklZ iktj . 

Then the formula (A. 11) is derived from the integration 

f (u , Z)dvg = f h~(VkV~Z ~k~j + V~VkZ~k~J)dvg. 

Remark. This formula is appeared already in [6] as the first variational equation 
D * W  = 0 of the functional ~ ' :  ~M "-'* l~ (see also [15, Lemma 1]). 

As a consequence of  Proposition A.4. 

Corol lary  A.S. Let M be a complex 2-torus or a K3 surface and g be a Riccl flat 
(i.e., type zero) anti-self-dual metric on M.  Then the second cohomology group of the 
complex (3.5) is ~ ~- IR 5. In fact E ai j~ + | ~bf , aij e R, aij = aji, E a i ,  = O, 
span H~. 
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