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Let X be a smooth projective variety and let L be an ample divisor on X. By 
definition some multiple of L is very ample. It is frequently useful to know which 
multiples are very ample. Already for curves one can not give a universal bound; 
the answer depends on the genus. One way to overcome this problem is to ask 
about very ampleness of Kx + mL. In this form a nice and uniform answer emerges: 

If dim X = 1 then Kx + 3L is very ample (easy); 
if dim X = 2 then Kx + 4L is very ample [Reider]. 
In general [Fuj] conjectured that Kx + (dim X + 2)L is very ample. A major 

breakthrough was achieved by [Dem] who proved that 2Kx + 12n"L is very ample 
where n = dim X. His methods involve heavy analysis and are rather intricate. 

[Reid] pointed out that the algebraic methods developed around the cone 
theorem (cf. [CKM, # 9]) can be used to provide some effective estimates, espec- 
ially when Kx = cL for some constant c ~ ~.  Similar ideas were utilised in dimen- 
sion three in a series of papers [Ben 1, 2; Matsuki; Ogu]. 

My attention was turned to this problem by Lazarsfeld who observed (jointly 
with Ein) that several of the results of [Reider] on surfaces can be obtained using 
the ideas of the base point free theorem. Their approach was successfully extended 
to threefolds in [EinLaz] where they show that if dim X = 3 then I K x  + 5LI is base 
point free. Their results are in fact more precise, see especially [ibid, Theorem 1"-1. 

Unfortunately, I was unable to come close to the conjectured bounds. Instead, 
I would like to present an algebraic approach to a Demailly-type result and to 
point out some consequences. 

The algebraic method works for X singular and also for certain non ample line 
bundles. I formulate the most general case; readers interested in smooth varieties 
should just always set A = 0. (See the end of the introduction for some definitions.) 

The characteristic is assumed to be zero throughout. 

1.1 Theorem (Effective base point freeness). Let (X, A) be proper and kit of 
dimension n. Let L be a nef Cartier divisor on X. Assume that aL - (Kx + A ) is nef 
and big for some a > O. 
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Then 

12(n + 2)!(a + n)L 1 is base point free.  

An analog of the conjecture [Fuji says that I(a + n + 1)LI is base point free. Thus 
the main point of (1.1) is the existence of a universal bound rather than the actual 
value of the coefficient. 

If L is ample and X is smooth then Kx + (dimX + 2)L is also ample and 
K x + ( d i m X + 2 ) L - K x  is nef and big. By (t.1) a large multiple of 
Kx + (dim X + 2)L is very ample. Thus (1.1) does not imply the result of Demailly 
mentioned above. However in all applications that I am aware of, they can be used 
interchangeably. 

To go from freeness to very ampleness is rather easy. The following general 
lemma is essentially due to [Wil, 1.1]: 

1.2 Lemma (Very ampleness lemma). Let (X, A ) be klt. Let H be Cartier, ample and 
]HI base point free. Let N be a Cartier divisor such that N - (Kx + A) is nef. Then 
(dim X + 3)H + N is very ample. 

Proof Pick xt,  x2 e X and let S be a general member of I HI containing both points. 
S may be singular, but the relevant vanishings descend from X to S and we can 
apply induction. [] 

Using some results of [Cat] the above estimates yield explicit bounds for the 
number of families of certain varieties. (In fact these applications follow already 
from [Dem].) Earlier finiteness results were.due mostly to [Matsusaka 1,2], 
however they did not give any explicit bound. The present bounds are certainly 
very far from being sharp. Therefore in writing the bounds I tried to make the 
expressions simple, instead of optimising the estimates. 

1.3 Theorem. The number of different irreducible families of n-dimensional smooth 
Fano parieties is at most 

(n + 1) '"*~'' . 

1.4 Theorem. The number of different irreducible families of n-dimensional smooth 
polarized varieties (X, L) with L" = d and Kx" L"- 1 = ~ is at most 

(n"(~ + (n + 21d)) ("+ 1)""*~"(r . 

Proof If L is ample, then using (1.1) and (1.2) we produce a divisor which is very 
ample. Thus we obtain an embedding X --, ~' where we can control the degree of 
the image of X. By generic projection we can always assume that X is embedded 
into •2,+ 1. We can now utilize the following: 

Hllbk.a (F ) be the Hilbert scheme parametrizin9 1.5 Theorem [Cat, 2.24]. Let �9 smooth m 

smooth and irreducible subvarieties of dimension k and deoree d. Then the number of 
irreducible components o r HilbSm~176 "~ 'J k,a t j is bounded by 

(dm + d) a~"+'(m+ 1) "  

In the Fano case we use L = - K x  as our ample divisor. A bound for the 
selfintersection of - K x  is provided in [KoMiMo].  The rest is just substituting 
into the above formulas. 



Effective base point freeness 597 

In the general polarized case we use the divisor D = Kx + (n + 2)L which is 
ample (cf. [Fuj]). [] 

1.6 Remark. Using the results of [Mil, Thorn] and (1.3-4) it is easy to write down 
explicit bounds for the sum of the Betti numbers of n-dimensional smooth Fano 
varieties or of smooth polarized varieties with fixed (d, ~). 

1.7 Notation. 
(1.7.1) The abbreviation "lc" stands for log canonical, and "klt" for Kawamata log 
terminal [Ko et al., 2.13]. Note that klt is called log terminal in [KaMaMa].)  
(1.7.2) A divisor D on a scheme X is called nefif D" C > 0 for every proper curve 
C c X .  
(1.7.3) A divisor D on a proper scheme X is called bi9 if[mD[ gives a birational map 
for m >> 1. Thus ample implies nef and big. 
(1.7.4) Let r be a real number. Lr_]  (or [r]) is the largest integer < r and 
{r) = r - L r_l. L r / is called the integral part of r and {r} the fractional part of r. 
IfD = ~ d~D~ is a linear combination of divisors such that all the D~ are distinct and 
irreducible then define 

L D I = Z L d ~ I D , ,  and { D } = Z { d i } D , .  

(1.7.5) Bs ID[ denotes the base locus of the linear system ID[. 

2. Effective base point freeness 

Aside from the explicit coefficient, (1.1) is just the base point free theorem of [Kaw] 
and [Sho] (cf. [CKM, # 9]). The proof of this result starts with some linear system 
[mDI and at each step it decreases the base locus Bs]mD[ by increasing m. The usual 
method attacks the "largest multiplicity" point of the base locus (suitably meas- 
ured), and therefore the number of necessary steps is unclear. 

Here I develop a variant which attacks the largest dimensional part of Bs[mD [, 
thus we need at most dim X steps to ensure freeness. (See [CKM, #10]  or 
[KaMaMa,  3-1] for the method which I follow closely.) 

2.1 Modified base point freeness method. 
(2.1.1) We are given a kit pair (X, A), a Cartier divisor N, a nef and big Q-divisor 
M and an effective and nef {~-divisor B. Assume that 

N = - K x +  A + B +  M .  

Our aim is to relate the singularities of B to sections of N. 
Let X \  Wbe the largest open set such that (X, A + B) is log canonical. Assume 

that W :# ~ and let Z be an irreducible component of W. 

(2.1.2) Take a log resolution f :  Y--. X (i.e. Y is smooth and all relevant divisors are 
smooth and cross normally). Let 

Kr - f * ( K x  + A) + ~ eiEi, (ei > - 1  by assumption) ; 

f *B  -" ~ biEt ; 

f * M  =- A + ~ p~E, where A is an ample Q-divisor and 0 < Pi ~ 1 . 
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Fo r  any real number  c, 

Kr = f * ( K x  + d + cB) + ~ (ei -- ebb)El. 

We want  to choose the largest value c such that  Kx + 3 + cB is lc at the generic 
point  of  Z. Fo r  technical reasons we change the coefficients a little and set 

c = min { ei + l - pi lZ } bi c f(Ei); b~ > 0 . 

By changing the pi slightly we may  assume that  the min imum is achieved for 
exactly one index. Let  us denote  the corresponding divisor by Eo. 

(2.1.3) Claim. (2.1.3.1) 0 < c < 1; 
(2.1.3.2) f (Eo)  = Z; 
(2.1.3.3) I f  cbi - ei + Pi < 0 then Ei is f-exceptional; 
(2.1.3.4) I f  cb~ - ei + p~ >= 1 and i #- 0 then Z Cf(E~). 

Proof. By assumpt ion  (X, A + B) is not lc at Z, thus c < 1. Therefore (X, cB + A) 
is kit outside W, thus cb, - e, + p~ > 1 implies that  f(E~) c W. Since Z is an 
irreducible componen t  of IV, this shows (2.1.3.2) and (2.1.3.4). 

I f  cb~ - e~ + Pi < 0 then e~ > 0 hence E~ is f-exceptional.  [] 

(2.1.4) We can write 

(2.1.4.1) f * N  = Kr + A + (1 -- c) f*B + ~ (cb~ - ei + p~)E~, and 

(2.1.4.2) ~ t _ c b i - e ~ + p i l E ~ = E o + H " - - H ' ,  

where Eo, H', H" are effective and without  c o m m o n  irreducible components .  By 
(2.1.3.3) and (2.1.3.4) 

(2.1.4.3) H '  is f -except ional  and Z r f ( H  ") .  

(2.1.5) Set N' = f * N  + H' - H" and consider the exact sequence 

(2.1.5.1) 0 ~ (gr(N' - Eo) ~ d~r(N') --* (9~o(N') ~ 0 .  

By construct ion 

(2.1.5.2) N '  - Eo - K r  + A + (1 - e)T*B + ~ {cb~ - ei + p~}E~, 

thus h~(N ' - Eo) = 0 for i > 1. In particular,  

(2.1.5.3) H~ Or(N ' ) )  ~ H~ (geo(N')) is surjective . 

Similarly, 

(2.1.5.4) N'IEo =- KEo + (A + (1 - c)f*B)lEo + Y', { c b , -  e, + p,}E, IEo, 

thus ht(N'lEo) = 0 for i > 1. Therefore  

(2.1.5.5) h~ 6Eo(N')) = Z(6zo(N')) . 

In  mos t  appl icat ions M will be a variable divisor of the form Mj = Mo + jL  where 
Mo is nef and big and  L is nef. I f  L is an actual  line bundle then we get that  

h~ (gEo(N 6 + jL)) = Z(d~ro(N; + jL)) 
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is a polynomial in j for j = 0. Thus it is nonzero for some value of j  unless we are 
very unlucky. This is the point where one usually utilises the nonvanishing 
theorem. Unfortunately, in our case it does not apply because of the presence of H". 

(2.1.6) Assume for the moment that we established somehow that 
hO(Eo, (geo(N')) 4= 0. By (2.1.4) we can lift sections to H~ (9( f*N + H'  - H")). 
Since Eo 95 Supp H", we get a section s e H ~  (9( f*N + H'))  which is not ident- 
ically zero along Eo. 

H~ (gr( f*N + H')) = H~ Ox(N)) since H '  is f-exceptional. Thus s 
descends to a section of (gx(N) which does not vanish along Z =f(Eo) .  [] 

The following is the crucial technical result needed for (1.1): 

2.2. Lemma. Let g: X--* S be a proper and surjective morphism with connected 
fibers. Assume that X is projective, S is normal and (X, A ) is klt  for some Q-divisor d. 
Let D O be an ample Cartier divisor on S and let Ds = mD ~ for some m > O. Let 
D O = g*D ~ and D = g*Ds. Assume that aD o - (Kx + A ) is nef and big for some 
a > O. Assume that IDsl 4: ~ and let Zs  c Bs IDsl be an irreducible component. Let 
k = codim(Zs, S). 

Then, with at most dim Zs exceptions, Zs 9 5 Bs I kDs + (j  + a + 1)0 o I for j >__ O. 

Proof. Pick general Bi ~ I DI and let 

1 
B = ~m Bo + B1 + . . . + Bk . 

(2.2.1) Claim. Notation as above. 
(2.2.1.1) B - X2D~ + kD; 
(2.2.1.2) (X, A + B) is lc outside Bs IDI; 
(2.2.1.3) (X, A + B) is not lc at the generic points of  g-~(Zs).  

Proof. The first part is clear from the construction. If(X, F) is lc and H is a general 
member of a base point free linear system then (X, F + H) is also lc. The general 
choice of the Bi implies the second claim. 

In order to see the third part assume first that X is smooth. Let W c g -  1 (Zs) be 
an irreducible component. Blowing up W we obtain an exceptional divisor E '  
whose discrepancy with respect to (K + A + B) is < - 1 .  In the singular case we 
can use [Ko et al., 18.22]. [] 

We will apply the method of (2.1) with 

N i = kD + (j + a + 1)D ~ 

1 0 
M o = a D  ~  ; and 

M j  = Mo + jD ~ �9 

Instead of choosing Z directly, we concentrate on Zs and set 

c = min {e' + l - Pi lZs ~ gf(F4); b' > O} 
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By changing the p~ slightly we may assume that the minimum is achieved for 
exactly one index. Let us denote the corresponding divisor by Eo. As in (2.1.3.2) and 
(2.1.4.3) we conclude that gf(Eo) = Zs and Zs r g f (H")  where H', H" are defined 
as in (2.1.4.2). 

By (2.1.5) the crucial point is to show that 

H~ Nj) = z(eo,  Nj) = X(Eo, (gf)*(kDs + (j + a + 1)Ds ~ + H ' - - H " I E o )  

is not identically zero in j. 
Let G c E0 be a general fiber of Eo ---, gf(Eo) = Zs c S. Then G c~ H" = f25, 

thus 

N'oIG = f*g*(kDs + (a + 1)Ds ~ + H' - H"tG = H'IG . 

Hence (gf),(N~)) is not the zero sheaf, and 

n~ d)(N~lEo)) = n ~ 1 7 4  (P(D~ | 4:0 f o r j  >> 1. 

Therefore, h~ d)~o(Nj) ) is a nonzero polynomial of degree dim Zs in j  for j  > 0. 
Thus it can vanish for at most dim Zs different values ofj.  

By (2.1) this implies that 

f (Eo)  r BslkO + (j + a + 1)O~ = g - l B s l k O s  + (j + a + 1)Ds~ 

Therefore Zs = gf(Eo) r BslkDs + (j + a + 1)Ds~ This is what we wanted. [] 

(2.2.2) Remark. At first sight the dim Zs exceptions in (2.2) are a small problem. 
However in general we would like to apply (2.2) to all the irreducible components 
of Bs [Dsl simultaneously. Thus if Bs [Dsl has lots of irreducible components, the 
exceptions may pile up and we may not be able to find a coefficient that works for 
every component. 

It is quite likely that the conclusion of (2.2) can be replaced by 

Zs r BslkDs + (j + a + 1)D~ for ]  > d i m Z s .  

This is true if dim Zs < 2 [Reid]. 
The following result shows how to circumvent this problem at the expense of 

increasing the coefficients more. 

2.3 Corollary. Notation as in (2.2). Assume in addition that m > a + dim S and set 
k = codim(Bs]Dsl, S). Then 

dim Bs l(2k + 2)Ds[ < dim Bs I Dsl �9 

Proof Clearly Bs [(2k + 2)Dsl c Bs IDsl. 
Let Zs be a maximal dimensional irreducible component of Bs IDsl. Then there 

is a value 0 < j < dim S such that Zs is not in the base loci of 

[ k D s + ( j + a +  1)D~ and [ k D s + ( 2 m - j - a - 1 ) D ~  

Thus Zs is not in the base locus of 

[kDs + ( j  + a + 1)D ~ + kDs + ( 2 m - j -  a -  1)D~ = [(2k + 2)Ds]. [] 

2.4 Proof of  (1.1). By the usual base point freeness we know that there exists 
a morphism g : X ~ S such that L = g*D g for some Cartier divisor D ~ 
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By vanishing, h~ jL) = z(X, jL) for j  ~ a, thus h~ jL) # 0 f o r j  > a with at 
most dim S exceptions. As in (2.3) this implies that h~ 2(a + n)L) # O. 

(2.3) can be used repeatedly to lower the dimension of Bs ImL[. This way we 
obtain that 

12n+l(n + 1)!(a + n)LI 

is base point free. This is slightly weaker than (1.1) but for the applications (1.4-5) 
this does not matter. The coefficient will be improved in (3.6). [] 

3. Effective nonvanishing 

The aim of this section is to derive a rather weak nonvanishing result in the spirit of 
(2.5.1) which can be used to improve the bound obtained in (2.4). Other conse- 
quences will be discussed in [Kol ,  2]. 

3.1 Definition. Let X be a variety. A subvariety Z c T • X is called a covering 
family of X if Tis irreducible, the second projection Px : Z --} X is dominant and the 
first projection Pr : Z --} T is proper and fiat with irreducible and reduced fibers. 

We will frequently denote a covering family by {Zt} where {Zt: t ~ T} supposed 
to run through all fibers of PT: Z ~ T. While this is somewhat ambiguous, in the 
present situation this will not cause any problems. 

By the countability of Hilbert scheme we know that there are countably many 
divisors Di ~ X such that if Z c X is an irreducible and reduced subvariety such 
that Z r UDi then Z occurs as a fiber in a coveting family. 

A point x e A \UDi  will be referred to as a very general point of X. 

3.2. Theorem. Let g : X ~ S be a surjective morphism, X smooth and projective. Let 
U c S be a dense open set. Let L be a nef and big q-Cartier q-divisor on S, 
N a Cartier divisor on X,  M and A q-divisors on X. Assume that: 

(3.2.1) SuppA is a normal crossing divisor and L_A _] = :ZS ; 
(3.2.2) l f  {Zt} is a covering family then LaimZt'Z, _-> 1; 
(3.2.3) N[ g -  1 (U ) is linearly equivalent to an effective divisor; 
(3.2.4) M is nef and either big on the general fiber of g or numerically trivial on X; 

(3.2.5) N =- Kx + A + M + sg*L for some s > . 

Then h~ N ) #  O. More generally, if Xg is the generic fiber of g then 
H~ N)  --. II~ N IXo) is surjective. 

We will need the following: 

3.3 Theorem [Ko 3, 2.1, 2.2; EsnVie, 1.12, 3.l]. Let g: X ~ S  be a surjective 
morphism, X smooth and projective. Let L be a nef and big q~-Cartier II~-divisor on S, 
N a Cartier divisor on X and A an effective ll)-divisor on X such that t__ .4 __1 = ~ 
and Supp ,4 has normal crossings only. Assume that N ~- Kx  + .4 + g*L. Then 

(3.3.1) Hi(s, Rtg.•x(N))  = O for j > O, i >- 0; 
(3.3.2) Hi(X,  6x(N))  --* Hi(X,  ~)x(N + D)) is injective if g :D -~ S is not dominant. 

3.4 Proof of (3.2). We use induction on dim S. If dim S = 0 then U = S hence we 
are done by (3.2.3). 
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By shrinking U we may assume that g : ( g - l ( U ) ,  A) ~ U is log smooth (i.e. g is 
smooth on g- l (U) ,  on A i n g - l ( U )  for every irreducible A i c A ,  on 
A~ c~ Aj c~ g-a(U)  for every irreducible Ai, Aj ~ A, etc.) 

If dim S > I then pick a very general point x e U. Let B be a q-divisor on S such 
that mBelmLI for some m >> 1 and mult~B > 1 -  en. (From now on g with 
a subscript stands for a very small positive number.) 

Choose a log resolution fs : Ys ~ S and write 

(3.4.1) eLJs*L = A + ~ '  p~F~, A ample, 0 < p~ ,~ 1 . 

(Here the ~ '  is supposed to remind one that the index set of this sum is not the 
same as the index set of subsequent sums without '.) We may assume that the first 
step in constructing the resolution was to blow up x. The corresponding divisor 
will be denoted by F. 

Now consider Y s x s X ~ X .  This is a log resolution of (X ,A  + g 'B)  over 
g- t (U) .  By further blow-ups outside g- I (U)  we can make it into a resolution 

f : Y  " ' Y s x s X  ) X  
(3.4.2) ql l 

Y s - -  Ys. 

Let E~ = q~ c Y be the unique irreducible component of q - l ( F  0 which 
dominates F~mf~l (U) .  For notational simplicity we will denote many other 
divisors on Yby Ej, we drop the '  from the sum notation to indicate this. There will 
be three kinds of divisors denoted by E~: 

(i) q~ these will be called U-divisors; 
(ii) the proper transform of Ai where x e g(Ai); these will be called A-divisors; 

(iii) all the other Ej will have the property that gf(Ej) c S \U.  Such divisors will be 
called negligible. 

With this convention in mind let 

(3.4.3) Kr = f * ( K x  + A ) + ~, e,E~, 

f *g*B  = ~ biEi ; 

e, L f*g*L = q*A + ~, piEi . 

Note that the coefficient p~ for a U-divisor E~ = q~ is the same as the p~ in the 
formula (3.4.1). We can write 

f * N  =- Kr + (s - c - eL)f*g*L + f * M  + q*A + ~ (cb~ - ei + pi)Ei �9 (3.4.4) 

Set 

(3.4.5) c = m i n {  e i +  1 - p i  } bi Ixegf(Ei); bi > 0 . 

IfEj is negligible then x r gf(Ej) and ifEj is a A-divisor then gf(Ej) = S thus bj = 0. 
Therefore the value of c is determined by the coefficients of the U-divisors in (3.4.3). 

By changing the Pi slightly we may assume that the minimum is achieved for 
exactly one index. Let us denote the corresponding divisor by Eo. By looking at the 
divisor q~ we conclude that c = dimS + 8s. Let 

(3.4.6) ~ t... cb~ - ei + Pi ...1E~ = Eo + H "  - H '  , 
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where Eo, H', H" are effective and without common irreducible components. If Ej 
is a A-divisor then bj = 0 and 0 > ej > - 1 ,  thus I._cbj - ej + pi_] = 0. As in 
(2.1.4.3) we get that 

(3.4.7) H '  is f-exceptional and x ~ # f ( H " ) .  

Set N '  = f * N  + H'  - H "  and consider the exact sequence 

(3.4.8) 0 ~ (gr(N' - Eo) --* (9y(N') --* (9~o(N') ~ O. 

By construction 

(3.4.9) N ' I E o  - KEo + ((s  --  c - -  e L ) f * g * L  + f * M  + q * a ) l E o  

+ • {cbi - e, + pi}E, IEo.  

Set 

(3.4.10) X o = E o ,  S o = q ( E o )  and 9 o = q [ E o ,  

= - ( (s  - c - ~ L ) f ~ L  + A)IEo 

No = N ' IEo  , 

Mo = f * M I E o  , 

Ao = ~ { c b l -  el + p , }E i lEo .  

We claim that all the conditions of (3.2) are satisfied by Xo, So, etc. 
(3.2.1) is clear. 

( 1 - - e o ) ( s - c - ~ L ) > ( 1 - - ~ o ) ( s - d i m S - - e L - ~ s ) > ( d i 2 S )  

thus Lo - L is nef hence (3.2.2) also holds. (3.2.4-5) hold by definition. Finally if 
Go c Xo is the generic fiber of go, then N ' I G  = f * N  + H'  - H " I G  = f * N I G  + 
H'I G is effective. 

Thus by induction 

(3.4.11) h~ dTEo(N')) > 0.  

Furthermore 

(3.4.12) N '  - Eo - K y  + (s - c - e t . ) f*g*L + f * M  + q*A 

+ E {cbi - e, + Pi} E , .  

If M is big on the general fiber of g then f * M  + q*A is nef and big, hence 
h~(N ' - Eo) = 0 for i => 1. In particular, 

(3.4.13) n ~  d~r(N')) ~ n ~  t g~o (N ' ) )  

is surjective and we are done. 
If M is numerically trivial then 

H I ( Y ,  ~ ( N '  - Eo)) '*  Hi(Y, ~(N'))  
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is injective by (3.3) since 

(3.4.14) (s - c - e L ) f * g * L  + q*A = q*((s -- c -- eL ) f~ 'L  + A)  

is the pull back of a nef and big divisor f rom Ys and Eo c S u p p q * ( f ~ ' B ) ) .  Thus 
again the morphism (3.4.13) is surjective. []  

3.5 Corollary. Notat ion as in (2.2). Assume in addition that m > a + 1 + ( d i m ~  + 1 )  

and set k = codim(Bs IDsl, S). Then 

dimBs l(k + 1)Ds] < d imBsIDsl  . 

Proof. We need to apply (3.2) instead of (2.3) in the method (2.1). [] 

3,6 P r o o f  o f  (1 .1) .  The argument  is essentially the same as in (2.4). First we apply 
(2.3) until we reach m large enough and then apply (3.5) instead of  (2.3). [ ]  
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