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1 Introduction 

Let C be a compact set with nonempty interior, a body, for short, in the d-dimensional 
Euclidean space E d. A packing with C' is a collection of congruent copies of C with 
mutually disjoint interiors. The (upper) density of a packing .~  is defined by an 
appropriate limit [3, 12] and is, roughly speaking, the portion of the volume of the 
space which is occupied by the members of .~. the packing density 6(C) of C is 
the supremum of the upper densities of all packings with C. One of the principal 
problems in the theory of packing is to determine the packing density of specific 
convex bodies, or, as this goal is out of reach of available methods, to give upper 
bounds for b(C). 

One of the first results in this direction is due to Blichfeldt [2] who derived the 
upper bound 

6(Bj ) _< d + 2 2_d/2 
2 

for the packing density of the unit ball B d in E d. Blichfeldt's result has been 
subsequently improved by several authors [10, 11, 13, 8, 7], the best bound presently 
known being 

O(B d) ~= 2-d'O-599+~ 

established by Kabatjanskii and Levengtein [7]. 
In this paper we point out that even though Blichfeldt's bound for the packing 

density of /3  d has been superseded by now, Blichfeldt's method of proving it can be 
successfully applied to more general cases. In the next section we start by recalling 
the main idea of Blichfeldt's method. 
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2 Blichfeldt gauges 

Let C be a body in E a and suppose that {W~}~l is a collection of isometries such 

that {w,C},~_E is a packing. We associate with C a material body C described by a 
real valued Lebesgue integrable function f (x)  giving the density of mass at the point 
x E E d. The total mass of the body C defined by the density function f (x)  is thus 
given by the integral 

g ~  

I ( f )  = / -- f (x )dx .  
Ed 

We replace each member F~C of the packing by the corresponding material body ~ ,C  
whose density function is f (p~lx) ,  where p~-i denotes the inverse of the isometry 

A ,OO 

~:. We can define the density z3 of the arrangement of the material bodies {~C}~=l 
in E d in almost the same manner as the density of any arrangement of bodies is 
defined (see, e.g., [3, pp. 55-56]). The only modification needed is the use of the 
mass I ( f )  in place of the volume V(C). It is easily seen that the density A is related 
to the (volume) density (5 of the packing {~C}i~=l and the volume of C through the 
equation 

A = 6 I ( f )  
v(c) 

Blichfeldt's idea was to introduce a density function for which the density of 

C a mass yielded by the arrangement of bodies { ~  }~=1 is bounded pointwise. Since the 

contribution of ~ C  to the density of mass at the point x is f ( ~ l x ) ,  the total density 
2 < 2  

of mass at x is ~ f ( ~ X x ) .  We say that f (x)  is a Blichfeldt gauge for the convex 
z= l  

body C E E a, if for any collection { ~ } ~ l  of isometries of E d such that {~C}i~ l  
is a packing, we have 

E f ( ~ l z )  ~ l 

for all x ~ E a. If f (x )  is a Blichfeldt gauge, then, of course, 1 > A. Hence we get 
the following 

Theorem of  Blichfeldt. If  f (x )  is a Blichfeldt gauge for C, then 

~(c) < v(c) 
= I ( f )  

Blichfeldt proved this result only for the case when C is a ball but the proof in the 
general case is straightforward (see [6, p. 353] for a proof for packing with translates 
of C). 

If C possesses some symmetry, then it is natural to consider gauges f which are 
invariant under the group of symmetries of C. In fact, it is easily seen that considering 
gauges more general than those which share the group of symmetry with C cannot 
improve the bound in Blichfeldt's theorem. In particular, we assume that in the case 
of the unit ball the value of f (x)  depends only on the distance Ixl of x from the 
origin. Blichfeldt obtained his bound by using the gauge 

1 -- llxll/2 for Ixl < x/~, 

f~ = O, for Ixl > x/2, 
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and pointed out that with the modified gauge 

f (x)  = { f~ for Ixl ~ 1, 
l - J } ) ( 2  x) for Ix]=<l 

one can slightly improve on that bound, obtaining the following: 

1-1 ~(Bd ) < 2 (X/~)d(1 + bd ) , 

where 

_ 1 1),l+i (1 + 
bd (X/2)d(d + 1) 

A further improvement was achieved by Rankin [10] by means of a very intricate 
gauge, depending on d. However, the fact that each of Blichfeldt's gauges f0 and f is 
independent from d makes them more useful for our purpose, even though Rankin's 
gauge yields a better bound for ball packings. 

For a body C and a positive real number A let AC denote the set consisting of 
the points of the form Ax, x E C. In particular, /~B d is the ball of radius A centered 
at the origin. We observe that if f (x)  is a Blichfeldt gauge for C, then f (x /A)  is a 
Blichfeldt gauge for AC. Let r(C) denote the insphere radius of C. For a positive 
number g =< r(C) let C a denote the inner parallel body of C at distance Q, that is 

C e consists of the points x for which x + L)B d C C. For a body C and a point 
x we denote by d(x, C) the distance from x to a nearest point of C. Let f (x)  be a 
Blichfeldt gauge for the unit ball B d such that the value of f (x)  depends only on ]x I. 
Thus f (x)  = h(Ix]), where h(c0 is a measurable function defined for non-negative 
reals. For a fixed value of ~ _< r(C) we define the function g(x) as 

( >) d(x Q 
g(x) = h 

Suppose that {~, }i~_1 is a collection of i sometries such that {~,C},~_1 is a packing. 
Let x be an arbitrary point in space. Let x i be a point of ~,C_Q = (~ iC)_e  at 
distance d(x,F,C ~) from x, and denote by 7, the translation through the vector 

~?('x~. Further let ~/,r = F,j-,, the composition of ~-i and g~,. We observe that the 
image of the origin under the isometry ~ is x~. Therefore '(;i(pt~ d) is the ball of 
radius g centered at xr As xr c F ,C_  e, it follows by the definition of the inner 

parallel body that ~bi(pB d) C ~r Since the sets {F r  1 constitute a packing, so 
do the balls {O~(pBd)}~l.  Since, furthermore, f (x /p)  is a-Blichfeldt gauge for ~B d, 
we have 

As we observed above, we have ~/~-lx~ = 0. Therefore 

Thus 

f = h = = g( i x ) ,  
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and consequently 

i = l  

Thus we obtained the following 

Theorem.  If h(cO, c~ ~ O, is a real valued function such that h(Ixl) is a Blichfeldt 
gauge for the unit ball, and C is a convex body with insphere radius r(C), then for 
any ~ < r(C) 

/d(z ,  C Q)~ 

is a Blichfeldt gauge,for C. 

This theorem yields reasonably good upper bounds for the packing density of 
convex bodies which are either the outer parallel body of  a convex body of dimension 
lower than d or are obtained as the Cartesian product of a ball and a body of  lower 
dimension. 

3 Applications 

Utilizing the idea of  the previous section, we will find some upper bounds for the 
packing density of  two types of bodies in E d, namely for an outer parallel body 
of a segment (a sausage-like body) and for a cylinder whose base is the unit ball 
B a - l .  In the computations that follow, we will use the Blichfeldt unit-ball gauge 
f (x )  mentioned above. Under this gauge, we denote 

I ( f )  
A d - -  V ( B d  ) 

and we compute that 

2 (~/~)d(1 + bd). 
A d -  d + 2  

In particular, for d = 2, 3, and 4, we get 

A 2 = (29 - 16x/2)/6 = 1 .062097. . .  , 

A 3 = ( 2 5 -  16x/2) /2  = 1 . 1 8 6 2 9 1 . . . ,  

and 
A 4 = (609 - 416x/2) /15 = 1.379143 . . . .  

A. Packing sausages. Let 5 'd be the outer parallel body of radius 1 of  a segment of 

length h in E d. Applying the theorem for K = S d, ~ = 1, the inradius of $/~, and 
the Blichfeldt gauge f (x)  mentioned above we readily get 

while 

Thus 

I(,q) = hAd_I V(B  d-l) + AdV(B d) 

v(S/O = hV(B '~-1 + V(Ba). 

~5(S d) < hV( Bd-l  ) + V(B d) 
= hAa_lV(Bd- l )  + AdV(Bd) 
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In particular, setting d = 3 and d = 4 we get 

h V ( B  2) + V ( B  3) 3h + 4 
~(s~) < 

hA2V(B 2) + A3V(B 3) 3h, A 2 + 4A 3 

and 
~(s4 ) < hV(Bb + V(B 4) 

= h A 3 V ( B  3) + A 4 V ( B  4) 

Setting h = 1 we get: 

6(s~) < 7 
= 3A z + 4 A  3 

and 
8 + 3 7 v  

8h + 47r 

8hA 3 + 37rA 4 

--  0 . 8 8 2 5 6 . . .  

6(S 4) < - 0.77483 . . . .  
= 8A 3 + 37rA 4 

For comparison,  a certain lattice packing of  E 3 with S t is of  density 

77r 
- 0 . 8 0 3 6 . . .  

6x/3 + 1 2 , ~  

and we conjecture it to be the densest. We conjecture the same for the lattice packing 
of E 4 with $14 whose density is 

3 7 r + 8  
rc = 0.6680 . . . .  

2 4 , f 2  + 48 

B. Packing cylinders. Let C a be the cyl inder of radius 1 and height h in E a, more h 
precisely 

. .  x a < l , 0 < x a < h  . Cha = ( x l , x 2 ,  . , x a ) :  , ~ =  = = 

z=l 

We assume tt > 2 to insure that the inradius of Ch ~ is equal to 1. An upper bound  

for 6(C~1~) is obtained by an application of  the theorem, using the modified Blichfeldt  
gauge f ( x )  as described in Sect. 2 and setting ~) = 1. Observe that in this case 
V ( C  d) = h V ( B  d 1) and I(g) = (h - 2 ) A a _ I V ( B  d- l )  + AdV(Bd) ,  which yields 

6(C d) < h V ( B d - I )  
= ( h -  2 ) A d _ I V ( B  d 1) + A d V ( B d  ) " 

Setting d = 3 we get 
h 

4 
(h - 2)A 2 + ]A 3 

which gives a meaningfu l  (smaller than 1) upper bound  only when  h is sufficiently 
large, namely  when 

4 
2A 2 - 5A3 

h > - -  8.73 . . . .  
A 2 - 1 

For d = 4 we get 

e(c 4) :< h 
3 

(h -- 2)A 3 + g'n-A 4 
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which gives a meaningful upper bound when 

3 
2A 3 - ~TrA 4 

h > - -  - 4.01 . . . .  
A 3 - 1 

Of course, one might ask if it is true that 6(C d) = 6(B a-l) for all d and all h, but 
the answer is not known for any d > 3, not even for a single value of  h. 

Let C a denote the cylinder of radius 1 in E a infinite in both directions. C a 
is not compact, but its packing density ~5(C d )  can be defined by an appropriate 
limit in a similar way as the packing density of compact sets. It is easily seen that 
~5(C d )  = lira 6(S~) = lira b(Cd). As h ~ oo, the upper bound presented here for 

h ~ x ~  h--~x~ 
each of 6(S~) and 6(C~) approaches 1/Ad_ j, which is the Blichfeldt upper bound for 
6(Ba- 1). Hence 

(5(C~) < 1/Aa_ , . 

The conjecture that 
~(c~) = ~(B a-~) 

(for all d) has been confirmed for d - 3 by Bezdek and Kuperberg [1]. 

4 Remarks 

In high dimensions. Let M(d, ~) be the maximum number of  points on the (d 1)- 
dimensional spherical space S d 1, the boundary of B d, all of  whose mutual angular 
(geodesic) distances are greater than or equal to ~.  Equivalently, M(d,~) is the 
maximum number of  points in E ~ such that the angle spanned by any two points at 
the origin is at least ~. 

For dimensions greater than about 50, better hounds for the packing density of 
balls can be obtained using the observation of  Levengtein [9, p. 108], which states 
that for 1 < A < 2, the function 

(M(d ,  arccos(1 - 2/A2))) - I  for Ixl < A, 
fd(x)= 0 for Ixl ~ A  

is a Blichfeldt gauge for B 't. 
In order to see this we have to show that for any packing of  unit balls in E a there 

are at most M(d, arccos(l  - 2/A2)) centers of  balls at a distance of A or less (A < 2) 
from a given point x r E a. Indeed, the distance between any two centers is at least 
2, and an easy computation shows that the angle at x spanned by a segment of length 
greater than or equal to 2 whose ends are within A from x is at least arccos(1 - 2 / A 2 ) .  

Using the Blichfeldt gauge fa(x) we obtain 

6(B d) <= A-aM(d, arccos(1 - 2/A2)),  

for 1 < A < 2, or, equivalently, 

6(B d) <= (sin ~/2)dM(d, ~) 
71" for ~ < ~ < T r .  

For large values of  d, the best known upper bound for M(d, ~) is 

M(d, ~) <= (sin ~/2)-d2 - d  0.599+o(d) ():) < 630), 
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due to KabatjanskiT and Levengtein [7]. This yields the inequal i ty  

~5(Bd) ~ 2 - d .  0.599+o(d) 

ment ioned  in the introduction. Using our theorem we obtain the same asymptotic  
upper bound for the packing density of  infinite cyl inders  in Ed+ l :  

(~(Coo, d+l ) <, 2-d.O.599+o(d) 

Multiple packings. A col lect ion of  bodies is cal led a k-fold packing if  each point of  
the space belongs to the interior of  at most  k bodies. The k-foldpacking density ~A'(C) 
of  C is defined as the supremum of  the upper densities of  all k-fold  packings with 
congruent  copies of  C.  Bl ichfe ld t ' s  original  idea can be extended in a straightforward 
manner  to obtain upper bounds for 6k(C).  Few [4, 5] obtained upper  bounds for 6k(B d) 
in this very way. Just as well  as the theorem of Blichfeldt ,  our  theorem can be readily 
genera l ized for the case of  mult iple  packings. Using F e w ' s  results, the density bounds 
of  Sect. 3 can be extended to mult iple  packings of  sausages and cylinders.  
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