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1 Introduction

In this paper we continue the study of quasi-states and quasi-measures initiated in
[1].

Throughout X will denote a compact Hausdorff space and A = C(X) is the
space of real-valued continuous functions on X. For a € A we let A(a) denote the
smallest uniformly closed subalgebra of A containing a@ and 1. A function p: A - R
satisfying p(1) = 1, p(a) = 0 if a = 0 and such that p is linear on A(a) foreachae A
is called a quasi-state.

Let € denote the collection of closed subsets of X, let ¢ denote the collection of
open subsets of X and put o = ¢ U 0. A real-valued, non-negative function y on
o/ is called a quasi-measure in X if the following conditions are satisfied:

(1) w(K)+ u(X\K) = p(X); Ke?¥

(2 Ky € Ky = u(Ky) £ u(K,); K, K, €€

B) KinKy= & = uK;UK,y)=uK,)+ uK,);K{,K, €%
(4 u(U)=sup{uK):K c U;Ke¥};Uecd.

In [1] we established a 1-1 correspondance between quasi-measures and
quasi-states (Theorem 4.1). We also showed that non-linear quasi-states really exist
by exhibiting a quasi-measure which is not (the restriction of) a regular Borel-
measure [1, Proposition 6.1]. In [2] and [6] more general procedures for the
construction of quasi-measures are discussed. A quasi-measure is called extremal if
it only takes the values 0 and 1. This paper is devoted to a close study of the
properties of extremal quasi-measures and their corresponding quasi-states, which
are called simple. The set of all quasi-states is a convex set denoted by Q, which is
compact in the topology of pointwise convergence on A. The set E of simple
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quasi-states is a proper subset of the set Q. of extreme points in Q. The crucial
property, however, is that a quasi-state is simple if and only if it is multiplicative on
A(a) for each a e A. This enables us to show that E is closed in Q and therefore is
a compact Hausdorff space. In turn this makes it possible to establish a “non-linear
Gelfand-transform” ¥ of A into C(E) which is discussed in Sect. 4 of the present
paper. This transform enables us to show that each quasi-state p in the closed
convex hull of E may be factored as p = p o ¥, where p is an ordinary linear state on
C(E). In general this factorization is non-unique, as shown in an example towards
the end of the last section. This non-uniqueness reflects that the order-structure of
the positive cone generated by Q generally is quite complicated, and is closely
bound up with the topological properties of the space X. These questions will be
pursued in another paper. Our notation follows that of [1], where we also refer the
reader for further background.

2 Pure quasi-states and extremal quasi-measures

A quasi-state p is pure if 0 < p’ < p for any positive quasi-linear functional p’ on
A implies that p’ = rp; 0 < r £ 1,r € R. In [3, Proposition 2.2] it was proved that
a quasi-state is pure if and only if it is an extreme point of Q. For brevity let us say
that a quasi-state is simple if its restriction to any singly generated subalgebra A (a)
is multiplicative. In the linear case, ie. if p is a pure state on A, then p is
multiplicative on A and a fortiori simple. In our situation, if p is a pure quasi-state
on A, it is therefore natural to ask whether p is simple. We shalil provide an example
towards the end of this section which shows that this is generally not so. We first
want to characterize the simple quasi-states and their corresponding quasi-
measures.

Let A’ denote the algebra of all complex-valued continuous functions on X.
A singly generated subalgebra of A’ is a closed subalgebra generated by 1 and
a single real-valued function a e A’. (We regard A as contained in A’.) We denote
this subalgebra by A’(a), and we clearly have A'(a) = {b + ic:b,ce A(a)}. If p is
a quasi-state on A we define p’ on A’ by p'(¢) = pla) + ip(b), where ¢ = a + ib;
a, b € A is the decomposition of an element ¢ € A’ into its real and imaginary parts.

Theorem 2.1. Let p be a quasi-state on A. The following statements are equivalent:

(1) p is simple.

(2) p'(c) # Oif cis an invertible element of A’ belonging to some singly generated
subalgebra.

(3) p'(c) e Spc for all c € A’ belonging to some singly generated subalgebra.

(4) If a,b € A belong to the same singly generated subalgebra of A, and satisfy
p(@) = p(b) = 0, then o™ "({0}) " b~ ({0}) + .

(5) If a,be A belong to the same singly generated subalgebra of A, then
a ' ({p@}) N b~ ({p)}) + .

Moreover, each of these conditions imply that p is pure.

Proof. (5) = (1). Let ae A be arbitrary, and let y, be the probability measure in
Sp a corresponding to the state ¢ — p(¢(a)) on C(Sp a) (cf. [1, Theorem 4.1]). To
show that p is simple it suffices to show that p, is a point-measure. Suppose that
this is not the case. Then there are functions 0 < ¢, ¥ € C(Sp aj such that ¢-yy =0
and p(¢(a)) = p(¥(a)) = 1. However, if (5) holds there must then be an x € X such
that ¢(a(x)) = ¥(a(x)) = 1. Since ¢ - ¥ = 0 this is impossible. The assertion follows.
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(4) = (5). Suppose g, b belong to the same singly generated subalgebra A(c) of
A and that p(a) = r, p(b) =s. Then @ =rl —aand b’ = sl — b belong to A(c) and
satisfy p(a'} = p(b’) = 0. Assuming (4) there is an x € X such that a’(x) = b'(x) = 0.
But then a(x) = p(a), b(x) = p(b) which proves (5).

(1) = (4). Suppose a, b belong to A(c) for some ¢ € A and that p(a) = p(b) = 0. If
a '({0}) n b7 ({0}) = J thereis a real number r > O such that a*> + b*> = r,and
consequently p(a® + b%) = r. However, if p is multiplicative on A(c) it follows that
p(a® + b*) = 0, so we have a contradiction. Therefore (1) = (4).

The equivalences (3) < (5) and (2) < (4) are almost immediate, and are left to
the reader. We finally show that if p is simple then it is also pure. Let ac A be
arbitrary. If p is multiplicative on A{a) then p|A(a) is pure. Now let 0 < p' < p,
r=p'(1). For all b€ A(a) we must have p’(b) = kp(b) for some k € [0, 1]. Now
leA(a@sor=p'(1})=kp(l) = k. Hence p’(a} = rp(a) = p' = rp since a was arbit-
rary. The proof is complete. O

Remark. The implication (2) = (1) will also follow from the Gleason-Kahane-
Zelazko theorem (cf. Theorem 10.9 in [8]) applied to A(a).

A quasi-measure is extremal if it only takes the values 0 and 1. To obtain
a similar characterization of extremal quasi-measures we need some preliminary
resuits.

Let I be a directed index set. A family of set {A;};.; is increasing if
i<j=A; € A;,and we write 4; T Aif A = | JA;. The family {4}, is decreasing
ifi<j= A, 2 A;, and we write 4; | A if A= (A,

Proposition 2.1. Let u be a quasi-measure in X.
(a) For any increasing family of open sets, if U; T U then u(U;) T p(U).
(by For any decreasing family of closed sets, if K; | K then u(K;) | u(K).

Proof. By property (1) in the definition of a quasi-measure it suffices to prove (a).
With this in mind, first observe that w(U;) < p(U) for all iel, so that
lim;; u(U;) = sup p(U;) exists and is < p(U). Let ¢ > 0 be arbitrary. By (4) in
the definition of a quasi-measure there is a compact set K € U such that
1(K) > p(U) — & Since U = | JU;, K is compact and the {U,} increasing, there is
a U; 2 K. But then u(U;) > u(U) — ¢ and (a) follows. The proof is complete. [

Corollary 2.1. For any countable family of open, disjoint sets {U,},n=1,2,... we
have

u(@ Un>= ‘;M(Un)-

Remark 2.1. Property (b) of Proposition 2.1 means that any quasi-measure is
a capacity (cf. [4]), when restricted to 7.

Now let #(X) be a quasi-measure in X satisfying (X} = 1. Employing the
notation of [1], for any a€ A:

Ké={x:a(x)2a};a(@=uKi);aeR.
U, is the Borel-measure in R with compact support given by
pa ([o, B)) = d(o) — 4(B)
[1, Sect. 3].
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Lemma 2.1. Let u be a quasi-measure in X satisfying u(X) = 1. For any open or
closed subset D of R we have, for all ae A:

pa(D) = u(a™ ' (D)) . 2.1)

Proof. 1t suffices to establish (2.2) for an arbitrary open subset D of IR. Any such set
may be written as a countably infinite (or finite) disjoint union of open intervals. It
is therefore, by Corollary 2.1 enough to show that (2.1) holds for open intervals. Let
(o, B) be an arbitrary open interval and let «, | o so that [«,, ) 1 («, )

,Ll,,((OC, ﬁ) = lim ﬂa([am ,B)) = lim d((xn) - &(ﬁ)

n—w n—+ o

=a(w) — a(f) = u(Vy) — m(Kg) = u(Vi — K5) = pla™ (o, B)) .
Here
ae) = u(Ve);,  Vi={xa(x) > o}

and we have also used Proposition 2.1(c} and Proposition 3.1 of [1]. The proof is
complete.

Theorem 2.2. Let u be a quasi-measure in X satisfying u(X) = 1. The following
statements are equivalent:

(6) u is extremal.

(7) For each ac A, range 4 < {0, 1}.

(8) For each a€ A, y, is a point-measure of mass 1 in Sp a.

(9) For each aeA there is exactly one point ogeSpa such that
u(aHag)) = 1.

(10) For each a € A there is exactly one point oy € R where d is discontinuous,

2o €Spa, d)=1ifa S ag, da) =0ifa > ag.

Proof. (6) = (7) by the definition of d. (7) = (10) by Proposition 3.1 in [1], and by
the same proposition we also get that (10) = (9). Using Lemma 2.1 above we see
that (9) = (8), y, is the point-measure with mass 1 at a4 € Sp a. It remains to prove
(8) = (6). If (8) is true then it follows from Lemma 2.1 that for all open or closed
subsets D of R we have u(a'(D))e {0, 1} for all ae A. Let K be an arbitrary
compact subset of X and let ¢ > 0 be arbitrary. By Proposition 2.1(d) in [1] there is
an open set U = K such that u(U) < u(K) + &. Choose a € A such that K <a< U
and let C={x:a(x)=1}. Then K = C < U, such that if u(K)>0, then
O<pC)=pl@a*{1})=1=pu(U)=1=u(K)>1—¢ which implies that
#(K) =1 since ¢ > 0 was arbitrary. The proof is complete ]

In [1] we established that there is a 1-1 correspondance between the quasi-

states on A = C(X) and the normalized quasi-measures on X. If p corresponds to
u, then for each a € A and all ¢ € C(Sp a) we have

p(¢@) = | ¢(A)du.(4) (2.2)

Spa
(Theorem 4.1 in [1]). Hence, if u is extremal so that u, is concentrated at a point
oo € Spa then (2.2) yields
p(@@) =) (peC(Spa). (2.3)

Since ¢ — ¢(a) is an algebra-isomorphism of C(Sp a) onto A(a) it follows that
plA(a) is multiplicative. Conversely, if p is simple so that p|A(a) is multiplicative,
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then p, : ¢ - p(¢(a)) is a multiplicative linear functional on C(Sp a). By Theorem
4.1 in [1] p, is the measure associated with p, and it is therefore concentrated in
a point a,. This establishes the equivalence of (1) in Theorem 2.1 and (8) in
Theorem 2.2. We have proved:

Theorem 2.3. A quasi-state p on A is simple if and only if the corresponding
quasi-measure p on X is extremal. Moreover p, is the point-measure of mass 1 located
at the point p(a) e Sp a.

We now return to the question when a pure quasi-state is also simple. The next
result is in the positive direction:

Lemma 2.2. Let p be a pure quasi-state on A. Then p(e) € {0, 1} for any idempotent
ecA.

Proof. Let e + 0 be an idempotent in A, and define p'(a) = p(ae); a € A. We claim
that p’ is a positive quasi-linear functional on A. Let a € A be arbitrary. We must
show that p’ is additive on A(a). Let E = {x € X: e(x) = 1} and take an arbitrary
function fe C(IR). Then

fla(x)) if xeE
f(0) if x¢E

so that f(ae) =f(a)e + f(0)(1 —e). It therefore follows from the additivity
of quasi-states on orthogonal elements (cf. Lemma 3.3 in [1]) that

p(f(ae) = p(f(@)e) +f(0)p(1 —e), or
p'(f(@) = p(flae) —f(O)p(1 —e). (2.4)

Now let b =f(a), ¢c=gl(a);, f,ge C(R), be arbitrary elements of A(a). Then
b+ ¢ = (f+ g)(a) so repeated use of (2.4) yields:

p'(b+c)=p((f+ g)ae) —(f+g)0)p(l —e)
= p(f(ae) + g(ae) — (f(0) + g(0)p(1 —¢)
= p(f(ae)) + p(g(ae)) —fO)p(1 —e) — g(0)p(1 —e)
=p'(b) + p'(c)

since p is linear on A(ae). This shows that p’ is additive on A(a). It is clearly
positive, for if a = 0 then ae = 0; moreover p’(ra) = p(rae) = rp’(a) for any r e R,
so p’ is a positive quasi-linear functional on A.

If a = 0 then ae < aso p’(a) = p(ae) < p(a) (since p is monotone, Lemma 4.1(b)
in [1]). Hence 0 < p' < p and consequently p' = rp for some r € [0, 1] since p is
pure. p'(1) = p(e) =r. On the other hand p'(1 — e) = p((1l — e)e) =0 so that
0=rp(1 —e)=r(1 —r)=re{0, 1} which proves the assertion. O

f(ae)(x) = f(a(x)e(x)) = {

As a consequence of this result one may show that if A contains the spectral
resolution of each of its elements, then each pure quasi-state is simple. To be
precise, let a € A be arbitrary and assume that the sets K, = {x € X: a(x) = «} are
open as well as closed for all « € R. The characteristic functions e, of these sets are
then idempotents in A. If p is a quasi-state and u is the corresponding quasi-
measure we have p(e,) = u(K,) = d(x). Therefore, if p is pure it follows from
Lemma 2.2 above and Theorem 2.2.(7) that u is extremal, and consequently that
p is simple, by Theorem 2.3. At this point it must be remarked that the assumption
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on A implies that X will have a basis for the topology consisting of open and closed
sets, and X is therefore totally disconnected. But then we know that each quasi-
state is in fact linear, so the problem disappears and the apparent affirmative result
tells us nothing new. We shall instead provide an example of a pure quasi-state
which is not simple. We will do this by constructing a quasi-measure g in X = S?
such that Sp g = {0, 3, 1} so that g is not extremal, but its corresponding quasi-
state is pure.

Example 2.1. Let X = S? and let P = {p,,...,ps} S X be a set of five distinct
points in X. For any set D = X we let # D denote the number of points in P » D.
A subset D of X is co-connected if X\ D is connected. D is solid if it is connected and
co-connected. The family of all solid, closed (resp. open) subsets of X is denoted by
b, (resp. O,). Let of ; = €, U O, and make the following definition: For 4 € .o/ let

0 if #4=0or 1
p(A)y=1{% if #4=2or 3
1 if #A=4or5.

The main problem is to extend p to a quasi-measure in X. We sketch the argument.
We first extend p to the family of all closed, connected sets €, as follows: If C is
closed and connected, its complement X\ C is the countable disjoint union of its
connected components V;,i = 1,2, ... Each set V; is open and belongs to ¢;. We
may therefore define u(C) = 1 — £ u(¥;). Next, let €, denote the family of closed
subsets of X which have only finitely many connected components. Each set
K belonging to ¥, may be written uniquely as a finite disjoint union
U{Ci, k=1,2,...,n} with C, € %,. We define u(K) = = u(C,). One may now
verify (somewhat laboriously) that u so defined on %, has all the properties of
a quasi-measure. The extension theorem of [ 1, (Theorem 6.1)] may now be applied
to obtain a unique extension of y to the family &/ of all open or closed sets in X. We
want to show that the quasi-state corresponding to u is pure. So let us assume that
there exist two quasi-measures y; and g, in X such that u, (X) = p,(X) = 1, and

p=%p +3u,. (1)

We are going to show that p; = u,. For this, it will suffice to show that u; and u,
coincide on %, because of the uniqueness property of the extension process
described above. First observe, however, that if for any closed set K we have
u(K) =0, then u;(K)= pup(K)=0, and if p(K) =1, then u;(K)= pu,(K)= 1.
It therefore only remains to verify that if #C=2 or 3 for Ce¥,, then
#1(C) = 2 (C) = 4.

Also, the case # C = 3 will follow if we can show that this is true when # C = 2.
For if # C = 3 then # (X\C) = 2, and X\ C is open and connected and therefore
contains a simple path C' connecting two of the points in P. C'€ ¥, and
CnC =@ sou(CuCC')=1. Hence,if 4;(C') =%, then i(C) =1 — u,(C') =%
fori=1,2.

Let us now assume specifically that C; € ¢, and that C; n P = {py, p2}. X\C;
is open and connected so there are simple paths in it; C3 connecting p; with p,, and
C,4 connecting p, with ps. We next choose simple paths Cs and C, connecting
ps with p; and p, with p; respectively, such that C3;nCs=Csn C,

=C;nCy= . By construction u(C;)=4% for j=1,...,5 so that if
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C;n Cy = ¢, then u(C; u C;) = 1. Hence we have
w(C) + m(C) =1 C;n Co= &, i=12. )
Now suppose u,(Cy) = a; a € [0, 1]. By (2) we get

p1(Cs) = (Co)=1—a.
But then, again by (2) we must have

p1(Cs) = u(Cy) = «

Since also C, N C5 & this implies that 20 =1, or « =4. It follows that
#2(C1) =%, and since Cy was an arbitrary set in %, satisfying # C, = 2, we are
ﬁnished.

Remark 2.2. The construction of a quasi-measure utilized above is a particular
case of a general construction theorem, the proof of which may be found in [2].

3 Projective limits of compact spaces and simple quasi-states

To begin with in this section, let A just be a partially ordered set, not necessarily
directed, and let {X,:a € A} be a family of compact Hausdorff spaces. We assume
that if ¢ > b then there is a surjective continuous map f,,: X, — X, such that

Joo = 1dxas fp o foa =S fa>b>c.
Let @ denote the projective limit of this system, i.e.:

acA

= {p e [ Xaifoulp(a) = p(b)ifazb} :

We equip the product of the X, with the product topology, making it into
a compact Hausdorff space. By its definition g is a closed subset, hence compact.
We shall give an interpretation of g in terms of simple quasi-states when A is taken
to be C(X). In this situation we introduce a partial ordering:

a>bifA(a) 2 A(b). 3.1)

For any ae A let X, = Spa. Then a > b if and only if b e A(a), which by the
Gelfand-theory is equivalent to the statement that there is a (unique) continuous
function f of X, onto X, such that b =fca. We write f=f,, if a>b. fy, is
a homeomorphism if a > b and b > g, i.e. if A(a) = A(b). This makes { X,; fb,,} into
a projective system of compact Hausdorff spaces, and we may form its projective
limit g as above.

Let E denote the set of simple quasi-states, equipped with the relative topology
from Q. By definition it easily follows that E is closed in @ and is therefore compact.

Theorem 3.1. @ coincides with the space E and contains X as a closed imbedded
subspace.

Proof. We first imbed X in p. For xe X define p,: A — () X, by p.(a) = a(x);
acA. Ifa>bsob=f,°athen p.(b) = b(x) = fys(a(x)) = fo.(px (b)) which shows
that p, € . The map i: x — p, of X into g is clearly injective since A distinguishes
points. It is also continuous, and is therefore (by compactness of X) a homeomor-
phism of X onto its image i(X) in .
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We next show why the spaces E and @ coincide. If p € E then p(a) € X, for all
a € A (Theorem 2.1(5)). Moreover, p|A(a) is just evaluation at the point p(a) via the
Gelfand-transform ¢ — ¢ e a of C(X,) onto A(a). Le. p(¢(a)) = ¢(p(a)) (Theorem
2.3). So, if a > b then p(b) = p( fpa(a)) = fra(p(a)) which shows that p € p.

Conversely, let p be an element of @. Then p(a)e X, for each ac A. In
particular 1€ A, X; =1(X)={1} so p(1)=1. If a 20 then X, = [0, o) so
p(a) = 0. Finally, if b € A(a) then b = f,°a and p(b) = f.(p(a)). Hence p|Af(a) is
just evaluation at the point p(a) via the Gelfand-transform ¢ — ¢(a). It follows
that p is a multiplicative linear functional on A(a) i.e. is simple. That the topologies
of E and g are the same is obvious. The proof is complete.

4 The non-linear Gelfand-transform

In this section we introduce a “non-linear Gelfand-transform” ¥ of A into C(E).
We utilize this transform to show that each representable (to be defined below)
quasi-state may be factored by ¥ and an ordinary (linear) state on C(E).

Define, for a € A the function a™ on E by a”(p) = p(a); p € E. By definition a” is
continuous on E. The map ¥:a — a~ of C(X) into C(E) is in general non-linear,
for if p € E\i(X), then for some a,be A we have p(a + b) + pla) + p(b) which
means that (a + b)(p) == a”(p) + b"(p). ¥ is therefore called the non-linear
Gelfand-transform on A. We list some properties of ¥ which will be needed later on,
proving them as we go along:

M) a (px) = px(a) = a(x); x € X.
Hence a” coincides with the usual Gelfand-transform on i(X), i.e. a”|i(X) = 4.
@ az0=>%@z=0
(i) ¥ (0)=0; ¥(1,) = 1g
(v)agb=¥Y@ £ V(b),abeA.
This follows from Lemma 4.1 of [1].
() 16" lx = sup{lp(a)l:peE} = lall
and more generally
(Vi) @ — b7l =1lla—blle;abeA.

It suffices to prove (vi). By Lemma 4.1 of [1] we have |p(a) — p(b)| £ |a — bl
for all pe E. Hence |a”— b™||, £ [|a — bl . On the other hand there is x e X
such that [[a —b|, = (@ — b)(x)| = |p(a) — ps(b)| < [la” — b7|,. Equality fol-
lows. We summarize in

Proposition4.1. ¥: A — C(E)is a positive, order-preserving and isometric map with
a closed range B = W(A). For any a € A ¥ is an algebra-isomorphism of A (a) onto
A(a”).

Proof. Since ¥ is an isometry and A is complete it follows that B = W(A) is
closed in C(E). Let ae A be arbitrary. For any ¢ e C(Spa) we then have
¢(ay(p) = p(¢p(a) = ¢(p(a)) = ¢(a"(p)), so that ¢(a)” = ¢(a”). By Theorem 2.1 we
know that Spa™= Spa, and it follows that ¥ is an algebra-isomorphism of A(a)
onto A(a”). The proof is complete.

Let us say that a quasi-state is representable if it belongs to the closed convex
hull of E in Q. Then we have:
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Proposition 4.2. Let ¥: A — C(E) be as above. The following are equivalent:
(1) ¥ is surjective.
(2} iX)=E.
(3) Each representable quasi-state on A is linear.
4) ¥ is linear.
(5) Y(A) is a linear subspace of C(E).

Proof. (1) = (2). If i(X') + E there is a function 0 + h e C(E) which vanishes on
i(X). Assuming h = a~ for some a € A we get a(x) = p,(a) = a™(p,) = h(p,) = Ofor
all x € X. Hence a = 0, but then & = 0, a contradiction.

(2) = (3). This is immediate.

(3) = (4) and (4) = (5) are obvious.

(5) = (1). Assuming (5) we immediately obtain that B = ¥(A) is a closed linear
subspace of C(E) which contains 1 and separates points of E. Therefore, by the
Stone-Weierstrass theorem it suffices to show that B is an algebra for (1) to be true.
Letf,g € B. Since fg = 1/4[(f + g)* — (f — ¢)*] and B contains squares the asser-
tion follows. The proof is complete. |

Now let p denote a state on C(E), and define p(a) = p(¥(a)); a € A. By
Proposition 4.1 it is immediately clear that p is a quasi-state on A. Let R denote the
set of representable quasi-states on A, i.e. R is the closed convex hull of E in Q. It
would be nice to have an intrinsic characterization of the elements of R. Presently,
however, this is what we can say:

Theorem 4.1. Let p be a quasi-state on A. The following statements are equivalent:
(1) peR.
(2) There is a probability-measure m on E such that

p(a) = [o(@)dm(o); acA.

E

(3) There is a state p on C(E) such that
p=p° U (41)

Proof. Let A* be the real linear space generated by R, and equip it with the
topology of pointwise convergence on elements of A. We refer to this topology as
the w*-topology on A* even if the elements of A# are not linear on A. Let
H denote the linear space of w*-continuous linear functionals on A*. There is
a natural injection P’ of A into H given by ¥'(a)(p) = p(a), p € A*. By a standard
result the linear span of ¥'(A) equals H, so the o(A*, H)-topology on A#
coincides with the w*-topology. E is compact, and R, its closed convex hull, is
compact since both sets are closed subsets of Q. Therefore, if p € R it follows by
another standard result (cf. Theorem 3.28 in [8]) that (2) holds. Next, if (2) holds, let
p denote the state on C(E) corresponding to m, i.e.

p(f) = [f(o)dm(o); fe C(E).
E
For f= ¥(a) we therefore get

p(P() = [ a(0)dm(c) = [ o(a)dm(o) = p(a)

E
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which establishes (4.1). Finally, if (3} is true, let m be the probability measure in
E corresponding to p. Reasoning backwards we see that (2) is true, which then in
turn implies (1) by the theorem quoted above. The proof is complete. O

The question of uniqueness of the above factorization will be discussed towards
the end of the final section.

5 The space of extremal quasi-measures

In this section we introduce a set-transform corresponding to the transform ¥ of
the last section. In the next section this new transform will allow us to obtain
a factorization of quasi-measures by ordinary measures.

It will also enable us to give an alternative description of the topology of
E which will be useful later on. Let X * denote the set of extremal quasi-measures in
X. (Of course, by Theorem 2.3 we know that we may identify X * with E, but for the
moment it is practical to distinguish between the two).

For Ae o/ let

A*={peX*: u(A) =1} = ¥*(4).
The map ¥P*:of —» Z(X*) has the following properties:

i) Z*=g; ¥*X)=X*

(i) A € B= A* < B*

For x € X let j(x) = p, = the point-measure of mass one at {x}. With this notation
we have

(i) 4* " j(X)=j(A);Ae o

(iv AnB= g = A*nB*= (§;4,Be o

(V) (X\A)*=X*\A*; Aed.

Indeed, pe (X\AY* = u(X\A)=1< p(A) =0 u¢ A* < pec X*\A4*

(vi) A &= B= A* & B*;A,Be «.

For if A #+ B then there is x € A\B (or conversely) = p, € A¥*\B* = A* = B*

(vii) Suppose A, Be & and A U Be &/. Then

(a) (4 U B)* 2 A* U B*

by AuB*=A*UB*ifAnB= (J.

(a) is obvious and (b) foliows from Proposition 2.1(c}) in [1].

(viii) Suppose A, Be o/ and A n Be &«

(a) (4 n B)* < A* N B*

(b) (AnBy}*=A*nB*ifAuB=2X.

(a) is obvious and (b) may be deduced from (v) and (vii) (b} taking comple-
ments. Equality in (vii)(a) and (viii)(a) does not generally hold. We may have
u(A) = u(B)=0, while uy(4 v B)= 1.

Let o/ * = €* U O* where O* (resp. ¥*) is the family of open (resp. closed)
subsets of X* with respect to the topology it inherits from E. We shall see that
Y* (o) < of*, but first we need to make the connection between E and X * more
explicit. If p € E and p is the corresponding element of X* then, for K € €

uKy=1<plag=1foralla>K;aeA. 5.1
Conversely, if u is given, then for a € A, p(a) is the unique real number such that:

pa tp@)=1. (5.2)
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(The last statement follows from Theorem 2.2 and Theorem 2.3.)

Let P: E - X* denote this identification map. Transfering the topology from
E to X* then makes X * into a compact Hausdorff space, containing j(X) = Pi(X)
as a closed subspace.

Lemma 5.1. P*(of) < o *.

Proof. By (v) above it suffices to show that if K < X is closed, then K* is closed in
X*, ie. that P7'(K*) is closed in E. By (5.1) we get that

P Y (K*)={peE:pla)=1;Va>K;acA}= () {peE:a(p)=1}.
a>K

Since a” is continuous on E the assertion follows. |
Let D be an open or closed subset of R and let a € A be arbitrary.
Lemma 5.2. {a”'(D)}* = P(a" "' (D).

Proof. By Lemma 22 we have pu,(D)=pu(a”'(D)). Hence, if u=Pp
then pe{a '(D)}* < pu,(D)=1<p(@eD (since p, is concentrated at
p(a@) = a(p)e D < p e a”~1(D). The proof is complete. O

By definition a basis for the topology of E is given by finite intersections of the
sets @~ ~!(I) where a € A and I is an open interval in R. By Lemma 5.2 it therefore
follows that a basis for the topology of X* may be given by finite intersections

* * *
UinUln ... nU;}

where the U; are open in X. In particular U; may be taken to be of the form
U; = a; *(I;), where a; € A and I, is an open interval in IR.

Corollary 5.1. A net {y;}ic; & X* converges to an element ye X* if and only if for
each K € €, satisfying u(K) = 0, there is iy € J such that u;(K) =0 if i = i,.

Let us say that a quasi-measure is representable if its corresponding quasi-state
is representable.

Proposition 5.1. Let ¥*: of — o/ * be as above. The following are equivalent:

(1) ¥* is surjective.

2) j(X) = X*,

(3) Each representable quasi-measure on X is the restriction of a regular Borel
measure.

(4) If A, B and A v B belong to o then (A v B)* = A* U B*.

(5) If W, and W, are open subsets of X* belonging to ¥*( /) then W, n W,
and Wy v W, also belong to W* (/).

(6) Each extremal quasi-measure i is subadditive, i.e. if A, Band A U B belong to
of then u(A u B) < u(A4) + p(B).

Proof. (1) = (2). If j(X) #+ X* then there is an open set & + W < X*\ j(X).
Suppose W = A* for some Ae.o/. Then by property (iii) above we have
jA)Y=WnjX)= & = A= &, a contradiction.
(2) = (3). Obvious.
(3) = (6). Obvious.
(6) = (4). In general, if 4, B and 4 v B belong to o/, we have A* u B*
< (A4 u B)* (Property (vii)(a) above). Assuming (6) and that g e (4 U B)* we get
u(A U B) = 1so that u(4) =1 or u(B) = 1. Hence ue A* U B* which proves (4).
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(4) = (5). Obvious (using Property (v) above).
(5) = (1). Assume (5) and let W; = V¥;i=1,2, V; open in X.

We have (V, n V,)* < V¥ ~ V% in general, but by assumption there is now an
open set Ve @ such that V* = V¥ n V5. We claim that V' =V, n V,. Clearly
VinV, < V, however, if there is an xe V such that x¢ V, (or V,) then
px € V¥\ VT which is impossible. Hence (V; n V,)* = V¥ n V% and similarly
(V1 U Vy)* = VT u Vi To prove (1) it suffices to show that if W e ©* then there is
a Ve O such that W = V* Now let

Ow={VeO:V* < W}
IfVy, Ve O then (Vy 0 Vy)* = VT U V3 = Wso Oy is a directed family of sets
with respect to inclusion. Let
U= J{V:Vewy}

If ue U* then pe V* for some Ve @y by Proposition 2.1, hence U* = W.
Suppose there is an element e W\U*. W is open so there is a base neighbor-
hood of u:Ufn ... n U} = W. However, by the first part of the argument

it follows that Ufn ... n U} = U} for some open set Uy in X. Now
UseOp = Uy € U = pe U¥*, a contradiction. Hence U* = W and the proof is
complete. O

6 Factorization of representable quasi-measures

Let m be a positive, regular Borel measure in X* satisfying m(X *) = 1. Define
w(A)y=m(A*); Ae s . (6.1)

Then, by the properties (i), (ii), (iv) and {v) given at the beginning of the preceding
section it is more or less immediate that u satisfies properties (1), (2) and (3) in the
definition of a quasi-measure (see the Introduction). It only remains to verify the
regularity condition (4). Let U < X be open and take € to be the family of open
sets V satisfying V'~ < U. € is ordered by inclusion and is directed upwards: if
Vi, V,e @ then V, u V, € € Moreover

U*=J{r«veg}
for if 4" e U* then u'(V) =1 for some Ve &, by virtue of Proposition 2.1. Now
m is a regular Borel measure so there is a compact set C < U* such that
m(C) > m(U*) — ¢ for any given ¢ > 0. Since € is directed it follows that there is
a Ve @such that ¥'* 2 C. Now V™ < U = (V™ )* = U*. Hence we get
w7 )=m((V")*) 2 m(C) > m(U*) —e=pu(U) —¢

which proves (4) in the definition of quasi-measures. We can now formulate the
factorization-theorem for representable quasi-measures.

Theorem 6.1. For each positive, regular Borel measure m on X* satisfying
m(X*) = 1 the set-function u defined by

p(A) = (mo¥*)(A); Ae of (6.2)

is a representable quasi-measure u on X. Conversely, for each representable quasi-
measure u on X there is a positive, reqular Borel measure m on X* satisfying
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m(X*) = 1, such that (6.2) holds. Moreover, if u and m are related by (6.2) and p is the
state associated with m, and we define

pla)=(po¥)(a);aecA, (6.3)
then p is the quasi-state associated with u.

Proof. The first part has already been established, except the representability of y,
which will follow from the last statement of the theorem. Now let i’ be a represen-
table quasi-measure in X, and let p’ be the quasi-state associated with y'. By
Theorem 4.1 there is a probability measure m’ on E such that for each a € A:

p'(a) = [ o(a)dm' (o).

E

Let m be the corresponding measure in X ¥, i.e.
m(D) = m' (P~ (D)) (6.4)

for any Borel set D < X*. We now define u by (6.2) and observe that the proof will
be finished if we can show that u = y'. We shall need:

Lemma 6.1. Let K<a<U where K is compact, U is open and a€ A. Then
K*<a P ' <U*, (6.5)

Proof. By assumption we have K < a! {1}) and X\U < a"'({0}). Sup-
pose pu=Pp and that pueK* Then pu(a '({1}) —1©p()_1¢>a(p)
=1<a (P 'y)=1. Similarly, if ,u¢ U* then p(X\U)=1 so ula {O})
=1 pla)=0<a(p)=0< a (P 'u)=0. The proof is complete.

Returning to the proof of the theorem, let p be the state on C(E) associated with
m', ie.:

p(f) = jf(a)dm(o')zj (feP YY) dm®); fe C(E), o e E,ve X*

Let K € €. Then we have, since p’ = po ¥
W(K)y=inf{p'(@):K<aeA}=inf{pa):K<aeA}.
On the other hand:
w(K)=m(K*)=m' (P~ (K*)) = inf{p(f): K* < fop~';fe C(E)} .

Since K <a = K* <a <P~ by the above lemma, it follows that u(K) < u'(K).
Similarly, if U € @ we have:

p(U)=sup{p(@):a<U;aeA}=sup{p(a@)a<U;acA}
whereas:
1(U) = m(U*) = m'(P~1(U*) = sup {p(f): fo P~ < U*; fe C(E)} .
Again by the lemma a< U = a” > P~ ' < U* so that u(U) = u'(U).
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Now p is regular so for any ¢ > 0 there is K = U such that u(K) > u(U) — &.
Hence we get:

pK) = p'(K) = p'(U) = uU) < p(Ky+ ¢

Therefore, if we assume that p'(U) < u(U) we arrive at a contradiction, since the
above is true for all ¢ > 0. So p(U) = p'(U) for all open sets U < X, but then
u = u’ and the proof is complete. O

Remark 6.1. The factorizations (4.1) and (6.2) are generally not unique, reflecting
that Q is not a Choquet-simplex. In the example below we shall see that non-trivial
relations between elements of E may exist. However, we first need to say a few
words about how to construct extremal quasi-measures in certain spaces.

Let X be either X, = [0, 171 x [0, 1] ( = unit square) or X, = $2 ( = surface of
the unit sphere), and let p,, p,, p3 be three distinct points in X. If 4 is an open or
closed subset of X with the property that both 4 and X\ 4 are connected we define
ag(A) =1 if A contains at least two of the points p;, and put a(4) = O otherwise.
Then ¢ extends to an extremal quasi-measure in X (for details we refer to [2] or
{6]). The quasi-measure obtained this way is said to be associated with the set
{pi}i=1,2,3-

Example 6.1. Let X = X, and let p, = (0,0), p; = (1,0), p, = (1, 1) and p; = (0, 1).
Let g; be the quasi-measure associated with the set {p;}; + ;,i =0, 1, 2, 3. One may
now show that

O+ 0, =0+ 03. (66)

From this relation it immediately follows that factorization of representable quasi-
states on C(X ) is not unique. The relation (6.6) arises from the observation that if
y is a simple curve in X connecting two diagonal points, say p; and p3, and
y contains neither of the two other points, then X,\y contains at least two distinct
connected components. This contrasts the situation in X ,, where, if y is a simple
curve connecting two points, also X,\y is connected. The relation (6.6) will
therefore not hold in X,. However, other relations involving “higher order”
extremal quasi-measures will exist. These relations reflect properties of the order-
structure of the positive cone of quasi-measures on X,. A discussion of these
questions will appear elsewhere.
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