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1 Introduction 

In this paper we continue the study of quasi-states and quasi-measures initiated in 
I-1]. 

Throughout  X will denote a compact Hausdorff space and A = C(X) is the 
space of real-valued continuous functions on X. For a e A we let A(a) denote the 
smallest uniformly closed subalgebra of A containing a and 1. A function p: A --, IR 
satisfying p(1) = 1, p(a) > 0 i fa  > 0 and such that p is linear on A(a) for each a e A 
is called a quasi-state. 

Let ~ denote the collection of closed subsets of X, let (9 denote the collection of 
open subsets of X and put d = ~ u (9. A real-valued, non-negative function p on 
~4 is called a quasi-measure in X if the following conditions are satisfied: 

(1) #(K) + ~ ( x \ ~ ; )  = u(x) ;  K ~ 
(2) K~ _~ K2 ~ #(K,)  _</~(K2); K1 ,K2 ~ 
(3) K 1 ~ K 2 =  ~ ~ / ~ ( K  1 U K 2 ) = # ( K 1 ) + # ( K 2 ) ; K 1 , K 2 ~ c g  
(4) /~(U) = sup{# (K) :K  _ U;KEC(};U6(9.  

In [1] we established a 1-1 correspondance between quasi-measures and 
quasi-states (Theorem 4.1). We also showed that non-linear quasi-states really exist 
by exhibiting a quasi-measure which is not (the restriction of) a regular Borel- 
measure [1, Proposition 6.1]. In [2] and [6] more general procedures for the 
construction of quasi-measures are discussed. A quasi-measure is called extremal if 
it only takes the values 0 and 1. This paper is devoted to a close study of the 
properties of extremal quasi-measures and their corresponding quasi-states, which 
are called simple. The set of all quasi-states is a convex set denoted by Q, which is 
compact in the topology of pointwise convergence on A. The set E of simple 
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quasi-states is a proper subset of the set Qe of extreme points in Q. The crucial 
property, however, is that a quasi-state is simple if and only if it is multiplicative on 
A(a) for each a ~ A. This enables us to show that E is closed in Q and therefore is 
a compact Hausdorff  space. In turn this makes it possible to establish a "non-linear 
Gelfand-transform" kg of A into C(E) which is discussed in Sect. 4 of the present 
paper. This transform enables us to show that each quasi-state p in the closed 
convex hull o rE  may be factored as p = p o 7', where p is an ordinary linear state on 
C(E). In general this factorization is non-unique, as shown in an example towards 
the end of the last section. This non-uniqueness reflects that the order-structure of 
the positive cone generated by Q generally is quite complicated, and is closely 
bound up with the topological properties of the space X. These questions will be 
pursued in another paper. Our  notation follows that of [1], where we also refer the 
reader for further background. 

2 Pure quasi-states and extremal quasi-measures 

A quasi-state p is pure if 0 < p' < p for any positive quasi-linear functional p'  on 
A implies that p'  --- rp; 0 < r < 1, r ~ IR. In [3, Proposition 2.2] it was proved that 
a quasi-state is pure if and only if it is an extreme point of Q. For brevity let us say 
that a quasi-state is simple if its restriction to any singly generated subalgebra A(a) 
is multiplicative. In the linear case, i.e. if p is a pure state on A, then p is 
multiplicative on A and a fortiori simple. In our situation, if p is a pure quasi-state 
on A, it is therefore natural to ask whether p is simple. We shall provide an example 
towards the end of this section which shows that this is generally not so. We first 
want to characterize the simple quasi-states and their corresponding quasi- 
measures. 

Let A' denote the algebra of all complex-valued continuous functions on X. 
A singly generated subalgebra of A' is a closed subalgebra generated by 1 and 
a single real-valued function a e A'. (We regard A as contained in A'.) We denote 
this subalgebra by A'(a), and we clearly have A'(a) = {b + ic: b, c ~ A(a)}. If p is 
a quasi-state on A we define p '  on A' by p'(c) = p(a) + ip(b), where c = a + ib; 
a, b e A is the decomposition of an element c e A' into its real and imaginary parts. 

Theorem 2.1. Let p be a quasi-state on A. The following statements are equivalent: 
(1) p is simple. 
(2) p'(c) ~: 0 i f  c is an invertible element of  A'  belonging to some singly generated 

subalgebra. 
(3) p'(c) E Sp c for  all c ~ A'  belonging to some singly generated subalgebra. 
(4) I f  a, b ~ A belong to the same singly generated subalgebra o f  A, and satisfy 

p(a) = p(b) = 0, then a- l ({0})  n b-~({0}) # ~ .  
(5) I f  a, b c A  belong to the same singly generated subalgebra of  A, then 

a -~ ( {p (a ) } )  n b - l ( { p ( b ) } )  # ~ .  

Moreover, each o f  these conditions imply that p is pure. 

Proo f  (5) ~ (1). Let a ~ A be arbitrary, and let #, be the probability measure in 
S p a  corresponding to the state q~ ~ p(49(a)) on C(Sp a) (cf. [1, Theorem 4.1]). To 
show that p is simple it suffices to show t h a t / ~  is a point-measure. Suppose that 
this is not the case. Then there are functions 0 < ~b, ~, e C(Sp a) such that ~b- ~ = 0 
and p(qS(a)) = p(~(a)) = 1. However, if (5) holds there must then be an x e X such 
that dp(a(x)) = ~k(a(x)) = 1. Since q~. ~k = 0 this is impossible. The assertion follows. 
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(4) ~ (5). Suppose a, b belong to the same singly generated subalgebra  A(c) of  
A and that  p(a) = r, p(b) = s. Then a'  = r l  - a and b' = sl - b belong to A(c) and  
satisfy p(a') = p(b') = 0. Assuming (4) there is an x e X such that  a'(x) = b'(x) = O. 
But then a(x) = p(a), b(x) = p(b) which proves (5). 

(1) ~ (4), Suppose a, b belong to A(c) for some c ~ A and that  p(a) = p(b) = 0. If  
a -  1 ({0}) O b -  1 ( { 0 } )  = ~ there is a real number  r > 0 such that  a 2 -t- b 2 -> r, and  
consequently p(a: + b a) ___ r. However ,  if p is multiplicative on A(c) it follows that  
p(a z + b 2) = 0, so we have a contradiction.  Therefore (1) ~ (4). 

The equivalences (3) ~:~ (5) and (2) ~:~ (4) are a lmost  immediate ,  and are left to 
the reader. We finally show tha t  if p is simple then it is also pure. Let a c A be 
arbitrary.  If p is multiplicative on A(a) then p[ A(a) is pure. N o w  let 0 < p'  __< p, 
r = p'(1). For  all b c A ( a )  we must  have p'(b) = kp(b) for some k s [0, 1]. N o w  
1 e A(a) so r = p'(1) = kp(1) = k. Hence p'(a) = rp(a) ~ p' = rp since a was arbit-  
rary. The  p roof  is complete. [] 

Remark. The implicat ion ( 2 ) ~  (1) will also follow from the G leason -Kahane -  
Zelazko theorem (cf. Theorem 10.9 in [8])  applied to A(a). 

A quasi -measure  is extremal if it only takes the values 0 and 1. To  obtain  
a similar character izat ion of extremal  quasi-measures  we need some prel iminary 
results. 

Let I be a directed index set. A family of set {Ai}i~z is increasing if 
i < j  =*, Ai c Aj ,  and we write A~ ~" A i fA = ~A~.  The family {Ai}~t  is decreasing 
if i < j  ~ Ai ~- Aj, and we write Ai ~, A if A = (-]Ai. 

Proposition 2.1. Let la be a quasi-measure in X.  
(a) For any increasing family of  open sets, if Ui ~ U then #(Ui) T p(U). 
(b) For any decreasing family of  closed sets, if Ki 1 K then 12(Ki) J, #(K). 

Proof. By proper ty  (1) in the definition of a quasi -measure  it suffices to prove  (a). 
With this in mind, first observe that  p ( U ~ ) < p ( U )  for all i e l ,  so that  
l im~t#(U~)  = sup/~(Uz) exists and is </~(U).  Let e > 0 be arbitrary.  By (4) in 
the definition of a quas i -measure  there is a compac t  set K __q U such that  
#(K)  > p(U)  - e, Since U = U u~, K is compac t  and the {Ui} increasing, there is 
a Uz ~_ K. But then #(Ug) > / t ( U )  - e and (a) follows. The  p roof  is complete. [] 

Corollary 2.1. For any countable family of  open, disjoint sets { U, }, n = 1, 2 . . . .  we 
have 

Remark 2.1. Proper ty  (b) of Propos i t ion  2.1 means  that  any quasi-measure is 
a capacity (cf. [4]), when restricted to sO. 

N o w  let /~(X) be a quasi-measure in X satisfying # ( X ) =  1. Employing  the 
nota t ion  of El], for any a ~ A: 

K~ = { x : a ( x )  > ~}; a(~) = U(/<:~); ~ ~ ~ .  

#, is the Borel-measure  in Ill with compac t  suppor t  given by 

m (E~,/~))  = a(~)  - a ( /~)  

El, Sect. 3]. 
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L e m m a  2.1. Let # be a quasi-measure in X satisfying p (X)  = 1. For any open or 
closed subset D of  IR we have, for all a ~ A: 

l~a(D) =//(a - 1  ( D ) ) .  ( 2 . 1 )  

Proof  It suffices to establish (2.2) for an arbi t rary  open subset D of IR. Any such set 
m a y  be writ ten as a countab ly  infinite (or finite) disjoint union of open intervals. It 
is therefore, by Corol lary  2.1 enough to show that  (2.1) holds for open intervals. Let 
(~, fl) be an arbi t rary  open interval and let c~, $ ~ so that  [~ , ,  fl) T (~, fl) 

Here  

#a((~,/3)) = lim #,([ct , ,  fl)) = lim fi(~,) - fi(fl) 
n--+ oo n--* oo 

= ~ ( ~ ) -  gl(fl) = u ( V ~ )  - # ( K ~ )  = # ( V ~  - -  K ~ )  = p ( a - ' ( a ,  fl)).  

a(~)  = , ( v ~ ) ;  v", = {x:a(x) > :~} 

and we have also used Propos i t ion  2.1 (c) and Proposi t ion 3.1 of [1]. The p roof  is 
complete.  [] 

Theorem 2.2. Let  # be a quasi-measure in X satisfying t z ( X ) =  1. The following 
statements are equivalent: 

(6) # is extremal. 
(7) For each a ~ A, range fi _c {0, 1}. 
(8) For each a E A, I~a is a point-measure of  mass 1 in Spa.  
(9) For each a ~ A  there is exactly one point ~ o ~ S p a  such that 

~ ( a - l { ~ o } )  = 1. 
(10) For each a ~ A there is exactly  one point Cto ~ IR where fi is discontinuous, 

~o ~ Spa ,  3(~) = 1 /fc~ < ~o, fi(~) = 0 / f c t  > ~o. 

Proof  (6) =~ (7) by the definition of 4. (7) =~ (10) by Propos i t ion  3.1 in [1], and by 
the same propos i t ion  we also get that  (10) =~ (9). Using L e m m a  2.1 above we see 
that  (9) =~ (8), p,  is the poin t -measure  with mass  1 at ~o ~ Spa .  It  remains to prove 
(8) =~ (6). If  (8) is true then it follows f rom L e m m a  2.1 that  for all open or closed 
subsets D of IR we have # ( a - l ( D ) ) ~  {0, 1} for all a ~ A .  Let K be an arbi t rary  
compac t  subset of X and let e > 0 be arbi trary.  By Propos i t ion  2.1(d) in [1] there is 
an open set U ~ K such that  ~t(U) < #(K) + e. Choose  a ~ A such that  K < a <  U 
and let C =  { x : a ( x ) =  1}. Then K ~ C ~ U, such that  if / ~ ( K ) > 0 ,  then 
0 < #(C) =/~(a -1{1}) = 1 =~ p(U) = 1 => p (K)  > 1 - e which implies that  
p ( K )  = 1 since e > 0 was arbi trary.  The p roo f  is complete  [] 

In  [1] we established tha t  there is a 1-1 cor respondance  between the quasi- 
states on A = C(X)  and the normal ized quasi-measures  on X. If p corresponds  to 
/~, then for each a e A and all q~ e C(Sp a) we have 

p(~b(a))= ~ ~b(2)d#a(2) (2.2) 
Sp a 

(Theorem 4.1 in [1]). Hence, if kt is extremal  so that  #,  is concentra ted  at a point  
~o e S p a  then (2.2) yields 

p(c~(a)) = qS(eo) (q~ ~ C(Sp a)) .  (2.3) 

Since q~ ~ qS(a) is an a lgebra - i somorphism of C(Sp a) onto  A(a) it follows that  
p lA(a) is multiplicative. Conversely,  if p is simple so that  p [A(a) is multiplicative, 
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then pa" (a ~ p((~(a)) is a multiplicative linear functional on C(Sp a). By Theorem 
4.1 in [1] #a is the measure  associated with p~ and it is therefore concentrated in 
a point  ~o. This establishes the equivalence of  (1) in Theorem 2.1 and (8) in 
Theorem 2.2. We have proved: 

Theorem 2.3. A quasi-state p on A is simple if  and only if  the correspondin9 
quasi-measure # on X is extremal. Moreover I~, is the point-measure of  mass 1 located 
at the point p(a) ~ Sp a. 

We now return to the question when a pure quasi-state is also simple. The next 
result is in the positive direction: 

L e m m a  2.2. Let  p be a pure quasi-state on A. Then p(e) ~ {0, 1}for any idempotent 
e ~ A .  

Proof  Let e 4 : 0  be an idempotent  in A, and define p'(a) = p(ae); a E A. We claim 
that  p '  is a positive quasi-linear functional on A. Let a ~ A be arbitrary.  We must  
show that  p '  is additive on A(a). Let E = {x ~ X:  e(x) = 1) and take an arbi t rary  
function f E  C(IR). Then 

( f (a (x~)  if x ~ E  
f (ae ) (x )  = f (a ( x ) e ( x ) )  = ~J,/~f(0) if x r E 

so that  f ( a e ) = f ( a ) e  + f ( 0 ) ( 1 - e ) .  It  therefore follows f rom the addit ivity 
of quasi-states on or thogona l  elements (cf. L e m m a  3.3 in [ I ] )  that  
p( f (ae) )  = p ( f ( a ) e )  + f ( 0 ) p ( 1  - e), or 

p' ( f  (a)) = p ( f  (ae)) - f (O) p (1 - e ) .  (2.4) 

Now let b = f ( a ) ,  c = 9(a); f g ~  C(IR), be arbi t rary  elements of A(a). Then 
b + c = ( f +  9)(a) so repeated use of (2.4) yields: 

p'(b + c) = p ( ( f  + g)(ae)) - ( f  + g)(0)p(1 - e) 

= p( f (ae )  + 9(ae)) - ( / (0)  + 9(0))p(1 - e) 

= p( f (ae) )  + p(g(ae)) - f ( 0 ) p ( 1  - e) - 9(0)p(1 - e) 

= p '  (b) + p '  (c) 

since p is linear on A(ae). This shows that  p '  is additive on A(a). It is clearly 
positive, for if a > 0 then ae > 0; moreove r  p ' ( ra)  = p(rae) = rp'(a) for any  r ~ IR, 
so p '  is a positive quasi-l inear functional on A. 

I f a  > 0 then ae < a so p'(a) = p(ae) < p(a) (since p is monotone ,  L e m m a  4.1(b) 
in [1]). Hence 0 < p '  < p and consequently p'  = rp for some r ~ [0, 1] since p is 
pure. p ' ( 1 ) = p ( e ) = r .  On  the other  hand  p ' ( 1 - e ) = p ( ( 1 - e ) e ) = 0  so that  
0 = rp(1 - e) = r(1 - r) =~ r ~ {0, 1} which proves  the assertion. [] 

As a consequence of this result one m a y  show that  if A contains the spectral  
resolution of each of its elements, then each pure  quasi-state is simple. To  be 
precise, let a e A be arbi t rary  and assume that  the sets K~ = {x e X:  a(x) > e} are 
open as well as closed for all ~ e IR. The characterist ic functions e, of these sets are 
then idempotents  in A. If p is a quasi-state and  p is the corresponding quasi- 
measure  we have p ( e , ) = / ~ ( K , )  = fi(e). Therefore,  if p is pure it follows from 
L e m m a  2.2 above  and Theorem 2.2. (7) that /~ is extremal,  and consequent ly  that  
p is simple, by Theorem 2.3. At this point  it must  be r emarked  that  the assumpt ion  
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on A implies that X will have a basis for the topology consisting of open and closed 
sets, and X is therefore totally disconnected. But then we know that each quasi- 
state is in fact linear, so the problem disappears and the apparent affirmative result 
tells us nothing new. We shall instead provide an example of a pure quasi-state 
which is not simple. We will do this by constructing a quasi-measure/1 in X = S 2 
such that Sp/2 = {0, �89 1 } so that /z  is not extremal, but its corresponding quasi- 
state is pure. 

Example 2.1. Let X = S 2 and let P = {Pl . . . . .  P5 } -- X be a set of five distinct 
points in X. For any set D __ X we let # D denote the number of points in P c~ D. 
A subset D of X is co-connected ifXkD is connected. D is solid if it is connected and 
co-connected. The family of all solid, closed (resp. open) subsets of X is denoted by 
~gs (resp. (gs). Let ~'~ = cg~ tj 0~, and make the following definition: For A e ~ds let 

0 if # A = O  or 1 

/2(A)-- �89 if # A = 2  or 3 

1 if # A = 4  o r  5 . 

The main problem is to extend/1 to a quasi-measure in X. We sketch the argument. 
We first extend/2 to the family of all closed, connected sets cgc as follows: If C is 
closed and connected, its complement X\C  is the countable disjoint union of its 
connected components Vi, i = 1, 2 . . . .  Each set Vi is open and belongs to t0s. We 
may therefore define/1(C) = 1 - E/1(V~). Next, let <go denote the family of closed 
subsets of X which have only finitely many  connected components. Each set 
K belonging to ego may be written uniquely as a finite disjoint union 
U { Ck' k = 1, 2 . . . . .  n} with C k E (~c. We define/1(K) = ~,/2(Ck). One may now 
verify (somewhat laboriously) that /2 so defined on ego has all the properties of 
a quasi-measure. The extension theorem of [1, (Theorem 6.1)] may now be applied 
to obtain a unique extension of/1 to the family ~r of all open or closed sets in X. We 
want to show that the quasi-state corresponding to/2 is pure. So let us assume that 
there exist two quasi-measures/21 and/12 in X such that /2,(X) =/22(X) = 1, and 

/2 = �89 + � 8 9  (1) 

We are going to show that #,  =/22 . For this, it will suffice to show that/11 and/21 
coincide on cg s, because of the uniqueness property of the extension process 
described above. First observe, however, that if for any closed set K we have 
/2(K) = 0 ,  then /21(K) = /22 (K) = 0, and if /2 (K)=  1, then /21(K)=/22(K) = 1. 
It  therefore only remains to verify that if # C  = 2 or 3 for C~Cgs, then 
/2, ( C )  = / 2 2 ( C )  = �89 

Also, the case # C = 3 will follow if we can show that this is true when # C = 2. 
For  if # C = 3 then # (X\C) = 2, and X \ C  is open and connected and therefore 
contains a simple path C' connecting two of the points in P. C ' ~  <Fs and 
C n C' = ~ so/2(C • C ' )  = 1. Hence, if/21(C') = �89 then/21(C) = 1 - / 2 i (C ' )  = �89 
for i =  1,2. 

Let us now assume specifically that C, ~ cg s and that C, c~ P = {Pl, P2 }. X\C1 
is open and connected so there are simple paths in it; Ca connecting P3 with P4, and 
C4 connecting P4 with Ps. We next choose simple paths Cs and CE connecting 
Ps with Pl and pi with P3 respectively, such that Ca c~ C5 = Cs c~ C2 
- - C 2 n C 4 - - ~ .  By construction /2(Cj)=�89 for j - - I , . . . , 5  so that if 
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Cj ~ C, = ~ ,  then #(C~ w C,) = 1. Hence we have 

#~(Cj)+#~(C,)= l i f C j C ~ C k =  ~ ,  i =  1 ,2 .  (2) 

Now suppose #1(Ca) = ~; ~ ~ [0, l]. By (2) we get 

#x(C3) = #1 (C4) = 1 - ~ . 

But then, again by (2) we must have 

#1(C5)=  #1(C2)=  ~ .  

Since also C 2 n C 5 =  ~ this implies that 2 ~ = 1 ,  or ~ = � 8 9  It follows that 
#2(C, ) = �89 and since C1 was an arbitrary set in W~ satisfying # C~ = 2, we are 
finished. 

Remark 2.2. The construction of a quasi-measure utilized above is a particular 
case of a general construction theorem, the proof of which may be found in I-2]. 

3 Projective limits of compact spaces and simple quasi-states 

To begin with in this section, let A just be a partially ordered set, not necessarily 
directed, and let {Xa: a ~ A} be a family of compact Hausdorff spaces. We assume 
that if a ~ b then there is a surjective continuous map fba: Xa ~ Xb such that 

f,o = idxa;fib ~ =fco if a >- b >- c .  

Let go denote the projective limit of this system, i.e.: 

go= {P~  I-I Xa:fba(p(a))= P(b)ifa>--b} 

We equip the product of the Xo with the product topology, making it into 
a compact Hausdorff  space. By its definition go is a closed subset, hence compact. 
We shall give an interpretation of go in terms of simple quasi-states when A is taken 
to be C(X). In this situation we introduce a partial ordering: 

a > b if A(a) ~ A(b) .  (3.1) 

For any a ~ A let Xo = Sp a. Then a >-b if and only if b e A (a), which by the 
Gelfand-theory is equivalent to the statement that there is a (unique) continuous 
function f of X ,  onto Xb such that b =foa.  We write f = f b ,  if a ~ b .  fb, is 
a homeomorphism ira ~ b and b ~ a, i.e. if A(a) = A(b). This makes {X,; fba} into 
a projective system of compact Hausdorff  spaces, and we may form its projective 
limit go as above. 

Let E denote the set of simple quasi-states, equipped with the relative topology 
from Q. By definition it easily follows that E is closed in Q and is therefore compact. 

Theorem 3.1. go coincides with the space E and contains X as a closed imbedded 
subspace. 

Proof We first imbed X in ~. For  x ~ X  define Px: A ~ UXa by px(a) = a(x); 
a ~ A. If a >- b so b =fbo ~ a then p~(b) = b(x) =fba(a(x)) =fba(Px(b)) which shows 
that Px ~ go. The map i: x ~ px of X into go is clearly injective since A distinguishes 
points. It is also continuous, and is therefore (by compactness of X)  a homeomor-  
phism of X onto its image i(X) in go. 
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We next show why the spaces E and go coincide. If p e E then p (a) e Xa for all 
a ~ A (Theorem 2.1 (5)). Moreover ,  p ] A(a) is just evaluation at the point  p(a) via the 
Gelfand-transform q5 ~ q5 o a of C(X,)  onto  A (a). I.e. p (q~(a)) = q5 (p(a)) (Theorem 
2.3). So, if a ~ b then p(b) = p(fb,(a)) =fb,(p(a)) which shows that p e go. 

Converse~,  let p be an element of go. Then p(a)e X ,  for each a ~ A. In 
particular l e A ,  Xa = I ( X ) =  {1} so p ( 1 ) =  1. If  a > 0  then X ,  ~_ [0, oo) so 
p(a) > O. Finally, if b e A(a) then b =fb, oa and p(b) =fb,(p(a)). Hence p]A(a) is 
just evaluation at the point  p(a) via the Gelfand-transform ~b ~ ~b(a). It follows 
that  p is a multiplicative linear functional on A(a) i.e. is simple. That  the topologies 
of  E and fa are the same is obvious. The proof  is complete. 

4 The non-linear Gelfand-transform 

In  this section we introduce a "non-linear Gelfand-transform" 7 / o f  A into C (E). 
We utilize this t ransform to show that  each representable (to be defined below) 
quasi-state may be factored by 7 j and an ordinary (linear) state on C(E). 

Define, for a e A the function a ~ on E by a-(p) = p(a); p e E. By definition a" is 
cont inuous  on E. The map  7": a ~ a ~ of C(X) into C(E) is in general non-linear, 
for if p e E\i(X),  then for some a, b e A we have p(a + b) 4= p(a) + p(b) which 
means that  (a + b)'(p) 4: a~(p) + b-(p). 7-1 is therefore called the non-linear 
Gelfand-transform on A. We list some properties of 7" which will be needed later on, 
proving them as we go along: 

(i) a'(px) = px(a) = a(x); x e X. 

Hence a" coincides with the usual Gelfand-transform on i(X), i.e. a ' [  i(X) = 4. 
(ii) a > 0 =~ 7' (a) >__ 0 

(iii) 7"(0)= 0; 7 " ( l x ) =  1~ 

(iv) a < b ~ 7"(a) __< 7"(b); a, b e A. 
This follows from Lemma 4.1 of [1]. 

(v) ][a'[[~o = sup{[p(a)[:p~E} = Ilall~ 
and more  generally 

(vi) I[ a" - b ' l l  ~ = II a - b I] ~ ; a, b e A. 

It  suffices to prove (vi). By Lemma 4.1 of [1] we have ]p(a) - p(b)] < Ha - b][| 
for all p e E. Hence ]] a ' -  b']] ~ < ]] a - b ][o~. On  the other  hand there is x e X 
such that  ]]a - b]]~ = ](a - b)(x)] = ]p~(a) - p~(b)] __< I ] a ' -  b ']]~. Equali ty fol- 
lows. We summarize in 

Proposit ion 4.1. 7": A ~ C ( E ) is a positive, order-preserving and isometric map with 
a closed range B = 7"(A). For any a ~ A 7" is an algebra-isomorphism of A(a) onto 
A(a-). 

Proof. Since 7" is an isometry and A is complete it follows that B = 7"(A) is 
closed in C(E). Let a ~ A  be arbitrary. For  any ~b~C(Spa)  we then have 
4)(a)'(p) = p(dp(a)) = (a(p(a)) = (o(a'(p)), so that  ~b(a)'= qS(a'). By Theorem 2.1 we 
know that  S p a ' =  Spa, and it follows that 7" is an algebra-isomorphism of A(a) 
onto  A(a ' ) .  The p roof  is complete. [] 

Let us say that  a quasi-state is representable if it belongs to the closed convex 
hull of E in Q. Then  we have: 
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Proposition 4.2. Let  7J: A ~ C ( E )  be as above. The following are equivalent: 
(1) 7 j is surjective. 
(2) i (X)  = E. 
(3) Each representable quasi-state on A is linear. 
(4) 7 j is linear. 
(5) ~P(A) is a linear subspace o f  C(E). 

Proof  (1) ~ (2). If i (X)  4: E there is a function 0 4: h ~ C(E)  which vanishes on 
i(X). Assuming h = a" for some a ~ A we get a(x) = px(a) = a'(px) = h(px) = 0 for 
all x ~ X. Hence  a = 0, but  then h = 0, a contradiction.  

(2) ~ (3). This  is immediate.  
(3) ~ (4) and (4) ~ (5) are obvious.  
(5) ~ (1). Assuming (5) we immediately  obtain that  B = T ( A )  is a closed linear 

subspace of C(E)  which contains 1 and separates points  of E. Therefore,  by the 
Stone-Weierstrass  theorem it suffices to show that  B is an algebra for (1) to be true. 
L e t f  g ~ B. Since f9 = 1/4 [ ( f +  g)2 _ ( f _  9)2] and B contains squares the asser- 
t ion follows. The p roof  is complete.  [] 

N o w  let p denote  a state on C(E), and define p ( a ) =  p(T(a));  a ~ A. By 
Propos i t ion  4.1 it is immediately clear that  p is a quasi-state on A. Let  R denote  the 
set of representable  quasi-states on A, i.e. R is the closed convex hull of E in (2. I t  
would be nice to have an intrinsic character izat ion of the elements of  R. Presently, 
however,  this is what  we can say: 

Theorem 4.1. Let  p be a quasi-state on A. The following statements are equivalent: 
(1) p E R .  
(2) There is a probability-measure m on E such that 

p ( a ) =  ~ a(a)dm(a);  a e A  . 
E 

(3) There is a state p on C(E)  such that 

p = po  ~, .  (4 . l )  

Proof  Let A e be the real linear space generated by R, and equip it with the 
topology  of pointwise convergence on elements of  A. We refer to this topology as 
the w*- topology on A # even if the elements of  A # are not l inear on A. Let 
H denote  the linear space of w*-cont inuous linear functionals on A #. There is 
a natural  injection 7 j '  of A into H given by ~P'(a)(p) = p(a), p ~ A #. By a s tandard  
result the linear span of 7J'(A) equals H, so the a ( A # , H ) - t o p o l o g y  on A # 
coincides with the w*-topology.  E is compact ,  and R, its closed convex hull, is 
compac t  since bo th  sets are closed subsets of  (2. Therefore,  if p e R it follows by 
another  s tdndard result (cf. Theorem 3.28 in [8-]) that  (2) holds. Next,  if(2) holds, let 
p denote the state on C(E) corresponding to m, i.e. 

p ( f ) =  f f ( a ) d m ( a ) ;  f e C(E)  . 
E 

For  f =  T(a)  we therefore get 

p(T(a))  = ~ a ' (a )dm(a)  = ~ ~r(a)dm(a) = p(a) 
E E 
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which establishes (4.1). Finally, if (3) is true, let m be the probability measure in 
E corresponding to p. Reasoning backwards we see that (2) is true, which then in 
turn implies (1) by the theorem quoted above. The proof is complete. [] 

The question of uniqueness of the above factorization will be discussed towards 
the end of the final section. 

5 The space of extremal quasi-measures 

In this section we introduce a set-transform corresponding to the transform 7' of 
the last section. In the next section this new transform will allow us to obtain 
a factorization of quasi-measures by ordinary measures. 

It will also enable us to give an alternative description of the topology of 
E which will be useful later on. Let X* denote the set of extremal quasi-measures in 
X. (Of course, by Theorem 2.3 we know that we may identify X* with E, but for the 
moment it is practical to distinguish between the two). 

For  A e d let 

A* = { ~ e X * : ~ ( A ) =  1} = ~ ' * (A) .  

The map T * : d  ~ ~ ( X * )  has the following properties: 

(i) ~ *  = ~ ;  T * ( X )  = X *  
(ii) A _ B = ~ A *  c_B* 

For x �9 X let j(x) = Px = the point-measure of mass one at {x}. With this notation 
we have 

(iii) A* n j ( X )  = j ( A ) ; A  e ag 
(iv) A n B =  ~ ~ A* ~ B *  = ;~3;A, B e a g  
(v) ( X \ A ) *  = X * \ A * ;  A e s r  

Indeed, p e ( X \ A ) *  . ~  p ( X \ A )  = 1 ~ p(A) = 0 r ~ A* r p �9 X * \ A * .  
(vi) A :6 B ~ A* :6 B * ; A , B � 9  s / .  

For if A ~: B then there is x ~ A \ B  (or conversely) => Px �9 A * \ B *  ~ A* :6 B*. 
(vii) Suppose A, B e ~ / a n d  A w B ~ ~r Then 
(a) (AwB)*___ A * u B *  
(b) ( A w B ) * = A * w B * i f A c ~ B =  ~Z~. 
(a) is obvious and (b) follows from Proposition 2.1(c) in [1]. 
(viii) Suppose A, B e ~ and A c~ B �9 ~r 
(a) (A c~ B)* _ A* c~ B* 
(b) (A n B)* = A* c~ B* if A u B = X. 
(a) is obvious and (b) may he deduced from (v) and (vii) (b) taking comple- 

ments. Equality in (vii)(a) and (viii)(a) does not generally hold. We may have 
#(A) = #(B) = 0, while #(A w B) = 1. 

Let ~r = c~, w (9* where C* (resp. ~s is the family of open (resp. closed) 
subsets of X* with respect to the topology it inherits from E. We shall see that 
7~* ( ~ )  ~ M*, but first we need to make the connection between E and X* more 
explicit. If p ~ E and # is the corresponding element of X* then, for K ~ cg: 

#(K)  = 1 ~ p (a )=  1 for all a~- K; a e  A . (5.1) 

Conversely, if/~ is given, then for a r A, p(a) is the unique real number such that: 

~(a-  1 (p(a)) = 1 . (5.2) 
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(The last s ta tement  follows f rom Theorem 2.2 and Theorem 2.3.) 
Let P: E ~ X *  denote this identification map.  Transfering the topology  f rom 

E to X *  then makes  X*  into a compac t  Hausdor f f  space, con t a in ing j (X)  = Pi(X)  
as a closed subspace. 

Lemma 5.1. ~ * ( ~ ' )  _ ~ * .  

Proof By (v) above  it suffices to show that  i f K  _ X is closed, then K* is closed in 
X*,  i.e. that  P - I ( K * )  is closed in E. By (5.1) we get that  

P - l ( K * ) = { p ~ E : p ( a ) =  1 ; V a ~ - K ; a ~ A }  = (-] {p~E:a~(p)= 1}.  
a > K  

Since a ~ is cont inuous  on E the assertion follows. [] 

Let D be an open or closed subset of IR and let a e A be arbi trary.  

Lemma 5.2. {a -1 (D)}* = P ( a ' -  1 (D)). 

Proof By L e m m a  2.2 we have #a(D) = #(a-l(D)). Hence, if # = Pp 
then # e { a - a ( D ) } * , ~ # a ( D ) = l ~ : ~ p ( a ) ~ D  (since #o is concentrated at 
p(a)) ~ a-(p) e D ~ p ~ a ' -  l (D). The p roof  is complete.  [] 

By definition a basis for the topology  of E is given by finite intersections of the 
sets a- - 1 (I) where a e A and I is an open interval in IR. By L e m m a  5.2 it therefore 
follows that  a basis for the topology  of X* m a y  be given by finite intersections 

u *  . . .  

where the Ui are open in X. In part icular  Ui may  be taken to be of the form 
Ui = a7l(Ii) ,  where al 6 A and Ii is an open interval in IR. 

Corollary 5.1. A net {#i }i~s ~ X* converges to an element # e X*  if and only if for 
each K ~ ~, satisfying #(K) = O, there is io E d such that #i(K) = 0 if i > io. 

Let us say that  a quasi -measure  is representable if its corresponding quasi-state 
is representable.  

Proposition 5.1. Let 7J*: ~r ~ d *  be as above. The following are equivalent: 
(1) 7 j* is surjective. 
(2) j (X)  = X*. 
(3) Each representable quasi-measure on X is the restriction of a regular Borel 

m e a s u r e .  

(4) I f  A, B and A ~ B belong to ~ then (A w B)* = A* ~ B*. 
(5) I f  W1 and W2 are open subsets of X*  belonging to ~P*(d) then W1 c~ W2 

and W1 w W2 also belong to 7J*(d).  
(6) Each extremal quasi-measure # is subadditive, i.e. if A, B and A w B belong to 

d then #(A u B) < #(A)  + #(B). 

Proof ( 1 ) ~ ( 2 ) .  I f j ( X )  # X* then there is an open set ~ # W ~_ X * \ j ( X ) .  
Suppose W =  A* for some A ~ d .  Then by proper ty  (iii) above we have 
j (A)  = Wc~ j (X)  = ~ ~ A = ~ ,  a contradict ion.  

(2) ~ (3). Obvious.  
(3) ~ (6). Obvious.  
(6) =~(4). In  general, if A, B and A w B belong to ~r we have A * w  B* 

___ (A w B)* (Proper ty  (vii)(a) above). Assuming (6) and that  # ~ (A w B)* we get 
#(A w B) = 1 so that  #(A)  = 1 or #(B) = 1. Hence # ~ A* w B* which proves  (4). 
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(4) =~ (5). Obvious (using Property (v) above). 
(5) =~ (1). Assume (5) and let Wi = V*; i = 1, 2, Vi open in X. 

We have (V1 n V2)* -~ V* n V* in general, but by assumption there is now an 
open set V E (9 such that V* = V* n V*. We claim that V = V1 c~ V2. Clearly 
V l n  V2--- V, however, if there is an x ~ V  such that xCV1 (or V2) then 
#x~ V * \ V *  which is impossible. Hence (V~ n V2)*=  V* n V* and similarly 
(Va u V2)* = V* u V~. To prove (1) it suffices to show that if W e  (9* then there is 
a V s (9 such that W = V*. Now let 

(gw = {V~ (9: V* _ W} 

If V~, Vz ~ (gw then (V1 w Vz)* = V* w V~ ~_ Wso (gw is a directed family of sets 
with respect to inclusion. Let 

v = U {v: (gw} 

If # ~ U *  then # ~  V* for some V ~ ( g w  by Proposition 2.1, hence U*~_ W. 
Suppose there is an element # ~ W \  U*. W is open so there is a base neighbor- 
hood of #: U* n . . .  n U* ~_ W. However, by the first part  of the argument 
it follows that U * n  . . .  n U * = U *  for some open set Uo in X. Now 
Uo ~ (gw =~ Uo - U =>/~ ~ U*, a contradiction. Hence U* = W and the proof  is 
complete. [] 

6 Factorization of representable quasi-measures 

Let m be a positive, regular Borel measure in X* satisfying re(X*) = 1. Define 

#(A) = re(A*); A ~ d .  (6.1) 

Then, by the properties (i), (ii), (iv) and (v) given at the beginning of the preceding 
section it is more or less immediate that/~ satisfies properties (1), (2) and (3) in the 
definition of a quasi-measure (see the Introduction). It only remains to verify the 
regularity condition (4). Let U _ X be open and take ~ to be the family of open 
sets V satisfying V-  ~ U. ~ is ordered by inclusion and is directed upwards: if 
V1, Vz ~ ~ then V1 w V2 ~ ~. Moreover 

for if/a'  ~ U* then/~'(V) = 1 for some V~ ~, by virtue of Proposition 2.1. Now 
m is a regular Borel measure so there is a compact set C _  U* such that 
re(C) > re(U*) - ~ for any given e > 0. Since E is directed it follows that there is 
a V~ ~ such that V* ~ C. Now V-  ~_ U =~ (V- )*  ~ U*. Hence we get 

~ ( v - )  = m ( ( V - ) * )  >= re (C)  > r e ( v * )  - ~ = ~ ( v )  - 

which proves (4) in the definition of quasi-measures. We can now formulate the 
factorization-theorem for representable quasi-measures. 

Theorem 6.1. For each positive, regular Borel measure m on X *  satisfying 
m ( X * )  = 1 the set-function ~t defined by 

#(A) = (mo ~u*)(A); A6 ~ '  (6.2) 

is a representable quasi-measure I~ on X.  Conversely, for each representable quasi- 
measure I~ on X there is a positive, regular Borel measure m on X *  satisfying 
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re(X*)  = 1, such that (6.2) holds. Moreover,  i f#  and m are related by (6.2) and p is the 
state associated with m, and we define 

p(a) = (po kU)(a); a e A ,  (6.3) 

then p is the quasi-state associated with #. 

Proo f  The first part has already been established, except the representability of #, 
which will follow from the last statement of the theorem. Now let #' be a represen- 
table quasi-measure in X, and let p'  be the quasi-state associated with #'. By 
Theorem 4.1 there is a probability measure m' on E such that for each a e A: 

p'(a) = ~ a(a)dm'(a)  . 
E 

Let m be the corresponding measure in X*, i.e. 

re(D) = m' ( P -  a ( D )) (6.4) 

for any Borel set D ~_ X*. We now define # by (6.2) and observe that the proof will 
be finished if we can show that # = #'. We shall need: 

Lemma 6.1. Let  K ~ a ~, U where K is compact, U is open and a ~ A. Then 

K * - ~ a ' o  p -1 -< U* . (6.5) 

Proo f  By assumption we have K ~ a-X({1}) and X \ U  ~_ a 1({0}). Sup- 
pose # = P p  and that # e K * .  Then #(a l ( { 1 } ) = l , ~ : ~ p ( a ) = l , ~ a ' ( p )  
= l ~ : ~ a - ( p - l # ) - -  1. Similarly, if # r  then # ( X \ U ) =  1 so H(a- l ({0})  
= 1 <:~ p(a) = 0 <:~ a'(p)  = 0 ~ a - ( P -  1#) = 0. The proof is complete. [] 

Returning to the proof  of the theorem, let p be the state on C(E)  associated with 
m', i.e.: 

p ( f )  = S f ( a ) d m ' ( a )  = ~ ( fo  P -1 ) ( v )dm(v ) ;  f e C(E), a e E, v e X *  
E X *  

Let K ~ cg. Then we have, since p '  = p o tp: 

# ' ( K )  = inf{p ' (a ) :K <(a e A} = i n f { p ( a ' ) : K - ( a  e A} . 

On the other hand: 

# ( K )  = m ( K * )  = m ' ( P - I ( K * ) )  = i n f { p ( f ) : K *  ~ f o p - ~ ; f  e C(E)} . 

Since K-< a =~ K * ~ (  a ' o P  -~ by the above lemma, it follows that # (K)  < #'(K). 
Similarly, if U e (9 we have: 

# ' (U)  = sup {p'(a):a ~ U;a  e A} = sup{p (a ' ) : a  ~ U ;a  e A} 

whereas: 

Iz(U) = re(U*) = m ' ( P - I ( U * ) )  = sup { p ( f ) :  f o p - 1  ~( U , ;  f ~ C(E)} .  

Again by the lemma a-< U => a - o p  -~ ~ U* so that #(U)  > it '(U). 
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Now/~ is regular so for any ~ > 0 there is K __ U such t h a t / t ( K )  > /~ (U)  -- e. 
Hence we get: 

~,(K) ~ ~'(K) < ~'(u)  __< ~(u)  < ~(K) + ~. 

Therefore, if we assume that  y ( U )  < /~(U)  we arrive at a contradiction, since the 
above is t rue for all e > O. So p(U) = # ' (U)  for all open sets U __G_ X, but then 
/~ = /~ '  and the proof  is complete. [] 

Remark 6.1. The factorizations (4.1) and (6.2) are generally no t  unique, reflecting 
that  Q is no t  a Choquet-simplex. In  the example below we shall see that non-trivial 
relations between elements of E may exist. However,  we first need to say a few 
words about  how to construct extremal quasi-measures in certain spaces. 

Let X be either X1 = [0, 1] x [0, 1] ( = unit square) or X2 = S 2 ( = surface of 
the unit sphere), and let Pl,  P2, Pa be three distinct points in X. If A is an open or 
closed subset of X with the proper ty  that both A and X\A are connected we define 
a(A) = 1 if A contains at least two of the points Pi, and put a(A) = 0 otherwise. 
Then  a extends to an extremal quasi-measure in X (for details we refer to [2] or 
[6]).  The quasi-measure obtained this way is said to be associated with the set 
{p,},:1,2,3. 
Example 6.1. Let X = X 1 and let P0 = (0, 0), Pl = (1, 0), P2 = (1, 1) and Pa = (0, 1). 
Let  al be the quasi-measure associated with the set { p j } j ,  i, i = 0, 1, 2, 3. One may 
now show that 

(70 + 0"2 = (71 "{- (73" (6.6) 

F r o m  this relation it immediately follows that factorization of representable quasi- 
states on C(XI) is not  unique. The relation (6.6) arises from the observation that  if 
? is a simple curve in Xx connecting two diagonal points, say Pl and P3, and 
y contains neither of  the two other points, then X 1 \ 7  contains at least two distinct 
connected components .  This contrasts the situation in X2, where, if y is a simple 
curve connecting two points, also Xzk?  is connected. The relation (6.6) will 
therefore no t  hold in X2. However,  other  relations involving "higher order" 
extremal quasi-measures will exist. These relations reflect properties of  the order- 
structure of  the positive cone of  quasi-measures on X2. A discussion of these 
questions will appear  elsewhere. 
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