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I Introduction 

Suppose M '~ is a complete, noncompact, Riemannian manifold. The Laplacian A on 
M n is given in local coordinates by 

- 0 

Here gij are the components of  the metric tensor on M n. A is essentially self-adjoint 
on C ~ ( M n ) .  In general, the unbounded operator A on L2(M n) may have both point 
and continuous spectrum. The purpose of  this paper is to establish conditions, on the 
manifold M n, which ensure that the spectrum is purely continuous. 

In a seminal paper, Rellich [R] proved the absence of  positive eigenvalues for the 
Laplace operator, in unbounded domains in L~ '~. His approach relies on an integral 
identity which plays an important role in many different contexts. We state a general 
version of  Rellich's indentity in Lemma 2.1. As a consequence of  it, we obtain for 
u E L2(M~), with Au  = - A u ,  the following general formula (see Theorem 2.6 
below) 

/ ( X i ,  j q- X j , i ) u iu  j -= / ( l ~ r u l  2 -  Au2) div X (1.1) 

M n M n 

Here X is a C 1 vector field, on M r', with bounded covariant derivatives Xi,j .  In 
Corollary 2.8, we apply (1.1) to give criteria for the absence of  L 2 eigenfunctions with 
positive eigenvalues. Assume that Xi, j "~-Xj, i ~ O. Then - -A has no L 2 eigenfunction, 
with posit•e eigenvalue, if one of  the following holds: 

(i) There exists p C M n such that Xi , j  + Xj, i  > 0 at p and div X =- n on Mn;  
(ii) For some b > 0 there exists e = e (M n, b) > 0 sufficiently small such that 

Xi , j  + X j#  > 2(b - e)gij and I div X - n[ < e on Mn;  
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(iii) Xi,j  + Xj,i  >= (d ivX - n)g~j, 0 <__ d ivX - n and either inequality holds 
strictly at least at one point p C M n. 

Section 2 concludes with some extensions to exterior domains and eigenfunctions of 
Laplacians of conformally related metrics. 

Sections 3 and 4 are concerned with some specific applications of Corollary 2.8. 
Here we take X to be the gradient of f ,  where f is a convex function. For rotationally 
symmetric metrics we construct convex functions f of constant Laplacian. We show 
that such f exists if and only if: (i) The mean curvature of OB(r) with respect to an 

outward pointing normal is >= 0 for r > O; (ii) The ratio vol OB(r) is decreasing 
vol B(r) 

for r > 0. In particular, see Theorem 3.9, if K(r)  is the radial sectional curvature 
of M n, and either (i) K(r)  > O, or (ii) K(r)  < 0 and K'(r) > O, then - A  has no 
L 2 eigenfunction with positive eigenvalue. We note that part (i) of Theorem 3.9 was 
proved earlier, by different methods, in Escobar's thesis [E]. 

In Sect. 4 we study perturbations of rotationally symmetric metrics. For manifolds 
with a pole, curvature conditions are formulated which guarantee the existence of 
convex functions with Laplacian close to a constant. In particular, for perturbations 
of II~ n, see Proposition 4.15, we have the following: Suppose that the radial sectional 
curvature satisfies 

= (l  ~-T) 2 '  r ~ 0, 

uniformly in v,~ C T S  n-l ,  where (r, co) denote geodesic polar coordinates. If ~5 > 0 
is sufficiently small, then - A  has n o  L 2 eigenfunction with positive eigenvalue. 
We prove an analogous result for perturbations of generalized paraboloids and the 
hyperbolic space H '~. 

Section 5 has been inspired by a paper of Tayoshi [T]. This author used Rellich type 
identities to establish absence of L 2 eigenfunctions for surfaces of revolution in ]~3. 
In general, let X be a conformal vector field on a manifold M n, and IX] __< C(1 + r ) .  
Then, for a solution u E LZ(M n) to Au = --Au, we prove (Proposition 5.1), for a 
suitable exhaustion Dk of M, 

[ / / lim ( n - 2 )  I V u ] ~ d i v X - n A  u 2d ivX  = 0 .  (1.2) 
k--+cx~ 

Dk Dk 

When n = 2 we give some applications of (1.2) which, for rotationally symmetric 
manifolds, recover Tayoshi's result. Moreover, our results apply to metrics in the 
same conformal class of a given rotationally symmetric metric. 

In addition to the papers of Rellich, Tayoshi, and Escobar, there are some other 
works on absence of positive eigenvalues of the Laplacian on a manifold. Karp [K] 
studied complete surfaces with nonpositive curvature K(r, w) with K and K~ suitably 
decaying to zero at infinity. One of us investigated manifolds whose curvature decays 
to a nonpositive constant [D1,D2]. Xavier IX] considered the more general problem of 
proving that the spectrum of A is purely absolutely continuous. His criterion requires 
the existence of convex functions f with IV f] < C and A2f  < 0. We have heard 
that Escobar and Freire have obtained results related to ours. 

Finally, the methods in this paper generalize to SchrOdinger operators H = - A + 
V, where the potential V is allowed to be singular. We plan to study these operators 
in a future publication. In a different direction, the current results can be extended 
from Zl acting on functions to A acting on differential forms. 
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2 Rellich identities and eigenvalues 

Let M n be a complete noncompact Riemannian manifold and let A be the Laplacian 
on M n. When M n = R n, then it is well known that A has no point spectrum. For 
general M n, ,4 might admit square integrable eigenfunctions [D 1 ]. The purpose of this 
section is to prove that under suitable conditions there exist no positive eigenvalues 
of  - -A.  Since - A  is positive semi-definite, there are never any negative eigenvalues. 
Moreover, the eigenvalue zero occurs only for constant eigenfunctions on manifolds 
of finite volume [K]. 

The following important identity, originally due to Rellich for the case M '~ = R n, 
is well known: 

L e m m a  2.1. Let D C M n be a bounded, C 1 domain and let X be a C 1 vector field 
on M ~. For any u E C2(D) N C'I(D) we have 

f (X~,j + Xj,i)u~u3 - f div XlVul2  + 2 f X u A u  

D D D 

Ou 
= 2 f xu  - f ,vu,ax , 

OD OD 

In Lemma 2.1, X~,j denote the components of the covariant derivatives of X,  
whereas r/denotes the outward pointing unit normal to OD. 

Proof. The next identity follows by a direct computation 

2 X i , j u i u  j = d iv (2XuVu  - IVut2X) - 2 X u A u  + div XIVu[ z. 

Integrating the above over D finishes the proof of Lemma 2.1. [] 

We now assume that u is a solution to the equation A u  ---- - Au. Then one has 

2f xuAu= fdivXu2- f u2(X 
D D OD 

Substitution in Lemma 2.1 gives 

f ( x i ,  j ~- X j , i ) u i u  j -~- / ( ) ~ u  2 - [Vul2) div X 

D D 

= 2 Xu ~ .Jr ()~//2 _ iVul2)X .~/. (2.2) 

OD OD 

Let now p E M n be a fixed basepoint and denote by r(x)  the geodesic distance of  
x from p. In general, r(x) is only a Lipschitz function of  x. On any complete manifold, 
there exists a C ~ regularization ~o of  r [GWI],  satisfying for every x E M'~\{p}:  

IvQ(x)I _-< c IQ(x)- r(x)l < C .  (2.3) 

For t E 1~ we let Dt = {x E M'~IQ(x) < t}. By Sard's theorem, for a.e. t E ]~, 
the set Dt is a C ~ domain in M '~. We plan to choose a sequence tk T c~ of regular 
values of  Q such that Dk = Dtk exhausts M n. We will apply (2,2) to the sequence 
Dk and let k ---* cx~. 



146 H. Donnelly and N. Garofalo 

To control this limiting process we impose further restrictions on u and on the 
vector field X .  We assume that u E L2(M'~). Then A u  = - -Au  E L2(M'~), and 
therefore IVul ~ L2(M '~) [K]. Concerning X we assume the norm of V X  is bounded 
by a constant, i.e., IVXl <-_ c. Consequently, one has 

L e m m a  2.4. (a) [ div X[ < C; (b) Ixl < c l r  + c 2 .  

Proof. (a) Since d i v X  = t r aceVX,  Schwarz 's  inequality implies (a). (b) Let x E 
Mn\{p}. Since M n is geodesically complete there exists a geodesic 7(s), where s 
is arc-length, joining p to x and with length r(x). We have along 7 

lXl z 2 I X "  ( V ~ X ) [  =< 21Xl IVXl < ClXl .  

If  X never vanishes along 7, let So = O, otherwise let 

so = sup{s e [o, r(z)]lX('~(s)) = 0}. 

o (IXl) < c .  This On (so, r(x))  the function s ~ IX(Tts))l is differentiable and Oss = 

gives (b). [] 

Since u, IVul ~ LZ(Mn),  from (2.3) and the co-area formula [C] we have 
O ~  

I<.. S.< / <.. < 
M n 0 OD t 

This implies there exists a sequence tk T c~ of regular values of  Q such that 

lim tk [ (u z + tVul:)  = 0 (2.5) 
k---*c~ J 

OD k 

Applying (2.2) to D -- Dk, and using Lemma 2.4, we conclude 

] S ( x ~ ' j + X j ' i ) u i u j - f ( i V u i 2 - / ~ u 2 ) d i v X  <= Ctk S (u2 + iVuiZ)" 
Dk Dk OD k 

Letting k --~ c~, from (2.5) we finally obtain 

T h e o r e m  2.6. Let u C LZ(M n) be a solution to Au = --/~u. Suppose that X is a C 1 
vector fieM on M n with IVXI < C, then 

f (X i , j -q -  X j , i ) u i u j =  f (IVul2-Au2)divX. (2.7) 
M n M n 

Remark. More generally, if X is C 1 and we only assume IX I _<_ clr + c2, then for a 
sequence of  D~s as above we can still conclude 

lim L f  (X~,~ + XjOu~uj - f ( 'Vul2- ~u2)div X] =O. 
Dk 

If  X satisfies additional conditions, then Theorem 2.6 may be applied to deduce 
nonexistence of L 2 eigenfunctions. In this regard we have the following: 
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Corol lary  2.8. Suppose that X is a C 1 vector field on M n with IVXI <= C, and that 
X<j + Xj,i >->_ O. Assume that one of the following conditions is satisfied: 

(i) There exists p E M n at which Xi,j + Xj#  > 0 and div X ~ n on M n; 
(ii) For some b > O, there exists e = e (M n, b) sufficiently small such that X~,j + 

Xj# => 2(b - e)gij and I div X - n] < e on M n. Here 9ij is the metric tensor on Mn;  
(iii) Xi,j + Xj,i >= (d ivX - n)gij, 0 < d i v X  - n on M n, and either inequality 

holds strictly at least at one point. 
Then - A  has no L 2 eigenfunction with eigenvalue ,k > O. 

Proof. (i) By [K] we have for any L 2 eigenfunction 

f lVu]2= f u ( - A u ) = A  f u 2. 
M n M n M n 

Since div X =- n (2.7) yields 

f ( x i ,  j -'~ X j , i ) u i u  j : O. 
M n 

On the other hand (Xi,j + X j#)u iu j  >= O. Since, by assumption, there exists a 
point at which Xi,j + Xj#  > 0, we infer that must ]Vul - 0 in a neighborhood of  
that point. By unique continuation [A] we conclude that u is constant on M n. This 
contradicts A > 0. 

(ii) By (2.7) and the assumption we have 

2 ( b - e ) /  1V/z,2 ~ / ( X i , j +  X j , i ) u i u j =  f (div X - n ) ( { V u [ 2  - ~u 2) 
M n M n M n 

<-_ e f (lVul2 + ~u2) = 2e f lVu, 2. 
M n M n 

b 
If e < ~ the above contradicts A > 0. 

(iii) Invoking (2.7) and the hypothesis we have 

/ ( X i ' j  q- X j ' i ) u i u J  = l (IVul2 - Au2)(div X - n) 

M n M n 

/ IVul2(divX - n) .  =< 
M n 

Using the assumption on strict inequality at one point, and arguing as above, we 
again reach a contradiction. [] 

An important special case of  Corollary 2.8 is that in which X = V f .  The hy- 
pothesis then requires that f should be convex with Hessf bounded. In Sects. 3 and 4 
we will construct convex functions which also satisfy the additional requirements in 
parts (i)-(iii) of Corollary 2.8. 

We now proceed to give two extensions of  Theorem 2.6. First of  all, we consider 
exterior domains in a Riemannian manifold M n. Let (2 C M '~ be a bounded C 1 
domain. Given a vector field X on M n we say tha t /2  is X-starshaped if X �9 r/__> 0 
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0 
on 0g2, where ~7 denotes the exterior unit normal to 0(2. If  M n = Nn and X = 0"--~' 

then X-starshaped coincides with the standard notion of  starshaped with respect to 
the origin. In what follows we assume that ~ is X-starshaped for a suitable choice 
of  the vector field X.  Moreover, suppose that the eigenfunction u C L2(M'~\f2) and 
satisfies the Dirichlet boundary condition ulon = 0. If  Dk is the exhaustion of M '~ 
previously introduced, we apply formula (2.2) to D = Dk\S2 obtaining 

[ (Xi,j + Xj,i)uiuj + [ (/~u 2 -  [Vul2)d ivX 
* /  t ]  

Dk\n Dk\n 

i o. j o . j  l -= 2 X u  -~  - 2 X u  N + (a~ 2 - IV~I2)X " '7 + IVul2X " '7. 

OD k Og2 OD k Of 2 

Using the condition ulo n = 0 we have X u Ou /i c%l,v_ "~12 = ~ X �9 r /and IVul 2 -- on 
Os Therefore, the above identity becomes 

f (Xi, j n t X j , i ) u i u j  q- / (,,~u 2 -  ]Vul2)d ivX 

Dk\n Dk\n 

/ o. i = 2  X u - ~ +  ( ' k u 2 - l V u l 2 ) X ' v -  \0~1/  X . ~ .  

OD k OD k On 

Since g? is X-starshaped by assumption, we obtain 

f (x,,u + x j#)~ ,~  + [ ( ~ : - I W l 2 ) d i v  X 
D~:\n Dk\n 

~__ 2 X u  G "4- (,~Zt 2 -- I W * I 2 ) X  .w.  

ODk ODk 

Letting k ~ c~z in the above inequality, we deduce the following. 

Proposit ion 2.9. Let X be a C l vector field on M r~ with IVXl _-< c .  Suppose that 
J2 c M n is X-starshaped and u C L2(M'~\f2) satisfies Au = - Au, ulon = O. Then 

[ (Xi,j +Xj , i )uiuj  < [ (IVul 2 -  A u e ) d i v X .  

Mn\n M~\f) 

Starting from Proposition 2.9, and arguing as before, we can obtain a nonexistence 
result similar to Corollary 2.8. 

Now we turn to some special results involving conformal structures, Let M 2 be 
a complete, two-dimensional Riemannian manifold with metric 9ij. Suppose that 
9~j = r  where q~ is a C ~ function on M 2 satisfying 0 < ej < r < c2, fur suitable 
constants c~, e2, Therefore, u C L2(MZ, ~) if and only if u C L2(M 2, 9). Since M 2 is 
two-dimensional, A 0 = r  hence if u C L2(M 2, ~) is a solution of Aou = - A u ,  
then Au = - ACu, In addition to the above assumptions on r we also suppose that 
for a suitably chosen C 1 vector field X on M 2, we have X r  > 0. 
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For any C t bounded domain D C M 2, one has 

D O O OD 

where u is a solution to Aou = - A u  in M 2. Substitution in Lemma 2,1, with 
D = Dk, gives 

/ ( X i , j  + Xj,Ou~uj -t- / div X(ACu2 -1Vu l2 )  + )~ / u2Xr  

D k Dk D k / o~ 
= 2 X u  N + (•r 2 - IVul2)X ' r l .  

OD k OD k 

For X r  __> 0 and A > 0, this yields 

f ( X ~ , j + X j # ) u ~ u j + f d i v X ( A d p u 2 - l V u ,  2) 

Dk Dk 

/ +~ <= 2 X u  ~ + (~r _ l V u l 2 ) X  . ,7. 

,OD k OD k 

Letting k ~ oc, we obtain as before 

Proposit ion 2.10. Let X be a C 1 vector field on M 2 with Ivxl <-_ c Suppose that 
two conformally metrics on M 2 are given satisfying Oij = 09ij, 0 < Cl < 0 <-_ c2. 
Moreover, assume that X r  >= O. Let u E L2(M2,O) be a solution to Aou = - A u ,  

> O. Then 

/ (Xi,j + Xj , i )uiuj  + / div X(lVul2 - ACu2) , 

M 2 M 2 

where Xi,j denote covariant derivatives of X with respect to gij, div X : giJ Xi,j,  
and the above integrals are taken with respect to the measure induced by g+j. 

Under additional hypotheses, similar to those of Corollary 2.8, Proposition 2,10 
forces the vanishing of  square integrable eigenfunctions of  Zl o. In dimension n > 3, 
one employs the conformal Laplacian to establish results analogous to Proposition 
2.10. 

3 Rotationally symmetric metrics 

Suppose M '+ is a complete Riemannian manifold, with a basepoint p, We assume that 
the exponential map exp : TpM ~ M is a global diffeomorphism, Moreover, let the 
metric be given in geodesic spherical coordinates by ds 2 = dr2+ 72(r)dw 2, with the 
associated volume element dvol  = Odrd vol(av) = q,,+-i drdvol(co). 

In this section we plan to construct convex functions f whose gradients X = V f  
satisfy the assumptions in Corollary 2.8(i). This requires certain constraints on the 
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rotationally symmetric metric. For f = f (r )  the equation / i f  = div X = n leads to 

the ordinary differential equation 0 - I  drr 0 = n. Integration yields the solution 

r t 

r) = n (t s)dsdt,  

o o 

r > O. (3.1) 

Since O(r) ,~ r n-1 as r ~ 0 [BGM], the function f (r )  is bounded in U\{p} ,  
where U is a neighborhood of the basepoint p. Since f satisfies A f  = n in U\{p} 
the removable singularities theorem implies f regular in U. 

We now compute the Hessian of the function f in (3.1). Since f is radial, we have 
[GW2] 

Hess f (r )  = V df(r) = V ( f ' ( r )  dr) = f"(r) dr | dr + f '(r) V dr 

7'(r) 
= f"(r)dr  | dr + f '(r) - - ~  [g - dr | dr]. (3.2) 

Consequently, (3.1) gives 

H e s s f ( r ) = n  1 - O ' ( r ) O - Z ( r  O(s)ds dr@dr  

o 

+ O'(r)O-2(r O(s)ds[g - dr | drl.  
n - - 1  

o 

(3.3) 

Proposi t ion 3.4. Let f be as in (3.1). Then f has bounded nonnegative Hessian if and 
only if 

0 < or( )8-2( ) / 8 (  )d _ r r s s < l =  
. 1  

0 

for all r > O. 

Proof. Obvious consequence of (3.3). [] 

Proposition 3.4 has an interesting geometric interpretation. Let B(r) denote the 
geodesic ball with radius r centered at the basepoint p. 

Proposi t ion 3.5. The function f in (3.1) has bounded nonnegative Hessian if and only 
if" (i) The mean curvature of OB(r) with respect to an outward pointing normal is >_ 0 

for r > O; (ii) The ratio vol OB(r) is decreasing for r > O. 
vol B(r) 

Proof. Let X and Y be tangent vectors to the sphere OB(r). If  B(. ,  .) denotes the sec- 

ond fundamental form of OB(r) we have: B(X,  Y)  = ( v  x O ,  y )  = (V x dr, Y)  = 

Hess r ( X , Y ) .  Letting f ( r )  = r in (3.2) we have that B( . , . )  is positive semidefi- 
nite if and only if 0' __> 0. Since M n is rotationally symmetric B(. ,  .) > 0 if and 
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only if the mean curvature is > 
vol OB(7.) 0(7.) 

vol B(r) fO(s) ds 
o 

0. This proves (i). For (ii) we first observe that 

- - .  An elementary calculation gives 

7" 

if(r) f O(s)ds - 02(7.) 
d 0(7.) o 

dr O(s) ds O(s) ds 
o 

from which (ii) obviously follows. [] 

The characterization given in Proposition 3.4 is sometimes difficult to verify. The 
next proposition constitutes a useful sufficient criterion. 

P r o p o s i t i o n  3.6. Let if(r) >= 0 and O'(r) with bounded Hessian. ~ decreasing for r > O. Then f in 3.1 is convex 

Proof. We use Proposition 3.5. Recall that if(r) >= 0 is equivalent to (i). Since - -  

is decreasing, an easy real variable lemma [CGT] shows that 

is decreasing. [] 

(si@e- o 3 o(7.)=\ v ~  ) 

f O'(s) ds 
o O(r) vol OB(r) 

7" 

f O(s) ds f O(s) ds vol B(r) 
o o 

0'(7,) 
0(7,) 

Then, 

O'(r) 1 ~/ '~n cosh v/K0007. 
O(r) = (n - )~/ Ko s-~nhnh v/-K-o7 " . 

d--~ (r) = ( sinh x/'-Kor) z'' 

which according to Proposition 3.6 implies that f given by (3.1) has bounded non- 
negative Hessian. 

In addition to the above specific examples, the conditions in Proposition 3.6 also 
hold for two more general classes of  rotationally symmetric manifolds. First of  all, 
one has 

Corol lary  3.7. Suppose that the radial sectional curvatures of M n are > O. Then, f 
in (3.1) has bounded non-negative Hessian. 

To illustrate the utility of Proposition 3.6 we check two significant examples. 
7.2 

1. M n = I~ n. In this case O(r) = 7.~-1 and f (r )  = -~-. One obviously has 0'(7.) _> 0, 

0'(7.) n -  1 
- - - .  Proposition 3.6 implies that f is convex, and, in fact, Hess f = Id. 

0(7.) 7. 
2. M n = H n, the simply-connected complete space of constant curvature - K 0 .  Now 

n , - - I  

so that 
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Proof. Consider a radial geodesic starting at p. Along it the Jacobi equation reduces 
to 7" + K ( r ) 7  -- 0, due to rotational symmetry. This gives (Tt) ' = - K 7  < 0. If 
7'(r0) < 0 for some r0, then 7~(r) < 7'(r0) for all r > r0, and thus 7(r l)  = 0 for 
some rl > to. This contradicts completeness. So O~(r) >= 0 for all r. To establish the 
second hypothesis of  Proposition 3.6, we compute 

�9 1 d L(7'  7"7-(7'): K -  <o .  [] 
n - 1  ar = d r \ T J -  72 

Secondly, we have 

Corol lary  3.8. Assume that the radial sectional curvatures of M n are < 0 and in- 
creasing. Then, f in (3.1) has bounded non-negative Hessian. 

0 ~ n -  1 
Proof Since K(r)  <= O, the Rauch's  comparison theorem [C] gives ~- ~ r 

More work is required to check the second condition in Proposition 3.6. Consider a 
fixed value r0 of  r. Let M~ be the model space of  constant curvature K0 ---- K(ro). By 

Ranch's  comparison theorem, and the fact that K(r)  is increasing, we have O~(r~ >_ 
O(ro) - 

O'o(ro) where Oo(r) = " ~"=~-" - ( s inhx/ / i0 r~  n-1 0~ is decreasing (see example 2 
Oo(ro)' \ 7r  ./ . Since O00 

above), there exists so < r0, with O~(r~ -- Ot~176 By Heintze-Karcher's comparison 
= O(ro) Oo(so)" 

theorem [HK], we have for t > 0 

O'(ro + t) < O'o(So + t) < O'o(So) _ O'(ro) 
O(ro + t) = Oo(so + t) = Oo(so) O(ro) ' 

where in the first inequality we have used the fact that K(r)  is increasing, whereas 

in the second that O00 is decreasing. By Proposition 3.6 the conclusion follows. [] 

Using the previous results and Corollary 2.8 we now establish a nonexistence 
theorem for L :  eigenfunctions of the Laplacian. 

Theorem 3.9. Let M n be a complete, rotationally symmetric manifold. Assume that 
the radial sectional curvatures satisfy either (i) K(r)  > O, or (ii) K(r)  < 0 and K(r)  
increasing. Then, - A  has no L 2 eigenfunction with eigenvalue A > O. 

Proof. In the present situation we apply Corollary 2.8, part (i), with X = ~7f and 
f given by (3.1). By Corollaries 3.7, 3.8, we have [VX[ < C, Xi,j + Xj,i > O, 
and div X = A f  = n, by construction. We only need to check Hess f > 0 at some 
point. In fact, we will prove that Hess f (p)  = 9, where g is the metric tensor. Given 
v E TpM '~, [v[ = 1, consider a geodesic 7(r)  with 7(0) = p and 7~(0) = v. Then, 
(3.3) gives 

H e s s f ( v ' v ) = l i m H e s s f (  0 ' ~ - ~ o  Or -~rO) 

It suffices to show that 

( J )  = l i m n  1 O'(r) O(s)ds . 
~ o  02(r) 

0 

r 

lim O'(r) / n-1 
r~o ~ O(s)ds = n (3.10/ 

0 



Riemannian manifolds 153 

In order to accomplish this we argue as follows. Near r = 0, IKI < c. Then, by 
Rauch's  comparison theorem [C] we have 

(n - 1)v/-c cos x/-~r < O'(r) < (n - 1)x/~ cosh v ~ r  
sin v/cr = O(r) = sinh x/-cr' 

( s i n  v/-cr ~ n-1 ( s i n h _ ~ r  ~ n-1 
< O(r) < 

This implies the asymptotic relations as r ---+ 0 

O'(r___) _ n -- 1 (1 + o(1)),O(r) = rn- l (1  + o(1)). 
O(r) r 

From the latter, (3.10) easily follows. [] 

Theorem 3.9, part (i), gives a new proof of  earlier results by Escobar [E]. Concern- 
ing part (ii), examples constructed in [D1] show that the condition that K increases 
is required. 

4 Perturbations of rotationally symmetric metrics 

In this section we extend the class of manifolds for which the results of  Sect. 2 are 
applicable. A manifold with a rotationally symmetric metric, satisfying the assumption 
in Proposition 3.4, supports convex functions f of  constant Laplacian. In certain cases 
one may perturb the metric so that f remains convex and its Laplacian is close to a 
constant. For instance, this is always possible when M n = 1R n with the flat metric. 
However, we intend to measure the perturbation in terms of curvature, rather than in 
6 ,2 norm. For this purpose we make use of  the comparison theory of [HK]. 

We start with a rotationally symmetric metric 9 = drZ + 72(r) dw2, and we define 

h = d r  2 q- 132(r)dco2, 

with ( ] )  13(r) = ~/(r) exp ~(s)  ds , (4.1) 

o 

where ~ will be specified below. We plan to choose �9 so that the difference of  the 
radial curvature functions Kh(r )  -- Kg(r)  has constant sign. We have the following 

Lemma 4.2. 

Kh -- Kg = - 2 7 '  q5 - ~ '  - q5 2. 
7 

/3" 7" 
Proof. By the Jacobi 's  equation Kh -- Kg = - - - .  A computation using (4.1) 
yields the conclusion. [] /3 ' 7 

Moreover, with f as in (3.1), with O(r) = 3,n-l(r), we recall that in Sect. 3 con- 
ditions were given under which A g f  = n and Hessg f => 0. Now we investigate the 
analogous entities with respect to the metric h. 

Lemma 4.3. (i)HeSSh f = f " d r |  d r +  f ' [ ~  + ~ ] [ h - d r |  
(ii) Z~hf = n + (n - 1)4~f'. k 7  J 
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Proof. Easily follows from differentiating (4.1) and substituting in (3.2), where 7 has 
to be replaced by/3. 

The metric 9 on M n is said to represent a strong model if there exist constants 
0 < a l  < a 2 <  1, s u c h t h a t f o r r > 0  

1" 

al < O'O-2 f o( )d - -  S S = < a 2 .  

0 

(4.4) 

In this case formula (3.3) implies that Hess f >__ a39, for all r > 0, and some 
a3 > 0. Our goal is to apply Corollary 2.8, part (ii) to perturbations of  certain strong 
models. We begin by giving some specific examples. 

1. M n = R '~. This is the simplest example of  a strong model. Now O(r) = r n - l ,  so 
that 

O'(r)O-Z(r) f O(s)ds - n - 1 (4.5) 
J n 
0 

2. M'~=genera l ized  paraboloid. We assume Kg(r)> 0 for all r-_> 0. On 0 
we assume that O(r)~r ~('~- ~) as r---~ c~, with 0 < a  < 1, and also O'(r),,~ 
o~(n- 1)r a(n-1)-l as r ~ ~ .  We notice that the above assumption on 0 yields 
r ~ . a (n  - 1)+ 1 

fO(s) ds ~ as r ~ co. We then have 
0 c~(n - 1) + 1 

T 

f c ~ ( n -  1) l i m  O'(r)O-Z(r) O(s)ds - a(n - 1) + 1 

o 

(4.6) 

On the other hand formula (3.10) reads 

T 

) f o (  n -  1 limO'(r)o-Z(r s ) d s -  n 
0 

(4.7) 

T 

In order to achieve (4.4) it suffices to show: O'(r) > 0, 01(r)O-2(r)f O(s)ds < 1. 
0 

In the proof of  Corollary 3.7 we showed that 7 '  is decreasing and 7 '  >- 0. If  there 
exists r0 > 0 such that O~(ro) = 0, then 7'(r0) = 0, and therefore 7 ---= 0 on r > r0. 

This implies f f  ----- 0, for r > ro, and this violates the asymptotic assumptions on 
0 t  r 

~-. We are left with proving O'(r)O-2(r)f O(s)ds < 1. The following iemma is an 
0 

adaptation of  an argument in [CGT]. 

L e m m a  4.8. Let q5, z~ be positive functions for r > O, continuous for r >= O. Suppose 

that h def q5 d ( fo i ) -= -~ is strictly decreasing. Then dr (9/ ~b < 0 for every r > O. 
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Proof. One computes 

0 '  0 0 

I] - -  r 2 r  [ h ( r )  - h ( x ) ]  dx 
o 

by the assumption on h. 

< 0  

0 t 1 "3 'I 
We now apply Lemma 4.8 with r = 0 I, r = O, and h - - - -  

0 n -  1 "/ 

( n -  1)h / - = - K g  - < 0 ,  
7 

since, as we showed, ,~f > 0. This gives 

010 -2 ] O(s) ds - 1 O__) o 
0 > dr  O(s)ds O(s)ds 

o 

. Then, 

This shows 010 -2 f O(s)ds < 1, hence the proof of (4.4) is complete. [] 
0 

We now establish nonexistence of  L 2 eigenfunctions for perturbations of  the gen- 
eralized paraboloid in example 2. We accomplish this in two steps. First we control 
the change in the Hessian of f ( r )  by a curvature decay condition, then we apply 
Corollary 2.8. In the sequel, M n denotes a manifold with a pole whose metric tensor 
is denoted by 0~j- Let (r, ~) denote geodesic polar coordinates with respect to 0ij. 

0 
Suppose ~rr is the radial unit vector, and v~ is a tangent unit vector to a level sphere 

of r, both based at (r, ~z). One has 

L e m m a  4.9. Let 9 = dr2 + 72(r) d~2 be the metric of  the generalized paraboloid o f  
example 2, with c~ >= �89 Suppose that Kh(r )  is a smooth function on M n satisfying, 
for r >= O, ~l > O: 

{ ' IKh(r) - Kg(r)[ < 5(1 + r)  c~-3 ol > ~ (4.10) 
1 5(1 + r )  c~-3-rl ce = 

and Kg(r)  >= Kh(r )  >= O. Consider a perturbation gij o f  9 whose radial sectional 
curvatures satisfy 

= , vw  >=Kh(r), r >=0, (4.11) 

uniformly in v~ and w. Then, given e > 0 we can choose 6 = b(c) > 0 in (4.10) above 
such that 

Hess0 f => (a3 - g)gij and I A o f  - n I < e ,  (4.12) 

where a3 > 0 is the number for  which Hessg f > a39. 
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Proof. We solve Jacobi ' s  equation/~rr(r) + Kh(r)fl(r) = O, r >= O, with initial condi- 
tions fl(0) = 0, i f (0 )  = 1. By the Sturm's  comparison theorem [HI, since K a _>_ Kh,  
and 7( r )  > 0 for r > 0, we infer/~(r)  > 0 for r > 0. Therefore, h = dr 2 + ~2(r)dw2 

r 7 r 
is a complete metric with curvature Kh(r). As in (4.1) let 4i --  . We claim 

7 
~(0) = 0. This can be shown as follows, f l ' (0)  = -Kh(O) f l (O)  = 0. Since r is a 
smooth function, we have f~(r) = r(1 + 0(r2)) as r --* 0. Also,  fir(r) = 1 + 0( r  2) 

as r --~ 0. Therefore, fir(r) 1 
- -  ----- - (1 + 0(r2)) as r ---* 0. The same applies to 7, 
~(r)  r 

hence the claim follows. By Lemma 4.2, we have qY = Kg - Kh -- qSw, where 
27 '  7 '  J 3r 

w = - -  + �9 = - -  + By integration, we obtain 
3' 3' ~ "  

(J)0; (]) �9 (r)  = exp - w K ~ -  Kh)(s)exp w ds, 

1 

(4.13) 

since 4~(0) = 0. By Rauch 's  comparison theorem [C] and Kg >= Kh >= 0, we conclude 
71 j31 1 
- -  < - -  < - , a n d t h u s  
"I' ~ = r 

71 ,,/I 1 
2 < w < - - + - ,  r > 0 .  

7 -  - 7  r 

This estimate and (4.13) yield 

I~(r)l < C7-2(r) / IKh(s) - Kg(s)l 87(8) d8. 

o 

Using (4.10), we conclude for c~ => �89 

I~(r)l _-< C'~(1 + r)  -1 r > 0 

T 

Recall ing (3.1), we have if(r) = nO-l(r) f O(s)ds, with 0(r) ,~ r (n-1)~ as r --~ c~. 
0 

Then, Ifr(r)l <= C(1 + r),  for r => 0. This and the above estimate finally imply 
lfr(r)~(r)l < C~'5 for r => 0. Combining the latter with Lemma 4.3 and the fact that 
g is a strong model we see that (4.12) holds for the metric h. (4.1 l )  and the Hessian 
comparison theorem [GW2] allow us to complete the proof. [] 

Remark. If  the strong model  satisfies 7" ( r )  ~ c~(c~- 1)r  a -2  as r --~ c~, then Kg(r) 
c~(1 - c0 

r2 as r ---* oo. Since 0 < c~ < 1, there exist curvature functions Kh satisfying 

the hypotheses of  l_emma 4.9. 
Combining Lemma 4.9 with Corollary 2.8, part (ii), we arrive at 

Propos i t ion  4.14. Suppose that gij satisfies the assumptions in Lemma 4.9. Then, there 
exists no L 2 eigenfunction of - A ~  with positive eigenvalue. 

A more explicit  approach is available to study perturbations of  the strong model  
11~ '~. In this case we have 
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Proposition 4.15. Let M n be a complete manifold with a pole with metric tensor 9ij. 
Suppose that the radial sectional curvature function satisfies 

- -  z K 0 , v~ <= (1 + r )  2 '  r > 0, (4.16) 

uniformly in v~ and w. Then, given ~ > 0 we can choose 6 = 5(e) > 0 in (4.16) such 
that 

Hess 0 f _ _ > ( 1 - ~ ) g i j  and I A o f  -- n I <= e .  (4.17) 

Moreover, there exist no L 2 eigenfunctions o f - A  0 with positive eigenvalue. 

Proof  For the standard metric on ~n ,  one has 9 = drZ+"/Z(r) dw2 with 7( r )  = r .  We 
now let ~b(r) = - c r ( l  + r2) -1, where c J( 0 will be suitably chosen. Using (4.1), we 
define a funct ion/3(r) ,  and we let h = dr 2 + f lz(r)d6o2,  T > 0. An easy calculation 
shows that h extends from ~ n \ { 0 }  to a smooth metric on ~'~. The point is that 
~(r) 

- (1 + r2) -c/2 is a smooth function of  r 2. By rotational symmetry it suffices 
r 

to verify the smoothness of h when n = 2. In this case x = r cos w, y = r sin w. A 

computation gives: h(dz, dz) = 1 + ~ r )  1 -~, h(dz, du) -- 7 1 ~ r )  " 

Moreover, /3(r) _ 1 + O(r2). At this point, we use Lemma 4.2 to compute the 
r 

curvature. We have 

Kh = - ~  + -~ + ~  

- l + r  ~ . 2 +  l + r  ~ l + r 2 )  

~[3 + (1 - e)r 2] 

L 71 727 j 
This shows that, for c sufficiently small, the sign of  Kh is the same as the sign 

of c. We now consider two rotationally symmetric models,  one with c > 0, the other 
/,2 

with c < 0. Since (3.1) gives f ( r )  = -~- on ~n ,  we have Ir < Icl. By Lemma 4.3, 

(4.17) holds for both models. By the Hessian comparison theorem [GW2] and (4.16), 
we conclude that (4.17) holds for 90.  

Finally, Corollary 2.8, part (ii), implies that -Z~ 0 has no L 2 eigenfunction with 
positive eigenvalue. [] 

A rotationally symmetric metric is said to be a weak model if  

T 

O'(r)O-Z(r) / O(s)ds <= 1, r > O, 0 < 

o 

but (4.4) fails to hold. Here are two specific examples.  

I .  M '~ = capped cylinder. We assume K 9 => 0 for all r __> 0. Furthermore, we 
want O(r) ~ 1 as r ---, c~, O'(r) = 0 for r > r0, for some r0 > 0. (3.2) gives 
Hess f ( r )  ----- f " ( r ) d r  | dr for r >= r0. Thus, Hess f ( r )  has (n - 1) zero eigenvalues 
for r > r0. This means that Corollary 2.8 is not applicable to perturbations of  the 
capped cylinder. 
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. M '~ = IE n. Now 7( r )  = s inhr ,  O(r) = (s inhr )  '~-l,  so that formula (3.1) gives 

r 

f~(r) = n ( s i n h r )  l -n  f(sinh s) ds.  

0 
Also, 

T 

ftl(r) ~ ~'~II - (n -1)coshr(sinhr)-?~ f (sinhs)n-l d~ 1 . 
o 

Since ] im f"(r) = 0, from (3.2) we conclude that ]]_[n is a weak model. Next, we show 
r---~o@ 

that Hess f (r)  has no zero eigenvalue, for any r __> 0. To begin with, we remark that 
f"(r)  >=_ ee -2~ for r >= r0 and all n. When n = 2 this may be improved to f"(r)  >_ 
ce -~, r >_ ro, and similarly f"(r)  > ere -2~, for r > r0, when n = 3. Moreover  

lim fl(r) 71(r) - n .  By (3.2), Hess f (r)  has no zero eigenvalue for r > r0. On 
r-~oc 7( r )  n -  1 = 

the other hand, Hess f = 9i j  at the pole r = 0. Since drr - (sinh r )  2 > 0, 

01 d (O(r)/ i O(s)ds) < O, which then -0 is strictly decreasing. By Lemma 4.8, ~rr 

implies, as in the discussion of  the generalized paraboloid, that f"(r)  > 0 for r _> 0. 
7 ' ( r )  

Also, 7 ' ( r )  = c o s h r  > 0, implies f ' (r) ~ > 0, for r >__ 0. In summary, Hess f ( r )  

never has a zero eigenvalue. 
We now study perturbations of IHI n. Because of  the rapid decay of the smallest 

eigenvalue of Hess f ,  the allowable perturbations are very restricted. We have 

Propos i t ion  4.18. Let M n be a complete manifold with a pole and metric tensor gij. 
Suppose that the radial curvature function satisfied 

-6(cosh(2-+-rl)r)-' < Ko(~--~ ) = , v ~  +1__<0, r__>0. (4.19) 

Then, given ~7 > 0 one can choose 6 = 60]) > 0 in (4.19) such that 

2 H e s s 0 f _ > _ ( A 0 f - n ) 0 i  j and A o f - n > = O .  (4.20) 

Furthermore, there exists no L 2 eigenfunction o f - A  0 with positive eigenvalue. 

Proof. We let Kh(r) = -- 1 -- 6(cosh(2 + r/)r)  -1 and notice that this is a smooth 
function on M '~. We suitably modify the proof  of  Lemma 4.9. The first step is to solve 
Jacobi 's  equation flU(r)+ Kh(r)fl(r) = 0, with initial conditions fl(0) = 0, ill(O) = I. 
By Rauch 's  comparison theorem [C], fl(r) >= r and therefore h = dr 2 + fl2(r)&o2 is 

/3' 7 '  
a complete metric with curvature Kh(r). Let 7( r )  = s inhr ,  and 4~ - . We 

/3 -y 
7'  /3 / 

recall #(0)  = 0. By Lemma 4.2, we have ~ = - 1 - K h  -- ~ w ,  with w = - -  + ~-,  
7 

so that (4.13) holds with K u = - 1. By Rauch 's  comparison theorem, we infer for 
r>_O:  

cosh (v/1 + 6r) 2 c o s h r  < w(r) < c o s h r  + 

sinh r = = sinh r sinh(v/1 + 6r) 
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This estimate and (4.13) yield 

9" 

I~(,')1 _-< C(sinh r) -2 1 IKh(s) + 11 sinh s sinh (x/-i--+-6s) ds. 

0 

Using (4.19) we conclude for 0 < 6 < (1 + ~)2 _ 1, I~(r)l < 6 '&  -2r for r __> 0. 
7" 

Since if(r) = n(sinhr) 1-'~ f (s inhs)  n-l  ds, we deduce that [f'(r)q~(r)[ < C'6e -2~ 
0 

for r __> 0. Using Lemma 4.3 and the discussion in example 2 above we have, for 
> 0 sufficiently small, 2Hessh f >= ( A h f  -- n)h. Moreover, Kh =< - -  1 and the 

Laplacian comparison theorem [GW2] give A h f  >__ n. This establishes (4.20) for the 
metric h. By (4.19), and the Hessian comparison theorem, (4.20) holds for the metric 
~ j .  Finally, applying Corollary 2.8, part (iii), we conclude the nonexistence of L 2 
eigenfunctions for - A o .  [] 

Remark. When n = 2, we can improve the decay condition in (4.19) to: -6(cosh(1 + 

r/)r)-I <= K~ ( ff-~, v~)  + l <= O. This follows from the better decay condition on 

the smallest eigenvalue of Hessg f ,  f"(r)  >= Ce -~, from example 2. 

5 Conformal vector fields, surfaces, and eigenvalues 

Conformal vector fields play an important rote in differential geometry, especially 
for two-dimensional manifolds. We recall that a C 1 vector field X on a Riemannian 
manifold M n is said to be conformal if 

Xi,j + Xj,i = _2 div Xgi  j , (5.1) 
n 

w h e r e  gij is the metric tensor of M n. In this section we develop some consequences 
of Theorem 2.6 when X is a conformal vector field. Our first result is 

Proposition 5.1. Let X be conformaI and suppose tXI <= clr + e2. Let ~ E L2(M n) 
be a solution to Au = - Au. Then, there exists a sequence Dk T Mn for which 

lim : 0  

Dk D k 

Proof. Follows immediately from (5.1) and the remark after Theorem 2.6. [] 

In the case in which r~ = 2, Proposition 5.1 has some particularly interesting 
consequences. We immediately note that (5.2) reduces to 

lim f u  2 d i v X = 0  (5 . 3 )  
k -~oc  J 

Dk 

for A > 0. This leads to the following. 

Corollary 5.4. Let X be a conformal vector field on a complete surface M 2 satis~ing 
IXI <= cl r  4- c2. l fd iv  X > 0 and div X > 0 at some point p E M,  then - A  has no 
L 2 eigenfunctions with positive eigenvalues. 
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Proof. Follows from (5.3) and the unique continuation theorem [A]. [] 

Suppose that M n is a rotationally symmetric manifold with metric tensor ds 2 = 
dr 2 + 72(r)dw 2. We will construct a radial conformal vector field. 

0 
Proposi t ion 5.5 Let X = "7 -~r" Then, div X = n71 and X is conformal. 

T 

Proof. Let f ( r )  = f "7(s)ds, so that X = xTf. Since f ' ( r )  = 7(r), f " ( r )  = "7'(r), 
o 

from (3.2) we obtain H e s s f  = 7 'dr  | dr + 7 ~ [ 9 -  dr | dr] = "Tr 9. This yields 
Xi, j  + Xj , i  = 27'gij and div X = n')/. [] 

Corol la ry  5.6. Let M 2 be a complete, rotationally symmetric manifold with metric 
tensor ds 2 = dr z + 72(r)dw 2. Assume that 7(r) < clr + e2 and that 7'(r) >= O for all 
r > O. Then - ' 4  has no L 2 eigenfunctions with positive eigenvalues. 

0 
Proof. By Proposition 5.5 the vector field X = 70 r r  is conformal and div X = 2"/~ >__ 

0, by the assumption on 7. Moreover,  at the basepoint p C M 2, we have 7~(0) = 1. 
The conclusion then follows from Corollary 5.4. [] 

Tayoshi [T] proved Corollary 5.6 for surfaces of  revolution in R 3 satisfying 7~(r) __> 
0. In that case, one automatically has 7(r)  < r. 

Let M z be a differentiable surface endowed with two conformally related complete 
metrics 9ij = Cg~j. A given vector field X on M 2 is conformal with respect to gij if 
and only if it is so for t)ij. We have the following 

Proposi t ion 5.7. Suppose that the conformal vector field X satisfies Iglg =< e l f  + c2, 
r >= O, with respect to the metric gij. Moreover, assume that there exist constants al, 
a2 > 0 such that al < ~ <= a2. I f  -dp-~X()  < divg X ,  with strict inequality at some 
point p E M 2, then - ' 4 0  has no L 2 eigenfunctions with positive eigenvalues. 

Proof  Since the two metrics are quasi-isometric, we have IXIo <__ c37+c4, for suitable 
c3, ca > 0. Moreover, div 0 X = divg X + ~b-tXq~ => 0, with strict inequality at some 
point p E M.  Invoking Corollary 5.4, we reach the conclusion. [] 

Combining Proposition 5.7 with Proposition 5.5, we deduce 

Corol la ry  5.8. Let 9 = dr 2 + 72(r)dw 2 be a complete, rotationally symmetric metric 
tensor on M z, with 7(r) satisfying the assumption 7(r) <= clr + cz, r >= O. Suppose 

that 9ij = qb9~j, with al =< fb =< a2,for some al, a2 > O. I f  - fb  -1 ~rOf5 < 27_ l ~r'07 with 

strict inequality at some point p E M 2, then there exist no L 2 eigenfunctions of  - , 4 0  
with positive eigenvalues. 

0 
Proof Let X = 7 Or" From Proposition 5.5 we know that X is conformal and 

divg X = 27 ~. Thus one has -q~-J X~b < divg X ,  with strict inequality at some point 
p E M 2. The conclusion follows from Proposition 5.7. [] 

We conclude this section with an example of  how Corollary 5.8 can be applied. 
Let g be the standard metric on ~2, 9 = dr2 + r2 d~ Suppose O~j = ~)gij with 

O~b < 2 ~ ,  then - , 4 0  has no L 2 eigenfunctions with positive 0 < a l < ~ b < a 2 " I f - - - ~ r  = r 
Oh > 2 

eigenvalue. In terms of  h = log ~b, the above conditions read: bl < h _< b2, 0---~ = r 
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